
UFT: Unifying Supervised and Reinforcement
Fine-Tuning

Mingyang Liu, Gabriele Farina & Asuman Ozdaglar
LIDS, EECS

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{liumy19,gfarina,asuman}@mit.edu

Abstract

Post-training has demonstrated its importance in enhancing the reasoning capabili-
ties of large language models (LLMs). The primary post-training methods can be
categorized into supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT).
SFT is efficient and well-suited for small language models, but it may lead to over-
fitting and limit the reasoning abilities of larger models. In contrast, RFT generally
yields better generalization but depends heavily on the strength of the base model.
To address the limitations of SFT and RFT, we propose Unified Fine-Tuning (UFT),
a novel post-training paradigm that unifies SFT and RFT into a single, integrated
process. UFT enables the model to effectively explore solutions while incorpo-
rating informative supervision signals, bridging the gap between memorizing and
thinking underlying existing methods. Notably, UFT outperforms both SFT and
RFT in general, regardless of model sizes. Furthermore, we theoretically prove that
UFT breaks RFT’s inherent exponential sample complexity bottleneck, showing
for the first time that unified training can exponentially accelerate convergence on
long-horizon reasoning tasks.

1 Introduction

When humans learn a new subject, we typically practice with problem sets (thinking) and try to
understand the solutions when we encounter difficulties (memorizing). There are also counterparts in
fine-tuning LLMs, which is

• Supervised Fine-Tuning (SFT). Memorizing the collected reasoning trace (solution) by maxi-
mizing the log-likelihood of it.

• Reinforcement Fine-Tuning (RFT). Exploring the reasoning space of LLM and improving the
performance according to the signal from a verifier of the final answer (thinking).

However, unlike humans, learning and thinking are disentangled during the training of language
models. Specifically, prior work [DeepSeek-AI et al., 2025, Zhou et al., 2023, Muennighoff et al.,
2025, Liu et al., 2025, Zeng et al., 2025] typically applies either SFT or RFT throughout the fine-
tuning phase, or applies RFT only after SFT completes (cf. Figure 1). The choice of the proper
fine-tuning algorithm depends on the LLM’s capacity and the task’s complexity. Specifically, when
the LLM is weak, SFT typically works better since the LLM cannot explore the correct answer during
reinforcement learning [Pan et al., 2025], due to the sparse reward caused by the verifier-based reward
model. On the other hand, when the LLM is strong, RFT generalizes better [Xie et al., 2025, Chu
et al., 2025].

1The source code is available at https://github.com/liumy2010/UFT.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/liumy2010/UFT

Question:
How to get

24 with
(3,5,7,13)?

Solution:
5 × 13 = 65
7 + 65 = 72
72 ÷ 3 = 24

Question:
How to get

24 with
(3,5,7,13)?

Solution:
5 × 13 = 65
7 + 65 = 72
72 ÷ 3 = 24

SFT RFT

SFT-RFT

UFT (ours)

Question:
How to get

24 with
(3,5,7,13)?

Solution:
5 × 13 = 65
7 + 65 = 72
72 ÷ 3 = 24

Question:
How to get

24 with
(3,5,7,13)?

Solution:
5 × 13 = 65
7 + 65 = 72

Question:
How to get

24 with
(3,5,7,13)?

Solution:
5 × 13 = 65

Question:
How to get

24 with
(3,5,7,13)?

Solution:

Question:
How to get

24 with
(3,5,7,13)?

Solution:

Question:
How to get

24 with
(3,5,7,13)?

Solution:

0 100 200 300 400 500
Steps

A
nn

ot
at

io
n

U
sa

ge

Annotation Usage of Different Algorithms

SFT
RFT
SFT-RFT
UFT

1

Figure 1: (top left, top right, middle, bottom). The illustration of SFT, RFT, SFT-RFT, and UFT,
respectively. SFT-RFT refers to applying RFT after an initial SFT stage [DeepSeek-AI et al., 2025,
Zeng et al., 2025]. (Top, center). shows the annotation usage of different algorithms over training.
Curves are slightly shifted for better visibility.

To get the best of both worlds, we propose Unified Fine-Tuning (UFT), which unifies SFT and
RFT and enriches the reinforcement learning signal with supervised feedback, enabling the model
to acquire new knowledge during fine-tuning more efficiently. In Figure 1, SFT-RFT refers to the
common practice of initiating reinforcement learning from a supervised fine-tuned model, as widely
adopted in the literature [DeepSeek-AI et al., 2025, Zeng et al., 2025]. As shown in Figure 1 (top left),
SFT uses full annotations (solutions) throughout training, whereas RFT does not use any annotations
at all (Figure 1, top right). Similarly, SFT-RFT begins with SFT using full annotations, but once
the RFT phase starts, it discards all annotations and relies entirely on exploration. In contrast, our
method, UFT, offers a smooth transition from SFT to RFT, preserving the annotation signal early on
and gradually reducing it as the model becomes capable of self-guided reasoning.

The most relevant work to UFT is Learning Reasoning through Reverse Curriculum Reinforcement
Learning (R3) [Xi et al., 2024], which proposes a curriculum learning method that concatenates
the problem with a slice of the solution (hint, cf. Figure 4 left). While R3 treats hints primarily
as exploration aids, UFT further integrates them as part of the supervision signal. This unification
enables reinforcement learning not just to search, but to learn from existing solutions, effectively
raising the performance ceiling imposed by the model’s pretraining capacity (cf. Figure 2). A detailed
comparison with related work is postponed to Appendix A.

Figure 2 shows the accuracy of different algorithms over time, while the training set is Countdown
[Wikipedia contributors, 2025, Pan et al., 2025], MATH(3,4,5) (levels 3–5 only) [Hendrycks et al.,
2021, Zeng et al., 2025], and the Knights and Knaves logic puzzle (Logic) [Xie et al., 2025]. Base

2

0 200 400

Steps

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

Countdown

0 200 400

Steps

0.2

0.3

0.4

MATH(3,4,5)

0 200 400

Steps

0.1

0.2

0.3

Logic

Average Accuracy of Qwen2.5-0.5/1.5/3B

Base SFT RFT SFT-RFT R3 UFT

1Figure 2: Presentation for different algorithms’ accuracy when trained on Countdown [Wikipedia
contributors, 2025], MATH(3,4,5) (level 3-5 only) [Hendrycks et al., 2021, Zeng et al., 2025], and
the Knights and Knaves logic puzzle (Logic) [Xie et al., 2025]. Accuracy is averaged over Qwen2.5
models of sizes 0.5B, 1.5B, and 3B [Qwen et al., 2025]. Base refers to the model without fine-tuning,
and R3 is the curriculum reinforcement learning baseline [Xi et al., 2024]. The figure shows that UFT
outperforms both SFT and RFT, while the relative performance of SFT and RFT varies depending on
task complexity.

refers to the model before fine-tuning, and R3 represents the curriculum reinforcement learning
baseline [Xi et al., 2024]. As shown in the figure, UFT generally outperforms all other algorithms.
Furthermore, we provide the evaluation on various benchmarks, and the results are shown in Table 8.

Moreover, we theoretically prove that RFT [DeepSeek-AI et al., 2025, Zeng et al., 2025, Liu et al.,
2025] suffers from an inherent sample complexity bottleneck, which is exponential in the length of
the reasoning. In contrast, the unified training paradigm in UFT can improve the sample complexity
to a polynomial dependence on the reasoning length, which is an exponential improvement over RFT.

1.1 Contribution

We state the contribution of this paper in the following.

1. Integration of Supervision and Reward Signal. UFT provides a general framework that
integrates the supervision from SFT and reward from RFT into a single training paradigm.
UFT blends reward optimization with log-likelihood maximization on hints (partial solution),
and smoothly transitions from fully supervised to fully reinforcement learning. Such inte-
gration allows models to explore and learn simultaneously, addressing the trade-off between
memorization (SFT) and generalization (RFT) in a principled way.

2. Theoretical Justification. We provide a theoretical analysis of UFT, proving it achieves
polynomial sample complexity dependence on reasoning length, compared to the exponential
complexity required by standard RFT. This result formally establishes the efficiency gains
from unifying learning (cf. Section 4).

3. Empirical Validation Across Model Scales and Tasks. We evaluate the algorithms by
training Qwen2.5-0.5/1.5/3B [Qwen et al., 2025] and Llama3.2-1/3B [Grattafiori et al., 2024]
on Countdown [Wikipedia contributors, 2025, Pan et al., 2025], MATH [Hendrycks et al.,
2021], and the Knights and Knaves logic puzzle (Logic) [Xie et al., 2025]. UFT consistently
outperforms previous methods, showing robustness across domains and models (cf. Section 5).

2 Preliminaries

Notation. For any integer n > 0, let [n] := {1, 2, · · · , n} and ∆n :=
{
x ∈ [0, 1]n :

∑n
i=1 xi = 1

}
be the n− 1-dimenional probability simplex. For any two distribution x,y ∈ ∆n, let KL (x∥y) :=∑n

i=1 xi log
xi

yi
denote the KL-divergence between x and y. For any discrete set S, let |S| be its

cardinality.

3

3, 5, 7, 13
?
= 24

5× 13 = 65

7− 3 = 4

4 + 65 = 69 65− 4 = 61

7 + 65 = 72

72÷ 3 = 24 72 ∗ 3 = 216

3 + 5 = 8

8− 7 = 1

13 + 1 = 14 13÷ 1 = 13

8 + 13 = 21

21 + 7 = 28 21÷ 7 = 3

Figure 3: An illustration of the Countdown game, where the goal is to obtain 24 by applying basic
arithmetic operations (+,−,×,÷) to the numbers (3, 5, 7, 13). The green path represents the correct
solution.

Search Tree. The problem-solving process can be represented as a search tree, as illustrated in
Figure 3. Except for the leaf nodes, each node (also referred to as a state—we use the terms node and
state interchangeably) in the search tree has B children, where B is the branching factor. Each child
represents a different next token (or next sentence) to be generated, so a path from the root to a leaf
node corresponds to a complete solution to the problem. The tree has a height of H , with the root at
height 0, and each node’s height equal to its parent’s height plus one.

Let Sh denote the set of nodes with height h ∈ {0, 1, · · · , H} and S :=
⋃H

h=0 Sh. Note that |S0| = 1

since it only contains the root sroot, and |Sh+1| = B ·|Sh|. Therefore, there are
∑H

h=0 B
h = BH+1−1

B−1

nodes in total. Once reaching a leaf node s ∈ SH , the model will receive reward R(s) ∈ [0, 1].
A policy can be written as π :

⋃H−1
h=0 Sh → ∆B , where π(a | s) is the probability of selecting the

ath child of s. For any state-action pairs (s, a) ∈ S × [B], let T (s, a) ∈ S be the child at the
branch a of state s, and T (s, a) = ∅ for s ∈ SH . The value function of policy π is written as
V π : S → [0, 1]. We write sh0 = s, (sh)

H
h=h0

∼ π as the trajectory starting from s and sampled
according to π, i.e., ah ∼ π(· | sh), sh+1 = T (sh, ah). For any h0 ∈ {0, 1, · · · , H} and s ∈ Sh0

, we
define V π(s) := Esh0

=s,(sh)
H
h=h0

∼π [R (sH)], which is the expected reward obtained by following
policy π starting from node s.

