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Abstract
Horizon dependence is an important difference be-
tween reinforcement learning and other machine
learning paradigms. Yet, existing results tackling
the (exact) horizon dependence either assume that
the reward is bounded per step, introducing unfair
comparison, or assume strict total boundedness
that requires the sum of rewards to be bounded al-
most surely – allowing only restricted noise on the
reward observation. This paper addresses these
limitations by introducing a new relaxation – ex-
pected boundedness on rewards, where we allow
the reward to be stochastic with only bounded-
ness on the expected sum – opening the door to
study horizon-dependence with a much broader
set of reward functions with noises. We estab-
lish a novel generic algorithm that achieves no-
horizon dependence in terms of sample complex-
ity for both Markov Decision Processes (MDP)
and Games, via reduction to a good-conditioned
auxiliary Markovian environment, in which only
“important” state-action pairs are preserved. The
algorithm takes only Õ(S

2A
ϵ2 ) episodes interacting

with such an environment to achieve an ϵ-optimal
policy/strategy (with high probability), improving
(Zhang et al., 2022) (which only applies to MDPs
with deterministic rewards). Here S is the number
of states and A is the number of actions, and the
bound is independent of the horizon H .

1. Introduction
One of the most prominent differences between reinforce-
ment learning (RL) and other learning paradigms is its de-
pendence on the decision horizon. For instance, one eval-
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uates a policy based on its long-term performance, which
sums up a sequence of rewards received after each deci-
sion. In stark contrast, bandit learning problems evaluate
a policy based on its single-shot performance. However,
does the horizon-dependence makes RL considerably more
difficult? Jiang & Agarwal (2018) ask this question for-
mally and proposes to study the problem under the so-called
“total boundedness” assumption, where the rewards have
a bounded sum almost surely for any trajectory collected
by a policy – given a relatively fair comparison between,
e.g., bandit problems and RL. Recently, a line of research
(Wang et al., 2020; Zhang et al., 2021; Li et al., 2022; Zhang
et al., 2022) settles this question by showing the existence
of algorithms, which only take Õ(1)1 trajectories to learn a
good policy – eliminating the dependence on the horizon in
the learning sample complexity under the total boundedness
assumption with deterministic rewards.

While being profound, the above works leave a slackness in
the understanding of the horizon effect – the total bounded-
ness and deterministicity of the rewards can be infeasible
in systems with noise, which, however, are the standard
assumptions of multi-arm bandit systems. Moreover, it is
also unclear whether horizon-free learning can be achieved
in multi-agent systems, e.g., two-player zero-sum games.
In particular, Zhang et al. (2022) rely on the almost-sure-
boundedness of reward sums to establish a high probability
bound for regret. Such an approach fails when there is
stochastic noise; on the other hand, Li et al. (2022) require
an ϵ-net on the reward space, requiring which to possess
special properties provided by the total boundedness. Both
works only apply to single player MDP and do not extend
to Markov games, where the multi-player nature makes the
problem more challenging.

In this paper, we address the limitations introduced by the
total boundedness. In particular, we study the RL problem
under a relaxed expected boundedness assumption, which
only imposes boundedness on the expectation of the sum of
rewards – a standard assumption that only requires the value
function to be bounded. Our proposed algorithm consists of
two phases, where in the first phase, it applies a reward-free

1We ignore the |S||A|-dependence, where S is the number of
states and A is the number of actions.
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key-state preserving exploration on the environment that
covers the important states; in the second phase, it opti-
mizes a policy/strategy for a given arbitrary reward function
via a carefully designed upper confidence bound (UCB) ex-
ploration algorithm. In particular, our first phase can take
a reward-free exploration algorithm (e.g., we can leverage
the techniques in (Zhang et al., 2022)) to output an auxiliary
Markov environment. This new environment allows easy
exploration that does not depend on the horizon length. The
second phase explores the auxiliary environment and takes
advantage of the expected boundedness via a novel analysis
on the model-based UCB algorithm to bound the variation
in the empirical value function of a policy – which provides
a tight concentration bound for the relaxed boundedness
assumption.

As a by-product of the generality of the algorithm, our
approaches extend to two-player zero-sum games – our
algorithm outputs an approximated Nash equilibrium with
the number of episodes of interactions independent of the
horizon. We summarize our contributions as below.

1. We propose a new and more natural reward-
boundedness assumption for studying the horizon-
dependence problem in RL. Our assumption allows
the study of a broader set of noisy rewards, extending
the results in recent advances (Li et al., 2022; Zhang
et al., 2022) and also complements the open problem
proposed in (Jiang & Agarwal, 2018).

2. We propose a generic algorithmic framework that con-
sists of reward-free exploration and reward-based UCB
exploration. This algorithm achieves horizon-free
learning for both MDPs and games.

3. At the core of our analysis is a technical innovation on
the UCB-type analysis of model-based RL. This new
technique enables a direct computation of expected
regret bound over the entire collected dataset rather
than relying on a martingale argument, which requires
the rewards to be almost surely bounded.

4. Our work improves the existing horizon-independent
PAC bounds in both the online setting and the gener-
ative setting for MDPs and two-player games with S
states and A actions. See Table 1 below.

Table 1. Comparison to existing horizon-independent results

Paper Online PAC Generative PAC
(Li et al., 2022) Õ

(
poly(S,A)O(S)

ϵ5

)
O
(

S6A4

ϵ3

)
(Zhang et al., 2022) Õ

(
S9A3

ϵ2

)
-

Our work Õ
(

S2A
ϵ2

+ S9A3

ϵ

)
Õ
(

S2A
ϵ2

)

1.1. Related Work

Tabular RL. There is a long line of research on the sample
complexity and regret bound for RL in the tabular setting.
See e.g.,(Kearns & Singh, 2002; Brafman & Tennenholtz,
2003; Kakade, 2003; Strehl et al., 2006; Strehl & Littman,
2008; Kolter & Ng, 2009; Bartlett & Tewari, 2009; Jaksch
et al., 2010; Szita & Szepesvári, 2010; Lattimore & Hut-
ter, 2012; Osband et al., 2013; Dann & Brunskill, 2015;
Azar et al., 2017; Dann et al., 2017; Osband & Van Roy,
2017; Jin et al., 2018; Fruit et al., 2018; Talebi & Maillard,
2018; Dann et al., 2019; Dong et al., 2019; Simchowitz &
Jamieson, 2019; Russo, 2019; Zhang & Ji, 2019; Zhang
et al., 2020c; Yang et al., 2021; Pacchiano et al., 2020; Neu
& Pike-Burke, 2020; Wang et al., 2020; Zhang et al., 2020b;
Menard et al., 2021; Zhang et al., 2021; Ren et al., 2021)
and references therein. Most of the prior works used the
Reward Uniformity assumption, in which the reward values
satisfy rh ∈ [0, 1/H] for all h, up to a scaling factor.

Dependence on Horizon. Jiang & Agarwal (2018) point
out that to have a fair comparison between long horizon
and short horizon problems, one should only impose an
upper bound on the summation of the reward values, i.e.,∑H

h=1 rh ≤ 1. We refer as the Total Boundedness as-
sumption. Under this assumption, they conjectured that
there would be a poly(H) regret lower bound. This con-
jecture was first partially refuted by (Zanette & Brunskill,
2019), who gave an algorithm whose regret scales logarith-
mically with H in the regime K = poly(S,A,H). Later
this conjecture was substantially refuted by Wang et al.
(2020), in which they provide an algorithm that requires
only poly(S,A, logH, 1/ϵ) episodes to learn a ϵ-optimal
policy. Surprisingly, Li et al. (2022) settled this question by
giving a horizon-independent algorithm, but with exponen-
tial dependence on S and A. This exponential dependence
was further improved to S9A3 in Zhang et al. (2022).

Two-player zero-sum Markov Game. Markov games have
been widely studied since the seminal work (Shapley, 1953).
Early works (Littman, 1994; Hu & Wellman, 2003; Hansen
et al., 2013) focused on the setting where the transition
matrix and reward function are assumed to be known or
in the asymptotic setting where the number of data goes
to infinity. When the transition kernel is unknown, a line
of works (Sidford et al., 2020; Cui & Yang, 2021; Zhang
et al., 2020a; Jia et al., 2019) considers the generative set-
ting, making strong reachability assumption under which
no sophisticated exploration algorithm is required. Another
line of works (Bai et al., 2020; Xie et al., 2020; Bai & Jin,
2020; Liu et al., 2021) look for the non-asymptotic guaran-
tees without reachability assumptions. Our work is the first
to consider the horizon-dependence problem proposed by
(Jiang & Agarwal, 2018) for Markov Games.
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2. Preliminaries
Notations. Throughout our paper, we use [N ] to denote
the set {1, 2, . . . , N} for N ∈ Z+. We use 1s to de-
note the one-hot vector whose only non-zero element is
in the s-th coordinate. For an event A, we use 1A as
the indicator function. For a space S, ∆(S) stands for
all the probability distribution supported on S. For two
n-dimensional vectors x and y, we use a covariance-like
function V (x, y) =

∑
i xiy

2
i −(

∑
i xiyi)

2 to prove our con-
centration results. We denote ι = log(2/δ) as the logarithm
of confidence parameter δ.

Markov Decision Process(MDP). In this paper we con-
sider the finite-horizon time-homogeneous MDP M =
(S,A, P,R,H, s0), where S is the finite state space, A is
the finite action space, P : S ×A → ∆(S) is the unknown
(but fixed) transition operator which takes a state-action
pair and returns a distribution over states, R : S × A →
∆([−1, 1]) is the reward function, H ∈ Z+ is the planning
horizon, and s0 is the initial state.2 A solution to the MDP
is a policy π, which chooses an action a at a state s ∈ S and
time step h ∈ [H], i.e., π := {πh}Hh=1 where for each h ∈
[H], πh : S → ∆(A) maps a given state to a distribution
on the action space. Each roll-out of the policy π generates
a random trajectory s1, a1, r1, s2, . . . , sH , aH , rH , sH+1

where s1 = s0, a1 ∼ π1(s1), r1 ∼ R(s1, a1), s2 ∼
P (s1, a1), . . . , aH ∼ πH(sH), rH ∼ R(sH , aH), sH+1 ∼
P (sH , aH). The state value function and state-action value
function for the policy are then defined as

V π
h (sh) := E

[
H∑
t=h

r(st, at)|π, sh

]
,

Qπ
h(sh, ah) := E

[
H∑
t=h

r(st, at)|π, sh, ah

]
.

Our goal is to find an optimal policy π∗ that maximizes the
value, i.e. maxπ E

[∑H
h=1 r(sh, ah)

]
by only interacting

with the environment. We use Q∗
h and V ∗

h to denote the
value function of π∗, respectively. We call a policy ϵ-optimal
if V ∗

1 (s1)− V π
1 (s1) ≤ ϵ.

