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Abstract

Graph regression is a vital task across various domains, however, the majority of publicly
available datasets for graph regression are concentrated in the fields of chemistry, drug
discovery, and bioinformatics. This narrow focus on dataset availability restricts the devel-
opment and application of predictive models in other important areas. Here, we introduce
a novel graph regression dataset tailored to the domain of software performance prediction,
specifically focusing on estimating the execution time of source code. Accurately predict-
ing execution time is crucial for developers, as it provides early insights into the code’s
complexity. Furthermore, it also facilitates better decision-making in code optimization and
refactoring processes. Source code can be represented syntactically as trees and semantically
as graphs, capturing the relationships between different code components. In this work, we
integrate these two perspectives to create a unified graph representation of source code. We
present two versions of the dataset: RelSC (Relational Source Code), which incorporates
node features, and Multi-RelSC (Multi-Relational Source Code), which treats the graphs
as multi-relational, allowing nodes to be connected by multiple edges, each representing
a distinct semantic relationship. Finally, we apply various Graph Neural Network models
to assess their performance in this relatively unexplored task. Our findings demonstrate
the potential of these datasets to advance the field of graph regression, particularly in the
context of software performance prediction.

1 Introduction

Graph Neural Networks (GNNs)(Scarselli et al., 2008; Micheli, 2009) have demonstrated outstanding perfor-
mance in processing network data across various real-world applications, ranging from biology to recommen-
dation systems. Their ability to effectively model complex relationships between entities, capture structural
dependencies, and incorporate node and edge features has made GNNs an essential tool in a variety of
domains. High performance in GNNs is attributed not only to advancements in architectural design (Kipf
and Welling, 2016; Hamilton et al., 2017; Veličković et al., 2018; Gasteiger et al., 2018; Zhang and Chen,
2018; Wu et al., 2019; Zhang et al., 2021a; Lachi et al., 2024; Zaghen et al., 2024) but also to the availability
of publicly accessible benchmark datasets (Armstrong et al., 2013; Hu et al., 2020a; Morris et al., 2020;
Dwivedi et al., 2022; Zhiyao et al., 2024; Huang et al., 2024). These benchmarks have played a crucial role in
facilitating research progress by providing standardized datasets and tasks, enabling researchers to evaluate,
compare, and improve their models consistently.

However, while the availability of public datasets for node and graph classification has driven rapid advance-
ments across fields such as biology (Zhang et al., 2021b; Bongini et al., 2022), mobility (Jiang and Luo, 2022),
social networks Li et al. (2023), and recommendation systems Fan et al. (2019), the same is not true for
graph regression tasks. Public datasets for graph regression are predominantly concentrated in specific fields,
particularly in Chemistry and Drug Discovery Jiang et al. (2021). These datasets have been instrumental in
advancing GNN-based models for applications like molecular property prediction Wieder et al. (2020) and
drug-target interaction Zhang et al. (2022). Despite their utility, this narrow focus presents a significant
limitation: the exploration of graph regression in other domains remains largely underdeveloped due to the
lack of diverse, high-quality datasets.
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This scarcity of benchmarks beyond Chemistry and Drug Discovery restricts researchers’ ability to fully
explore the potential of GNNs in graph regression tasks across other fields. Domains such as finance,
transportation, environmental modeling, and even social sciences could greatly benefit from graph regression
models, but the absence of appropriate datasets makes it challenging to develop, adapt, and evaluate these
models effectively. Addressing this gap is essential for expanding the applicability of GNNs to a broader
set of problems, enabling the development of more generalizable models, and pushing the boundaries of
graph-based machine learning.

In this paper, we introduce novel graph regression datasets for software performance prediction, specifically
focusing on execution time estimation. Accurate execution time prediction provides developers with early
insights into code complexity, aiding in optimization (Harrelson, 2017) and refactoring decisions (Lindon
et al., 2022; Biringa and Kul, 2024). Our datasets broaden the scope of graph regression tasks and serve
as valuable benchmarks for exploring GNN applications in software engineering. Source code is tradition-
ally represented using Abstract Syntax Trees (ASTs) (McCarthy, 1960; Neamtiu et al., 2005; Zhang et al.,
2019a; Shi et al., 2021; Samoaa et al., 2022a), Control Flow Graphs (CFGs) (Allen, 1970; Campanoni and
Crespi Reghizzi, 2009; Koppel et al., 2022; Mitra et al., 2023), and Data Flow Graphs (DFGs) (Dennis and
Misunas, 1974; Davis and Keller, 1982; Kavi et al., 1986; Xie et al., 2022), each capturing different aspects
of source code. Inspired by Samoaa et al. (2022b), we enhance ASTs by integrating structural and semantic
information from CFGs and DFGs, creating a more expressive representation of source code. To support
this methodology, we introduce multiple datasets designed for execution time estimation, each provided in
two versions. The first, RelSC, consists of relational graphs where nodes and edges encode execution-relevant
structural properties of Java programs. This extends the dataset introduced in Samoaa et al. (2022a) by
incorporating semantic node features, which were previously absent. The second, Multi-RelSC, consists of
multi-relational graphs where nodes are connected by multiple relationship types, capturing a more com-
prehensive view of source code interactions. Multi-relational graph regression datasets are scarce in the
literature, making this contribution particularly valuable. Our datasets enable more effective research on
graph-based execution time prediction in software engineering, fostering advancements in GNN applications
within the field.

2 Related Work

Graph regression dataset. Several open datasets have been released over the past decades, with a
predominant focus on Chemistry and Drug Discovery. For molecular property prediction, datasets such as
QM9 Wu et al. (2018) and ZINC Gómez-Bombarelli et al. (2018) are used to predict various properties
of small molecules. In the realm of solubility and free energy prediction, datasets like ESOL Li et al.
(2022) and Freesolv Mobley and Guthrie (2014) aim to forecast the solubility and free energy of molecules.
Similarly, Peptides-struct Dwivedi et al. (2022) is employed to predict aggregated 3D properties of peptides
at the graph level. PDBbind Liu et al. (2015) is focused on the study of interactions between proteins and
ligands. Toxicity and bioactivity prediction tasks utilize datasets such as ogbg-moltox21 Hu et al. (2020a)
and ogbg-moltoxcast Hu et al. (2020a) to assess molecular toxicity and bioactivity. Additionally, datasets like
ogbg-mollipo Hu et al. (2020a) are dedicated to lipophilicity prediction, while ogbg-molesol Hu et al. (2020a)
is used for solubility prediction. Furthermore, the work by Liu et al. Liu et al. (2022) utilizes monomers as
polymer graphs to predict properties such as the glass transition temperature. While significant progress has
been made in these domains, there is a growing need for comprehensive benchmarks and datasets in other
fields to further advance the state of graph regression tasks across diverse applications.

GNNs in software engineering. GNNs have become essential in software engineering, effectively mod-
eling the structured nature of source code (Šikić et al., 2022; Nguyen et al., 2022; Allamanis, 2022; Liu et al.,
2023). Prior work Allamanis et al. (2018); Guo et al. (2021); Jain et al. (2021) ASTs with semantic edges for
code clone detection. CFGs and DFGs have been successfully applied to vulnerability detection (Zhou et al.,
2019; Hin et al., 2022) and clone detection Zhang et al. (2019b), outperforming token-based methods (Li
et al., 2017; Russell et al., 2018). Recent studies Rafi et al. (2024) show that integrating multi-level graph rep-
resentations (ASTs, CFGs, DFGs) improves fault localization and automated program repair. These findings
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highlight the versatility and effectiveness in capturing structural and semantic code properties, advancing
software engineering research.

Beyond Graph-Based Models. Machine learning and deep learning have long played a vital role in
software engineering. Transformer-based large language models (LLMs) excel in tasks like code generation
and defect prediction by leveraging vast pre-training corpora of source code and natural language (Feng et al.,
2020; Chen et al., 2021; Lachaux et al., 2021; Roziere et al., 2021). Unlike graph-based methods, these models
capture syntactic and semantic patterns without explicit graph structures, making them effective for code
completion, bug detection, and refactoring (Nijkamp et al., 2023; Wang et al., 2021). Additionally, traditional
machine learning and deep networks effectively model software runtime behavior by leveraging workload
parameters—key metrics such as CPU usage and memory consumption that characterize the performance and
resource demands of software workloads Laaber et al. (2021); Ha and Zhang (2019). These findings highlight
that AI-driven techniques, even beyond graph-centric approaches, remain powerful tools for optimizing
performance and enhancing software development.

3 Preliminaries

In this section, we introduce the foundational concepts essential for understanding the core contributions of
our work. Specifically, we present three key techniques for representing source code as graphs: the Abstract
Syntax Tree (AST), the Control Flow Graph (CFG), and the Data Flow Graph (DFG). These representations
form the basis for various program analysis methods and are critical for the discussions that follow.