Let π∗ ∈ argmaxπ V
π(sroot) denote the optimal (deterministic) policy that achieves the highest

expected reward1. Let V ∗ := V π∗
(sroot) be the expected reward of the optimal policy π∗. Since

π∗ is deterministic, let (s∗0, a
∗
0, s

∗
1, a

∗
1, · · · , s∗H) represent the path from the root to a leaf node by

following π∗, where s∗0 = sroot.

3 Unified Fine-Tuning (UFT)

In this section, we introduce the two key features of UFT: (i) an exploration mechanism guided
by hint, which improves sample efficiency by mitigating the sparse reward problem common in
rule-based reinforcement learning [DeepSeek-AI et al., 2025]; and (ii) a hybrid training objective
that combines reinforcement learning with a log-likelihood term on hints, which provides a more
informative learning signal and enables the model to acquire knowledge more effectively during
fine-tuning.

3.1 Exploration with Hint

Although RFT is beneficial for training large models [DeepSeek-AI et al., 2025], several recent
studies [Pan et al., 2025] report that small models often fail to reason effectively, as they may never
explore the correct answer even once due to the sparse reward. Additionally, other work has found
that RFT’s final performance is constrained by base models’ capabilities [Gandhi et al., 2025].

1There exists at least one deterministic optimal policy, and we choose such a policy as π∗.

4

To address the sparse reward issue, UFT guides exploration using a hint, that is, trajectory sampling
starts from the concatenation of the problem description and a hint, which is a partial solution to the
problem (cf. Figure 4). In this way, models will explore the correct answer more frequently.

RFT can be modeled as the task of finding a path from the root of the problem-solving tree to a
leaf node that represents the correct answer. As shown in Figure 3, RFT needs to identify the green
path. However, the problem-solving tree for real-world tasks, such as math problems, typically
contains an enormous number of nodes, making it difficult for an LLM to discover the correct path
through exploration alone. To make matters worse, under the rule-based reward model proposed in
DeepSeek-AI et al. [2025], only a small fraction of the leaf nodes correspond to correct answers,
resulting in the well-known sparse reward problem [Ladosz et al., 2022].

We address this challenge by concatenating the problem with a partial solution, referred to as the hint,
to guide the model towards the correct answer. Figure 4 (left) provides an example of UFT’s prompt.

UFT Prompt

Question

A conversation between User and Assistant. The user asks a question, and the Assistant
solves it. The assistant first thinks about the reasoning process in the mind and then
provides the user with the answer.
User: Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and
today, she read twice as many pages as yesterday. If she wants to read half of the
remaining pages tomorrow, how many pages should she read? Show your work in
<think> </think> tags. And return the final answer in <answer> </answer> tags, for
example <answer> 12 </answer>.
Assistant: Let me solve this step by step.
<think>

Maila read 12 x 2 = <<12*2=24>>24 pages today.
So she was able to read a total of 12 + 24 = <<12+24=36>>36 pages since yesterday.
There are 120 - 36 = <<120-36=84>>84 pages left to be read.

Hint

Since she wants to read half of the remaining pages tomorrow, then she should read
84/2 = <<84/2=42>>42 pages.
42 </think>

Solution

0 100 200 300 400 500

Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

Sc
or

e

Average Score on Training Batch (Qwen2.5-0.5B)
UFT
Stage

1Figure 4: (left). An illustration of the UFT prompt. We adopt the prompting template from TinyZero
[Pan et al., 2025], which is similar to that used in Deepseek-R1 [DeepSeek-AI et al., 2025]. The
hint consists of a slice of the full solution. During training, the question prompt and the hint are
concatenated and fed to the model. (right). An illustration of the training curve of Qwen2.5-0.5B.
Stage and UFT keep zero hint since step 300.

3.1.1 Hint Length Sampling

Since we are ultimately interested in the LLM’s performance when the hint length is zero, the hint
must be gradually shortened during training. A natural idea is to subtract the hint length by a constant
amount regularly, which is referred to as the staged reinforcement learning [Xi et al., 2024]. However,
because solutions typically consist of no more than 10 sentences, changes in hint length can cause a
significant distribution shift, leading to unstable training (cf. Figure 4, right).

To avoid distribution shift during training, Xi et al. [2024] samples the hint length uniformly from all
possible values throughout the training. However, relying on hints throughout training introduces a
significant distribution mismatch between training and evaluation. This often leads to performance
collapse at test time, where no hints are available. To address this, UFT employs a smoothed reduction
of hint length to zero, which (i) avoids drastic distribution shifts and (ii) better aligns the training
distribution with the evaluation distribution.

Specifically, we maintain a variable p ∈ [0, 1], representing the proportion of the solution revealed to
the LLM as a hint. The value of p gradually descends during training according to cosine annealing
(cf. (B.1)) [Loshchilov and Hutter, 2017]. Let l be the random variable indicating the hint length,
and let L be the total length of the solution (e.g., number of sentences). By definition, we require
l ∈ {0, 1, · · · , L} and E [l] = p · L, so that the expected hint length matches the proportion p. To
achieve this, we sample l ∼ Binomial(L, p) from a binomial distribution2. It is straightforward to

2Pr (l = l0) =
(
L
l0

)
pl0(1 − p)L−l0 for any l0 ∈ {0, 1, · · · , L}. In other words, l is the number of heads

obtained when tossing L independent coins, each landing heads with probability p.

5

verify that E[l] = L · E [c1] = p · L. In Appendix B.3, we further show that UFT is robust to the
choice of hint length distribution, and we choose binomial distribution due to its simplicity.

Compared to stage-wise hint length reduction, UFT provides a smoother transition from long to short
hints. The training curves of these algorithms are shown in Figure 4 (right). We can see that the
training curve of UFT is smoother and converges faster than that of the staged reinforcement learning.
Note that staged reinforcement learning and UFT do not use any hint since step 300.

0 100 200 300 400 500

Steps

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

Accuracy Trained on Countdown with Qwen2.5-0.5B

UFT
R3

SFT-RFT
SFT
RFT (cosine)
RFT

1

0 100 200 300 400 500

Steps

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

Accuracy Trained on Countdown with Llama-3.2-1B

UFT
R3

SFT-RFT
SFT
RFT (cosine)
RFT

1

Figure 5: An ablation study of different hint length schedulers.
RFT (cosine) refers to reinforcement learning with our cosine
annealing hint length scheduler proposed in this section.

As shown in Figure 5, although RFT
(cosine), which is RFT equipped
with the cosine annealing hint
length scheduler, outperforms R3

(uniform sampling), it is still worse
than SFT-RFT. Furthermore, for
Llama-3.2-1B, RFT (cosine) is even
worse than SFT alone. This im-
plies that the model’s performance
is hindered by its knowledge gained
through pretraining [Gandhi et al.,
2025], which motivates the sec-
ond modification of UFT introduced
in Section 3.2, an additional log-
likelihood term in the objective
function.

3.2 Objective Function Modification

The hinted RFT only enables LLMs to explore the correct solution more frequently, but remains
inefficient at injecting new knowledge into the LLMs. This inefficiency arises because each sampled
trajectory provides limited information, essentially a signal (correct/incorrect), which provides far less
information than the supervision signal in SFT. In contrast, SFT enables more efficient knowledge
acquisition, but suffers from poor generalization [Xie et al., 2025, Zeng et al., 2025]. To get the
best of both worlds, UFT introduces an additional log-likelihood term to the objective function of
RFT, allowing the model to learn from the informative supervision signal and still benefit from the
generalization of RFT.

For notational simplicity, let s0 = sroot, (sh, ah)
H−1
h=0 ∼ π denote the shorthand for ah ∼ π(· | sh)

and sh+1 = T (sh, ah), i.e., (sh, ah)
H−1
h=0 represents a trajectory sampled according to π starting at

sroot. Formally, let J value
(
(sh, ah)

H−1
h=0

)
denote the objective function associated with the expected

reward3. Then, let β > 0 be the hyperparameter controlling the KL divergence, we have

JRFT
= E

s0=sroot,(sh,ah)H−1
h=0

∼π

J value
(
(sh, ah)

H−1
h=0

)
− β

H−1∑
h=0

KL
(
π(· | sh)∥πref

(· | sh)
) (3.1)

JUFT
= E l,s0=sroot

(sh,ah)l−1
h=0

∼π∗,

(sh,ah)H−1
h=l

∼π

J value
(
(sh, ah)

H−1
h=l

)
− β

H−1∑
h=l

KL
(
π(· | sh)∥πref

(· | sh)
)
− β

l−1∑
h=0

KL
(
π
∗
(· | sh)∥π(· | sh)

)

(3.2)

Compared to the objective function of GRPO, UFT adds an additional term
β
∑l−1

h=0 KL (π∗(· | sh)∥π(· | sh)), the KL divergence between the optimal policy and the
current policy. Compared to J value, this term explicitly guides the policy towards optimality, and
thus results in a faster convergence rate.

We remark that the optimal policy π∗ is unknown and we cannot compute
β
∑l−1

h=0 KL (π∗(· | sh)∥π(· | sh)) directly. However, thanks to the annotations contained in

3In GRPO [Shao et al., 2024], we have J value
(
(sh, ah)

H−1
h=0

)
:= 1

H

∑H−1
h′=0 min

{
π(ah′ | sh′)

πold(ah′ | sh′)
Âh′ ,

clip
(

π(ah′ | sh′)
πold(ah′ | sh′)

, 1− ϵ, 1 + ϵ
)
Âh′

}
, where π is the current policy, πold is the policy at the previous step,

Âh′ is the estimated advantage value in GRPO.

6

the dataset, we have access to a trajectory sampled according to π∗, i.e., (s∗h, a
∗
h)

H−1
h=0 ∼ π∗, which

can be used to estimate the KL-divergence. According to the definition of KL-divergence, minimizing
KL (π∗(· | s∗h)∥π(· | s∗h)) is equivalent to minimizing

∑B
ah=1 π

∗(ah | s∗h) log 1
π(ah | s∗h)

(omit terms

irrelevant to π), and log 1
π(a∗

h | s∗h)
is an unbiased estimator of it, since a∗h ∼ π∗(· | s∗h). Therefore,

(3.2) can be equivalently written as

JUFT
= E l,sl=s∗l ,

(sh,ah)H−1
h=l

∼π

J value
(
(sh, ah)

H−1
h=l

)
− β

H−1∑
h=l

KL
(
π(· | sh)∥πref

(· | sh)
)
+β

l−1∑
h=0

log π(a
∗
h | s∗h)

 . (3.3)

Therefore, the UFT objective (3.3) can be interpreted as (i) maximizing the expected reward while (ii)
staying close to the reference policy and (iii) memorizing the hint by maximizing the log-likelihood
of producing the hint.

Remark 3.1. The name of Unified Fine-Tuning (UFT) comes from the fact that when p ≡ 0 for all
steps during training, (3.3) is equivalent to RFT, since β

∑l−1
h=0 log π(a

∗
h | s∗h) = 0. When p ≡ 1, then

J value
(
(sh, ah)

H−1
h=l

)
− β

∑H−1
h=l KL

(
π(· | sh)∥πref(· | sh)

)
= 0, so that (3.3) degenerates to SFT.