Markov Game(MG). We further consider the two-player
finite-horizon time-homogeneous Markov Game G =
(S,A,B, P,R,H, s0). Similar to the MDP setting, S is
the finite state space, A and B are the finite action space for
the two players respectively, P : S ×A×B → ∆(S) is the
unknown transition operator which takes a state-action pair

2This is without loss of generality: for the case of an unknown
initial distribution µ0 ∈ ∆(S) in the MDP, it can be reduced to a
fixed dummy initial state s0, whose transition is µ0 for any action
played (all with reward 0).

and returns a distribution over states. R : S × A × B →
∆([−1, 1]) is the reward function. H ∈ Z+ is the plan-
ning horizon, and s0 is the initial state. Unlike the MDP
setting, the solution in MG is a strategy (or policy pair)
π = (µ, ν), where µ : S → ∆(A) stands for the policy of
the max-player and ν : S → ∆(B) stands for the policy
of the min-player. For a given strategy, the correspond-
ing state-value and action-value functions are defined as
follows.

V π
h (sh) := E

[
H∑
t=h

r(st, at, bt)|π, sh

]
,

Qπ
h(sh, ah, bh) := E

[
H∑
t=h

r(st, at, bt)|π, sh, ah, bh

]
.

The max-player aims to maximize the value function, while
the min-player aims to minimize the value function. If
the min-player’s strategy ν is fixed, the MG degenerates
to an MDP, and the optimal policy in this MDP is the best
response strategy br1(ν). Similarly, we can define the best-
response strategy, br2(µ), for the min-player. The subscript
in br1 and br2 will be ignored in the clear context. For all
h ∈ [H], sh ∈ S, we define

V ∗,ν
h (sh) := V

br(ν),ν
h (sh) = max

µ
V µ,ν
h (sh),

V µ,∗
h (sh) := V

µ,br(µ)
h (sh) = min

ν
V µ,ν
h (sh).

There exists Nash equilibrium (NE) policy pair π∗ =
(µ∗, ν∗) that µ∗ and ν∗ are the best responses to each other.
We define V ∗

h (sh) = V µ∗,ν∗

h (sh) for all sh ∈ S, h ∈ [H].
The following weak duality property holds for all policy
pairs (µ, ν) in MG:

V µ,∗
h ≤ V ∗

h ≤ V
∗,ν
h ,∀h ∈ [H].

Our goal is to minimize the duality gap of a policy pair
π = (µ, ν), which is defined as

Gap(π) = V ∗,ν
1 (s1)− V µ,∗

1 (s1).

We call a policy pair ϵ-approximate NE if Gap(π) ≤ ϵ.
Regret and PAC Bound. The agent interacts with the
environment for K episodes. It chooses a policy (pair) πk

at the k-th episode. The regret in MDP setting is defined as

Regret(K) =
K∑

k=1

V ∗
1

(
sk1

)
− V πk

1

(
sk1

)
,

while the regret in MG setting is defined as

Regret(K) =

K∑
k=1

V ∗,νk

1

(
sk1

)
− V µk,∗

1

(
sk1

)
.

The measurement we will use is PAC-RL sample complex-
ity, which counts the total number of episodes to find an

3



Horizon-free Learning for MDP and Games: Stochastically Bounded Rewards and Improved Bounds 4

ϵ-optimal policy in MDP or an ϵ-approximate NE policy
pair in MG. As our algorithm and refined analysis provide
bound on the expectation of regret, we can either derive
PAC-RL result for mixed policy (a policy that randomly
chooses the history policy), or use the idea of standard re-
duction in (Jin et al., 2018). Here we use a new evaluation
algorithm to choose a good policy. More details to follow
in later sections.

Trajectory. Each time we run RFKSP(See Section 5.1),
we construct a new aux MDP/MG from scratch. We use
τ0 to denote all the trajectories in RFKSP and τk to denote
the trajectory in the k-th episode afterward. Moreover, we
denote Γk = (τ0, τ1, . . . τk) as the trajectories before the
k + 1-th episode interacting with the aux MDP/MG. We
use Nk(s, a) to denote the visit count of (s, a) in Γk−1

and N1(s, a) denote the visit count of (s, a) in RFKSP.
Similarly we define Nk(s, a, s′) and set all Nk(s, a) to be
at least 1.

3. Reward Assumption
In this section we compare the classic reward assumptions
and our new reward assumption. They are given in MDP
and can be translated to MG by substituting A by A× B.

Assumption 3.1 (Reward Uniformity). For all (s, a) ∈
S ×A, we have 0 ≤ r(s, a) ≤ 1/H. 3

Assumption 3.2 (Total Boundedness). 0 ≤ r(s, a) ≤
1 and

∑H
h=1 r(sh, ah) ≤ 1 holds almost surely for any

trajectory induced by any policy.

Reward Uniformity is commonly used in the literature when
the comparison between long and short horizon problems
is not a concern. (Jiang & Agarwal, 2018) suggests consid-
ering Assumption 3.2, the total boundedness assumption,
which is considerably weaker than the reward uniformity
assumption and allows the study of sparse-reward setting.
However, the almost-sure-boundedness is restrictive and
induces some surprising (unwanted) properties in the MDP
(e.g., any state-action pair with a reward O(1) can be visited
by at most once for any policy and trajectory), reducing the
practicality of such an assumption. Moreover, it is hard to
capture the noisy reward setting.

Next, we state the more natural boundedness assumption,
which relies on the notion of h-reachable states - states that
can be visited at the h-th step starting from the initial state
with a policy. The assumption is formally defined below.

Assumption 3.3 (Expected Boundedness). For all h ∈
3The literature usually bounds r(s, a) ∈ [0, 1]; we scale it to

[0, 1/H] for convenience.

[H], h-reachable state sh and policy π, |r(sh, a)| ≤ 1 and

Eπ

[
H∑
t=h

|r(sh, ah)|

]
≤ 1.

Remark 3.4. We broaden the range of r to [−1, 1] to provide
convenience for tackling Markov Game. The expectation is
taken over the trajectory space following policy π.

Our new reward assumption is a strict relaxation to the
total boundedness. It allows the total sum to exceed 1
and even scale up to H under non-zero probability, which
makes it considerably more challenging to achieve horizon-
independence. The wide range of our reward assumption
makes it natural to incorporate observation noise. In what
follows, we show examples that distinguish the expected
boundedness from the total boundedness assumptions.

Example 1. In real-world, for a designed reward R(s, a)
satisfying total-boundedness, the collected reward r(s, a)
may follow R(s, a) + ϵ(s, a), where ϵ(s, a) is the observa-
tion noise with zero-expectation. We can assume the noise is
small enough so 0 ≤ r(s, a) ≤ 1 still holds. Such rewards
violate the total-boundedness since the sum of the rewards
can exceed 1 with a positive probability.

Example 2. Consider a game where the player tries to
remain alive for H steps. Action a and b get him killed
with probability 1/2 and 1. This game can be formulated
as a MDP with states s(initial state) and z(death state).
P (s|s, a) = P (z|s, a) = r(s, a) = 1/2, P (z|s, b) =
P (z|z, ·) = 1. Other rewards are zero. Sticking to ac-
tion a, the sum of the rewards is greater than 1 with constant
probability and can be up to O(H), clearly beyond the
scope of total-boundedness. Using total-bounded rewards
r(s, a) = 1/H for this problem leads in an extra H factor.

4. Technical Overview
At a high level, our algorithm takes two phases. The first
phase is the initialization phase, which explores the environ-
ment in a reward-free fashion that attempts to reach every
reachable state-action pair. We do not restrict the algorithm
to be used in the phase, and the algorithm can be applied to
both games and MDPs (as no reward is considered). In fact,
we believe many of the existing reward-free exploration
algorithms (e.g., (Jin et al., 2020) and stage 1 of the main
algorithm in (Zhang et al., 2022)) can be adapted to this
phase. We clearly define the requirement of the algorithm
output of the first phase – an auxiliary MDP that filters
both the state-action space and probability transition of the
ground-truth. We will show that stage 1 of the main algo-
rithm in (Zhang et al., 2022) indeed outputs such an MDP.
This auxiliary MDP makes the further algorithmic design
less challenging and is also more friendly to horizon-free
analysis with expected boundedness.

4
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Our second phase is a model-based algorithm on the auxil-
iary MDP. The algorithm itself is similar to many existing
works, including R-max in (Brafman & Tennenholtz, 2003),
RMIS in (Zhang et al., 2022). In each step, the algorithm
establishes an approximate model of the auxiliary MDP and
a confidence set that contains the groud-truth. Then the
algorithm takes an optimistic policy computed using the
largest-in-value model from the confidence set. The confi-
dence bound is carefully designed so that no H dependence
would appear – if some confidence bound is large (i.e., of
order H) it should be canceled by the samples collected in
the first phase.

Our core innovation in the second phase appears in the anal-
ysis. In fact, the analysis in (Zhang et al., 2022) follows a
standard approach that first decomposes the regret of each
episode along the collected trajectory. The trajectory-based
decomposition necessarily introduces a martingale differ-
ence (the difference between the collected rewards and the
expected rewards) that adapts to the history. Yet, deriving
concentration bound on this martingale requires almost sure
boundedness of the sum of rewards. Our innovation lies
in the establishment of a “total expectation” argument that
carefully bounds the sum of regret per episode under the ex-
pectation of the entire history. Therefore, a martingale-type
argument is no longer needed. Thus expected bounded-
ness of the rewards is sufficient to bound the expected sum
of regrets. To further apply pigeonhole-type arguments to
bound the final regret, we apply a filtering argument that
selects the trajectories when the probability matrix is well-
approximated to obtain the final horizon-free bound.

One last remark of the total expectation argument is that it
only produces good policy with constant probability. We
boost the probability via a classic probability boosting ap-
proach – repeat the algorithm instance independently and
pick the best outcome among the outputs.

Algorithm 1 MDP-Full
1: Input: MDPM, ϵ, δ.
2: Set ϵksp, ϵucb, ϵeval = O(ϵ), δksp = 1

4 , δeval =
δ
2T .

3: Run T = log (2/δ) times independently.
4: for t = 1, 2, . . . , T do
5: M̃t ←RFKSP(M, ϵksp, δksp).
6: πt ←MDP-RBUCBI(M̃t, ϵucb).
7: V̂ πt

1 (s0)←MDP-Evaluation(M, πt, ϵeval, δeval).
8: end for
9: i← argmaxt∈[T ] V̂

πt

1 (s0).
10: Output: πi or V̂ πi

1 (s0)in MG-Full.

5. Algorithm
Overview We first illustrate our algorithms for MDP,
which is formally present in Algorithm 1. Our algorithm

proceeds with following high level steps:

1. build an aux MDP by a reward-free key state preserving
algorithm. Such an aux MDP has sufficient initial sam-
ples to achieve horizon-free while its value function is
close to the original MDP with high probability.

2. apply a UCB-type algorithm, which we term as MDP-
RBUCBI, to explore on aux MDP and obtain a policy,
which is near-optimal for the aux MDP with constant
probability.

3. estimate the value function of the returned policy in the
original MDP by an algorithm called MDP-Evaluation.

4. use the idea of boosting, independently repeat the pre-
vious steps for O(log( 1δ )) times. Return the policy
with the highest estimated value function.

Here the aux MDP is simulated using the true environment.
Once an action is taken in the aux MDP, the action is trans-
lated to the true MDP and the feedback from the true MDP
is translated back to the feedback in the aux MDP. Hence
any algorithm runs on the aux MDP is in fact interacting
with the true MDP using the aux MDP as a proxy.