3.1 Abstract Syntax Trees

ASTs McCarthy (1960) offer a hierarchical abstraction of source code, focusing on core programming con-
structs such as variables, operators, and control structures, while ignoring superficial syntactic details like
punctuation. Each node in an AST represents a construct from the source code, with edges defining relation-
ships based on the language’s syntax rules. The root typically represents the entire program, and the leaves
correspond to basic elements like literals or variable names Neamtiu et al. (2005); Samoaa et al. (2023). The
process of building an AST involves parsing the source code according to its grammar, creating a structured
representation that supports tasks such as code analysis, optimization, and refactoring Zhang et al. (2019a);
Shi et al. (2021); Samoaa et al. (2022a). ASTs are widely used in applications such as static analysis, bug
detection, and even machine learning-based techniques for code summarization and generation. To gain a
deeper understanding of ASTs, in Listing 1 we report a snippet of code and its AST representation is shown
in figure 1.

1 public static int factorial (int n) {
2 if (n <= 1) {
3 return 1;
4 } else {
5 return n * factorial (n - 1);
6 }
7 }

Listing 1: Simple example of Java source code.

Figure 1: Simplified abstract syntax tree (AST) represent-
ing the illustrative example in Listing 1.
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3.2 Control Flow Graph (CFG)

Entry

If (n<=1)

return 1 return n*factorial(n-1)

Exit

True False

Figure 2: CFG of the method
presented in Listing 1

A Control Flow Graph (CFG) is a directed graph that models the ex-
ecution flow of a program. Formally, a CFG is defined as a tuple
GCF G = (V, E), where V represents a set of basic blocks—sequences of
statements with a single entry and exit point—and E denotes directed
edges that capture control flow transitions, such as sequential execution,
branches, and loops Allamanis et al. (2018). CFGs are widely used in
program analysis for tasks such as dead code elimination, path coverage
analysis Thomson (2021), vulnerability detection Li et al. (2018), and
code summarization Allamanis et al. (2018). A CFG includes a unique
entry node marking the program’s start and one or more exit nodes rep-
resenting termination points. Conditional statements introduce multiple
outgoing edges, while loops create cycles that model repeated execution.
Function calls may extend the CFG into an interprocedural graph, track-
ing function invocations and returns. This structured representation enables precise compiler optimizations,
program verification, and machine learning-based code analysis. Figure 2 illustrates the CFG of the ‘fac-
torial‘ method in Listing 1. Execution starts at the "Entry" node and proceeds to the conditional check at
"if(n ≤ 1)" (line 2). If true, execution moves to "return1" (line 3), terminating the function. Otherwise,
execution transitions to "n ∗ factorial(n − 1)" (line 5), where the recursive call occurs, generating a recursive
flow until the base case is reached. All execution paths ultimately converge at the "Exit" node, marking the
function’s termination. This CFG effectively captures the method’s branching logic and recursive structure,
illustrating how multiple activations of the function occur before reaching the final return statement.

3.3 Data Flow Graph (DFG)

n

Condition:  (n<=1)

return 1 Operation: n*factorial(n-1)

Recursive Call

True False

Output: Result

Figure 3: DFG of the method
presented in Listing 1

A Data Flow Graph (DFG) is a directed graph that models the flow of data
within a program. Formally, a DFG is defined as a tuple GDF G = (V, E),
where V represents a set of nodes corresponding to variables or computa-
tions, and E denotes directed edges that capture data dependencies, such
as variable definitions and their subsequent uses. Unlike CFGs, which rep-
resent execution order, DFGs emphasize how values propagate through a
program, making them fundamental for static analysis, liveness analy-
sis, and dependency tracking Jiang et al. (2024). They have also been
widely applied in machine learning for code property prediction Hellen-
doorn et al. (2020) and vulnerability detection Li et al. (2018). A DFG
consists of nodes representing variable assignments, operations, and func-
tion inputs/outputs, with directed edges encoding data flow dependencies.
Expressions, arithmetic operations, and function calls contribute to these
dependencies, while loops introduce iterative data relationships, and con-

ditionals create multiple propagation paths. By explicitly modeling data flow, DFGs enable precise program
optimization, security analysis, and data-driven software engineering. Figure 3 illustrates the DFG of the
‘factorial‘ method in Listing 1. Execution begins at the input node (n), which is evaluated at the comparison
node (n ≤ 1). If the condition is true, the function returns 1, contributing a constant value node. Otherwise,
execution proceeds to compute n − 1, which is passed to the recursive call factorial(n − 1). The result of this
call is then multiplied by n, forming a data dependency between the recursive output and the final multipli-
cation operation. The computed result is then returned as the function’s output. By structuring program
execution around data dependencies, DFGs provide a comprehensive view of how values are computed and
used, making them essential for compiler optimizations, security verification, and machine learning-based
program analysis.

4



Under review as submission to TMLR

3.4 Graph Neural Network

Graph Neural Networks (GNNs) are a type of neural network architecture specifically designed for analyzing
graph-structured data. GNNs utilize a mechanism known as message passing, which allows for localized
computation across the graph (Gilmer et al., 2017). In essence, the feature vector of each node is iteratively
updated by incorporating information from its neighboring nodes. After l iterations, xl

v encodes both the
structural and attribute information from the l-hop neighborhood of node v.

More formally, the output of the l-th layer of a GNN is defined as:

xl
v = COMB(l)(xl−1

v , AGG(l)({xl−1
u , u ∈ N [v]})) (1)

Here, AGG(l) refers to the aggregation function that gathers features from the neighbours N [v] at the
(l − 1)-th iteration, while COMB(l) combines the features of the node itself with those of its neighbours.
For graph-level tasks such as classification or regression, a global readout function is applied to the node
embeddings to produce the final output:

o = READ({xL
v , v ∈ VG}). (2)

The READ function can be implemented as a sum, mean, or max overall node features or through more
sophisticated approaches (Bruna et al., 2013; Yuan and Ji, 2020; Khasahmadi et al., 2020).

Several architectures have been proposedVeličković et al. (2018); Hamilton et al. (2017); Xu et al. (2019);
Defferrard et al. (2016), all utilizing the same underlying mechanism but differing in their choice of COMB
and AGG functions.

Multi-relational GNNs, such as Relational Graph Convolutional Networks (Schlichtkrull et al., 2017), are
specifically designed to handle graphs with multiple types of relations between nodes. In this framework,
the message passing mechanism is extended to account for relation types, ensuring that information from
different relations is treated distinctively. For a multi-relational graph G = (V, E, R) where R is the set of
relation types, the feature update for a node v ∈ V in the l-th layer is defined as:

xl
v = σ

∑
r∈R

∑
u∈Nr(v)

1
cr,v

Wrxl−1
u + W0xl−1

v

 (3)

where Nr(v) represents the neighbors of node V connected by relation r, Wr is a learnable weight matrix
specific to relation r, cr,v is a normalization constant that can account for the degree of nodes, W0 is a
weight matrix for the self-loop connection, and σ is a non-linear activation function. In this formulation, the
feature propagation process aggregates messages from neighbors for each relation type separately, applying
distinct transformations before combining them. This mechanism allows the model to learn relation-specific
patterns, making it particularly suitable for tasks such as knowledge graph completion and multi-relational
node classification. Additionally, a global readout function READ can be applied to obtain graph-level
outputs as described in Equation 2. Recent advancements in RGCNs have improved multi-relational data
modeling Zhu et al. (2019); Yun et al. (2019); Hu et al. (2020b); Lv et al. (2021); Yu et al. (2021); Mitra et al.
(2022); Ferrini et al. (2024a;b), yet diverse benchmarks remain limited. This article introduces a dataset
and framework to convert Java source code into relational and multi-relational graphs, capturing structural
and semantic aspects. Focused on software performance prediction, it offers a novel benchmark for RGCNs
in underexplored domains.

4 Proposed Datasets

The proposed dataset focuses on predicting the execution time of Java source code, providing an early
estimate of code complexity. This is particularly valuable when using cloud computing services, where
execution time plays a critical role. The dataset consists of Java code files paired with their corresponding
execution times. Each file is parsed into an AST, which is then augmented with edges representing control
and data flows, offering a comprehensive view of both code structure and behaviour.
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Table 1: Overview of the OSSBuilds and HadoopTests datasets.

Project Description Files Avg.
Nodes

OSSBuilds

systemDS Apache Machine Learning system for data science lifecycle 127 871

H2 Java SQL DB 194 2091

Dubbo Apache Remote Procedure Call framework 123 616

RDF4J Scalable RDF processing 478 450

Total 922 875

HadoopTests Hadoop Apache framework for processing large datasets on clusters 2895 1490

4.1 Data Collection

For our experiments, we employed two different real-world datasets of performance measurements across
diverse software environments. The first dataset (OSSBuild) consists of actual build data sourced from the
continuous integration systems of four open-source projects, representing real-world software development
workflows. The second dataset (HadoopTests) consists of a larger collection of performance measurements
obtained by systematically executing the unit tests of the Hadoop open-source project multiple times in a
controlled environment. A summary of both datasets can be found in Table 1. By using datasets from
two distinct sources—one capturing variability in real-world build environments (OSSBuild) and the other
collected in a controlled setting (HadoopTests)—we seek to provide an evaluation that considers both real-
world complexity and controlled settings. To further address the diversity, and representativeness of our
datasets, as well as the steps taken to mitigate potential biases in the data collection process, we provide a
detailed analysis in Appendix G. In the following subsections, we provide further details about each dataset
used in our experimental studies.