An illustration can be found in Figure 1 (top middle).

It is noteworthy that after adopting the additional log-likelihood term, UFT’s performance matches
that of SFT-RFT for small models (cf. Figure 5). This suggests that UFT improves the ceiling of RFT
by enabling the model to acquire new knowledge during post-training.

3.3 Algorithm Outline

Overall, the UFT algorithm proceeds as follows:

• Sample a batch of problems B along with their corresponding solutions.

• For each problem, sample a hint length l according to Section 3.1.1.

• Concatenate each problem with its solution prefix of length l.

• Train the model on D using a reinforcement learning algorithm with the objective defined in
(3.3).

The corresponding pseudocode is provided in Algorithm 1.

4 Theoretical Justification

In this section, we provide a theoretical justification for UFT. First, we show that the lower bound
of RFT’s sample complexity grows exponentially (O(BH)) as the tree height (reasoning length)
increases. Second, we show that UFT may find the solution within a polynomial number of samples
(O
(
BH5 logB

)
), representing an exponential improvement of tree height H in sample complexity.

Next, we define the sub-optimality gap in reward, which is the difference between the rewards for
correct and incorrect solutions.

Definition 4.1 (Sub-Optimality Gap). There is a sub-optimality gap ∆ > 0 between the reward
of optimal and suboptimal nodes. Formally, for any leaf node s ∈ SH with reward R(s) <
maxs′∈SH

R(s′), we have

R(s) ≤ max
s′∈SH

R(s′)−∆. (4.1)

In this paper, there are only three possible outcomes for R(s), i.e., no reward (incorrect format),
format reward, and accuracy reward. Therefore, the sub-optimality gap

∆ = (accuracy reward)− (format reward) = 1.0− 0.1 = 0.9. (4.2)

Next, we will give the lower bound on the RFT’s sample complexity to achieve 50% pass@1 success
rate4.

4The probability of reaching the correct answer when sampling a single trajectory.

7

Theorem 4.2 (Lowerbound). For any integers H ≥ 1, B ≥ 2, and any RFT algorithm, there exists a
problem with height H and branching factor B, that satisfies the following: to achieve a 50% pass@1
success rate, the algorithm needs to explore at least

BH

4
(4.3)

nodes in SH . Moreover, when there are multiple nodes in SH representing the correct solutions, e.g.,
K ≥ 1, any algorithm needs to explore at least BH

4K nodes in SH .

The proof constructs a set of problems with different correct solutions, which cannot be distinguished
before exploring sufficient nodes in SH . The details can be found in Appendix C. Furthermore, the
traditional lower bounds in reinforcement learning [Jin et al., 2018, Domingues et al., 2021] are
built on the stochastic transitions of the Markov decision process, but the search tree’s transition is
deterministic, which requires a different construction.

Theorem 4.2 implies that when the reward is sparse, such as when K is a constant, learning the
optimal policy takes a number of iterations exponential in the height of the tree. This also justifies
why long reasoning is generally difficult [Chai et al., 2025, Chen et al., 2025]. In the following, we
will show that UFT exponentially improves the sample complexity. The full algorithm can be found
in Algorithm 2.
Theorem 4.3 (Informal). When β is small enough, Algorithm 2 obtains a 50% pass@1 success rate
when the algorithm explores

O

(
B
H5 (logB)

2

∆2

)
(4.4)

nodes in SH .

The formal version is deferred to Appendix E. Note that the 50% pass@1 in both Theorem 4.2 and
Theorem 4.3 can be arbitrarily adjusted, and it only affects the sample complexity by a constant factor.
From Theorem 4.3, we observe that the dependence on H is reduced from BH to H5, representing
an exponential improvement enabled by the use of hints. Moreover, ∆2 in the denominator implies
that the difference between accuracy reward and format reward should be large for fast convergence,
which is also supported by empirical studies [Shao et al., 2024, Pan et al., 2025, Zeng et al., 2025].

5 Experiments

In this section, we present the experimental results of UFT. We demonstrate several key properties of
UFT: (i) When the model is small (≤ 1B) and SFT outperforms RFT, UFT’s performance matches that
of SFT. (ii) When the model is large (∼ 3B) and RFT outperforms SFT due to better generalization,
UFT’s performance matches that of RFT (and sometimes even outperforms it, cf. Table 8).

0 100 200 300 400 500

Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

Cumulative Average Exploration Success Rate on Logic

RFT
UFT
SFT-RFT
R3

1

Figure 6: Qwen2.5-0.5B’s cu-
mulative average success rate for
exploring the correct answer at
each step when trained on Logic.

In experiments, we train Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-
3B [Qwen et al., 2025], Llama-3.2-1B, and Llama-3.2-3B
[Grattafiori et al., 2024] on Countdown [Wikipedia contributors,
2025, Pan et al., 2025], MATH(3,4,5) (only level 3-5 included)
[Hendrycks et al., 2021, Zeng et al., 2025], and the Knights and
Knaves logic puzzle (Logic) [Xie et al., 2025].

5.1 The Memorization of UFT

As shown in Figure 7, we can see that when the model is small,
the improvement from RFT is marginal, since the model rarely
explores the correct answer. As shown in Figure 6, when training
Qwen2.5-0.5B on Logic, RFT rarely explores the correct answer,
while UFT finds it at every single timestep.

Compared to R3, where hints are also applied, UFT outperforms it
since UFT (i) gradually shifts the distribution toward a hint length of zero, and (ii) maximizes the
log-likelihood on hints to encode information about the solution in gradients. The proximity between
the performance of UFT and SFT-RFT also supports the conclusion that UFT helps the model to
memorize the solution when the model’s initial capacity is not enough to solve it.

8

0 200 400

Steps

0.0

0.2

0.4

A
cc

ur
ac

y

Countdown

0 200 400

Steps

0.1

0.2

MATH(3,4,5)

0 200 400

Steps

0.0

0.1

0.2

Logic

Accuracy Trained with Qwen2.5-0.5B

Base SFT RFT SFT-RFT R3 UFT

1Figure 7: An illustration of the accuracy on the test dataset of Qwen2.5-0.5B. Base is the base model
without fine-tuning. R3 [Xi et al., 2024] trained the model with RFT and a uniform distribution over
all hint lengths. SFT-RFT refers to training a supervised fine-tuned model with RFT, and UFT is our
algorithm.

0 200 400

Steps

0.0

0.2

0.4

0.6

A
cc

ur
ac

y

Countdown

0 200 400

Steps

0.3

0.4

0.5

MATH(3,4,5)

0 200 400

Steps

0.2

0.4

0.6

Logic

Accuracy Trained with Qwen2.5-3B

Base SFT RFT SFT-RFT R3 UFT

1Figure 8: An illustration of the accuracy on test dataset of Qwen2.5-3B. Base refers to the base model
without fine-tuning.

5.2 The Generalization of UFT

As shown in Figure 8, when the model is larger and its prior knowledge gained from pertaining is
enough for reasoning, UFT generalizes well as RFT. In contrast, SFT and SFT-RFT are worse, since
SFT leads to overfitting. These experiments show that UFT will automatically adapt to model size
and enjoy the advantage of both SFT and RFT.

As shown in Figure 8, when the model is larger and its prior knowledge gained from pretraining is
sufficient for reasoning, UFT generalizes well as RFT. In contrast, SFT and SFT-RFT perform worse,
since SFT leads to overfitting. These experiments show that UFT automatically adapts to model size
and benefits from the advantages of both SFT and RFT.

5.3 UFT Helps LLMs Learn New Knowledge

In Gandhi et al. [2025], it was found that Llama-3.2-3B’s improvement through RFT is marginal
compared to that of Qwen2.5-3B. This is because Llama gains less reasoning-related knowledge from
pertaining, e.g., backtracking and subgoal setting. In Figure 9, we can see that UFT significantly
improves the performance of Llama-3.2. In Countdown, even Llama-3.2-1B outperforms Llama-
3.2-3B fine-tuned by RFT after the same number of steps (250 steps). This supports the claim that
UFT introduces new knowledge to the model, whereas RFT only helps the model utilize its existing
knowledge [Yue et al., 2025].

9

0 100 200

Steps

0.0

0.2

0.4

A
cc

ur
ac

y

Countdown

0 100 200

Steps

0.00

0.05

0.10

A
cc

ur
ac

y

MATH(3,4,5)

0 100 200

Steps

0.0

0.1

0.2

A
cc

ur
ac

y

Logic

Average Accuracy of Llama-3.2-1/3B

RFT (1B) UFT (1B) RFT (3B) UFT (3B) RFT (3B, Gandhi et al. [2025])

1Figure 9: The comparison of Llama-3.2-1B/3B’s behavior in Countdown/MATH/Logic when applying
RFT/UFT. In Countdown, the dotted line is the accuracy of Llama-3.2-3B after 250 steps RFT reported
in Gandhi et al. [2025] .

Qwen2.5-0.5B

Qwen2.5-1.5B

Qwen2.5-3B

Llama-3.2-1B

Llama-3.2-3B
0

25

50

75

100

125

Ti
m

e
pe

rS
te

p
(s

)

Time per Step Across Models
RFT
UFT

Qwen2.5-0.5B

Qwen2.5-1.5B

Qwen2.5-3B

Llama-3.2-1B

Llama-3.2-3B
0

20

40

60

R
ol

lo
ut

Ti
m

e
pe

rS
te

p
(s

)

Rollout Time per Step Across Models
RFT
UFT

1

Figure 10: The computational cost per step of UFT and RFT.

5.4 Computational Cost of UFT

The computational costs of UFT and RFT are shown in Figure 10. Interestingly, UFT is faster than
RFT, as it begins reasoning from a partial solution (a hint) rather than starting from scratch, thereby
reducing the rollout cost during training.

6 Conclusion and Limitations

This paper proposes a novel fine-tuning framework, UFT, which unifies SFT and RFT. Empirically,
we show that UFT outperforms both SFT and RFT in general. Specifically, by adopting UFT,
small models tend to memorize while large models generalize. Theoretically, we prove that UFT
achieves an exponential speed-up compared to RFT. However, throughout the paper, we use only
the human-annotated solutions in the dataset and GRPO as the reinforcement learning algorithm.
Moreover, we do not employ state-of-the-art (e.g., 70B-scale) models in our experiments due to
computational constraints, but provide evidence that UFT remains beneficial under these settings (see
Appendix B.4). In the future, it would be interesting to explore the incorporation of advanced SFT
and RFT techniques into UFT. For instance, using long chain-of-thoughts generated by large models
[Muennighoff et al., 2025, Gandhi et al., 2025] for SFT, and choosing other reinforcement learning
algorithms such as REINFORCE++ [Hu, 2025] and DAPO [Yu et al., 2025] as the reinforcement
learning algorithm for UFT.

10

7 Acknowledgement

The authors would like to thank Jacob Andreas, Chanwoo Park, and Kaiqing Zhang for their valuable
discussions. Mingyang Liu was supported by the Siebel Scholarship, and Gabriele Farina was
supported in part by the CCF-2443068, ONR grant N000142512296, and an AI2050 Early Career
Fellowship.