Below we demonstrate the details of our algorithm. The
RFKSP algorithm we selected to use in this paper is given
in Appendix C. MDP-Evaluation is given in Appendix E.2
since it resembles MDP-Full(Algorithm 1) except that it
keeps running a given policy in the reward-based phase.

5.1. Reward-Free Key State Preserving

Auxiliary Markovian Environment. We denote

U(s, a) = max
π

Eπ

[
H∑

h=1

1(sh,ah)=(s,a)

]
to be the max expected visit counts to (s, a) in an

episode. The regret induced by UCB-type algorithm can
be bounded independently of H if there are sufficient ini-
tial samples for all state-action pairs, i.e. N1(s, a) ≥
U(s, a)/poly(S,A),∀(s, a). See Appendix B. While it is
hard to collect sufficient samples for all state-action pairs
since some of them can rarely be visited, we build the aux-
iliary Markovian environment (or aux MDP/MG) by
redirecting all these rarely visited state-action pairs to an
absorbing state z and setting the reward from z to be 0.
Definition 5.1. For a MDP M = (S,A, P,R,H, s0), sup-
pose we can partition S × A = O ∪ OC(O stands for
omitted), then an auxiliary Markovian environment is
defined as M̃ = (S ∪ {z},A, P̃ , R̃,H, s0), where

P̃s,a = Ps,a, R̃(s, a) = R(s, a), ∀(s, a) ∈ OC ,
P̃s,a = 1z , R̃(s, a) = 0, ∀(s, a) ∈ O,
P̃z,a = 1z , R̃(z, a) = 0, ∀a ∈ A.

5
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If the max visiting probability toO is small enough, V π
1 (s0)

is close to Ṽ π
1 (s0) for any policy π. (Ṽ is the value function

in the aux MDP/MG). If we further have sufficient initial
samples for the “important” state-action pairs in OC , we
call such aux MDP/MG to be good conditioned.

Definition 5.2. We call an auxiliary Markovian environment
to be ϵ-good conditioned if it satisfies that

1. maxπ Pπ [∃h ∈ [H], (sh, ah) ∈ O] ≤ ϵ,

2. N1(s, a) ≥ U(s,a)
poly(S,A) ,∀(s, a) ∈ O

C .

We formally defined the RFKSP algorithm as below.

Definition 5.3. A reward-free key-state preserving al-
gorithm satisfies that for any given ϵ, δ > 0, after using
K1 = poly

(
S,A, ι, 1ϵ

)
episodes, the auxiliary Markovian

environment it returned is ϵ-good conditioned with proba-
bility at least 1− δ.

Remark 5.4. By utilizing the partition of state-action space
in the stage 1 of the main algorithm in (Zhang et al., 2022) to
build the aux MDP, this algorithm serves as a viable reward-
free key-state preserving algorithm withK1 = Õ

(
S9A3/ϵ

)
.

This algorithm is given in Appendix C and is used in our
current result. The core idea is that it maintains an omitted
set O ⊂ S × A. Each episode is divided into two phases,
where the algorithm plans optimistically to reach O in the
first phase and collects samples in the second phase. The
collected target is the first reached state-action pair in O
when the estimated transition probability is accurate enough.
Once enough samples for a state-action pair are collected,
it is removed from O to OC . If not enough samples for
some (s, a) are collected during the entire phase, it remains
in the omitted set O. The optimistic design of the algorithm
makes sure that it searches the entire reachable set of states.
Remark 5.5. A generative model (first proposed by (Kearns
& Singh, 1998) and has inspired a number of follow works
see e.g.(Singh & Yee, 1994; Gheshlaghi Azar et al., 2013;
Sidford et al., 2018a;b; Agarwal et al., 2020; Li et al., 2020;
2022)) serves as the most straightforward and powerful
reward-free key-state preserving algorithm with K1 = SA.
In particular, by sampling one batch (H samples) for each
state-action pair, we have sufficient initial samples for all
state-action pairs since H ≥ U(s, a). Thus the original
MDP can be transformed into a 0-good conditioned auxiliary
Markovian environment with an empty omitted set.

5.2. Reward-Based UCB with Initialization

MDP-RBUCBI is formally presented in Algorithm 2. In
each episode k and state s, we set V

k

H+1(s) as 0, and

calculate Q
k

H , V
k

H , . . . , Q
k

1 , V
k

1 iteratively as follows. For

(s, a) ∈ O, Q
k

h(s, a) = 0. For (s, a) ∈ OC ,

Q
k

h(s, a) = min

(
rk(s, a) + max

p∈Pk
s,a

pV
k

h+1, 1

)
. (1)

Furthermore, πk
h(s) = argmaxaQ

k

h(s, a) and V
k

h(s) =

Ea∼πk
h(·|s)

Q
k

h(s, a).

Pk
s,a is the confidence set of transition probability, and rk is

the overestimation of the reward.

Algorithm 2 MDP-RBUCBI (Reward-Based UCB with
Initialization)

1: Input: M̃
(
ϵksp, δksp = 1

4

)
(aux MDP), ϵucb.

2: Initialization:V k

H+1(s) = 0,∀k, s ∈ S.
3: Use K = Õ

(
S2A
ϵ2ucb

)
episodes.

4: for episode k = 1, 2, . . . ,K do
5: for step h = H,H − 1, H − 2, . . . , 1 do
6: Compute Q

k

h(s, a) as in equation 1.
7: for s ∈ S do
8: πk

h(s)← argmaxaQ
k

h(s, a).
9: Compute V

k

h(s) = Ea∼πk
h(·|s)

Q
k

h(s, a).
10: end for
11: end for
12: Receive initial state sk1 = s0, play policy πk, collect

trajectory τk. Calculate Pk+1,Rk+1 based on Γk.
13: end for
14: Output: Randomly select one policy πk.

Confidence Set. The straightforward estimated transition
probability in the k-th episode is P̂ k

s,a,s′ =
Nk(s,a,s′)
Nk(s,a)

. By
Freedman’s inequality, with probability 1− S2AKδconf ,

|Ps,a,s′ − P̂ k
s,a,s′ | ≤

√
2
Ps,a,s′ ιconf
Nk(s, a)

+
ιconf

3Nk(s, a)
. (2)

And thus Ps,a ∈ Pk
s,a holds for the confidence set Pk

s,a asp ∈ ∆(S) :
∣∣∣p′s − P̂ k

s,a,s′

∣∣∣ ≤ 5

√
P̂ k
s,a,s′ ιconf

Nk(s, a)
+

5ιconf
Nk(s, a)

 .

Previous works, including (Zhang et al., 2022), constructed
similar confidence sets for the transition probability. We
further build the confidence set for the reward. We denote
the collected rewards for (s, a) before the k-th episode as
ri(s, a), i ∈ [Nk(s, a)]. We build the confidence set Rk

s,a

based on the sample mean r̂k(s, a) asr : ∣∣r − r̂k(s, a)∣∣ ≤
√
4
V̂ kιconf
Nk(s, a)

+
10ιconf
Nk(s, a)

 ,

6
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where V̂ k is the sample variance. It can be shown that with
probability at least 1−SAKδconf , E [R(s, a)] ∈ Rk

s,a holds
for any (s, a, k). We set the overestimation rk(s, a) to be
min{maxr∈Rk

s,a
r, 1}. and the underestimation rk(s, a, b)

used in MG to be max{minr∈Rk
s,a,b

r,−1}.

5.3. Algorithm for MG

The whole algorithm MG-Full(Algorithm 8) is given in
Appendix F since it resembles MDP-Full. While the gap
for a policy π in MDP is V ∗

1 (s0) − V π
1 (s0), the gap for a

strategy (µ, ν) in MG is V ∗,ν
1 (s0) − V µ,∗

1 (s0). We need a
new MG-RBUCBI algorithm, which is formally presented
in Algorithm 3, to derive strategy with low gap. The new
MG-Evaluation(Algorithm 9) is given in Appendix F.2.

Recall that in MDP, we construct an overestimation V h for
V ∗
h by setting πh as argmax Qh recursively. The gap for

this policy π is bounded by the difference of V 1(s0) and
V π
1 (s0), which are both expected sum over the trajectory

space following π. Correspondingly, we want to derive a
strategy (µ, ν) for time step h = H,H−1, . . . , 1 recursively
in MG that its gap can be bounded by the difference of the
overestimation and the underestimation as below.

V h(sh) ≥ V ∗,ν
h (sh) ≥ V µ,∗

h (sh) ≥ V h(sh).

We leverage CCE in (Moulin & Vial, 1978; Aumann, 1987).

Coarse Correlated Equilibrium CCE is a subroutine that
takes two metrics P,Q ∈ RA×B and returns (ϕ, ψ) ∈
∆(A)×∆(B) for general sum game, which satisfies

ϕTPψ ≥ max
a∈A

1T
a Pψ, ϕTQψ ≤ min

b∈B
ϕTQ1b.

When extending the algorithm from MDP to MG, the esti-
mation function are modified as follows. For (s, a, b) ∈ O,
Q

k

h(s, a, b) = Qk

h
(s, a, b) = 0. For (s, a, b) ∈ OC ,

Q
k

h(s, a, b) = min

(
rk(s, a, b) + max

p∈Pk
s,a,b

pV
k
h+1, 1

)
, (3)

Qk

h
(s, a, b) = max

(
rk(s, a, b) + min

p∈Pk
s,a,b

pV k
h+1,−1

)
.

MG-Evaluation (Algorithm 9) is implemented with MDP-
Full, which can return the near-optimal value for the oppo-
nent when a player is fixed, to evaluate the gap of a given
policy pair (µ, ν). We multiply rewards by −1 when es-
timating V µ,∗

1 (s0) since MDP-Full tries to maximize the
value function while the min player aims to minimize it.
The modified model still satisfies our reward assumption
since we have broaden the range of r.

6. Theoretical Guarantee
In this section, we provide the theoretical guarantee for our
algorithms. We use KRFKSP to denote the episodes used

Algorithm 3 MG-RBUCBI

1: Input: aux MG G̃(ϵksp, δksp = 1
4 ), ϵucb.

2: Initialization:V k

H+1(s) = 0, V k
H+1(s) = 0,∀k, s.

3: Use K = Õ
(

S2AB
ϵ2ucb

)
episodes.

4: for episode k = 1, 2, . . . ,K do
5: for step h = H,H − 1, H − 2, . . . , 1 do
6: Compute Q

k

h(s, a, b), Q
k

h
(s, a, b) as equation 3.

7: for s ∈ S do
8: µk

h(·|s), νkh(·|s)←CCE
(
Q

k

h(s, ·, ·), Q
k

h
(s, ·, ·)

)
9: V

k

h(s) = Ea∼µk
h(·|s),b∼νk

h(·|s)
Q

k

h(s, a, b)

10: V k
h(s) = Ea∼µk

h(·|s),b∼νk
h(·|s)

Qk

h
(s, a, b)

11: end for
12: end for
13: Play policy µk and νk, collect trajectory τk.
14: Calculate Pk+1,Rk+1 based on Γk.
15: end for
16: Output: Randomly select one policy pair πk.

by the selected RFKSP algorithm and KReward to denote
the episodes used by the reward-based part. In the online
setting, we modify the collecting initial samples stage in
(Zhang et al., 2022) as RFKSP(Appendix C). In the genera-
tive setting, we use the algorithm in Remark 5.5 as RFKSP.
We also outline the proof of Theorem 6.1 for demonstration.