4.1.1 OSSBuild Dataset

This dataset, initially utilized in Samoaa et al. (2022b), contains data on test execution times from production
build systems for four open-source projects: systemDS 1, H2 2, Dubbo 3, and RDF4J 4. These projects
utilize public continuous integration servers, from which we extracted test execution times as a proxy for
performance during the summer of 2021. Table 1 (top) presents basic statistics about the projects in this
dataset. "Files" indicates the number of unit test files for which we collected execution times, and each file
will be represented as one graph, while "Avg.Nodes" relates to the average number of nodes in the resulting
graphs. Prior to parsing, code comments were removed to reduce the number of nodes in each graph, as
they are considered non-essential.

4.1.2 HadoopTests Dataset

To overcome the limitations of the OSSBuild dataset, particularly the limited number of files (graphs) per
project, we compiled a second dataset for this study. We chose the Apache Hadoop framework 5 due to its
extensive number of test files (2,895) and its sufficient complexity. Each unit test in the project was executed
five times, with the JUnit framework Samoaa and Leitner (2021) recording the execution duration for each
test file at millisecond granularity. The data collection was conducted on a dedicated virtual machine within
a private cloud environment equipped with two virtual CPUs and 8 GB of RAM. Following best practices
in performance engineering, we disabled all non-essential services during the test runs. Statistics for the
HadoopTests dataset are provided in Table 1 (bottom).

1https://github.com/apache/systemds
2https://github.com/h2database/h2database
3https://github.com/apache/dubbo
4https://github.com/eclipse/rdf4j
5https://github.com/apache/hadoop
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4.2 AST Construction

To construct the AST, we parse the Java code using javalang6, a pure Python library designed for Java pars-
ing. This parser extracts structural elements of the code while omitting purely syntactical components such
as comments, brackets, and code location metadata. The javalang parser produces ASTs by assigning each
parsed element to one of 72 predefined node types. These node types represent different program compo-
nents, such as method declarations, variable assignments, and control flow structures (detailed in Appendix
C). Since javalang is widely used in software engineering research, its node type definitions follow a stan-
dardized approach, ensuring consistency with existing parsing methodologies. Once the AST is constructed,
it forms a tree-like structure (an acyclic undirected graph) composed of these 72 node types. To incorporate
this representation into our model, we encode each node type using one-hot encoding, enabling the use of
node embeddings for downstream learning tasks.

4.3 From AST to RelSC

The AST obtained from a Java source code file is initially an acyclic, undirected graph. To transform it
into a more expressive representation, we first convert it into a directed graph by assigning directed edges
from parent nodes to child nodes. To further enrich the graph and capture both structural and semantic
relationships, we introduce 11 additional edge types. These edges integrate information from the AST,
CFG, and DFG, enhancing the representation of execution semantics and dependencies within the code.
The introduced edges are categorized as follows:

AST-Derived Edges: These edges directly preserve the hierarchical structure of the AST.

• AST Edges (a): These edges are inherited directly from the AST, maintaining the parent-child
relationships within the syntax tree.

• Next Token (b): Connects leaf nodes sequentially, capturing the linear order of tokens in the source
code.

• Next Sibling (c): Links each node to its adjacent sibling in the AST, preserving structural locality.

Data Flow Edges: These edges capture dependencies based on variable usage and data propagation.

• Next Use (d): Connects a variable node to the next occurrence where it is used, effectively modeling
data dependencies between statements.

Control Flow Edges: These edges simulate execution paths and conditional branching within the pro-
gram.

• If Flow (e): Connects the predicate (condition) of an if-statement to the corresponding block of
code executed when the condition is true.

• Else Flow (f): Links the predicate of an if-statement to the alternative (optional) else-block, cap-
turing branching behavior.

• While Execution Flow (g): Connects the condition of a while loop to its body, modeling the
repeated execution of loop iterations.

• While Next Flow (h): Links the last statement inside a while-loop body back to the condition
node, simulating the loop execution process.

• For Execution Flow (j): Connects the loop condition in a for-statement to the body of the loop,
ensuring proper modeling of iterative execution.

6https://pypi.org/project/javalang/
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• For Next Flow (k): Similar to the While Next Flow edge, this edge models the execution order
within for-loops.

• Next Statement Flow (i): Represents the sequential execution of statements within a code block
by connecting each statement to the next one in order.

By integrating these edges, the graph effectively captures both syntactic structure and execution behavior,
creating a richer representation for downstream tasks such as execution time prediction and performance
analysis.

In Figure 4 (left), we present the RelSC graph generated from the example in Listing 1. While our ap-
proach builds upon the RelSC representation introduced in Samoaa et al. (2022b), it incorporates several
key enhancements. Most notably, we integrate semantic node type information, which was not considered
in Samoaa et al. (2022b). These node types are extracted using the javalang parser, as detailed in Section
4.2, enriching the graph representation with additional syntactic context. Furthermore, unlike Samoaa et al.
(2022b), where node embeddings rely solely on structural properties, our approach enhances node feature
representation by leveraging both node type encoding and edge information. Given that the RelSC graph is
a multigraph—where multiple edges can exist between the same pair of nodes—we construct node features
by concatenating the one-hot encoding of node types with the summed one-hot encoding of their outgo-
ing edges. This allows for a more expressive representation of both node roles and their relational context
within the graph. These improvements make our approach more semantically aware and structurally en-
riched compared to Samoaa et al. (2022b), ultimately leading to a more informative graph representation
for downstream tasks.

4.4 From RelSC to Multi-RelSC

Once RelSC graphs have been computed, we also provide a multi-relational version of the dataset, referred
to as Multi-RelSC. This extension introduces an additional layer of semantic information by categorizing
nodes based on their roles and meanings within the Abstract Syntax Tree (AST) (see Section 4.2). The
decision to split node types into categories stems from the need to capture the diverse and domain-specific

Relational Source Code ( )
Method 

Declaration

int factorial

factorial

Parameter BlockStmt

IfStmt

IfBlock ElseBlock

ReturnStmt

Binary 
Expr: times

n

n

Method 
Call Expr
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Binary
Expr: less equals
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From AST

Legend:
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Figure 4: (Left) RelSC graph for the example presented in Listing 1. (Right) Multi-RelSC graph for the
example presented in Listing 1
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relationships that exist in programming constructs. Specifically, we identify seven categories of nodes: Dec-
larations, which refer to the definition or declaration of variables, methods, classes, and similar constructs;
Data Types, representing specific data types or references to types; Control Flow, which includes terms
associated with constructs that control the program’s execution flow; Operations, referring to terms that
signify operations or expressions; Structural Elements, covering structural components of the code such as
blocks, compilation units, and packages; Exceptions and Errors, relating to exception and error handling
mechanisms; and finally, Others, for terms that do not fit into any of the previously defined categories. In
Appendix C, we provide the categorization of each node type, grouping them into these distinct categories.
Additionally, we define a relationship for every possible connection between these categories, resulting in a
maximum of 49 possible unique relations (more details in Appendix E). As a result, we construct a multi-
relational graph with up to 49 distinct relation types. Each node is represented by a feature vector that
combines the one-hot encoding of its node type with the summed one-hot encodings of its outgoing edge
types (see Section 4.3). Figure 4 (right) illustrates the Multi-RelSC graph corresponding to the example in
Listing 1.

5 Datasets Statistics

In this section, we provide a detailed analysis of the RelSC and Multi-RelSC datasets, highlighting their
key structural characteristics and diversity. By examining node and edge statistics, as well as node type
distributions, we demonstrate the complexity and variability of the datasets. These insights establish the
suitability of RelSC and Multi-RelSC as robust benchmarks for evaluating graph-based models in diverse
scenarios and application domains.

RelSC: Table 2 summarizes the key characteristics of the homogeneous graphs in our RelSC dataset, of-
fering insights into their diversity and complexity. The average node and edge counts vary notably across
datasets, with Hadoop having the highest averages, indicating greater complexity, while Dubbo represents
a more compact framework, highlighting the dataset’s versatility in covering both large-scale and smaller
graphs. Variability, as shown by STD values, is significant in H2 and Hadoop, pointing to diverse structural
complexities. For instance, Hadoop ranges from 23 to 32,592 nodes and 80 to 127,822 edges, illustrating
the presence of both simple and highly complex graphs. RDF4J and SystemDS also show broad ranges,
reflecting the dataset’s overall diversity. These statistics demonstrate the RelSC dataset’s suitability as a
strong benchmark for evaluating graph-based models, ensuring that GNNs can be tested across different
scenarios. The variety of graphs presents challenges and opportunities for developing more sophisticated
algorithms that generalize across multiple domains and software systems.