References
Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy

gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Yekun Chai, Haoran Sun, Huang Fang, Shuohuan Wang, Yu Sun, and Hua Wu. Ma-rlhf: Reinforce-
ment learning from human feedback with macro actions. International Conference on Learning
Representations (ICLR), 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, and Aixin Liu et al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. Annual Conference on Neural
Information Processing Systems (NeurIPS), 2020.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited. 2021.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, and Arun Rao et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. Annual
Conference on Neural Information Processing Systems (NeurIPS), 2021.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient?
Annual Conference on Neural Information Processing Systems (NeurIPS), 2018.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
International Conference on Machine Learning (ICML), 2002.

Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

11

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. International
Conference on Learning Representations (ICLR), 2024.

Mingyang Liu. On solving larger games: Designing new algorithms adaptable to deep reinforcement
learning. Master’s thesis, Massachusetts Institute of Technology, 2025.

Mingyang Liu, Asuman E. Ozdaglar, Tiancheng Yu, and Kaiqing Zhang. The power of regularization
in solving extensive-form games. International Conference on Learning Representations (ICLR),
2023.

Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. A policy-gradient approach to solving
imperfect-information games with iterate convergence. arXiv preprint arXiv:2408.00751, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not be
aha moment in r1-zero-like training — a pilot study. https://oatllm.notion.site/oat-zero,
2025. Notion Blog.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. International
Conference on Learning Representations (ICLR), 2017.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei
Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv preprint arXiv:2406.06592, 2024.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. International Conference on Machine Learning (ICML),
2020.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

An Yang Qwen, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, and Keming Lu et al. Qwen2.5 technical
report. arXiv preprint arXiv:2412.15115, 2025.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. International Conference on Learning Representations (ICLR),
2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
via adaptive curriculum learning. arXiv preprint arXiv:2504.05520, 2025.

Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang. Fastcurl:
Curriculum reinforcement learning with progressive context extension for efficient training r1-like
reasoning models. arXiv preprint arXiv:2503.17287, 2025.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023.

12

https://oatllm.notion.site/oat-zero

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460, 2025.

Wikipedia contributors. Countdown (game show). https://en.wikipedia.org/wiki/Countdown_
(game_show), 2025.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, et al. Training large language models for reasoning through reverse
curriculum reinforcement learning. International Conference on Machine Learning (ICML), 2024.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan
Liu, and Hao Peng. Free process rewards without process labels. arXiv preprint arXiv:2412.01981,
2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Han Zhong, Zikang Shan, Guhao Feng, Wei Xiong, Xinle Cheng, Li Zhao, Di He, Jiang Bian,
and Liwei Wang. Dpo meets ppo: Reinforced token optimization for rlhf. arXiv preprint
arXiv:2404.18922, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Annual Conference on Neural
Information Processing Systems (NeurIPS), 2023.

13

https://en.wikipedia.org/wiki/Countdown_(game_show)
https://en.wikipedia.org/wiki/Countdown_(game_show)

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Sections 4 and 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: See Section 4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: The code can be found in https://github.com/liumy2010/UFT.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: To show the robustness of our algorithm, we run experiments on different
models and training dataset. However, training LLMs is relatively costly, and we cannot
afford to run all the experiments with multiple random seeds. This is also common in other
papers in this area, such as DeepSeek-AI et al. [2025], Gandhi et al. [2025], Yu et al. [2025],
Zeng et al. [2025].

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://github.com/liumy2010/UFT
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Related Work

In this section, we introduce related work about SFT, RFT, and curriculum learning for reasoning.

Supervised Fine-Tuning (SFT) for Reasoning. Different SFT methods for enhancing reasoning
capability usually differ in the source of the collected reasoning trace. Zeng et al. [2025] uses
traditional SFT, i.e., learning from the human-annotated problem solutions. In contrast, Gandhi
et al. [2025], Muennighoff et al. [2025] utilize long chain-of-thoughts solutions generated by some
large models, such as Claude and Deepseek-R1 [DeepSeek-AI et al., 2025]. On the other hand,
Yuan et al. [2023], Xie et al. [2025] utilizes rejection sampling fine-tuning. Specifically, the model
will generate multiple reasoning traces, and the one that leads to the correct answer is selected for
further fine-tuning. In this paper, we use human annotations as the SFT data (traditional SFT), as it is
sufficient for our purpose and keeps the focus on our main contribution (unifying SFT and RFT).

Reinforcement Fine-Tuning (RFT) for Reasoning. RFT for reasoning can be categorized into
process supervision and outcome supervision. Process supervision assigns a reward to each step of
a long reasoning trace [Lightman et al., 2024], which evaluates whether each step is correct or not.
The main drawback of process supervision is that it is costly to prepare step-by-step feedback data.
On the other hand, outcome supervision assigns a single reward to the entire trace [DeepSeek-AI
et al., 2025, Zeng et al., 2025, Yu et al., 2025], e.g., whether the trace yields the correct answer to a
math problem. Furthermore, Wang et al. [2023], Yuan et al. [2024], Zhong et al. [2024], Luo et al.
[2024], Setlur et al. [2025] learn a step-by-step reward model from a collection of reasoning traces
with outcome rewards, which avoids the cost of preparing step-by-step data. In this paper, due to
the efficiency and simplicity of outcome supervision, we focus on the comparison with RFT using
outcome supervision.

Curriculum Learning for Reasoning. Existing curriculum reinforcement learning for reasoning
mainly focuses on utilizing a collection of problems with varying difficulties [Wen et al., 2025, Shi
et al., 2025, Song et al., 2025]. These methods train the model with problems of gradually increasing
difficulty, where the difficulty is determined by predefined criteria, such as the length of the successful
reasoning trace [Song et al., 2025] or the success rate of baseline models [Shi et al., 2025, Wen et al.,
2025]. However, such methods fail when the problems in the dataset are homogeneous in difficulty.
In contrast, Xi et al. [2024] proposes a curriculum learning method that concatenates the problem
with a slice of the solution (hint). The difficulty is determined by the hint length. However, Xi et al.
[2024] uses a uniform distribution over all possible hint lengths, which misaligns with the distribution
of interest (zero hint length). On the other hand, UFT designs a hint length scheduler that smoothly
reduces the hint length to zero. Furthermore, UFT adds an additional log-likelihood term for the
hint in the objective function, which helps the model to acquire new knowledge more efficiently and
increases the ceiling of reinforcement learning (cf. Figure 5).

B Experiment Details

In this section, we describe our experimental setup and results. We present the pseudocode for UFT
(Appendix B.1), detail the hyperparameters used (Appendix B.2), and conduct an ablation study
(Appendix B.3). We also provide an analysis of the model’s generalization to larger scales and report
additional experimental findings (Appendix B.5).

B.1 Algorithm

The pseudo-code of UFT is presented in Algorithm 1. In lines 4-9: we sample the hint length for
each (question, solution, answer) pair in the sampled data batch B. In lines 11-13, we concatenate the
question with the partial solution of length l(t) and feed it into a reinforcement learning algorithm
(such as GRPO), with the objective function (3.3). Section 4 discusses the theoretical properties
of UFT. To facilitate concrete convergence analysis, we specify the update rule of UFT, and the
theoretically grounded variant is provided in Algorithm 2.

21

Algorithm 1: Unified Fine-Tuning
Hyperparameters: KL-penalty coefficient β, total number of steps T , number of steps with hint

Thint, low/high probability plow/phigh for hint sampling, and hint length L
Input: Reference policy parameter θθθref

Initialization: θθθ(0) ← θθθref

1 for t = 0, 1, · · · , T − 1 do
2 Sample a batch of problems B
3 D ← {}
4 for (Q,S,A) ∈ B do

// For each (question, solution, answer) pair
5 if t < Thint then
6

p(t) ← plow +
1

2

(
phigh − plow

)(
1 + cos

(
t+ 1

Thint
π

))
(B.1)

// Cosine annealing, π ≈ 3.14159 is the Pi constant

7 Sample l(t) ∼ Binomial
(
min {L, len(S)} , p(t)

)
8 else
9 l(t) = 0

10 end
11 D ← D ∪

{
Q+ S[: l(t)]

}
// Concatenate the question with the partial

solution (hint) and add to D
12 end
13 Run reinforcement learning algorithm on D with the objective function (3.3)
14 end

B.2 Cost and Implementation Details

The project costs roughly $10,000 GPU hours. The experiment is based on VERL [Sheng et al., 2024]
and TinyZero [Pan et al., 2025]. The hyperparameters for training on different datasets are listed in
Table 1. The omitted hyperparameters follow the default values of VERL [Sheng et al., 2024].

Additionally, we provide an illustration of a hint in MATH(3,4,5). Basically, we divide the whole
solution by sentences, then uniformly divide the sentences into L buckets. Then, during training, we
will sample l to decide the hint length (how many buckets included).

[
"For the piecewise function to be continuous, the cases must \"meet\" at 2 and -2. ",
"For example, $ax+3$ and $x-5$ must be equal when $x=2$. ",
"This implies $a(2)+3=2-5$, which we solve to get $2a=-6 \\Rightarrow a=-3$. ",
"Similarly, $x-5$ and $2x-b$ must be equal when $x=-2$. ",
"Substituting, we get $-2-5=2(-2)-b$, which implies $b=3$. ",
"So $a+b=-3+3=\\boxed{0}$."
]

B.3 Ablation Study

Ablation on Hint Length. We conducted a study on Qwen2.5-0.5B (MATH(3,4,5)), testing dividing
the solution into L = 4/5/6 pieces uniformly and sampling hint length among {0, 1, . . . , L}. We
choose MATH(3,4,5) instead of Countdown because the solution length of MATH(3,4,5) is relatively
longer. The results are shown in Table 2.

22

Data
Training Batch Size 256
Validation Batch Size 1312
Mini-batch Size 64
Hint Length 5

Training

Learning Rate 10−6

β 0.001
T 500
Thint 300
Number of Rollouts 4

Context Window (Prompt)
Countdown: 256
MATH(3,4,5): 1024
Logic: 1024

Context Window (Response) 1024
plow 0.05
phigh 0.95
SFT Epochs 5

Reward
Accuracy Reward 1.0
Format Correctness Reward 0.1
Incorrect Reward 0.0

Table 1: The hyperparameters for training on different datasets. The other parameters follow the
default parameters of VERL [Sheng et al., 2024].

Hint Length Setting Accuracy (%)
Hint length L = 4 27.44
Hint length L = 5 27.15
Hint length L = 6 25.20

Table 2: Ablation on hint length for Qwen2.5-0.5B (MATH(3,4,5)).

This suggests that UFT is relatively insensitive to the total number of pieces we divided the solution
into.

Ablation on β. We evaluated different β values on Qwen2.5-0.5B (Countdown). The results are
shown in Table 3.

β Accuracy (%)
β = 0.0005 46.09
β = 0.001 50.39
β = 0.002 59.95

Table 3: Ablation on β for Qwen2.5-0.5B (Countdown).

A higher β amplifies the impact of the supervised log-likelihood term, helping the model learn more
from hints. For all main experiments, we adopt β = 0.001, the default in VERL. For larger models,
our preliminary results show that varying β yields minimal performance changes, likely due to their
stronger pretrained priors. Table 4 presents the results of Qwen2.5-3B (Countdown).