Theorem 6.1. For any ϵ, δ > 0, with probability 1−δ, MDP-
Full(Algorithm 1) returns an ϵ-optimal policy by sampling
at most KReward +KRFKSP episodes, where KReward =
Õ
(
S2A/ϵ2

)
,KRFKSP = Õ

(
S9A3/ϵ

)
.

Remark 6.2. Compared to the PAC bound Õ
(
S9A3/ϵ2

)
in

(Zhang et al., 2022), our bound is much better, and can be
further reduced to Õ

(
S2A/ϵ2

)
when ϵ ≤ O(1/S7A2).

Similarly, we provide the results for MGs as below.

Theorem 6.3. For any ϵ, δ > 0, with probability 1− δ, MG-
Full(Appendix F) returns an ϵ-approximate NE policy pair
by sampling at most KReward +KRFKSP episodes, where
KReward = Õ

(
S2AB/ϵ2

)
,KRFKSP = Õ

(
S9A3B3/ϵ

)
.

Our lower-order terms in the sample complexity can be
additionally improved if we apply the generative model to
initialize our auxiliary MDP. We achieve Õ(S2A/ϵ2) PAC
result in the generative setting. The formal guarantee is
presented as Theorem G.1 in Appendix G.

Below, we provide a proof sketch for Theorem 6.1. The
proofs for Theorem 6.3 and Theorem G.1 are similar. The
formal proofs are presented in Appendix E, F, G respec-
tively.

Proof Sketch of Theorem 6.1. Among T returned policies

7
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in MDP-Full, we denote

i = argmax
t∈[T ]

V̂ πt

1 (s0), j = argmax
t∈[T ]

V πt

1 (s0).

MDP-Full outputs policy πi, whose gap V ∗
1 (s0)− V πi

1 (s0)
can be decomposed as

≤V ∗
1 (s0)− V πj

1 (s0)︸ ︷︷ ︸
exploration error

+
∣∣∣V πj

1 (s0)− V̂ πj

1 (s0)
∣∣∣︸ ︷︷ ︸

evaluation error

+
∣∣∣V̂ πi

1 (s0)− V πi

1 (s0)
∣∣∣︸ ︷︷ ︸

evaluation error

+ V̂1
πj

(s0)− V̂1
πi

(s0)︸ ︷︷ ︸
≤0 by definition

.

The exploration error and the evaluation error can be tack-
led by the following two theorems respectively. Lemma 6.5
states that the returned policy by MDP-RBUCBI is near-
optimal with constant probability. As we run MDP-
RBUCBI for T = O(log(1/δ)) times independently, πj

is near-optimal with high probability. We can also suitably
estimate all the given policies by Lemma 6.4. Taking union
bound to combine these two parts conclude our proof.

Lemma 6.4. The estimate V̂ π(s0) returned by MDP-
Evaluation satisfies that with probability 1 − δeval,
|V̂ π

1 (s0)− V π
1 (s0)| ≤ O(ϵeval).

MDP-Evaluation(Appendix E.2) resembles MDP-Full ex-
cept that it runs a given policy π and overestimates its value
instead of the optimal value in the UCB phase. The evalua-
tion gap between the overestimation and the true value can
be tackled similarly as in MDP-RBUCBI since they are also
expected sum over the trajectory space following π.

Lemma 6.5. The policy π returned by MDP-RBUCBI
(Algorithm 2) satisfies that with probability 1

2 , V ∗
1 (s0) −

V π
1 (s0) ≤ O (ϵucb + ϵksp) .

Proof Sketch of Lemma 6.5. This lemma is derived by
combining lemma 6.8, which bound the expectation of the
regret with respect to the aux MDP, and lemma 6.6, which
states that the value function in a good conditioned aux
MDP is close to the true MDP. Specifically, for any k ∈
{0}∪ [K−1], we define good event Gk holds if Γk satisfies:

1. The auxiliary Markovian environment built on τ0 is
ϵksp-good conditioned for ϵksp given in RFKSP.

2. For any (s, a) and t ∈ [k+1], P̂ t
s,a satisfies equation 2

and E [R(s, a)] ∈ Rt
s,a.

Defining good event for every k will be of use in our refined
analysis. We further set GK as GK−1, which holds with
probability 1− δksp−2S2AKδconf . Property 1 is related to
lemmas in Section 6.1. Property 2 ensures that our overesti-
mation works as V

k

h(sh) ≥ Ṽ ∗
h (sh). By applying Markov

inequality twice to the expectation of regret and setting K,
δconf and δksp appropriately, we conclude that both GK and
Ṽ ∗
1 (s0) − Ṽ π

1 (s0) ≤ O (ϵucb) hold with probability 1/2.
We denote the value of the optimal policy for the true MDP
in the aux MDP as Ṽ ∗∗. By definition, Ṽ ∗

1 (s0) ≥ Ṽ ∗∗
1 (s0),

and we have that

V ∗
1 (s0)− V π

1 (s0) ≤ Ṽ ∗∗
1 (s0)− Ṽ π

1 (s0) + 2ϵksp

≤Ṽ ∗
1 (s0)− Ṽ π

1 (s0) + 2ϵksp ≤ O (ϵucb + ϵksp) .

6.1. Auxiliary Markovian environment

In this section we give lemmas related to auxiliary marko-
vian environment. For a good conditioned aux MDP, the
value function within is close to the true MDP since the
reward on the majority of trajectories are the same.

Lemma 6.6. Suppose the max visiting probability to O is
less than ϵ, i.e.maxπ Pπ

[
∃h ∈ [H], (sh, ah) ∈ OC

]
≤ ϵ,

then for any fixed policy π,
∣∣∣V π

1 (s0)− Ṽ π
1 (s0)

∣∣∣ ≤ ϵ.
We denote

L = max
(s,a)∈OC

K∑
k=1

min

(
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

)
.

Under most cases, the visit counts of a state-action pair
in a single episode do not exceed its all visit counts be-
fore this episode, and thus the summation of 1/Nk(skh, a

k
h)

can be generally bounded by SAL. Since NK+1(s, a) −
Nk(s, a) ≤ KU(s, a)/δ holds with probability 1− δ, L is
bounded when there is sufficient initial samples.

Lemma 6.7. EΓK
L1G0 ≤ O(polylog(S,A,K)).

6.2. Refined Analysis for RBUCBI

In this section we use our refined analysis to bound the
expectation of regret with respect to the aux MDP.

Lemma 6.8. In MDP-RBUCBI, the expectation of regret
with respect to the auxiliary MDP can be bounded by
EΓK

{∑K
k=1

[
Ṽ ∗
1 (s0)− Ṽ πk

1 (s0)
]
1GK

}
≤ Õ(S

√
AK).

Proof Sketch of Lemma 6.8 Here we assume the reward is
deterministic for simplicity. Under GK , the regret can be
bounded by the difference of V

k

1 and Ṽ πk

1 , which are both
expected sum over the trajectory space following πk. We
expand their difference into the expectation form as

T1 =

K∑
k=1

H∑
h=1

EΓk

 max
p∈Pk

sk
h
,ak

h

p− P̃sk
h
,ak

h

V
k
h+11Gk−1

We further bound the above term by the width of the confi-
dence set, which is accurate enough under the good event,
as O(

√
ST2 ·

√
T3 + ST2), where

8
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• T2 = EΓK

∑K
k=1

∑H
h=1

1
Nk(skh,a

k
h)
1G0

,

• T3 = EΓK

∑K
k=1

∑H
h=1 V (P̃skh,a

k
h
, V

k

h+1)1Gk−1
.

Generally T2 ≤ SAL and can be bounded by lemma 6.7.
For T3, our refined analysis bound it by O(K + T1).

EΓK

∑
k,h

[
P̃sk

h
,ak

h

(
V

k
h+1

)2
−
(
P̃sk

h
,ak

h
V

k
h+1

)2]
1Gk−1

= EΓK

∑
k,h

[
V

k
h+1(s

k
h+1)

2 −
(
P̃sk

h
,ak

h
V

k
h+1

)2]
1Gk−1

≤ EΓK

∑
k,h

[
V

k
h(s

k
h)

2 −
(
P̃sk

h
,ak

h
V

k
h+1

)2]
1Gk−1

= EΓK

∑
k,h

[
Q

k

h(s
k
h, a

k
h)

2 −
(
P̃sk

h
,ak

h
V

k
h+1

)2]
1Gk−1

≤ 3EΓK

∑
k,h

∣∣∣r(skh, akh)∣∣∣+ 3T1

The last line is derived by the formula for the difference of
square. Therefore we bound T1 by its recursive structure.

While V
k

h(s
k
h) = Q

k

h(s
k
h, a

k
h) holds directly in MDP since

the policy there is deterministic, its counterpart in MG set-
ting can only hold under expectation since the policy here
is nondeterministic. We can proceed as follows.

EΓk
V

k

h(s
k
h)

2 = EΓk

(
Eak

h,b
k
h
Q

k

h(s
k
h, a

k
h, b

k
h)
)2

≤EΓk
Eak

h,b
k
h
Q

k

h(s
k
h, a

k
h, b

k
h)

2 = EΓk
Q

k

h(s
k
h, a

k
h, b

k
h)

2.

7. Conclusion
We propose a relaxed reward-boundedness assumption for
studying the horizon-dependence problem. Under our
relaxed assumption, we propose a generic algorithmic
framework consists of reward-free phase and reward-based
phase that achieves horizon-free learning for both MDPs
and Games. Our work improves the existing horizon-
independent PAC bounds in both the online setting and
the generative setting.
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A. Technical Lemmas
Lemma A.1 (Lemma 10 in (Zhang et al., 2022)). Let X1, X2, . . . be a sequence of random variables taking value in [0, l].
Define Fk = σ(X1, X2, . . . , Xk−1) and Yk = E [Xk|Yk] for k ≥ 1. For any δ > 0, we have that

P

[
∃n,

n∑
k=1

Xk ≥ 3

n∑
k=1

Yk + l log(1/δ)

]
≤ δ,

P

[
∃n,

n∑
k=1

Yk ≥ 3

n∑
k=1

Xk + l log(1/δ)

]
≤ δ.

Lemma A.2 (Bernstein’s Inequality). Let Z,Z1, . . . , Zn be i.i.d. random variables with values in [0, 1] and let δ > 0.
Define VZ = E

[
(Z − EZ)2

]
. Then we have

P

[∣∣∣∣∣E [Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2VZ log(2/δ)

n
+

log(2/δ)

3n

]
≤ δ.

Lemma A.3 (Freedman’s Inequality Lemma 1 in (Peel et al., 2013)). Suppose X1, . . . , Xn is a sequence of random
variables such that 0 ≤ Xi ≤ 1. Define the martingale difference sequence {Yn = E [Xn|X1, . . . , Xn−1]−Xn} and note
Kn the sum of the conditional variances

Kn =

n∑
t=1

V[Xt|X1, . . . , Xt−1].