Multi-RelSC: Table 2 presents an overview of the Multi-RelSC dataset, which consists of multi-relational
graphs. Compared to RelSC, Multi-RelSC contains graphs with a higher average number of edges, such as
Hadoop’s 11,764.1 edges, indicating a greater degree of connectivity. H2 in OssBuilds has the highest mean
node and edge counts, representing the largest graphs in the dataset. The dataset exhibits considerable
variation in graph sizes, with Hadoop ranging from 23 nodes and 176 edges to 32,592 nodes and 259,820
edges, demonstrating a broad range of structural characteristics. Multi-RelSC offers a collection of graphs,
fostering the development of advanced algorithms to address complex software systems.

5.1 Distribution of Node Types

Figure 5 shows the node category distributions for Multi-RelSC OssBuilds (left) and Multi-RelSC Hadoop
(right) datasets. Most nodes fall into "Operation" and "Others", indicating a high occurrence of expres-
sions, operations, literals, and constants. The standard error (black arrows) is especially large for these
categories, particularly in Hadoop, showing high variability across samples. Categories like "Control Flow"
and "Data Types" have lower counts and variability, reflecting the diverse complexity of the graphs. More
node distributions are in Appendix D.
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Hadoop OssBuilds

H2 Dubbo rdf SystemDS Tot

|V | |E| |V | |E| |V | |E| |V | |E| |V | |E| |V | |E|

mean 1490.3 5731.1 2091.3 8019.6 616.1 2354.2 449.9 1740 871.3 3321 875.5 3361
std 2283.4 8817.9 2631.1 10133.8 998.9 3818.5 726.2 2826.1 629.9 2410.9 1524.7 5869.7
min 23 80 130 500 7 20 22 76 22 78 7 20
max 32592 127822 15947 61758 6374 24540 5918 23146 3396 13208 15947 61758

mean 1490.3 11764.1 2091.3 16517.8 616.1 4811.6 449.9 3573.6 871.3 6804.5 875.5 6907.4
std 2283.4 18052.4 2631.1 20828.4 998.9 7800.6 726.2 5783.4 629.9 4946.3 1524.7 12060.3
min 23 176 130 1020 7 40 22 156 22 156 7 40
max 32592 259820 15947 127032 6374 50672 5918 47284 3396 27740 15947 127032

Table 2: Statistics for RelSC datasets (upper) and for Multi-RelSC (lower)
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Figure 5: Distribution of node categories in OssBuilds
(left) and Hadoop (right).
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Figure 6: Distribution of target values in OssBuilds
(left) and Hadoop (right).

5.2 Target values

Figure 6 illustrates the distribution of target values for OssBuilds (left) and Hadoop (right). The figure
shows that both projects contain a higher proportion of fast-executing Java scripts compared to slower
ones. The original execution time values range from 0.5 seconds to 4751.51 seconds in OssBuilds and from
0.2 seconds to 1059.67 seconds in Hadoop. Since these values span different ranges across datasets, direct
comparisons would be challenging. To ensure comparability, we normalize the target values to the [0,1]
range independently for each dataset. Target value distributions for SystemDS, H2, Dubbo, and RDF4J are
provided in Appendix H.

6 Experiments

In this section, we present the performance of basic GNN and HeteroGNN models on the RelSC and
Multi-RelSC datasets. It is important to note that the main objective of our work is to introduce a novel
dataset, not to propose a new architecture.

6.1 Implementation Details and Evaluation

We evaluate our models using architectures specifically designed for ASTs, source code, and graphs, en-
suring a fair comparison across different architectural paradigms. The AST-based architecture includes
Code2Vec Alon et al. (2019), while source code architectures encompass CodeBERT Feng et al. (2020). For
graph-based architectures, we consider GCN Kipf and Welling (2017), ChebConv Defferrard et al. (2017),
GIN Xu et al. (2019), GraphSAGE Hamilton et al. (2017), and PNA Corso et al. (2020) for RelSC graphs.
For Multi-RelSC datasets, we employ GraphSAGE and GAT Veličković et al. (2018). Notably, for mod-
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els trained on Multi-RelSC datasets, we leverage heterogeneous message passing7, which allows the use of
distinct parameter sets for different relation types.

All models have two convolutional layers (hidden dimension of 30) and two fully connected layers. We applied
mean and max global pooling for graph prediction, with batch normalization and dropout for regularization.
Models were implemented using PyTorch-Geometric. Each dataset was split into 70% training, 15% valida-
tion, and 15% test sets. It is worth mentioning that, since the primary focus of this work is to introduce
novel datasets, we did not perform a hyperparameter search. Each model was trained for 100 epochs with
early stopping (patience 15), repeated five times with different seeds, a learning rate of 0.01, and batch size
of 32. Experiments were conducted on a machine with four NVIDIA Tesla A100 GPUs (48GB), two Xeon
Gold 6338 CPUs, and 256GB DDR4 RAM.

The proposed datasets for the graph regression task exhibit a notable imbalance in target values (see section
5.2). For example, in the Hadoop dataset, approximately 50% of the target values fall within the range
of [0, 0.22], indicating a significant concentration of samples in this lower range. This imbalance in the
targets makes evaluation more challenging. Therefore, we report the Mean Absolute Error (MAE) as our
primary metric. However, since MAE does not account for relative errors, we include additional metrics
in Appendix B, specifically Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE),
Spearman’s rank correlation coefficient, and the Maximum Relative Error (MRE).

Other Approaches We use two well-known software engineering models that do not rely on graph struc-
tures: Code2Vec Alon et al. (2019) and CodeBERT Feng et al. (2020). Code2Vec is a neural network model
that represents source code as continuous vectors by extracting structural and semantic relationships from
ASTs. It encodes code snippets as sets of path-contexts, which are embedded and weighted using an atten-
tion mechanism to identify the most relevant features for predicting code properties like method names. The
resulting vectorized representation is then passed through a feedforward neural network to predict source
code execution time. In contrast, CodeBERT is a pre-trained transformer-based model designed to learn
meaningful representations of source code. We use it to extract vectorized representations of code, which
are then fed into a feedforward neural network for execution time prediction. Notably, CodeBERT has a
512-token limit, requiring input code truncation. To address this, we use GPT-3.5 Turbo Ye et al. (2023) to
shorten the input code while preserving essential information. Both Code2Vec and CodeBERT are trained
for 100 epochs with a batch size of 8.

6.2 Results

RelSC: Table 3 presents the performance of source code-based, AST-based, and GNN-based models on the
RelSC datasets, evaluated using MAE along with the standard deviation across five different initialization
seeds. Across all datasets, GNN-based models consistently outperform source code-based and AST-based
models. Notably, PNA achieves the lowest MAE in every dataset, demonstrating superior performance over
all other models.

Multi-RelSC: Table 3 indicates that HeteroGAT tends to achieve lower MAE values compared to Het-
eroSAGE across the evaluated datasets. This may be attributed to HeteroGAT’s capacity to model multi-
relational connections in the Multi-RelSC datasets, potentially providing a richer contextual representation
for predictions. Variation in MAE across datasets is observed. Hadoop, which has a larger node and edge
count, exhibits lower MAE values compared to smaller datasets like SystemDS and H2, where MAE values
are generally higher, particularly for HeteroSAGE. Additionally, datasets with higher variability, such as
SystemDS and H2, show greater fluctuations in MAE, which could indicate challenges in adapting to diverse
graph structures. Overall, HeteroGAT appears to perform more favorably in most cases, though differences
in graph size seem to influence MAE outcomes. The multi-relational nature of the Multi-RelSC datasets
may enable HeteroGAT to take advantage of these relational structures in certain scenarios.

7https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.HeteroConv.html
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Table 3: Test MAE (lower the better) for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dobbo OssBuilds

Source code CodeBERT 0.14(±0.11) 0.12(±0.10) 0.17(±0.13) 0.21(±0.12) 0.18(±0.12) 0.15(±0.08)

AST Code2Vec 0.14(±0.01) 0.17(±0.01) 0.19(±0.02) 0.17(±0.02) 0.21(±0.02) 0.15(±0.01)

RelSC

GCN 0.12(±0.00) 0.13(±0.00) 0.07(±0.02) 0.18(±0.01) 0.14(±0.02) 0.14(±0.01)
Cheb 0.11(±0.00) 0.12(±0.01) 0.08(±0.04) 0.18(±0.01) 0.13(±0.00) 0.15(±0.01)
GIN 0.12(±0.01) 0.12(±0.00) 0.08(±0.05) 0.20(±0.01) 0.14(±0.01) 0.14(±0.01)
GraphSAGE 0.13(±0.00) 0.13(±0.01) 0.07(±0.03) 0.19(±0.01) 0.12(±0.01) 0.14(±0.01)
PNA 0.09(±0.01) 0.09(±0.01) 0.06(±0.00) 0.17(±0.01) 0.10(±0.01) 0.11(±0.00)

Multi-RelSC HeteroSage 0.27(±0.11) 0.20(±0.05) 6.22(±5.45) 4.35(±3.51) 4.05(±5.60) 0.58(±0.31)
HeteroGAT 0.14(±0.02) 0.15(±0.01) 0.31(±0.11) 1.09(±0.54) 0.19(±0.09) 0.18(±0.02)

6.3 Discussion
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Figure 7: Test predictions versus target values for the
PNA model in OssBuilds (left) and Hadoop (right).