23

β Accuracy (%)
β = 0.0005 77.93
β = 0.001 75.59
β = 0.002 78.22

Table 4: Ablation on β for Qwen2.5-3B (Countdown).

Ablation on Hint Phase Length. We test different durations for the hint phase on Qwen2.5-0.5B
(Countdown), as shown in Table 5.

Hint Phase Length Accuracy (%)
Thint = 200 52.15
Thint = 300 50.39
Thint = 400 50.00

Table 5: Ablation on hint phase length (Thint) for Qwen2.5-0.5B (Countdown).

These small variations confirm that UFT is robust to the hint phase length.

Ablation on Hint Length Distribution. We also evaluate UFT under a two-point hint length
sampling scheme: for any expected hint length p · L ∈ [n, n + 1), we set l = n with probability
n+ 1− p · L and l = n+ 1 with probability p · L− n. p is still determined by the cosine-annealing
scheduler. Further details are provided in Table 6.

Hint Length Distribution Accuracy (%)
Two-point 48.63
Binomial 50.39

Table 6: Ablation on hint length distribution for Qwen2.5-0.5B (Countdown).

We can see that UFT is also robust to different choices of hint length distributions.

B.4 Generalization to Larger Models

Even though we cannot afford training a larger model, we believe UFT will be helpful for the
state-of-the-art models on tasks out of its capacity. For instance, some tasks involving knowledge of
a special sub-field or extremely complex reasoning problems.

The following empirical results (Table 7) may hint at this. For instance, on the logic puzzle, which
requires more abstract reasoning, Qwen2.5-1.5B performs poorly with RFT alone (0.00%) but
achieves 23.00% with UFT:

Task (Qwen2.5-1.5B) RFT UFT
Countdown 71.48% 71.48%
MATH(3,4,5) 46.68% 47.95%
Logic 0.00% 23.00%

Table 7: Performance comparison between RFT and UFT across tasks with Qwen2.5-1.5B.

In conclusion, although Qwen2.5-1.5B has enough capacity for Countdown and MATH(3,4,5), it is
insufficient in solving the logic puzzle and UFT outperforms RFT by a large margin. Therefore, it is
likely that for larger models, UFT will be helpful when solving extremely hard tasks.

This stark difference in Logic suggests that even when a model appears to have “enough capacity”
(as Qwen2.5-1.5B does for Countdown and MATH), it can still benefit significantly from UFT when
the task challenges its reasoning ability. Hence, for much larger models facing extremely complex
tasks, we anticipate that UFT will continue to provide meaningful advantages.

24

Qwen2.5-0.5B

Question

Use 39, 84, 29 to get 94

<think> 84 - 29 = 55
39 + 55 = 94
Therefore, the final equation is 39 + (84 - 29) </think>
<answer> 39 + (84 - 29) </answer>

Solution

<think> 84 + 39 = 123
123 - 29 = 94
<answer> (84 + 39 - 29) </answer>

UFT Response

<think> 39 + 84 - 29 </think>
<answer> (39 + 84) - 29 </answer>

RFT Response

Qwen2.5-3B

Question

Use 95, 32, 45, 21 to get 87

<think> 45 - 21 = 24
32 - 24 = 8
95 - 8 = 87
Therefore, the final equation is 95 - (32 - (45 - 21)) </think>
<answer> 95 - (32 - (45 - 21)) </answer>

SFT-RFT Response

<think> 95 - 45 = 50
50 - 32 = 18
21 + 18 = 39 (too low)
32 + 21 = 53
53 + 50 = 103 (too high)
32 + (95 - 45) = 32 + 50 = 82 (not what we want)
(95 + 45) - (32 + 21) = 140 - 53 = 87 (this works) </think>
So the final equation that equals 87 is:
<answer> (95 + 45) - (32 + 21) </answer>

UFT Response

Figure 11: Responses of Qwen2.5-0.5/3B trained by different algorithms.

B.5 Additional Results

Figure 11 shows the response of the model trained via different algorithms. For Qwen2.5-0.5B,
UFT’s response aligns with the solution better than RFT’s. For Qwen2.5-3B, UFT generates a longer
reasoning trace and presents skills such as verification [Gandhi et al., 2025], while SFT-RFT does not.

Table 8 shows the accuracy results across different datasets. For clarity, we report the average
accuracy over models trained on three datasets: Countdown, MATH(3,4,5), and Logic.

For smaller models such as Qwen2.5-0.5B, SFT-RFT achieves an accuracy of 7.28%, compared to
only 3.25% for RFT. In contrast, UFT achieves 9.45% accuracy, outperforming both.

For larger models such as Qwen2.5-3B, SFT-RFT achieves 17.34% accuracy, which is significantly
lower than RFT’s 32.15%. However, UFT still performs competitively, reaching 30.93% and closely
matching RFT.

In summary, UFT combines the strengths of both SFT and RFT. When the model is small and
memorization plays a key role, UFT matches or exceeds SFT’s performance. When the model is large
and generalization becomes more important, UFT benefits similarly to RFT, achieving comparable
accuracy.

C Proof of Theorem 4.2

Theorem 4.2 (Lowerbound). For any integers H ≥ 1, B ≥ 2, and any RFT algorithm, there exists a
problem with height H and branching factor B, that satisfies the following: to achieve a 50% pass@1
success rate, the algorithm needs to explore at least

BH

4
(4.3)

nodes in SH . Moreover, when there are multiple nodes in SH representing the correct solutions, e.g.,
K ≥ 1, any algorithm needs to explore at least BH

4K nodes in SH .

Proof. Proving the lower bound of exploration is equivalent to the following. Find the maximum
T > 0, such that any algorithm will fail to learn the optimal policy with probability at least 0.5 within
T explorations. Consider the

(
BH

K

)
possible trees, each associated with a distinct subset of SH of

size K, where that subset represents the correct solution for that specific tree. At the beginning, we
pick an instance from all those possible trees uniformly at random.

During each exploration, the algorithm requests the reward at a node in SH . Let s(1), s(2), . . . , s(T) be
the leaf node reached at timestep 1, 2, . . . T , which are random variables depending on the randomness
of the algorithm. Let S∗H := {s ∈ SH : R(s) = maxs′∈SH

R(s′)} be the set of nodes representing
correct solutions. Note that given the construction of the instances, |S∗H | = K. Then, the probability

25

Model Algorithm MATH(3,4,5) AIME24 AMC Countdown Logic MATH500 Minerva Olympiad GSM8k Avg.

Base 3.03 0.00 0.00 0.00 0.00 1.73 0.74 0.30 7.66 1.55
SFT 4.92 0.00 1.61 11.20 1.87 2.13 2.08 1.33 13.07 4.46
RFT 3.78 0.00 3.21 8.30 0.00 2.47 3.80 2.57 3.87 3.25

Qwen2.5-0.5B SFT-RFT 8.69 0.00 3.61 17.45 7.07 2.07 4.41 2.12 16.45 7.28
R3 9.86 0.00 6.43 9.99 4.20 3.33 5.02 3.11 20.09 7.36
UFT 13.18 0.00 6.83 17.15 4.87 5.40 5.76 2.77 24.59 9.45
Base 24.51 3.33 4.82 0.20 2.20 18.27 4.41 5.48 60.96 14.29
SFT 12.47 0.00 5.62 13.48 5.33 6.40 4.53 2.62 29.74 9.36
RFT 24.77 2.22 9.24 27.86 3.00 10.53 6.86 6.47 45.69 16.08

Qwen2.5-1.5B SFT-RFT 15.72 1.11 6.83 20.51 11.13 5.00 4.41 4.59 30.02 11.70
R3 28.12 2.22 13.65 23.57 11.47 14.93 7.48 9.43 49.79 18.65
UFT 34.08 3.33 14.86 24.54 10.07 20.87 8.33 9.68 66.46 22.23
Base 31.45 0.00 13.25 3.81 5.60 24.53 4.78 7.70 57.85 17.13
SFT 24.32 0.00 10.04 15.07 10.20 16.80 5.27 5.19 45.54 15.25
RFT 45.74 4.44 24.90 34.08 30.33 31.27 12.25 15.65 80.84 32.15

Qwen2.5-3B SFT-RFT 26.50 1.11 9.64 17.61 19.60 14.07 5.76 6.77 48.22 17.34
R3 44.01 2.22 21.29 27.12 24.80 28.00 10.91 14.57 70.20 28.02
UFT 47.04 3.33 29.32 31.38 26.07 29.73 12.99 14.17 74.63 30.93

Base 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.01
SFT 1.07 0.00 0.80 13.41 3.67 0.00 0.74 0.25 1.87 2.49
RFT 0.94 0.00 2.41 0.00 0.00 0.47 0.49 0.84 1.42 0.80

Llama-3.2-1B SFT-RFT 0.42 0.00 0.00 18.68 8.33 0.00 1.23 0.20 0.48 3.29
R3 1.53 0.00 1.61 9.90 0.13 0.33 2.94 0.99 1.49 2.20
UFT 1.17 0.00 0.00 17.87 7.40 0.07 2.82 0.74 1.14 3.52
Base 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SFT 2.54 0.00 0.40 14.68 6.13 0.00 1.72 0.54 7.08 3.85
RFT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.01

Llama-3.2-3B SFT-RFT 3.16 0.00 2.41 16.05 8.87 0.07 3.92 0.89 5.76 4.79
R3 2.93 0.00 3.21 17.55 9.93 0.87 3.06 1.04 5.16 5.03
UFT 1.24 0.00 1.20 17.64 6.60 1.13 1.10 0.30 4.12 3.72

Table 8: Average performance of Qwen2.5-0.5/1.5/3B and Llama-3.2-1/3B across all three training
datasets, Countdown, MATH(3,4,5), and Logic.

of reaching one of the correct solutions in S∗H is

Pr

({
s(t)
}T

t=1
∩ S∗H ̸= ∅

)
=

T∑
t=1

Pr

(
s(t) ∈ S∗H |

{
s(s)
}t−1

s=1
∩ S∗H = ∅

)
Pr

({
s(s)
}t−1

s=1
∩ S∗H = ∅

)

≤
T∑

t=1

Pr

(
s(t) ∈ S∗H |

{
s(s)
}t−1

s=1
∩ S∗H = ∅

)
.

Given that we pick S∗H uniformly at random, Pr
(
s(t) ∈ S∗H |

{
s(s)
}t−1

s=1
∩ S∗H = ∅

)
=

|S∗
H |

BH−t+1
.

Therefore,

Pr

({
s(t)
}T

t=1
∩ S∗H ̸= ∅

)
≤

T∑
t=1

|S∗H |
BH − t+ 1

.

When T ≤ BH

4|S∗
H |

, we have

Pr

({
s(t)
}T

t=1
∩ S∗H ̸= ∅

)
≤

T∑
t=1

|S∗H |
BH − t+ 1

(i)

≤
T∑

t=1

2 |S∗H |
BH

=
2 |S∗H |T
BH

≤ 1

2
.