Let Sn =
∑

i=1Xi, then for all ϵ, k ≥ 0,

P

[
n∑

i=1

E[Xi|X1, . . . , Xi−1]− Sn ≥ ϵ,Kn ≤ k

]
≤ exp

(
− ϵ2

2k + 2ϵ/3

)
.

Lemma A.4 (Theorem 4 in (Maurer & Pontil, 2009)). Let Z,Z1, . . . , Zn(n ≥ 2) be i.i.d. random variables with values
in [0, 1] and let δ > 0. Define Z̄ = 1

n

∑n
i=1 Zi and V̂n = 1

n

∑n
i=1(Zi − Z̄)2. Then we have

P

∣∣∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣∣∣ >
√

2V̂n ln(2/δ)

n− 1
+

7 ln(2/δ)

3(n− 1)

 ≤ δ.
B. Discussion of horizon-independence
This section discusses one of the key ideas in achieving horizon-independence. The idea comes from (Zhang et al., 2022).
For the integrity of our paper, we follow part of their analysis and list it here.

In nearly all UCB-based algorithms, we need to bound the term like
∑K

k=1

∑H
h=1

1

Nk(skh,ak
h)

where
(
skh, a

k
h

)
is the state-

action pair of the h-th step in the k-th episode. If we assume Nk+1(s, a) ≤ 2Nk(s, a), which is natural when we have
already collected many samples, the classic analysis by pigeonhole will further lead us to

K∑
k=1

H∑
h=1

1

Nk
(
skh, a

k
h

) = O

(∑
s,a

K∑
k=1

log

(
Nk+1(s, a)

Nk(s, a)

))
≤ O(SA log(KH)).

(Zhang et al., 2022) observes that we can avoid dependence on H once we have enough initial samples for every state-action
pair. To be more specific, we define U(s, a) = maxπ Eπ

[∑H
h=1 1(sh,ah)=(s,a)

]
to be the maximum expected visitation

count of (s, a) in one episode. By Markov inequality, the total count of (s, a) in K episodes satisfies NK+1(s, a) −
N1(s, a) ≤ KU(s, a)/δ with probability 1− δ. So if N1(s, a) ≥ U(s, a)/ exp(poly(S,A)),∑

s,a

log

(
NK+1(s, a)

N1(s, a)

)
= O (poly(S,A) log (K/δ)) ,

which is independent of H .
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C. Reward-Free Key-State Preserving Algorithm
In this section we give a viable RFKSP algorithm, which is modified from the collecting initial sample state in (Zhang et al.,
2022). The main algorithm is given in Algorithm 4 and two other supplementary algorithms are given in Algorithm 5 and
Algorithm 6. Some extra notations are being used in the following algorithms. In particular,

1. Wπ
d (r, p, µ1) := E

[∑H
h=1 rh|s1 ∼ µ1

]
: the general value function.

2. Wπ
γ (r, p, µ1) := E

[∑
i≥1 γ

i−1ri|s1 ∼ µ1

]
: the value function in the discounted MDP.

3. Xπ
d (O, p, µ1): the probability of reaching O in d steps under transition probability p, policy π, initial distribution µ1.

4. Xπ
γ (O, p, µ1) :=

∑
i≥1 γ

i−1P [(si, ai, si+1) ∈ O, (si′ , ai′ , si′+1) /∈ O,∀1 ≤ i′ ≤ i− 1|s1 ∼ µ1].

We further prove in Lemma C.1 that Algorithm 4 serves as a viable RFKSP algorithm as we defined. The proof is based on
the lemmas provided in (Zhang et al., 2022).

Algorithm 4 Reward-Free Key-State Preserving
1: Input:MDPM, ϵ, δ.
2: Initialization: N(s, a, s′) ← 0,∀s, a, s′, N̄(s, a) ← 0,∀(s, a), d ← (S+1)H

S+2 . O1 ← S × A. n1 ← C2S
7A3ι.

d′ = H − d. m(s, a)← 0. N0 ← 256S2 log(1/δ),K1 = Õ(S
9A3

ϵ ).
3: for k = 1, 2, . . . ,K1 do
4: Pk ←Build confidence set Pk

s,a based on ({N(s, a, s′)}s,a,s′).
5: (πk, P̃ k)← maxπ,p∈Pk Xπ

d (Ok, p, µ1)
6: for h = 1, 2, . . . , d do
7: Observes skh, takes action πk

h(s
k
h), receives rkh and transits to skh+1.

8: N(skh, a
k
h, s

k
h+1)← N(skh, a

k
h, s

k
h+1) + 1.

9: if ∃a, (skh+1, a) ∈ Ok then
10: (s∗1, a

∗
1)← (skh+1, a).

11: {N(s, a, s′)}s,a,s′ ← {n(s, a, s′)}s,a,s′ .
12: Kk ← {(s, a, s′) : n(s, a, s′) ≥ N0}, Kk(s, a)← {s′ : (s, a, s′) ∈ Kk}.
13: n(s, a)← max{

∑
s′:(s,a,s′)∈Kk n(s, a, s′), 1} ∀(s, a).

14: P ref
s,a,s′ ←

n(s,a,s′)
n(s,a) , P ref

s,a,z ← 0, ∀(s, a, s′) ∈ Kk.
15: P ref

s,a,s′ ← 0, P ref
s,a,z = 1, ∀(s, a, s′) such that Kk(s, a) = ∅.

16: (Trigger, {n(s, a, s′)}s,a,s′)← Algorithm 5 with inputs((s∗1, a
∗
1), P

ref , {n(s, a, s′)}(s,a,s′),Kk, d′).
17: if Trigger = FALSE then
18: {n(s, a, s′)}(s,a,s′) ← Algorithm 6 with inputs ((s∗1, a

∗
1), P

ref , {n(s, a, s′)}s,a,s′ , d′)
19: m(s∗1, a

∗
1)← m(s∗1, a

∗
1) + 1.

20: if m(s∗1, a
∗
1) ≥ 400 log(1/δ) then

21: Ok+1 ← Ok/(s∗1, a
∗
1).

22: end if
23: end if
24: {n(s, a, s′)}s,a,s′ ← {N(s, a, s′)}s,a,s′ .
25: break.
26: end if
27: end for
28: If there are remaining steps, run a random policy and update {N(s, a, s′)}s,a,s′ .
29: end for
30: Return: an auxiliary Markovian environment M̃ which is built based on OK1+1.

13
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Algorithm 5 Explicit Exploration
1: Input: starting state-action pair (s1, a1), reference model P ref , sample count {n(s, a, s′)}s,a,s′ , known set K, horizons
d′, d2 = d′/(20S log(S)), d1 = d′ − d2

2: Initialization: discounted factor γ = 1− 1/d2, N0 ← 256S2 log(1/δ);Trigger = FALSE;
3: for (s, a) ∈ S ×A do
4: if ∃s′ ∈ S such that (s, a, s′) /∈ K then
5: πk

1 ← argmaxπ∈Πsta,π1(s1)=a1
Xπ

γ ({s}, P ref , 1s1);

6: uk(s)← X
πk
1

γ ({s}, P ref , 1s1);
7: πk

2 ← argmaxπ∈Πsta
Wπ

γ (1s,a, P ref , 1s);

8: vk(s, a)←W
πk
2

γ (1s,a, P ref , 1s);
9: if uk(s) ≥ 1

1200S and n(s, a) ≤ 810SAN0u
k(s)vk(s, a) then

10: Trigger← TRUE;
11: Run πk

1 for d1 steps. Stop if (s, a) is reached or some unknown state-action-state tuple is visited;
12: if (s, a) is reached then
13: Play πk

2 for d2 steps, then play random policies till the end;
14: else
15: Play random policies till the end;
16: end if
17: Let {si, ai, si+1}d

′

i=1 denote the data collected in the length d′-trajectory;
18: for i = 1, 2, . . . , d′ do
19: n(si, ai, si+1)← n(s1, ai, si+1) + 1;
20: end for
21: Break;
22: end if
23: end if
24: end for
25: Return: Trigger, {n(s, a, s′)}(s,a,s′);

Algorithm 6 Sample Collection with a Reference Model
Input: initial state-action pair (s1, a1), reference model P ref , visit count {n(s, a, s′)}s,a,s′ , horizon d′.
Initialization: discounted factor γ = 1− 1/d2 where d2 = d′/(20S log(S)).
π ← argmaxπ∈Πsta

Wπ
γ (1s1,a1

, P ref , 1s1)

Run π and collect d′ samples {si, ai, si+1}d
′

i=1;
for i = 1, 2, . . . , d′ do
n(si, ai, si+1)← n(si, ai, si+1) + 1;

end for
Return: {n(s, a, s′)}(s,a,s′);

Lemma C.1. Algorithm 4 serves as a viable reward-free key-state preserving algorithm with

K1 = O

(
S9A3ι2

ϵ
polylog

(
S,A,

1

ϵ

))
.

Remark C.2. Recall the definition of RFKSP in Definition 5.3. The above lemma indicates the following facts. For any
given ϵ, δ > 0, after using K1 = poly

(
S,A, ι, 1ϵ

)
episodes, the auxiliary Markovian environment returned by Algorithm 4

is ϵ-good conditioned with probability at least 1− δ. In MG setting, this lemma still holds by substituting A by A× B. In
particular, K1 = O

(
S9A3B3ι20

ϵ polylog
(
S,A,B, 1ϵ

))
.

Proof. Combining Lemma 6 and Lemma 24 in (Zhang et al., 2022), we have that with probability 1−O
(

K2
1

S8A2ι0
δ0

)
14
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1. maxπ Pπ [∃h ∈ [H], (sh, ah) ∈ O] ≤ O
(

S9A3ι0+S3Aι20
K1

)
.

2. N1(s, a) ≥ O
(

U(s,a)
S(S+1) log(S)

)
for all (s, a) ∈ OC .

To meet our requirements for RFKSP, we need O
(

S9A3ι0+S3Aι20
K1

)
≤ ϵ and O

(
K2

1

S8A2ι0
δ0

)
≤ δ. The first equation can be

satisfied by setting K1 = Ω
(

S9A3ι20
ϵ

)
. Substituting it into the second equation and noting that δ−0.5

0 ≥ O
(
ι30
)
, we can

meet both of our requirements by setting δ0 = δ2ϵ4

S20A8 .

Wrapping up all these results, we have that if we set K1 = O
(

S9A3ι2

ϵ polylog
(
S,A, 1ϵ

))
, with probability 1− δ,

1. maxπ Pπ [∃h ∈ [H], (sh, ah) ∈ O] ≤ ϵ.

2. N1(s, a) ≥ U(s,a)
poly(S) for all (s, a) ∈ OC .
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D. Auxiliary Proofs
In this section, we illustrate the auxiliary lemmas that will be used in both MDP and MG settings. In particular, we give
proof to the lemma concerning the auxiliary Markovian environment and the confidence set we built in our algorithm. All
the lemmas in this section are given in the MDP setting. They can be translated into MG setting by viewing the product of
two players’ action space A× B in MG as the action space A in MDP.