The results highlight the challenges posed by the
proposed datasets and the varying performance of
different models. PNA achieves the best results on
RelSC datasets, while HeteroGAT outperforms Het-
eroSAGE on Multi-RelSC datasets. However, Het-
eroGAT struggles on smaller datasets, such as Sys-
temDS and H2, indicating potential limitations in
handling less complex graphs. Surprisingly, mod-
els trained on RelSC datasets outperform those on
Multi-RelSC datasets, despite the richer informa-
tion provided by multi-relational structures. This
suggests an open challenge in designing models that
can fully leverage multi-relational data, which war-
rants further investigation. Moreover, source code
and AST-based models underperform compared to
GNN models, primarily due to their susceptibility to outliers, as evidenced by the maximum relative error
reported in Table 12 (Appendix B). This limitation affects their reliability in execution time prediction tasks,
reinforcing the advantages of graph-based representations. These findings establish the proposed datasets
as rigorous benchmarks for evaluating GNN models, offering a valuable testbed for developing architectures
better suited to real-world graph-based learning tasks. To further illustrate the need for improved models,
Figure 7 presents the correlation between predicted and target values for the PNA model on OssBuild (left)
and Hadoop (right). The figure reveals significant outliers, particularly in Hadoop, where predictions cluster
near zero and fail to estimate values exceeding 0.6. Such inaccuracies can lead to unreliable execution time
predictions in real-world applications, emphasizing the necessity for more robust and generalizable models.

6.4 Ablation Study

Table 4: Test MAE on OssBuilds
using only ASTs

Model Test MAE
GraphConv 0.22(±0.02)
ChebConv 0.23(±0.01)
GINConv 0.21(±0.01)
GraphSAGE 0.22(±0.01)

Abstract Syntax Trees represent source code syntax but lack semantic
details like control and data flow. To address this, we augment ASTs with
edges from Control Flow Graphs (CFGs) and Data Flow Graphs (DFGs),
creating Flow-Augmented ASTs (FA-ASTs). An ablation study on the
OssBuilds dataset (Table 4) shows that adding these edges significantly
improves performance compared to plain ASTs (Table 3).

The inclusion of flow edges significantly enhances the performance of all
models, reducing the test MAE by approximately 0.07 to 0.09. For in-
stance, the MAE for GraphConv improved from 0.22(±0.02) to 0.14(±0.01),
ChebConv from 0.23(±0.01) to 0.15(±0.01), GINConv from 0.21(±0.01) to
0.14(±0.01), and GraphSAGE from 0.22(±0.01) to 0.14(±0.01). These results
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underscore the critical role of semantic augmentation, as the incorporation of control and data flow infor-
mation enables GNN models to learn richer representations that better capture execution pathways and
dependencies within the code, ultimately leading to significant improvements in prediction accuracy. This
demonstrates the importance of flow augmentation for constructing informative graph representations in
software performance prediction tasks.

7 Real-World Applications

Accurately predicting source code execution time is essential for optimizing software performance, improving
development workflows, and enhancing user experience. The proposed datasets, RelSC and Multi-RelSC,
can be leveraged in several impactful ways:

• Code Optimization and Refactoring: Modern software development relies heavily on execution time
analysis to optimize performance. For instance, Facebook’s TAO system dynamically adjusts caching
strategies based on execution predictions, improving query response times Bronson et al. (2013).
Similarly, Google’s Chrome team leverages performance models to prioritize rendering optimizations,
enhancing user experience Harrelson (2017).

• Continuous Integration and Deployment (CI/CD): Detecting performance regressions early in the
development cycle is crucial for maintaining efficient software systems. Large-scale CI/CD platforms,
such as those used by Microsoft and Netflix, incorporate performance regression testing to identify
slowdowns before deployment. Reliable execution time estimation enables automated detection of
inefficient code changes, preventing costly degradations Lindon et al. (2022); Biringa and Kul (2024).

• Performance-Aware Scheduling: Effective scheduling in cloud computing relies on accurate esti-
mations of execution time to allocate resources efficiently and minimize delays. Cloud computing
platforms such as AWS Lambda and Google Cloud Functions must schedule and allocate resources
dynamically Jia et al. (2018); Saravanan et al. (2021); Belgacem (2022).

These applications demonstrate the value of our datasets in driving performance-focused decision-making in
software engineering, with potential for future integration into automated performance tuning, debugging,
and energy-efficient coding tools.

8 Data Release

To facilitate further research, we publicly release the raw data and PyTorch Geometric graph objects on
Zenodo, along with the code repository on GitHub8. The repository contains model implementations, graph
construction instructions, a tutorial for loading the dataset and training models, and dataset statistics. The
PyTorch Geometric graph objects include predefined train (70%), validation (15%), and test (15%) splits
to ensure consistency across experiments. Since OssBuilds consists of multiple projects (SystemDS, H2,
Dubbo, and RDF4J), each individual project follows the same 70%-15%-15% partitioning. Importantly,
the train, validation, and test sets of each project are fully contained within the corresponding splits of
the complete OssBuilds dataset, ensuring a consistent evaluation framework at both the project-specific
and dataset-wide levels. This structured partitioning allows for fine-grained analysis while maintaining
comparability across different evaluation scales. Comprehensive instructions for accessing and using these
data objects are available in the official GitHub repository, which also includes well-documented code to
support reproducibility and facilitate ease of use for researchers and practitioners.

9 Conclusion

In this work, we have addressed the critical gap in publicly available benchmarks for graph regression tasks
by introducing two novel datasets specifically tailored to software performance prediction. Our proposed

8https://anonymous.4open.science/r/graph_regression_datasets-407E/
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datasets, RelSC and Multi-RelSC, represent Java source code and their corresponding execution times,
providing valuable resources for the exploration of GNN models in a new domain—software engineering.
These contributions extend the scope of GNN applications beyond the traditionally explored domains of
Chemistry and Drug Discovery, enabling researchers to investigate graph regression in software performance
and related fields. With our datasets being publicly accessible, we aim to foster further research, providing
a standardized benchmark that can drive the development, evaluation, and comparison of GNN models in
software engineering and other underexplored areas.
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A Licensing and Ethical Statement

Licensing: To construct our dataset, we rely on source code available on GitHub, distributed under the
following licenses:

• Hadoop: Apache License, Version 2.0

• H2: MPL 2.0 (Mozilla Public License, Version 2.0) or EPL 1.0 (Eclipse Public License)

• Dubbo: Apache License, Version 2.0

• rdf: BSD-3-Clause License

• SystemDS: Apache License, Version 2.0

We executed the source code and recorded the execution times, as described in Sections 4.1.1 and 4.1.2. The
resulting graphs, along with their execution times, are being released under the CC-BY license.

Ethical Statement: This dataset is designed to address challenges in graph representation learning, with a
particular emphasis on graph regression tasks. While it is not intended for this purpose, there is a possibility
that it could be used to enhance models for harmful applications. However, to the best of our knowledge,
our work does not directly pose any threat to individuals or society.

B Additional Metrics and validation results

In this section we evaluate standard GNN techniques on the proposed datasets. In particular, tables 6, 7
report the test and validation Root Mean Squared Error (RMSE), tables 8, 9 report the test and validation
Mean Absolute Percentage Error (MAPE), tables 10, 11 show the Spearman’s Rank Correlation Coefficient
(ρ) for test and validation data, and finally tables 12, 13 show the Maximum Relative Error (MRE).

The MAPE is defined as
MAPE = 1

n

n∑
i=1

yi − ȳi

yi
(4)

where n is the number of observations, yi is the actual value, and ȳi is the predicted value.

While the Spearman’s Rank Correlation Coefficient is a non-parametric measure of rank correlation and it
is defined as:

ρ = 1 − 6
∑

d2
i

n(n2 − 1) (5)

where n is the number of observations, di is the difference between the ranks of each pair of observations.
Note that ρ ranges from -1 to 1, where ρ = 1 indicates perfect positive correlation, ρ = −1 indicates perfect
negative correlation, and ρ = 0 indicates no correlation.

Tables 5–13 present the performance metrics across test and validation splits. Specifically, Table 5 reports
the MAE on validation splits. Tables 6 and 7 show the RMSE for test and validation splits, respectively.
Similarly, Tables 8 and 9 provide the MAPE, while Tables 10 and 11 present Spearman’s Rank Correlation
Coefficient. Finally, Tables 12 and 13 report the MRE for test and validation splits.