(i) uses the fact that t ≤ T ≤ BH

4|S∗
H |
≤ BH

2 . Therefore, within BH

4|S∗
H |

exploration, the algorithm will

fail to find the correct answer with probability at least 0.5.

D Extended Theoretical Justifications

In this section, we introduce some additional notations in Appendix D.1 and then present the
theoretically sound UFT in Appendix D.2.

26

D.1 Extended Preliminaries

Notation. For any vector x ∈ Rn, let xi be its ith element and ∥x∥p be the Lp-norm, where ∥x∥
denotes the L2-norm by default. For any two vectors x,y ∈ Rn, let ⟨x,y⟩ :=

∑n
i=1 xi · yi denote

their inner product.

Softmax Parameterized Policy. Algorithm 2 assumes the policy follows softmax parameterization.
Formally, the policy πθθθ is controlled by θθθ ∈ R|S|×B , such that for any s ∈ S and a ∈ [B],

πθθθ(a | s) := exp(θ(s, a))∑B
a′=1 exp(θ(s, a

′))
. (D.1)

The softmax-parameterized policy is also widely adopted in the literature [Mei et al., 2020, Agarwal
et al., 2021, Ding et al., 2020] to sidestep the complexities of analyzing non-convex neural networks
and to keep the focus on the learning algorithm itself.

D.2 Theoretically Sound UFT

The full algorithm is shown in Algorithm 2. In lines 2-3: we sample the hint length and a trajectory
starting from the hint. In lines 6-10, we estimate Q-values by sampling an additional trajectory for
each state-action pair, which can greatly reduce the variance of sampling. In lines 13-14, we compute
the objective function and update the parameters by gradient ascent. In lines 16-17, we estimate the
expected reward of each intermediate policy and return the best one.

Note that Algorithm 2 differs slightly from the UFT shown in Algorithm 1. While Algorithm 1 leaves
the choice of the reinforcement learning algorithm unspecified, Algorithm 2 explicitly defines the
trajectory rolling mechanism and update rule for concrete theoretical analysis. Further, Algorithm 2
assumes a softmax-parameterized policy, whereas Algorithm 1 imposes no constraints on the policy
network architecture.

E Proof of Theorem 4.3

In this section, for notational simplicity, we use π(t) to denote πθθθ(t)

for any t ∈ {0, 1, · · · , T}.
Moreover, for any t ∈ [T], we define Ã(t−1)(s, a) = Q̃(t−1)(s, a) = 0 for those nodes s off the

sampled path
(
s
(t)
h

)H
h=l(t)

at timestep t.

Theorem E.1 (Formal). Consider Algorithm 2. When β ≤ ∆

12(H+1)2(logB+2∥θθθref∥∞)
, the pass @ 1

accuracy Pr
πθθθ(t̃

∗) (pass @ 1) of policy πθθθ(t̃∗)

satisfies

Pr
πθθθ(t̃

∗) (pass @ 1) ≥ 0.5, (E.1)

when

T =

(
(H + 1)2

(
logB + 2

∥∥θθθref∥∥∞ + 7
)

∆/12

)2

(E.2)

and explores no more than (BH +N)T leaf nodes in SH .

Proof. The update rule can be divided into two steps: (i) Use the concentration bound to get a
high-probability bound on

〈
Qπ(t−1)

(s, ·), π∗(· | s)− π(t−1)(· | s)
〉

(cf. Appendix E.1); (ii) Convert

the difference in each node to the V ∗ − V π(t−1)

(sroot) by the regret decomposition lemma (cf.
Appendix E.2); (iii) Convert the bound on expected reward to success rate (cf. Appendix E.3).

E.1 Concentration Bound

For any height h ∈ {0} ∪ [H − 1], state s ∈ Sh, and action a ∈ [B], we can define the Q-value of
the state-action pair (s, a) ∈ S × [B] when following policy π as

Qπ(s, a) := Esh=s,(sh′)Hh′=h
∼π [R (sH)] . (E.3)

27

Algorithm 2: Theoretically Sound Unified Fine-Tuning
Hyperparameters: Learning rate η, KL-penalty coefficient β, and total number of steps T
Input: Reference policy parameter θθθref

Initialization: θθθ(0) ← θθθref

1 for t = 0, 1, · · · , T − 1 do
2 Sample l(t) ∼ Uniform(0, 1, 2, · · · , H − 1, H)

// In fact, any distribution with full support on {0, 1, 2, · · · , H − 1, H} is
fine. We choose the uniform distribution for simplicity

3 Sample trajectory
(
s
(t)
h

)H
h=l(t)

∼ πθθθ(t)

, where s
(t)

l(t)
= s∗

l(t)

4 for h = l(t), l(t) + 1, · · ·H − 1 do
5 for a = 1, 2, · · · , B do

// Group sampling

6 Sample trajectory
(
s
(t),a
h′

)H
h′=h+1

∼ πθθθ(t)

starting from s
(t),a
h+1 = T (s(t)h , a)

7 Q̃(t)
(
s
(t)
h , a

)
← R

(
s
(t),a
H

)
8 end
9 for a = 1, 2, · · · , B do

10 Ã(t)
(
s
(t)
h , a

)
← Q̃(t)

(
s
(t)
h , a

)
−
∑B

a=1 π
θθθ(t)
(
a | s(t)h

)
Q̃(t)

(
s
(t)
h , a

)
11 end
12 end

// Ã(t)(s, ·) ≡ 0 for any s off the trajectory
(
s
(t)
h

)H
h=l(t)

13

J (t) ←
H−1∑
h=l(t)

B∑
a=1

πθθθ(t)
(
a | s(t)h

)
Ã(t)

(
s
(t)
h , a

)

− β

H−1∑
h=l(t)

KL
(
πθθθ(t)

(
· | s(t)h

)
∥πθθθref

(
· | s(t)h

))
+ β

l(t)−1∑
h=0

log πθθθ(t)

(a∗h | s∗h)

14

θθθ(t+1) ← θθθ(t) + η∇πJ (t) (D.2)

15 end

16 Estimate Ṽ πθθθ(t)

(sroot) =
1
N

∑N
n=1R

(
s̃
(t),n
H

)
by sampling trajectories s̃(t),n0 = sroot and(

s̃
(t),n
h

)H
h=0
∼ πθθθ(t)

, where N = 72 log(14(T+1))
∆2

17 t̃∗ = argmaxt∈{0,1,··· ,T} Ṽ
πθθθ(t)

(sroot)

Return: πθθθ(t̃∗)

Then, for any s ∈ S \ SH and t ∈ [T], we have

E
[
Q̃(t−1)(s, a)

]
= Pr

(
s ∈

{
s
(t)
h

}H

h=l(t)

)
·Qπ(t−1)

(s, a), (E.4)

where the expectation is taken over the probability of sampling trajectories in Algorithm 2. Next, we
will introduce Lemma 5.3 in Liu et al. [2024].

Proposition E.2. Let M, M̃ ≥ 0 be the constants such that
∣∣f (t)(x)− f (t)(x′)

∣∣ ≤ M and∣∣∣f̃ (t)(x)− f̃ (t)(x′)
∣∣∣ ≤ M̃ for any t ∈ [T] and x,x′ ∈ C, where C is a convex set. If for any

28

x ∈ C, we have

E
[
f̃ (t)(x) | f̃ (1), f̃ (2), · · · , f̃ (t−1)

]
= f (t)(x),

and x(t) is deterministically influenced by f̃ (1), f̃ (2), · · · , f̃ (t−1), then for any δ ∈ (0, 1) and x ∈ C,
we have

Pr

(
T∑

t=1

(
f (t)(x)− f (t)(x(t))

)
≤

T∑
t=1

(
f̃ (t)(x)− f̃ (t)(x(t))

)
+
(
M + M̃

)√
2T log

1

δ

)
≥ 1− δ.

For any h < H and s ∈ Sh, let f (t)(x) = Pr

(
s ∈

{
s
(t−1)
h

}H

h=l(t−1)

)〈
Qπ(t−1)

(s, ·),x
〉

, where

f (t) : ∆B → [0, 1] since each element of Q(t−1)(s, ·) is bounded by [0, 1] by definition. Therefore,
M in Proposition E.2 is 1. Similarly, let f̃ (t)(x) =

〈
Q̃(t−1)(s, ·),x

〉
and we have M̃ = 1. Therefore,

by (E.4), Proposition E.2, and Lemma E.3, for any δ ∈ (0, 1), with probability at least 1− δ, we have

T∑
t=1

Pr

(
s ∈

{
s
(t)
h

}H

h=l(t)

)〈
Qπ(t−1)

(s, ·), π∗(· | s)− π(t−1)(· | s)
〉

≤
T∑

t=1

〈
Q̃(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
+ 2

√
2T log

1

δ

(i)
=

T∑
t=1

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
+ 2

√
2T log

1

δ
.

(i) is because 〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
=
〈
Q̃(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
+

B∑
a=1

π(t−1)(a | s)Q̃(t−1)(s, a)

B∑
a=1

(
π∗(a | s)− π(t−1)(a | s)

)
=
〈
Q̃(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
.

By the update rule of Algorithm 2, we have the following lemma.
Lemma E.3. Consider Algorithm 2. For any node s ∈ S \ SH , we have

T∑
t=1

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
≤
(
1

η
+ βT

)
KL
(
π∗(· | s)∥πθθθref

(· | s)
)
+ 2ηT.

The proof is postponed to Appendix E.4. Lemma E.3 gives us an upper bound on the accumulated
difference between our policy π(t−1) and the optimal policy π∗. Therefore,

T∑
t=1

Pr

(
s ∈

{
s
(t)
h

}H

h=l(t)

)〈
Qπ(t−1)

(s, ·), π∗(· | s)− π(t−1)(· | s)
〉

≤
T∑

t=1

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
+ 2

√
2T log

1

δ

≤
(
1

η
+ βT

)
KL
(
π∗(· | s)∥πθθθref

(· | s)
)
+ 2ηT + 2

√
2T log

1

δ
.

29

E.2 Difference Decomposition

Let µπ(s) be the probability of reaching state s from the root by following policy π. Hence,
µπ(sroot) = 1. For any s ∈ S \ SH and action a ∈ [B], µπ (T (s, a)) can be recursively defined as

µπ (T (s, a)) = µπ(s) · π(s, a). (E.5)

In the following, we will introduce Lemma E.4, which is a special case of the regret decomposition
lemma (Lemma 5.1) in Liu et al. [2023]. Specifically, it is the regret decomposition lemma for a
two-player zero-sum extensive-form game without chance nodes5, and the second player’s action sets
at all nodes are of size 1.
Lemma E.4. For any sequence of policies π(1), π(2), · · · , π(T) and policy π, we have

T∑
t=1

(
V π(sroot)− V π(t)

(sroot)
)
=

∑
s∈S\SH

µπ(s)

T∑
t=1

〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉
.

Lemma E.4 can also be viewed as the performance difference lemma in reinforcement learning
[Kakade and Langford, 2002] for a tree-shape Markov decision process. For completeness, we also
provide the proof at the end of this section.