D.1. Proofs for Auxiliary Markovian environment

Lemma D.1 (Restatement of Lemma 6.6). Suppose the maximum visiting probability to OC is ϵ, i.e.

max
π

Pπ

[
∃h ∈ [H], (sh, ah) ∈ OC

]
≤ ϵ,

then for any fixed policy π,
∣∣∣V π

1 (s0)− Ṽ π
1 (s0)

∣∣∣ ≤ ϵ.
Proof of Lemma 6.6. In this proof we denote a single trajectory as Γ = (s1, a1, s2, a2, . . . , sH , aH , sH+1). We further
divide Γ = Γ1∪Γ2 where Γ1 denotes the trajectory before the first visit toO and Γ2 denotes the left trajectory. For example,
if (s2, a2) is the first time the trajectory visits to O, Γ1 = (s1, a1, s2) and Γ2 = (s2, a2, . . . , sH+1). Γ2 can be empty in the
extreme case where the trajectory Γ never visits to O.

In the original model, we use r(Γ) and P (Γ) to denote the expected reward and the probability of the trajectory respectively.
For a given Γ1, we denote the set of suitable Γ2 as S(Γ1) := {Γ2 : ∃Γ = Γ1 ∪ Γ2}. With these notations, we have that

V π
1 (s0) =

∑
Γ1

∑
Γ2∈S(Γ1)

(r(Γ1) + r(Γ2)) · P (Γ1) · P (Γ2),

Ṽ π
1 (s0) =

∑
Γ1

∑
Γ2∈S(Γ1)

r(Γ1) · P (Γ1) · P (Γ2).

So the difference can be calculated as∣∣∣V π
1 (s0)− Ṽ π

1 (s0)
∣∣∣ =

∣∣∣∣∣∣
∑
Γ1

∑
Γ2∈S(Γ1)

r(Γ2) · P (Γ1) · P (Γ2)

∣∣∣∣∣∣
≤
∑
Γ1

P (Γ1)

∣∣∣∣∣∣
∑

Γ2∈S(Γ1)

r(Γ2) · P (Γ2)

∣∣∣∣∣∣ .
When Γ2 is an empty set, r(Γ2) = 0. From the requirement that the max visiting probability to O is ϵ, we know that the
probability of Γ1 ̸= Γ is less than ϵ. If Γ1 ̸= Γ, we assume the last term in Γ1 is (sh, ah). We set π

′
= π except π

′

h(sh) = a.
Then from our reward assumption, we have that

1 ≥ Eπ

[
H∑
t=h

|r(sh, ah)|

]
≥

∣∣∣∣∣Eπ

[
H∑
t=h

r(sh, ah)

]∣∣∣∣∣ =
∣∣∣∣∣∣
∑

Γ2∈S(Γ1)

r(Γ2) · P (Γ2)

∣∣∣∣∣∣ .
Thus we conclude our proof by noticing that

∑
Γ1

P (Γ1)

∣∣∣∣∣∣
∑

Γ2∈S(Γ1)

r(Γ2) · P (Γ2)

∣∣∣∣∣∣ ≤
∑

Γ1:Γ1 ̸=Γ

P (Γ1) ≤ ϵ.

Cut off. Note that t ≤ log2(1 + t) only holds when 0 < t < 1, we need to cut off some term when a single
(s, a) pair is visited too many times in a single episode. We define Nk

h (s, a) to be the visit count before the h-th
step in the k-th episode, J =

{
(k, h) : ∃(s, a) ∈ OC , s.t.Nk

h (s, a) ≥ 2Nk(s, a)
}

. Ikh = 1 if (k, h) /∈ J else 0. By
the definition, Ik1 = 1 and Ikh do not depend on the action taken at the h-th step in the k-th episode. We define

L = max(s,a)∈OC

∑K
k=1 min

(
log2

(
Nk+1(s,a)
Nk(s,a)

)
, 1
)

.
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Lemma D.2.
K∑

k=1

1Ik
H+1=0 ≤ SAL and

K∑
k=1

H∑
h=1

Ikh
Nk
(
skh, a

k
h

)1(skh,ak
h)∈OC ≤ SAL. (4)

Proof of Lemma D.2. For fixed k, if I
[
∃h, Ikh = 0

]
= 0, I

[
∃h, Ikh = 0

]
≤
∑

(s,a)∈OC min
{
log2

(
Nk+1(s,a)
Nk(s,a)

)
, 1
}

holds

naturally. If I
[
∃h, Ikh = 0

]
= 1, there exist (s, a) ∈ OC such that Nk+1(s, a) ≥ 2Nk(s, a). In this case I

[
∃h, Ikh = 0

]
≤∑

(s,a)∈OC min
{
log2

(
Nk+1(s,a)
Nk(s,a)

)
, 1
}

, and we have that

K∑
k=1

I
[
∃h, Ikh = 0

]
≤

K∑
k=1

∑
(s,a)∈OC

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}

=
∑

(s,a)∈OC

K∑
k=1

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}

≤ SA max
(s,a)∈OC

K∑
k=1

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}
= SAL.

Meanwhile, due to the existence of Ikh , we can derive that

K∑
k=1

H∑
h=1

Ikh
Nk
(
skh, a

k
h

)1(skh,ak
h)∈OC ≤

∑
(s,a)∈OC

K∑
k=1

min

{
Nk+1(s, a)−Nk(s, a)

Nk(s, a)
, 1

}

=
∑

(s,a)∈OC

K∑
k=1

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}

≤ SA max
(s,a)∈OC

{
K∑

k=1

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}}
= SAL.

Lemma D.3 (Restatement of lemma 6.7). L can be bounded by

EΓK
L1G0 ≤ O(polylog(S,A,K)). (5)

Note: This lemma is similar to Lemma 26 in (Zhang et al., 2022). The difference is that here we do not need to deal with the
case of (s, a) ∈ O due to the construction of our auxiliary Markovian environment.

Proof of Lemma 6.7. We define B(s, a) =
{
k ∈ [K] : Nk+1(s, a)−Nk(s, a) ≥ K2U(s, a)

}
. For different k, we bound

the corresponding term in L as follows.

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}
≤

{
log2

(
Nk+1(s,a)
Nk(s,a)

)
, k ∈ B(s, a);

1, k /∈ B(s, a).

To apply Lemma A.1, we denote Xk = 1k∈B(s,a). Yk = E[Xk|Fk] = P (Nk+1(s, a) − Nk(s, a) ≥ K2U(s, a)|Fk) ≤
1/K2. Therefore with probability 1 − δ, |B(s, a)| =

∑K
k=1Xk ≤ 3

∑K
k=1 Yk + ι ≤ 3/K + ι. Taking union bound, we

have that with probability 1− SAδ, |B(s, a)| ≤ 3
K + ι hold for ∀(s, a). Under such event, for any (s, a) ∈ OC , suppose
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B(s, a) = {k1, k2, . . .} and let k0 = 0, we have that

∑
k/∈B(s,a)

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}
≤
∑
i≥0

ki+1−1∑
k=ki

log2

(
Nk+1(s, a)

Nk(s, a)

)

≤
∑
i≥0

log2

(
K3U(s, a) +Nki(s, a)

Nki(s, a)

)

≤ |B(s, a)| log2
(
K3U(s, a) +N1(s, a)

N1(s, a)

)
≤
(

3

K
+ ι

)
log2

(
K3U(s, a) +N1(s, a)

N1(s, a)

)
.

∑
k∈B(s,a)

min

{
log2

(
Nk+1(s, a)

Nk(s, a)

)
, 1

}
≤ |B(s, a)| ≤ 3

K
+ ι.

When G0 holds, N1(s, a) ≥ U(s,a)
poly(S) holds for any (s, a) ∈ OC by definition. Thus by setting δ = 1

SAK2 and adding up all
the terms, we can conclude that

EΓK
L1G0 ≤

(
3

K
+ ι

)
log2

(
K3U(s, a) +N1(s, a)

N1(s, a)

)
+

(
3

K
+ ι

)
+ SAδK ≤ O(polylog(S,A,K)).

D.2. Proofs for Confidence Set

This section provides proof of the lemmas concerning the confidence set. Note that when interacting with the auxiliary
Markovian environment, P and R in the following lemmas should be replaced by P̃ and R̃.

Lemma D.4. For any δconf > 0, with probability at least 1− S2AKδconf ,

|Ps,a,s′ − P̂ k
s,a,s′ | ≤ 5

√
P̂ k
s,a,s′ιconf

Nk(s, a)
+

5ιconf
Nk(s, a)

,

holds for any (s, a, s′) and k. With probability at least 1− SAKδconf ,

∣∣ER(s, a)− r̂k(s, a)∣∣ ≤
√
4
V̂ kιconf
Nk(s, a)

+
10ιconf
Nk(s, a)

,

holds for any (s, a) and k.

Proof of lemma D.4. For any fixed (s, a, s′) and k, we have visited (s, a) for Nk(s, a) times before the k-th episode. For
i ∈ [Nk(s, a)], if the state transits to s′ after the i-th time we visited (s, a), we denote Xi = 1. Otherwise, we denote
Xi = 0. We apply Freedman inequality (lemma A.3) to X1, X2, . . . , XNk(s,a), in which E [Xi|X1, . . . , Xi−1] = Ps,a,s′

and V [Xi|X1, . . . , Xi−1] = Ps,a,s′ (1− Ps,a,s′) ≤ Ps,a,s′ . By further setting k = Nk(s, a)Ps,a,s′ , we can derive from
lemma A.3 that with probability 1− δconf ,

|Ps,a,s′ − P̂ k
s,a,s′ | ≤

√
2
Ps,a,s′ιconf
Nk(s, a)

+
ιconf

3Nk(s, a)
.

.

18



Horizon-free Learning for MDP and Games: Stochastically Bounded Rewards and Improved Bounds 19

When the above line holds, we have

5

√
P̂ k
s,a,s′ιconf

Nk(s, a)
+

5ιconf
Nk(s, a)

≥ 5

√√√√√
(
Ps,a,s′ −

√
2
Ps,a,s′ ιconf
Nk(s,a)

− ιconf
3Nk(s,a)

)
ιconf

Nk(s, a)
+

5ιconf
Nk(s, a)

≥ 5

√
Ps,a,s′ιconf
Nk(s, a)

− 5

√√√√√2
Ps,a,s′ιconf
Nk(s, a)

· ιconf
3Nk(s, a)

+

(
5− 5√

3

)
ιconf

Nk(s, a)

≥

(
5− 5

√
2

2

)√
Ps,a,s′ιconf
Nk(s, a)

+

(
5− 5√

3
− 5

6

)
ιconf

Nk(s, a)

≥

√
2
Ps,a,s′ιconf
Nk(s, a)

+
ιconf

3Nk(s, a)
.

We need to mention that when Ps,a,s′ −
√

2
Ps,a,s′ ιconf
Nk(s,a)

− ιconf
3Nk(s,a)

≤ 0, we can skip the first line above and derive the
second line directly. Taking union bound over (s, a, s′) and k conclude our proof.