C Node Types

In table 14, we report the definition of each node type with their associated category.
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Table 5: Validation MAE (lower the better) for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dobbo OssBuilds

Source code CodeBERT 0.12(±0.13) 0.12(±0.10) 0.18(±0.13) 0.16(±0.14) 0.13(±0.13) 0.12(±0.08)

AST Code2Vec 0.13(±0.00) 0.16(±0.01) 0.16(±0.01) 0.12(±0.00) 0.22(±0.01) 0.14(±0.01)

RelSC

GCN 0.11(±0.00) 0.13(±0.01) 0.06(±0.02) 0.13(±0.00) 0.09(±0.01) 0.14(±0.00)
Cheb 0.12(±0.00) 0.13(±0.01) 0.09(±0.03) 0.15(±0.00) 0.09(±0.01) 0.14(±0.00)
GIN 0.11(±0.00) 0.12(±0.00) 0.07(±0.04) 0.14(±0.01) 0.08(±0.01) 0.14(±0.00)
GraphSAGE 0.11(±0.00) 0.13(±0.01) 0.07(±0.03) 0.15(±0.00) 0.08(±0.00) 0.14(±0.00)
PNA 0.09(±0.01) 0.09(±0.01) 0.06(±0.00) 0.12(±0.01) 0.07(±0.01) 0.10(±0.00)

Multi-RelSC HeteroSage 0.17(±0.04) 0.16(±0.01) 1.13(±0.41) 1.29(±0.58) 0.38(±0.34) 0.47(±0.24)
HeteroGAT 0.12(±0.00) 0.15(±0.00) 0.14(±0.01) 0.24(±0.07) 0.08(±0.03) 0.19(±0.05)

Table 6: Test RMSE for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.17(±0.10) 0.15(±0.03) 0.21(±0.12) 0.20(±0.09) 0.19(±0.06) 0.18(±0.11)

AST Code2Vec 0.17(±0.01) 0.21(±0.01) 0.22(±0.02) 0.22(±0.03) 0.26(±0.01) 0.18(±0.01)

RelSC

GCN 0.16(±0.00) 0.15(±0.01) 0.08(±0.02) 0.21(±0.00) 0.17(±0.01) 0.18(±0.01)
Cheb 0.15(±0.00) 0.15(±0.01) 0.09(±0.05) 0.21(±0.01) 0.17(±0.01) 0.19(±0.01)
GIN 0.16(±0.01) 0.15(±0.00) 0.09(±0.05) 0.23(±0.01) 0.17(±0.01) 0.18(±0.01)
GraphSAGE 0.17(±0.01) 0.16(±0.01) 0.09(±0.02) 0.22(±0.01) 0.17(±0.01) 0.18(±0.01)
PNA 0.11(±0.02) 0.10(±0.01) 0.06(±0.02) 0.16(±0.00) 0.13(±0.01) 0.14(±0.02)

Multi-RelSC HeteroSage 0.68(±0.54) 0.27(±0.11) 8.71(±8.88) 6.08(±4.53) 7.82(±12.22) 1.89(±1.99)
HeteroGAT 0.21(±0.04) 0.18(±0.02) 0.43(±0.17) 0.97(±0.73) 0.32(±0.22) 0.24(±0.04)

D Node Category of the Datasets

In this section, we report the average number of nodes in each category for the remaining datasets: H2,
Dubbo, RDF4J, and SystemDS, as shown in Figures 8 to 11. We previously discussed the node distributions
for Hadoop and OssBuilds in Section 5.1.

Across these datasets, there is a noticeable consistency in the dominance of the "Others" and "Operation"
categories, which account for a significant portion of the nodes in each dataset. This trend is indicative of
the complex and diverse operations and structural elements within these software systems.

While "Others" and "Operation" categories consistently lead, the distribution among other categories, such as
"DataTypes" and "StructuralElements", varies between datasets. For instance, SystemDS and RDF4J show
a relatively balanced distribution across these additional categories, whereas H2 and Dubbo exhibit higher
variability, as reflected by their broader STD bars. This variability suggests that the graphs within each
dataset have distinct structural characteristics, further emphasizing the challenges in graph-based model
learning.

Overall, these figures highlight the variability and complexity inherent in each dataset, reinforcing the need
for flexible and robust models capable of handling diverse graph structures.
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Table 7: Validation RMSE for RelSC and Multi-RelSC datasets

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.16(±0.08) 0.15(±0.05) 0.22(±0.10) 0.21(±0.11) 0.13(±0.07) 0.11(±0.00)

AST Code2Vec 0.17(±0.00) 0.20(±0.06) 0.20(±0.01) 0.17(±0.00) 0.26(±0.01) 0.17(±0.01)

RelSC

GCN 0.17(±0.00) 0.17(±0.00) 0.10(±0.02) 0.17(±0.01) 0.11(±0.01) 0.17(±0.00)
Cheb 0.17(±0.00) 0.17(±0.00) 0.11(±0.03) 0.19(±0.01) 0.13(±0.01) 0.17(±0.01)
GIN 0.16(±0.00) 0.17(±0.00) 0.11(±0.03) 0.18(±0.01) 0.11(±0.02) 0.17(±0.01)
GraphSAGE 0.17(±0.00) 0.18(±0.00) 0.10(±0.02) 0.19(±0.01) 0.13(±0.00) 0.17(±0.00)
PNA 0.12(±0.01) 0.13(±0.02) 0.08(±0.00) 0.16(±0.00) 0.10(±0.01) 0.15(±0.02)

Multi-RelSC HeteroSage 0.35(±0.21) 0.19(±0.01) 0.93(±0.51) 1.43(±0.99) 0.55(±0.49) 0.98(±0.68)
HeteroGAT 0.18(±0.00) 0.19(±0.00) 0.18(±0.02) 0.32(±0.12) 0.10(±0.03) 0.27(±0.12)

Table 8: Test MAPE for RelSC and Multi-RelSC datasets. We report “-” to indicate that the value diverged.

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.59(±0.48) 0.58(±0.41) 0.59(±0.44) 0.88(±0.63) 1.15(±0.83) 5.12(±2.30)

AST Code2Vec 0.68(±0.12) 0.84(±0.10) 0.33(±0.06) 0.58(±0.28) 0.74(±0.36) 0.68(±0.13)

RelSC

GCN 0.54(±0.02) 0.78(±0.08) 0.09(±0.02) 0.55(±0.07) 0.73(±0.21) 0.68(±0.05)
Cheb 0.58(±0.08) 0.68(±0.04) 0.10(±0.05) 0.60(±0.07) 0.64(±0.11) 0.84(±0.06)
GIN 0.51(±0.01) 0.64(±0.04) 0.11(±0.06) 0.60(±0.07) 0.70(±0.10) 0.80(±0.08)
GraphSAGE 0.59(±0.02) 0.81(±0.08) 0.10(±0.03) 0.65(±0.03) 0.55(±0.03) 0.67(±0.05)
PNA 0.44(±0.05) 0.51(±0.10) 0.06(±0.02) 0.41(±0.08) 0.42(±0.05) 0.56(±0.02)

Multi-RelSC HeteroSage 1.11(±0.25) 1.18(±0.24) 7.71(±7.24) 10.59(±8.28) 12.59(±18.93) 2.03(±0.90)
HeteroGAT 0.67(±0.09) 0.94(±0.03) 0.41(±0.14) 1.73(±1.12) 0.73(±0.23) 0.93(±0.06)

E Relations on the Datasets

In this section, we discuss the average number of relations between different node categories for each
Multi-RelSC dataset. Figures 12-17 show a heatmap where the rows and columns correspond to various cat-
egories of nodes (defined in Section 4.4), such as "Declarations," "Control Flow," "Data Types", "Operations",
and "Others".

A common pattern across all datasets is the significant number of relations involving the "Operation" and
"Others" categories. These categories consistently show higher interaction counts, indicating their central
role in the overall structure of the software systems. Notably, the "Others" category frequently interacts
with "Operation" nodes, underscoring the complexity and interdependence of various node types within the
graphs.

The "Declarations" and "Data Types" categories also show considerable relations, particularly in datasets like
H2 and SystemDS (Figures 13 and 17), where they interact heavily with "Operation" nodes. This suggests
that these systems have a more intricate structure with a higher degree of dependencies between different
code elements.

Differences across datasets are most evident in the intensity of specific relations. For example, H2 and
Hadoop (Figures 13 and 14) exhibit a higher number of relations between "Operation" and "Others" compared
to Dubbo and RDF4J (Figures 12 and 16), indicating that the former systems have more complex and
interconnected codebases.

Overall, these heatmaps illustrate the relational complexity within each dataset, highlighting the critical role
of "Operation" and "Others" categories in maintaining the structural integrity of the codebase. This complex-
ity presents challenges for graph-based models, which must effectively capture these dense interdependencies
to make accurate predictions.
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Table 9: Validation MAPE for RelSC and Multi-RelSC datasets. We report “-” to indicate that the value
diverged.