By letting π(t) = π(t−1) for any t ∈ [T] and π = π∗, we have
T∑

t=1

(
V ∗ − V π(t−1)

(sroot)
)

=
∑

s∈S\SH

µπ∗
(s)

T∑
t=1

〈
Qπ(t−1)

(s, ·), π∗(· | s)− π(t−1)(· | s)
〉

(i)
=

∑
s∈{s∗0 ,s∗1 ,··· ,s∗H−1}

µπ∗
(s)

T∑
t=1

〈
Qπ(t−1)

(s, ·), π∗(· | s)− π(t−1)(· | s)
〉

=
∑

s∈{s∗0 ,s∗1 ,··· ,s∗H−1}

T∑
t=1

µπ∗
(s)

Pr

(
s ∈

{
s
(t)
h

}H

h=l(t)

) Pr

(
s ∈

{
s
(t)
h

}H

h=l(t)

)

·
〈
Qπ(t−1)

(s, ·), π∗(· | s)− π(t−1)(· | s)
〉
.

(i) uses the fact that π∗ is deterministic such that µπ∗
(s) > 0 only when s ∈ {s∗0, s∗1, · · · , s∗H}. Since

s
(t)

l(t)
is sampled from {s∗0, s∗1, · · · , s∗H} uniformly, for any s ∈ {s∗0, s∗1, · · · , s∗H}, we have

Pr

(
s ∈

{
s
(t)
h

}H

h=l(t)

)
≥ Pr

(
s = s

(t)

l(t)

)
=

1

H + 1
.

Therefore, µπ∗
(s)

Pr

(
s∈

{
s
(t)
h

}H

h=l(t)

) ≤ H + 1 and we have

T∑
t=1

(
V ∗ − V π(t−1)

(sroot)
)

≤
H−1∑
h=0

µπ∗
(s∗h)

Pr

(
s∗h ∈

{
s
(t)
h

}H

h=l(t)

) ((1

η
+ βT

)
KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
+ 2ηT + 2

√
2T log

1

δ

)

≤(H + 1)

H−1∑
h=0

((
1

η
+ βT

)
KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
+ 2ηT + 2

√
2T log

1

δ

)
.

Next, we can bound KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)

by the following lemma.

5Chance nodes represent the randomness of the game, such as rolling a dice.

30

Lemma E.5. For any h ∈ {0, 1, · · · , H − 1}, we have

KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
≤ logB + 2

∥∥θθθref∥∥∞ .

The proof is postponed to Appendix E.4.

Therefore, by taking η = 1√
T

, we have

T∑
t=1

(
V ∗ − V π(t−1)

(sroot)
)

≤ (H + 1)
2

((
logB + 2

∥∥θθθref∥∥∞)√T + 2
√
T + 2

√
2T log

1

δ

)

+ βT (H + 1)

H−1∑
h=0

KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
.

Because V ∗ − V π(t−1)

(sroot) ≥ 0 for any t ∈ [T], according to pigeon hole principle, there must
exist t∗ ∈ {0, 1, . . . , T} such that

V ∗ − V π(t∗)

(sroot)

≤
(H + 1)

2
((

logB + 2
∥∥θθθref∥∥∞)+ 2 + 2

√
2 log 1

δ

)
√
T

+ β(H + 1)

H−1∑
h=0

KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
.

For any ϵ > β(H + 1)
∑H−1

h=0 KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)

, it takes (H + 1)
2
(
logB + 2

∥∥θθθref∥∥∞ + 2 + 2
√
2 log 1

δ

)
ϵ− β(H + 1)

∑H−1
h=0 KL

(
π∗(· | s∗h)∥πθθθref (· | s∗h)

)


2

iterations to satisfy V ∗ − V π(t∗)

(sroot) ≤ ϵ.

Recall that ∆ > 0 is the sub-optimality gap. By picking ϵ = ∆
6 , δ = 1

8 , and β ≤
∆

12(H+1)2(logB+2∥θθθref∥∞)
, to get ϵ accuracy with probability 1− δ, we need

T =

(
(H + 1)2

(
logB + 2

∥∥θθθref∥∥∞ + 7
)

∆/12

)2

iterations, which implies T ≤ O
(

H4(logB)2

∆2

)
. Since O(B · H) leaf nodes are explored at each

iteration, the number of leaf nodes explored during training is O(B ·H · T) ≤ O
(
BH5(logB)2

∆2

)
.

E.3 Compute Probability

To find t∗, we need to estimate V πθθθ(t)

for all t ∈ {0, 1, · · · , T} by sampling trajectories. By
sampling a trajectory from πθθθ(t)

, we can get a random variable from Bernoulli
(
Prcondπ(t) (pass @ 1)

)
representing whether the trajectory reaches the correct solution. Then, by Hoeffding’s inequality, by
sampling N trajectories, we have

Pr

(∣∣∣∣Ṽ πθθθ(t)

(sroot)− V πθθθ(t)

(sroot)

∣∣∣∣ ≤ ∆

12

)
≤ 2 exp

(
−N∆2

72

)
(i)
=

1

7(T + 1)
. (E.6)

31

(i) is by definition of N in Algorithm 2. By union bound, for any t ∈ {0, 1, · · · , T},∣∣∣Ṽ πθθθ(t)

(sroot)− V πθθθ(t)

(sroot)
∣∣∣ ≤ ∆

12 holds with probability at least 1− T+1
7(T+1) =

6
7 . Therefore,

V πθθθ(t̃
∗)

(sroot) ≥ Ṽ πθθθ(t̃
∗)

(sroot)−
∆

12
≥Ṽ πθθθ(t

∗)

(sroot)−
∆

12

≥V πθθθ(t
∗)

(sroot)−
∆

6
≥ V ∗ − ϵ− ∆

6
= V ∗ − ∆

3
.

Recall that Prπ(t̃∗) (pass @ 1) is the pass @ 1 accuracy of policy π(t̃∗). In the following, we will use

Prcond as a shorthand of Pr
(
· |V π(t̃∗)

(sroot) ≥ V ∗ − ∆
3

)
.

Prcond
π(t̃∗) (pass @ 1) =Prcond

s0=sroot,(sh)
H
h=0∼π(t̃∗)

(
R(sH) = max

s′H∈SH

R(s′H)

)
=Prcond

s0=sroot,(sh)
H
h=0∼π(t̃∗) (R(sH) = V ∗) .

Furthermore,

V ∗ − ∆

3
≤ V π(t̃∗)

(sroot) =Es0=sroot,(sh)
H
h=0∼π(t̃∗) [R(sH)]

≤Prcond
s0=sroot,(sh)

H
h=0∼π(t̃∗) (R(sH) = V ∗)V ∗

+
(
1− Prcond

s0=sroot,(sh)
H
h=0∼π(t̃∗) (R(sH) = V ∗)

)
(V ∗ −∆) .

By combining all pieces together, we have

Prcond
π(t̃∗) (pass @ 1)V ∗ +

(
1− Prcond

π(t̃∗) (pass @ 1)
)
(V ∗ −∆)

≥V ∗ − ∆

3
,

which implies that Prcond
π(t̃∗) (pass @ 1) ≥ 2

3 .

Finally,

Prπ(t̃∗) (pass @ 1)

≥Prcondπ(t∗) (pass @ 1) Pr
(
V π(t∗)

(sroot) ≥ V ∗ − ϵ
)
Pr

(
V π(t̃∗)

(sroot) ≥ V π(t∗)

(sroot)−
∆

6

)
≥2

3
(1− δ)

6

7
=

1

2
.

E.4 Omitted Proofs

Lemma E.3. Consider Algorithm 2. For any node s ∈ S \ SH , we have

T∑
t=1

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
≤
(
1

η
+ βT

)
KL
(
π∗(· | s)∥πθθθref

(· | s)
)
+ 2ηT.

Proof. We will introduce the following one-step analysis of the update rule first.
Lemma E.6. For any node s ∈ S \ SH and t ∈ [T], we have

η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
+ ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
.

32

The proof is presented later in this section. Therefore,

η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
+ ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
.

By adding η
〈
Ã(t−1)(s, ·), π(t)(· | s)− π(t−1)(· | s)

〉
on both sides, we have

η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
(i)

≤KL
(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
+ η

〈
Ã(t−1)(s, ·), π(t)(· | s)− π(t−1)(· | s)

〉
+ ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
.

By Hölder’s inequality, we have〈
Ã(t−1)(s, ·), π(t)(· | s)− π(t−1)(· | s)

〉
≤
∥∥∥Ã(t−1)(s, ·)

∥∥∥
∞
·
∥∥∥π(t)(· | s)− π(t−1)(· | s)

∥∥∥
1

≤2η
∥∥∥Ã(t−1)(s, ·)

∥∥∥2
∞

+
1

8η

∥∥∥π(t)(· | s)− π(t−1)(· | s)
∥∥∥2
1

(i)

≤2η +
1

4η
KL
(
π(t)(· | s)∥π(t−1)(· | s)

)
.

(i) uses
∥∥∥Ã(t−1)(s, ·)

∥∥∥
∞
≤ 1 and Pinsker’s inequality. Therefore,

η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
+ 2η2 + ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
.

By telescoping, we have

η

T∑
t=1

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
≤KL

(
π∗(· | s)∥π(0)(· | s)

)
− KL

(
π∗(· | s)∥π(T)(· | s)

)
+ 2η2T + ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
T

(i)

≤KL
(
π∗(· | s)∥π(0)(· | s)

)
+ 2η2T + ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
T.

(i) uses the non-negativity of KL-divergence. By dividing η on both sides, we have
T∑

t=1

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t−1)(· | s)

〉
≤1

η
KL
(
π∗(· | s)∥π(0)(· | s)

)
+ 2ηT + βKL

(
π∗(· | s)∥πθθθref

(· | s)
)
T

(i)
=
1

η
KL
(
π∗(· | s)∥πθθθref

(· | s)
)
+ 2ηT + βKL

(
π∗(· | s)∥πθθθref

(· | s)
)
T.

(i) is because π(0)(· | s) = πθθθref

(· | s) by the initialization of Algorithm 2.

Lemma E.4. For any sequence of policies π(1), π(2), · · · , π(T) and policy π, we have
T∑

t=1

(
V π(sroot)− V π(t)

(sroot)
)
=

∑
s∈S\SH

µπ(s)

T∑
t=1

〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉
.

33

Proof. The lemma can be proved by induction. When H = 1, Lemma E.4 holds since
Qπ(t)

(sroot, a) = R (T (sroot, a)) = Qπ(sroot, a) for any action a ∈ [B] and t ∈ [T]. There-
fore, ∑

s∈S\SH

T∑
t=1

µπ(s)
〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉

=

T∑
t=1

µπ(sroot)
(
⟨Qπ(sroot, ·), π(· | sroot)⟩ −

〈
Qπ(t))(sroot, ·), π(t)(· | sroot)

〉)
=

T∑
t=1

(
V π(sroot)− V π(t)

(sroot)
)
.

For any two nodes s, s′, we write s ⊑ s′ if s is an ancestor of s′ in the search tree. Consider when
Lemma E.4 holds for any search tree of height H ≤ H0. Then, for H = H0 + 1, we have∑

s∈S\SH

T∑
t=1

µπ(s)
〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉

=

T∑
t=1

µπ(sroot)
〈
Qπ(t)

(sroot, ·), π(· | sroot)− π(t)(· | sroot)
〉

+

B∑
a=1

∑
s∈S\SH :

T (sroot,a)⊑s

T∑
t=1

µπ(s)
〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉
.