Note that in our new reward assumption, r(s, a) is bounded in [−1, 1] instead of [0, 1]. For fixed (s, a) and k, we denote
ai(s, a) = (ri(s, a) + 1)/2,∀i ∈ [Nk(s, a)]. We further denote V̂ k

a , âk as the sample variance and the sample mean of
{ai}. By definition V̂ k = 4V̂ k

a . Again we apply lemma A.4 to {ai}, with probability 1− δconf ,

∣∣ER(s, a)− r̂k(s, a)∣∣ = 2
∣∣Ea− âk∣∣ ≤ 2

√
4
V̂ k
a ιconf

Nk(s, a)
+ 2

5ιconf
Nk(s, a)

≤ 2

√
V̂ kιconf
Nk(s, a)

+
10ιconf
Nk(s, a)

.

Taking union bound, we have that the above equation holds for any (s, a) and k with probability 1− SAKδconf .

Lemma D.5. For given (s, a) and k, if equation 2 holds for any s′ ∈ S, for any P ′ and P ′′ ∈
{
Pk
s,a

}
, we have that

|P ′(s′)− P ′′(s′)| ≤ C

(√
Ps,a,s′ιconf
Nk(s, a)

+
ιconf

Nk(s, a)

)
, (6)

hold for any (s, a, s′) ∈ S ×A× S .

Note: Here the probability P is the true transition probability of the model we interact with. Moreover, substituting a by a, b
and A by A× B can transform the above result into MG setting.

proof of Lemma D.5. Since P ′ and P ′′ ∈ Pk
s,a, using equation 2 leads to

|P ′(s′)− P ′′(s′)| ≤ 10

√
P̂s,a,s′ιconf
Nk(s, a)

+ 10
ιconf

Nk(s, a)

≤ 10

√√√√√
(
Ps,a,s′ +

√
2
Ps,a,s′ ιconf
Nk(s,a)

+ ιconf
3Nk(s,a)

)
ιconf

Nk(s, a)
+ 10

ιconf
Nk(s, a)

≤ 10

√
Ps,a,s′ιconf
Nk(s, a)

+ 10

√√√√√2
Ps,a,s′ιconf
Nk(s, a)

· ιconf
Nk(s, a)

+ 16
ιconf

Nk(s, a)

≤ 25

(√
Ps,a,s′ιconf
Nk(s, a)

+
ιconf

Nk(s, a)

)
.

Thus taking C = 25 conclude this proof.
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E. Proofs for MDP(Theorem 6.1)
In this section, we give proofs and algorithms in MDP setting.

Theorem E.1 (Restatement of Theorem 6.1). For any ϵ, δ > 0, with probability 1− δ, MDP-Full(Algorithm 1) returns an
ϵ-optimal policy by sampling at most K = KReward +KRFKSP episodes, where

KReward = O

(
S2Aι2

ϵ2
polylog

(
S,A,

1

ϵ

))
,

KRFKSP = O

(
S9A3ι2

ϵ
polylog

(
S,A,

1

ϵ

))
.

Proof of Theorem 6.1. Theorem 6.1 is mainly based on Lemma 6.5 and Lemma 6.4. Given these two theorems, we derive
Theorem 6.1 as follows. In each running time t ∈ [T ], by Lemma 6.5 we have that with probability 1/2,

0 ≤ V ∗
1 (s0)− V πt

1 (s0) ≤ O (ϵucb + ϵksp) .

As we run the subroutine T = log(2δ ) times independently, with probability 1 − δ
2 , there exists j ∈ [T ] that the above

equation holds. By Lemma 6.4, the estimation V̂ πt

1 (s0) returned by MDP-Evaluation satisfies that with probability 1− δeval,∣∣∣V̂ πt

1 (s0)− V πt

1 (s0)
∣∣∣ ≤ O (ϵeval) .

Since we set δeval = δ
2T in MDP-Full, with probability 1− δ

2 , the above equation hold for ∀t ∈ [T ]. Suppose we denote
i = argmaxt∈[T ] V̂

πt

(s0). Taking union bound, we have that the following equation holds with probability 1− δ.

V ∗(s0)− V πi

(s0) ≤ V ∗(s0)− V̂ πi

(s0) +O(ϵeval)

≤ V ∗(s0)− V̂ πj

(s0) +O(ϵeval)

≤ V ∗(s0)− V πj

(s0) +O(ϵeval)

≤ O (ϵeval + ϵucb + ϵksp) .

Since we set ϵksp, ϵucb, ϵeval = O(ϵ), we conclude that with probability 1− δ, MDP-Full returns an ϵ-optimal policy.

Next, we calculate the sum of episodes we used. Each time we run RFKSP in MDP-Full with δksp = 1
4 and ϵksp = O(ϵ),

we use

K = O

(
S9A3ι2ksp
ϵksp

polylog

(
S,A,

1

ϵksp

))
= O

(
S9A3

ϵ
polylog

(
S,A,

1

ϵ

))
episodes. Each time we run MDP-RBUCBI, we use K = Õ

(
S2A
ϵ2ucb

)
episodes. Each time we run MDP-Evaluation, we use

K = O

(
S9A3ιeval
ϵeval

polylog

(
S,A,

1

ϵeval

))
+O

(
S2Aιeval
ϵ2eval

polylog

(
S,A,

1

ϵeval

))
episodes(See discussion under MDP-Evaluation(Algorithm 7)). We run ι0 times RFKSP, MDP-RBUCBI, and MDP-
Evaluation in MDP-Full. Summing up, we use

K = O

(
S9A3ι20

ϵ
polylog

(
S,A,

1

ϵ

))
+O

(
S2Aι20
ϵ2

polylog

(
S,A,

1

ϵ

))
episodes in total in MDP-Full.
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E.1. MDP-RBUCBI

In this section, we give proof to Lemma 6.5. We first prove some auxiliary lemmas that will be of use.

Lemma E.2. In MDP-RBUCBI (Algorithm 2), for ∀k ∈ [K], if P̃s,a ∈ Pk
s,a and E

[
R̃(s, a)

]
∈ Rk

s,a holds for any (s, a),

for ∀h ∈ [H] and ∀h-reachable state sh, V
k

h(sh) ≥ Ṽ ∗
h (sh).

Note: We want to mention that MDP-RBUCBI interacts with the auxiliary Markovian environment instead of the original
MDP. Thus P̃ and R̃ are the true transition probability and the reward function that generate the collected trajectory.

Proof of Lemma E.2. For fixed k, we do induction on h = H + 1, H, . . . , 1. When h = H + 1,

V
k

H+1(sH+1) = Ṽ ∗
H+1(sH+1) = 0.

Suppose the target equation holds for h+ 1, then for ∀a,

Q
k

h(sh, a) = min

(
rk(sh, a) + max

p∈Pk
sh,a

pV
k

h+1, 1

)
≥ min

(
E
[
R̃(sh, a)

]
+ P̃sh,aV

k

h+1, 1
)

(7)

≥ min
(
E
[
R̃(sh, a)

]
+ P̃sh,aṼ

∗
h+1, 1

)
(8)

= Q̃∗
h(sh, a). (9)

Here line 7 holds since we assume P̃sh,a ∈ Pk
sh,a

and E
[
R̃(sh, a)

]
∈ Rk

sh,a
. If P̃sh,a,sh+1

̸= 0, sh+1 is h+ 1-reachable

as long as sh is h-reachable. So by our induction, V
k

h+1(sh+1) ≥ Ṽ ∗
h+1(sh+1) and thus line 8 also holds. As for line 9,

Q̃∗
h(sh, a) = E

[
R̃(sh, a)

]
+ P̃sh,aṼ

∗
h+1 by definition. We are left to prove Q̃∗

h(sh, a) ≤ 1. We can take π′ where π′ = π∗

except π′
h(sh) = a. Hence by our reward assumption, Q̃∗

h(sh, a) = Ṽ π′

h (sh) ≤ 1. We further conclude our induction by

V
k

h(sh) = max
a

Q
k

h(sh, a) ≥ Ea∼π∗
h(sh)

Q
k

h(sh, a) ≥ Ea∼π∗
h(sh)

Q̃∗
h(sh, a) = Ṽ ∗

h (sh).

The following lemma bound the expectation of regret while interacting with the auxiliary Markovian environment. It is the
most critical lemma in our paper.

Lemma E.3 (Restatement of Lemma 6.8). In MDP-RBUCBI (Algorithm 2), the expectation of regret concerning the
auxiliary Markovian environment can be bounded by

EΓK

{
K∑

k=1

[
Ṽ ∗
1 (s0)− Ṽ πk

1 (s0)
]
1GK

}
≤ O(S

√
AKpolylog(S,A,K)ι2conf).

Proof of Lemma 6.8. Recall the definition of GK , the preconditions in Lemma E.2 hold once GK holds. From Lemma E.2
we have that

EΓK

{
K∑

k=1

[
Ṽ ∗
1 (s0)− Ṽ πk

1 (s0)
]
1GK

}
≤ EΓK

{
K∑

k=1

[
V

k

1(s0)− Ṽ πk

1 (s0)
]
1Gk−1

}

=

K∑
k=1

EΓk−1

{[
V

k

1(s0)− Ṽ πk

1 (s0)
]
1Gk−1

}
. (10)

For a single episode k, using the definition of V and Ṽ , we can turn the difference of V
k

1(s0) and Ṽ πk

1 (s0) into the
expectation form of some term on the trajectory of the k-th episode. Here we introduce the cut-off indicator Ikh into the
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equation. We mention again that by definition, Ik1 is always 1. And if Ikh = 0, Ikh′ = 0 for any h′ > h.

V
k

1

(
sk1
)
− Ṽ πk

1

(
sk1
)
= V

k

1

(
sk1
)
Ik1 − Ṽ πk

1

(
sk1
)
Ik1

≤ Eak
1∼πk

1

rk (sk1 , ak1)+ max
p∈Pk

sk1 ,ak
1

pV
k

2

 Ik1

− Eak
1∼πk

1

[
ER

(
sk1 , a

k
1

)
+ P̃sk1 ,a

k
1
Ṽ πk

2

]
Ik1

= Eak
1∼πk

1

 max
p∈Pk

sk1 ,ak
1

p− P̃sk1 ,a
k
1

V
k

2I
k
1 + Esk2∼P̃

sk1 ,ak
1

(V
k

2(s
k
2)− Ṽ πk

2 (sk2))I
k
1


+ Eak

1∼πk
1

[(
rk(sk1 , a

k
1)− ER(sk1 , ak1)

)
Ik1
]

≤ Eak
1∼πk

1

 max
p∈Pk

sk1 ,ak
1

p− P̃sk1 ,a
k
1

V
k

2I
k
1 + Esk2∼P̃

sk1 ,ak
1

(V
k

2(s
k
2)− Ṽ πk

2 (sk2))I
k
2

+ 2Eak
1∼πk

1
(Ik1 − Ik2 )

+ Eak
1∼πk

1

[(
rk(sk1 , a

k
1)− ER(sk1 , ak1)

)
Ik1
]
≤ . . .

≤ Eγk

 H∑
h=1

 max
p∈Pk

sk
h
,ak

h

p− P̃skh,a
k
h

V
k

h+1I
k
h

+ Eγk

[
H∑

h=1

(
rk(skh, a

k
h)− ER(skh, akh)

)
Ikh

]
+ 2Eγk

[
1Ik

H+1=0

]
.