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.97(±0.34) 0.74(±0.61) 0.58(±0.33) 1.61(±1.08) 0.26(±0.21) 0.73(±0.47)

AST Code2Vec 2.20(±0.51) 1.27(±0.25) 0.28(±0.62) - 0.62(±0.12) 0.62(±0.12)

RelSC

GCN 1.26(±0.12) 0.63(±0.07) 0.10(±0.03) - 0.54(±0.09) 0.59(±0.03)
Cheb 1.44(±0.17) 0.61(±0.04) 0.13(±0.04) - 0.55(±0.09) 0.58(±0.02)
GIN 1.19(±0.08) 0.55(±0.02) 0.11(±0.04) - 0.51(±0.07) 0.61(±0.11)
GraphSAGE 1.32(±0.06) 0.67(±0.06) 0.11(±0.03) - 0.45(±0.01) 0.51(±0.10)
PNA 1.01(±0.12) 0.51(±0.08) 0.08(±0.01) - 0.42(±0.05) 0.44(±0.09)

Multi-RelSC HeteroSage 1.85(±0.53) 0.84(±0.05) 1.09(±0.60) - 1.89(±1.72) -
HeteroGAT 1.40(±0.15) 0.79(±0.05) 0.21(±0.01) 1.01(±0.09) 0.55(±0.11) 0.61(±0.08)

Table 10: Test Spearman’s Rank Correlation Coefficient (ρ) for RelSC and Multi-RelSC datasets (higher is
better).

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.55(±0.23) 0.58(±0.21) 0.31(±0.09) 0.19(±0.11) 0.08(±0.02) 0.14(±0.03)

AST Code2Vec 0.33(±0.07) 0.26(±0.06) 0.25(±0.26) −0.12(±0.15) 0.03(±0.21) 0.48(±0.08)

RelSC

GCN 0.61(±0.03) 0.52(±0.03) 0.67(±0.04) 0.28(±0.09) 0.32(±0.32) 0.59(±0.03)
Cheb 0.64(±0.04) 0.50(±0.05) 0.74(±0.17) nan 0.49(±0.04) 0.52(±0.03)
GIN 0.64(±0.03) 0.53(±0.02) 0.67(±0.08) 0.23(±0.09) 0.23(±0.35) 0.55(±0.05)
GraphSAGE 0.57(±0.02) 0.38(±0.05) 0.77(±0.06) nan 0.41(±0.08) 0.56(±0.04)
PNA 0.71(±0.02) 0.57(±0.01) 0.68(±0.00) 0.48(±0.05) 0.51(±0.00) 0.68(±0.03)

Multi-RelSC HeteroSage 0.21(±0.21) 0.20(±0.07) −0.34(±0.08) 0.02(±0.31) 0.13(±0.47) 0.24(±0.18)
HeteroGAT 0.50(±0.11) 0.32(±0.07) 0.24(±0.31) 0.22(±0.27) 0.41(±0.17) 0.40(±0.04)

Table 11: Validation Spearman’s Rank Correlation Coefficient (ρ) for RelSC and Multi-RelSC datasets
(higher is better).

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 0.62(±0.15) 0.56(±0.13) 0.44(±0.09) 0.67(±0.18) 0.33(±0.03) 0.81(±0.21)

AST Code2Vec 0.43(±0.02) 0.40(±0.06) 0.43(±0.03) 0.28(±0.06) 0.36(±0.05) 0.52(±0.03)

RelSC

GCN 0.59(±0.03) 0.54(±0.02) 0.60(±0.14) 0.52(±0.06) 0.29(±0.03) 0.50(±0.03)
Cheb 0.58(±0.03) 0.52(±0.06) 0.51(±0.17) nan 0.28(±0.03) 0.48(±0.01)
GIN 0.61(±0.02) 0.54(±0.02) 0.55(±0.18) 0.30(±0.34) 0.18(±0.05) 0.49(±0.02)
GraphSAGE 0.50(±0.02) 0.46(±0.04) 0.66(±0.06) nan 0.26(±0.04) 0.48(±0.03)
PNA 0.73(±0.01) 0.55(±0.02) 0.69(±0.01) 0.58(±0.01) 0.48(±0.04) 0.66(±0.01)

Multi-RelSC HeteroSage 0.31(±0.09) 0.26(±0.05) −0.10(±0.38) 0.21(±0.12) 0.07(±0.09) 0.19(±0.07)
HeteroGAT 0.50(±0.05) 0.33(±0.05) 0.14(±0.23) 0.30(±0.08) 0.26(±0.11) 0.42(±0.05)

Table 12: Test MRE for RelSC and Multi-RelSC datasets (lower is better)

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 42(±25) 58(±48) 75(±61) 83(±11) 51(±9) 929(±81)

AST Code2Vec 3(±1) 1948(±239) 15(±9) 7(±4) 5373(±629) 1823(±148)

RelSC

GCN 19(±2) 3(±0) 2(±0) 3(±1) 2(±1) 5(±0)
Cheb 22(±3) 3(±2) 1(±0) 4(±1) 2(±0) 5(±1)
GIN 18(±2) 3(±0) 1(±0) 3(±1) 2(±1) 6(±0)
GraphSAGE 15(±3) 4(±1) 1(±0) 4(±0) 1(±0) 4(±0)
PNA 11(±2) 3(±0) 1(±0) 7(±4) 1(±0) 3(±0)

Multi-RelSC HeteroSage 23(±8) 5(±1) 33(±3) 42(±26) 73(±11) 30(±27)
HeteroGAT 13(±2) 3(±0) 1(±1) 8(±4) 3(±2) 5(±0)
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Table 13: Validation MRE for RelSC and Multi-RelSC datasets (lower is better)

Hadoop RDF4J SystemDS H2 Dubbo OssBuilds

Source code CodeBERT 79(±34) 61(±21) 31(±18) 122(±83) 13(±11) 38(±15)

AST Code2Vec 6819(±814) 511(±101) 5953(±363) 705(±23) 5366(±226) 3076(±211)

RelSC

GCN 107(±32) 5(±0) 1(±0) 3(±1) 2(±1) 9(±1)
Cheb 118(±12) 5(±0) 1(±0) 4(±0) 2(±0) 9(±2)
GIN 79(±23) 6(±0) 1(±0) 3(±1) 2(±0) 10(±2)
GraphSAGE 87(±13) 5(±0) 1(±0) 4(±0) 2(±0) 7(±1)
PNA 51(±2) 3(±1) 1(±0) 3(±4) 1(±0) 6(±0)

Multi-RelSC HeteroSage 74(±26) 4(±1) 3(±2) 13(±10) 5(±3) 29(±12)
HeteroGAT 67(±14) 3(±0) 1(±0) 2(±0) 2(±0) 14(±3)

Figure 8: Node Category Distribution for
Multi-RelSC RDF4J dataset

Figure 9: Node Category Distribution for
Multi-RelSC SystemDS dataset

Figure 10: Node Category Distribution for
Multi-RelSC H2 dataset

Figure 11: Node Category Distribution for
Multi-RelSC Dubbo dataset
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Node type Description Category