Then, according to the induction hypothesis, for any a ∈ [B], since the subtree rooted at T (sroot, a)
is a tree of height H0, we have∑

s∈S\SH :
T (sroot,a)⊑s

T∑
t=1

µπ(s)
〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉

=π(a | sroot)
T∑

t=1

(
V π(T (sroot, a))− V π(t)

(T (sroot, a))
)
.

Moreover, by definition, we have Qπ(t)

(sroot, a) = V π(t)

(T (sroot, a)). Therefore,∑
s∈S\SH

T∑
t=1

µπ(s)
〈
Qπ(t)

(s, ·), π(· | s)− π(t)(· | s)
〉

=

T∑
t=1

µπ(sroot)
〈
Qπ(t)

(sroot, ·), π(· | sroot)− π(t)(· | sroot)
〉

+

B∑
a=1

π(a | sroot)
T∑

t=1

(
V π(T (sroot, a))− V π(t)

(T (sroot, a))
)

=

T∑
t=1

B∑
a=1

(
π(a | sroot)− π(t)(a | sroot)

)
V π(t)

(T (sroot, a))

+ V π(sroot)T −
B∑

a=1

π(a | sroot)
T∑

t=1

V π(t)

(T (sroot, a))

=

T∑
t=1

(
V π(sroot)− V π(t)

(sroot)
)
.

Therefore, Lemma E.4 also holds when H = H0 + 1 and thus we can conclude the proof.

34

Lemma E.6. For any node s ∈ S \ SH and t ∈ [T], we have

η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
+ ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
.

Proof. Let h be the height of s. There are three possibilities on ∇π(· | s)J (t−1): (I) Ã(t−1)(s, ·) +
β log π(t−1)(· | s)− β log πθθθref

(· | s) + β1; (II) A one-hot vector with only index a∗h be β
π(t−1)(· | s) ;

(III) 0.

Then, we will show that (D.2) is equivalent to the following in different cases.
Lemma E.7. For any t ∈ {1, 2, · · · , T}, h ∈ {0, 1, · · · , H − 1}, and node s ∈ Sh, (D.2) is
equivalent to the following,

π(t)(· | s) = argmin
π(· | s)∈∆B

〈
−Ã(t−1)(s, ·), π(· | s)

〉
+ βKL

(
π(· | s)∥πθθθref

(· | s)
)

+
1

η
KL
(
π(· | s)∥π(t−1)(· | s)

)
(I)

π(t)(· | s) = argmin
π(· | s)∈∆B

〈
−∇π(· | s)J (t−1), π(· | s)

〉
+

1

η
KL
(
π(· | s)∥π(t−1)(· | s)

)
, (II, III)

where (I), (II), (III) stand for the cases when

∇π(· | s)J (t−1) =


Ã(t−1)(s, ·) + β log π(t−1)(· | s)− β log πθθθref

(· | s) + β1 (I)
A one-hot vector with only index a∗h be β

π(t−1)(· | s) (II)
0. (III)

Then, we will introduce a special case of Lemma 3.0.3 from Liu [2025].

Lemma E.8. For any node s, vector g ∈ RB , η > 0, β0 ≥ 0, policy x(0) ∈ ∆B , and reference
policy xref ∈ ∆B , let

x(1) = argmin
x∈∆B

{
⟨g,x⟩+ β0KL

(
x∥xref

)
+

1

η
KL
(
x∥x(0)

)}
.

Then, for any x(2) ∈ ∆B , we have

ηβ0KL
(
x(1)∥xref

)
− ηβ0KL

(
x(2)∥xref

)
+ η

〈
g,x(1) − x(2)

〉
(E.7)

≤KL
(
x(2)∥x(0)

)
− (1 + ηβ0)KL

(
x(2)∥x(1)

)
− KL

(
x(1)∥x(0)

)
.

Consider (I) first. For any node s ∈ S \ SH and t ∈ [T], by taking x(2) = π∗(· | s),x(1) =

π(t)(· | s),x(0) = π(t−1)(· | s),xref = πθθθref

(· | s), g = −Ã(t−1)(s, ·) and β0 = β, we have

ηβKL
(
π(t)(· | s)∥πθθθref

(· | s)
)
− ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)

+ η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− (1 + ηβ)KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
.

Further, by the non-negativity of KL-divergence, we have

η
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
+ ηβKL

(
π∗(· | s)∥πθθθref

(· | s)
)
.

35

Consider (II). For any node s ∈ S \ SH and t ∈ [T], by taking x(2) = π∗(· | s),x(1) =

π(t)(· | s),x(0) = π(t−1)(· | s),xref = πθθθref

(· | s), g = −∇π(· | s)J (t−1) and β0 = 0 in Lemma E.8,
we have

η
〈
∇π(· | s)J (t−1), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
.

Moreover,〈
∇π(· | s)J (t−1), π∗(· | s)− π(t)(· | s)

〉
=β

π∗(a∗h | s∗h)− π(t)(a∗h | s∗h)
π(t−1)(a∗h | s∗h)

(i)

≥0
(ii)
=
〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
.

(i) uses the fact that π∗(a∗h | s∗h) = 1 and (ii) uses Ã(t−1)(s, ·) = 0 by definition. Therefore,〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
≤KL

(
π∗(· | s)∥π(t−1)(· | s)

)
− KL

(
π∗(· | s)∥π(t)(· | s)

)
− KL

(
π(t)(· | s)∥π(t−1)(· | s)

)
. (E.8)

For (III), which is s off the sampled trajectory at step t− 1, by definition we have Ã(t−1)(s, ·) = 0.
Then, 〈

∇π(· | s)J (t−1), π∗(· | s)− π(t)(· | s)
〉
= 0 =

〈
Ã(t−1)(s, ·), π∗(· | s)− π(t)(· | s)

〉
,

and (E.8) also holds.

Lemma E.5. For any h ∈ {0, 1, · · · , H − 1}, we have

KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
≤ logB + 2

∥∥θθθref∥∥∞ .

Proof. For any h ∈ {0} ∪ [H − 1], since π∗ is deterministic, let a∗h be the action such that
π∗(a∗h | s∗h) = 1. Then,

KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
=

B∑
a=1

π∗(a | s∗h) log
π∗(a | s∗h)
πθθθref (a | s∗h)

= log
1

πθθθref (a∗h | s∗h)
.

By definition, we have

πθθθref

(a∗h | s∗h) =
exp

(
θref (s∗h, a

∗
h)
)∑B

a=1 exp (θ
ref (s∗h, a))

≥
exp

(
−
∥∥θθθref∥∥∞)

B exp (∥θθθref∥∞)
=

exp
(
−2
∥∥θθθref∥∥∞)
B

.

Therefore,

KL
(
π∗(· | s∗h)∥πθθθref

(· | s∗h)
)
≤ log

(
B · exp

(
2
∥∥θθθref∥∥∞)) = logB + 2

∥∥θθθref∥∥∞ .

Lemma E.7. For any t ∈ {1, 2, · · · , T}, h ∈ {0, 1, · · · , H − 1}, and node s ∈ Sh, (D.2) is
equivalent to the following,

π(t)(· | s) = argmin
π(· | s)∈∆B

〈
−Ã(t−1)(s, ·), π(· | s)

〉
+ βKL

(
π(· | s)∥πθθθref

(· | s)
)

+
1

η
KL
(
π(· | s)∥π(t−1)(· | s)

)
(I)

π(t)(· | s) = argmin
π(· | s)∈∆B

〈
−∇π(· | s)J (t−1), π(· | s)

〉
+

1

η
KL
(
π(· | s)∥π(t−1)(· | s)

)
, (II, III)

where (I), (II), (III) stand for the cases when

∇π(· | s)J (t−1) =


Ã(t−1)(s, ·) + β log π(t−1)(· | s)− β log πθθθref

(· | s) + β1 (I)
A one-hot vector with only index a∗h be β

π(t−1)(· | s) (II)
0. (III)

36

Proof. The Lagrangian of
〈
−Ã(t−1)(s, ·), π(· | s)

〉
+ βKL

(
x∥xref

)
+ 1

ηKL
(
π(· | s)∥π(t−1)(· | s)

)
is

L
(
π(t)(· | s)

)
:=
〈
−Ã(t−1)(s, ·), π(t)(· | s)

〉
+ βKL

(
π(t)(· | s)∥πθθθref

(· | s)
)

+
1

η
KL
(
π(t)(· | s)∥π(t−1)(· | s)

)
+ λ

(
B∑

a=1

π(t)(a | s)− 1

)
.

For any action a ∈ [B], by setting
∂L(π(t)(· | s))
∂π(t)(a | s) = 0, we have

−Ã(t−1)(s, ·) + β log

(
π(t)(a | s)
πθθθref (a | s)

)
+ β +

1

η
log

(
π(t)(a | s)

π(t−1)(a | s)

)
+

1

η
+ λ = 0,

which implies that π(t)(a | s) = exp

(
−ηβ−1−ηλ+ηÃ(t−1)(s,·)+ηβ log

(
πθθθref (a | s)

)
+log(π(t−1)(a | s))

1+ηβ

)
.

By further setting
∂L(π(t)(· | s))

∂λ = 0, we have

B∑
a=1

π(t)(a | s) = 1.

Therefore, by combining all pieces together, we have

π(t)(a | s) (i)
= exp

ηÃ(t−1)(s, ·) + ηβ log
(
πθθθref

(a | s)
)
+ log

(
π(t−1)(a | s)

)
1 + ηβ

 /Z

∝ exp

ηÃ(t−1)(s, ·) + ηβ log
(
πθθθref

(a | s)
)
+ log

(
π(t−1)(a | s)

)
1 + ηβ


∝ exp

(
η

1 + ηβ
Ã(t−1)(s, ·) + ηβ

1 + ηβ
θref(s, a) +

1

1 + ηβ
θ(t−1)(s, a)

)
.

In (i), Z =
∑B

a=1 exp

(
ηÃ(t−1)(s,·)+ηβ log

(
πθθθref (a | s)

)
+log(π(t−1)(a | s))

1+ηβ

)
.

For (II), (III), the proof can be concluded by setting β = 0 and changing Ã(t−1)(s, ·) to
∇π(· | s)J (t−1).

37

	Introduction
	Contribution

	Preliminaries
	Unified Fine-Tuning (UFT)
	Exploration with Hint
	Hint Length Sampling

	Objective Function Modification
	Algorithm Outline

	Theoretical Justification
	Experiments
	The Memorization of UFT
	The Generalization of UFT
	UFT Helps LLMs Learn New Knowledge
	Computational Cost of UFT

	Conclusion and Limitations
	Acknowledgement
	Related Work
	Experiment Details
	Algorithm
	Cost and Implementation Details
	Ablation Study
	Generalization to Larger Models
	Additional Results

	Proof of theorem:lowerbound
	Extended Theoretical Justifications
	Extended Preliminaries
	Theoretically Sound UFT

	Proof of theorem:convergence
	Concentration Bound
	Difference Decomposition
	Compute Probability
	Omitted Proofs