AnnotationMethod Defines a method used in annotations, often to specify default values for elements declarations
InferredFormalParameter A formal parameter whose type is inferred by the compiler, often in lambda expressions declarations
LocalVariableDeclaration Declares a variable within a method, constructor, or block, with local scope declarations
SuperConstructorInvocation Calls the constructor of the superclass from a subclass constructor expressions_and_operations
Import Imports classes or entire packages to make them available for use in a Java file code_structure
ArraySelector Used to select an element from an array using its index types_and_references
BreakStatement Terminates the nearest enclosing loop or switch statement control_flow
FieldDeclaration Declares a variable at the class level, which can be accessed by methods of the class declarations
EnumDeclaration Declares an enumeration, a special Java type used to define collections of constants declarations
ConstructorDeclaration Declares a constructor, a special method to create and initialize objects of a class declarations
Annotation A form of metadata that provides data about a program code_structure
ReferenceType Specifies a type that refers to objects, such as classes, arrays, or interfaces types_and_references
EnhancedForControl Control structure used to iterate over collections or arrays in a simplified way control_flow
TypeParameter Represents a generic parameter in a class, interface, or method declarations
Statement A single unit of execution within a Java program, such as a declaration or expression control_flow
CompilationUnit Represents an entire Java source file, including package, imports, and class code_structure
EnumConstantDeclaration Declares constants within an enum type literals_and_constants
IfStatement A conditional statement that executes code based on a true or false condition control_flow
ClassCreator Creates an instance of a class, possibly an inner or anonymous class code_structure
SwitchStatement Selects one of many code blocks to execute based on the value of an expression control_flow
EnumBody Defines the body of an enum, including constants and other fields or methods code_structure
PackageDeclaration Declares the package that a Java class or interface belongs to code_structure
Cast Converts an object or value from one type to another types_and_references
VariableDeclaration Declares a variable, specifying its type and optional initial value declarations
ArrayCreator Creates a new array with a specified size and type types_and_references
This Refers to the current instance of a class types_and_references
MethodReference Refers to a method by name without executing it, often used in lambda expressions expressions_and_operations
InnerClassCreator Creates an instance of an inner class code_structure
InterfaceDeclaration Declares an interface, which can contain method signatures and constants declarations
FormalParameter Declares a parameter in a method or constructor declarations
CatchClauseParameter A parameter used in the catch block to represent an exception exceptions
SynchronizedStatement Ensures that a block of code is executed by only one thread at a time control_flow
VoidClassReference Refers to the special ‘void‘ type, representing the absence of a return value types_and_references
TypeArgument An actual type passed as a parameter to a generic type types_and_references
DoStatement Executes a block of code at least once, then repeatedly based on a condition control_flow
Assignment Assigns a value to a variable expressions_and_operations
ContinueStatement Skips the current iteration of a loop and proceeds to the next iteration control_flow
AssertStatement Tests an assertion about the program, throwing an error if the assertion fails exceptions
ExplicitConstructorInvocation Explicitly calls another constructor in the same class or a superclass declarations
AnnotationDeclaration Declares an annotation type, used to create custom annotations declarations
StringLiteralExpr Represents a literal string value in the code literals_and_constants
PrimitiveType Represents a primitive data type such as int, char, or boolean types_and_references
TryStatement Defines a block of code that attempts execution and handles exceptions control_flow
ElementArrayValue Represents an array of values in an annotation element code_structure
BlockStatement Groups multiple statements together in a block enclosed by braces code_structure
ClassReference Refers to a class, often using its fully qualified name types_and_references
ReturnStatement Terminates a method and optionally returns a value control_flow
IntegerLiteralExpr Represents a literal integer value in the code literals_and_constants
TernaryExpression A shorthand conditional expression expressions_and_operations
VariableDeclarator Declares a variable and its initial value in one statement declarations
BinaryOperation Represents an operation involving two operands, such as addition or comparison expressions_and_operations
ClassDeclaration Declares a class, including its name, superclass, and body declarations
TryResource Represents a resource in a try-with-resources statement that is automatically closed exceptions
MemberReference Refers to a member of a class, such as a field or method expressions_and_operations
SuperMemberReference Refers to a member in the superclass of the current class expressions_and_operations
Literal Represents a literal value, such as a number, character, or boolean literals_and_constants
CatchClause Handles exceptions thrown in a try block exceptions
WhileStatement Executes a block of code repeatedly based on a condition control_flow
ElementValuePair Represents a key-value pair in an annotation code_structure
ForStatement Defines a traditional for loop with initialization, condition, and iteration control_flow
StatementExpression Represents an expression that can stand as a statement expressions_and_operations
ConstantDeclaration Declares a constant, which is a variable whose value cannot be changed declarations
ArrayInitializer Specifies the initial values for an array types_and_references
MethodInvocation Invokes a method on an object or class expressions_and_operations
Modifier Defines modifiers for classes, methods, or fields, such as public, private, or static declarations
ThrowStatement Throws an exception, signaling an error or abnormal condition control_flow
LambdaExpression Represents an anonymous function expressions_and_operations
SwitchStatementCase Represents a case label in a switch statement, matching specific values code_structure
MethodDeclaration Declares a method, including its return type, name, and parameters declarations
BasicType Represents a basic data type such as int, float, or char types_and_references
SuperMethodInvocation Invokes a method from the superclass of the current class expressions_and_operations
ForControl Specifies the initialization, condition, and update parts of a for loop control_flow
CompilationUnit Represents the top-level node in AST produced by the parser as the root of the tree declarations

Table 14: Conversion table from NodeType to Category
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Figure 12: Average number of relations for
dataset Multi-RelSC Dubbo

Figure 13: Average number of relations for
dataset Multi-RelSC H2

Figure 14: Average number of relations for
dataset Multi-RelSC Hadoop

Figure 15: Average number of relations for
dataset Multi-RelSC OssBuilds

Figure 16: Average number of relations for
dataset Multi-RelSC RDF4J

Figure 17: Average number of relations for
dataset Multi-RelSC SystemDS

27



Under review as submission to TMLR

F Additional Graph Statistics

This section provides additional statistics for an overview of the proposed datasets. Figures 18 and 19 show
two RelSC and two Multi-RelSC networks for Hadoop and OssBuilds, respectively.

Figure 18: Example of RelSC and Multi-RelSC graphs from Hadoop

In Table 15, we present the means and standard deviations of several key graph metrics calculated for the
proposed datasets. Specifically, we report the average density, indicating the proportion of actual connections
to possible connections within each graph. We also include the average degree, reflecting the mean number
of connections per node, and the average clustering coefficient, which describes the tendency of nodes to form
tightly connected groups. Additionally, we provide the average diameter, representing the longest shortest
path between any two nodes, and the average path length, capturing the mean shortest path across all node
pairs. Lastly, we report the degree assortativity, which measures the correlation in degree between connected
nodes.

Dataset Density Degree Clustering Diameter Path Length Assortativity
SystemDS 0.010 (± 0.023) 3.80 (± 0.06) 0.29 (± 0.02) 18.3 (± 4.5) 7.6 (± 1.3) 0.12 (± 0.06)
Dubbo 0.026 (± 0.047) 3.80 (± 0.12) 0.31 (± 0.04) 13.9 (± 3.7) 6.7 (± 1.4) 0.15(± 0.09)
RDF 0.041 (± 0.046) 3.78 (± 0.14) 0.30 (± 0.03) 12.7 (± 5.7) 5.9 (± 2.1) 0.17(± 0.08)
H2 0.005 (± 0.005) 3.82 (± 0.05) 0.33 (± 0.02) 22.1 (± 9.1) 8.6 (± 1.9) 0.11 (± 0.08)
OSSBuilds 0.027 (± 0.041) 3.79 (± 0.12) 0.31 (± 0.03) 15.6 (± 7.3) 6.8 (± 2.2) 0.15 (± 0.08)
Hadoop 0.011 (± 0.018) 3.82 (± 0.06) 0.30 (± 0.02) 17.3 (± 11.7) 7.5 (± 3.1) 0.12 (± 0.07)

Table 15: Dataset Statistics: Mean Values with Standard Deviations
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Figure 19: Example of RelSC and Multi-RelSC graphs from OssBuilds

F.1 Metric Distributions

Figure 20 presents the degree distributions of the OssBuilds and Hadoop datasets. To enhance clarity
and make patterns in the distributions more visible, the y-axis is displayed on a logarithmic scale. This
adjustment highlights the spread of node degrees across a wide range, helping to capture variations that may
be less noticeable on a linear scale.

Figure 20: Degree distributions of OssBuilds (left) and Hadoop (right)
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G Dataset Diversity and Bias Mitigation

To address concerns about the quality and representativeness of our dataset, we provide a detailed analysis of
the diversity of code samples and the steps taken to mitigate potential biases in the data collection process.
Our dataset comprises code from five distinct open-source projects collected through two different sources
and methods, ensuring a broad coverage of code patterns and complexities relevant to software performance
prediction tasks.

G.1 Diversity of Code Samples

Our dataset includes code from the following projects:

• OSSBuilds Dataset: This dataset encompasses four open-source projects, each contributing
unique code patterns due to their different functionalities:

– SystemDS: An Apache machine learning system for the data science lifecycle.
– H2: A Java SQL database engine.
– Dubbo: An Apache remote procedure call (RPC) framework.
– RDF4J: A framework for scalable RDF data processing.

These projects introduce a variety of code patterns, including database management, machine learn-
ing algorithms, RPC mechanisms, and data processing workflows. The diversity is reflected in the
structural variations of the code and the resulting graphs.

• HadoopTests Dataset: Derived from the Apache Hadoop framework, this dataset includes 2,895
test files. Hadoop is renowned for processing large datasets across distributed computing environ-
ments, contributing complex code structures and control flows to our dataset.

Table 1 illustrates that the average number of nodes in the HadoopTests dataset is almost double that of
the OSSBuilds dataset (1,490 vs. 875 nodes), indicating higher complexity in the Hadoop code samples.
This indicates that our dataset has two main characteristics: the diversity of the code patterns and the
complexity.

G.2 Mitigation of Potential Biases

To minimize biases in our data collection process, we employed two different methods and environments:

• OSSBuilds Data Collection: Execution times were collected from the continuous integration
(CI) systems of the respective projects using GitHub’s shared runners. This approach leverages a
standardized environment provided by the CI infrastructure, reducing variability due to hardware
differences.

• HadoopTests Data Collection: We conducted multiple executions of Hadoop’s unit tests on
dedicated virtual machines within our private cloud. Each VM was configured with two virtual CPUs
and 8 GB of RAM, and all non-essential services were disabled to ensure consistent performance
measurements.

By diversifying our data sources and controlling the execution environments, we mitigated potential biases
related to hardware configurations, workload fluctuations, and environmental inconsistencies.

G.3 Representativeness and Generalization

The inclusion of diverse projects with varying functionalities enhances the representativeness of our dataset.
The code samples encompass different structures, control flow statements, and data dependencies, which
are critical for modelling software performance. The resulting graphs are generalized to various coding
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patterns, excluding interface files that primarily contain function declarations without executable code. We
intentionally did not include call graphs in the augmentation of ASTs to focus on the executable aspects of
the code, which are more indicative of performance characteristics.

H Target values distributions

In this section, we present the distribution of target values for SystemDS, H2, Dubbo, and RDF4J, which
are subprojects of OssBuilds. The distributions are shown in Figure 21.
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Figure 21: Distribution of target values for SystemDS, H2, Dubbo, and RDF4J, subprojects of OssBuilds.
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