Substituting the above term back to line 10, we can arrange our target equation into the following form.

EΓK

{
K∑

k=1

[
Ṽ ∗
1 (s0)− V πk

1 (s0)
]
1GK

}
≤

K∑
k=1

EΓk


 H∑
h=1

 max
p∈Pk

sk
h
,ak

h

p− P̃skh,a
k
h

V
k

h+1I
k
h

1Gk−1


+

K∑
k=1

EΓk

{[
H∑

h=1

(
rk(skh, a

k
h)− ER(skh, akh)

)
Ikh

]
1Gk−1

}

+ 2EΓK

[(
K∑

k=1

1Ik
H+1=0

)
1G0

]
.

For simplicity, we use the following notations. We denote

M1 =

K∑
k=1

EΓk


 H∑
h=1

 max
p∈Pk

sk
h
,ak

h

p− P̃skh,a
k
h

V
k

h+1I
k
h

1Gk−1

 ,

M2 =

K∑
k=1

EΓk

{[
H∑

h=1

(
rk(skh, a

k
h)− ER(skh, akh)

)
Ikh

]
1Gk−1

}
,

M3 = EΓK

[(
K∑

k=1

1Ik
H+1=0

)
1G0

]
.

Thus our target equation turns into

EΓK

{
K∑

k=1

[
Ṽ ∗
1 (s0)− V πk

1 (s0)
]
1GK

}
≤M1 +M2 + 2M3. (11)

With the help of Lemma E.4, we have that

EΓK

{
K∑

k=1

[
Ṽ ∗
1 (s0)− V πk

1 (s0)
]
1GK

}
≤ O(S

√
AKpolylog(S,A,K)ι2conf),

holds if K ≥ Ω(S2A).
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Lemma E.4. In Lemma 6.8,

M1 ≤ O(S
√
AKpolylog(S,A,K)ι2conf),

M2 ≤ O(
√
SAKpolylog(S,A,K)ι2conf),

M3 ≤ O(SApolylog(S,A,K)ιconf).

We further denote M4 =
∑K

k=1 EΓk

[∑H
h=1

Ik
h

Nk(skh,ak
h)
1G0

]
. And we have that

M4 ≤ O(SApolylog(S,A,K)ιconf).

Proof. To begin with, M3 and M4 can be directly bounded by Lemma D.2 and Lemma 6.7.

For M2,

M2 =

K∑
k=1

EΓk

{[
H∑

h=1

(
rk(skh, a

k
h)− ER(skh, akh)

)
Ikh

]
1Gk−1

}

≤ C
K∑

k=1

EΓk


 H∑
h=1

√ V̂ k(skh, a
k
h)ιconf

Nk(skh, a
k
h)

+
Ikhιconf

Nk(skh, a
k
h)

1Gk−1


≤ C

√
M4ιconf ·

√√√√ K∑
k=1

EΓk

H∑
h=1

V̂ k(skh, a
k
h) + CM4ιconf .

Here EV̂ k(s, a) = E 1
Nk(s,a)

∑Nk(s,a)
i=1 (ri(s, a)− r̂k(s, a))2 ≤ Er(s, a)2 ≤ E |r(s, a)|. Thus if K ≥ Ω(SA),

M2 ≤ C
√
M4ιconf ·

√√√√ K∑
k=1

EΓk

H∑
h=1

∣∣r(skh, akh)∣∣+ CM4ιconf ≤ O(
√
SAKpolylog(S,A,K)ι2conf).

For M1,

M1 =

K∑
k=1

EΓk

 H∑
h=1

 max
p∈Pk

sk
h
,ak

h

p− P̃skh,a
k
h

V
k

h+1I
k
h

1Gk−1


=

K∑
k=1

EΓk

 H∑
h=1

 max
p∈Pk

sk
h
,ak

h

p− P̃skh,a
k
h

(V k

h+1 − P̃skh,a
k
h
V

k

h+1

)
Ikh

1Gk−1


≤ C

K∑
k=1

EΓk


 H∑
h=1

∑
s′∈S


√√√√ P̃skh,a

k
h,s

′ιconf

Nk
(
skh, a

k
h

) +
ιconf

Nk
(
skh, a

k
h

)
∣∣∣V k

h+1(s
′)− P̃skh,a

k
h
V

k

h+1

∣∣∣ Ikh
1Gk−1


≤ C

K∑
k=1

EΓk

[[
H∑

h=1

√
SIkhιconf

Nk
(
skh, a

k
h

) ·√V (P̃skh,a
k
h
, V

k

h+1

)
Ikh +

2SιconfI
k
h

Nk
(
skh, a

k
h

)]1Gk−1

]

≤ C
√
SM4ιconf ·

√√√√EΓk

{
H∑

h=1

[
V
(
P̃skh,a

k
h
, V

k

h+1

)
Ikh

]
1Gk−1

}
+ 2CSM4ιconf .

We further denote

M5 =

K∑
k=1

EΓk

{
H∑

h=1

[
V
(
P̃skh,a

k
h
, V

k

h+1

)
Ikh

]
1Gk−1

}
.
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By the above notations, we have M1 ≤ C
√
SM4ιconf ·

√
M5 + 2C ·M4Sιconf . Next, we try to bound M5 with M1 and

thus construct a recursion structure.

M5 =

K∑
k=1

EΓk

{
H∑

h=1

[
V
(
P̃skh,a

k
h
, V

k

h+1

)
Ikh

]
1Gk−1

}

=

K∑
k=1

EΓk

{
H∑

h=1

[
P̃skh,a

k
h

(
V

k

h+1

)2
−
(
P̃skh,a

k
h
V

k

h+1

)2]
Ikh1Gk−1

}

=

K∑
k=1

EΓk

{
H∑

h=1

[
V

k

h+1

(
skh+1

)2 − (P̃skh,a
k
h
V

k

h+1

)2]
Ikh1Gk−1

}

≤
K∑

k=1

EΓk

{
H∑

h=1

[
V

k

h(s
k
h)

2 −
(
P̃skh,a

k
h
V

k

h+1

)2]
Ikh1Gk−1

}
+

K∑
k=1

EΓk

[(
1Ik

H+1=0

)
1Gk−1

]
(12)

≤
K∑

k=1

EΓk

{
H∑

h=1

[
V

k

h(s
k
h)

2 −
(
P̃skh,a

k
h
V

k

h+1

)2]
Ikh1Gk−1

}
+M3. (13)

In line 12, we use the fact that
H∑

h=1

V
k

h+1

(
skh+1

)2
Ikh ≤

H∑
h=1

V
k

h

(
skh
)2
Ikh + 1Ik

H+1=0. (14)

In particular, When IkH+1 = 1, Ikh = 1 holds for ∀k ∈ [K]. Note that V
k

H+1 = 0, equation 14 holds. When IkH+1 = 0,
there exists h ∈ [H] such that Ikt = 1,∀t ∈ [h− 1] and Ikt = 0,∀t ∈ [h,H]. Hence equation 14 holds by

H∑
h=1

V
k

h+1

(
skh+1

)2
Ikh −

H∑
h=1

V
k

h+1

(
skh
)2
Ikh = V

k

1

(
sk1
)2 − V k

h

(
skh
)2 ≤ 1.

By the definition of V
k

h

(
skh
)
, we have

K∑
k=1

EΓk

H∑
h=1

V
k

h(s
k
h)

2Ikh1Gk−1
≤

K∑
k=1

EΓk

H∑
h=1

rk (skh, akh)+ max
p∈Pk

sk
h
,ak

h

pV
k

h+1

2

Ikh1Gk−1
. (15)

Here the equation 15 holds since akh is fixed given skh and policy πk. This is different from the MG setting. We will mention
it again in the proof for MG. (See Lemma F.3.)

Substituting equation 15 into line 13, we derive the recursive structure for M1. Here we use the square difference formula in
line 16. Applying our new reward assumption to line 17 leads to line 18.

M5 ≤
K∑

k=1

EΓk

{
H∑

h=1

(
V

k

h(s
k
h)

2 −
(
P̃skh,a

k
h
V

k

h+1

)2)
Ikh1Gk−1

}
+M3

≤
K∑

k=1

EΓk


H∑

h=1


rk (skh, akh)+ max

p∈Pk

sk
h
,ak

h

pV
k

h+1

2

−

ER
(
skh, a

k
h

)
+ max

p∈Pk

sk
h
,ak

h

pV
k

h+1

2
 Ikh1Gk−1


+ EΓk


H∑

h=1


ER

(
skh, a

k
h

)
+ max

p∈Pk

sk
h
,ak

h

pV
k

h+1

2

−
(
P̃skh,a

k
h
V

k

h+1

)2 Ikh1Gk−1

+M3 (16)

≤ 4M2 + 3

K∑
k=1

EΓk


H∑

h=1

∣∣ER (skh, akh)∣∣+
 max

p∈Pk

sk
h
,ak

h

pV
k

h+1 − P̃skh,a
k
h
V

k

h+1

 Ikh1Gk−1

+M3 (17)

≤ 4M2 + 3K + 3M1 +M3. (18)
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To be more specific, we derive line 17 as follows. Since Ikh and Γk−1 are independent of akh, we can focus on the difference
of squares. For the second difference of squares,ER

(
skh, a

k
h

)
+ max

p∈Pk

sk
h
,ak

h

pV
k

h+1

2

−
(
P̃skh,a

k
h
V

k

h+1

)2

=

ER
(
skh, a

k
h

)
+ max

p∈Pk

sk
h
,ak

h

pV
k

h+1 + P̃skh,a
k
h
V

k

h+1

 ·
ER

(
skh, a

k
h

)
+ max

p∈Pk

sk
h
,ak

h

pV
k

h+1 − P̃skh,a
k
h
V

k

h+1


≤

∣∣ER (skh, akh)∣∣+
∣∣∣∣∣∣ max
p∈Pk

sk
h
,ak

h

pV
k

h+1

∣∣∣∣∣∣+
∣∣∣P̃skh,a

k
h
V

k

h+1

∣∣∣
 ·

∣∣ER (skh, akh)∣∣+ max
p∈Pk

sk
h
,ak

h

pV
k

h+1 − P̃skh,a
k
h
V

k

h+1


≤ 3

∣∣ER (skh, akh)∣∣+
 max

p∈Pk

sk
h
,ak

h

pV
k

h+1 − P̃skh,a
k
h
V

k

h+1

 .
Combining line 18 and M1 ≤ C

√
SM4ιconf ·

√
M5 + 2C ·M4Sιconf , we can solve M1 satisfies that

M1 ≤ O((S
√
A
√
K + S2A)polylog(S,A,K)ι2conf)

≤ O(S
√
A
√
Kpolylog(S,A,K)ι2conf) If K ≥ Ω(S2A).

Theorem E.5 (Restatement of Lemma 6.5). The policy π returned by MDP-RBUCBI (Algorithm 2) satisfies that with
probability 1

2 ,
V ∗
1 (s0)− V π

1 (s0) ≤ O (ϵucb + ϵksp) .

Proof of Lemma 6.5. We randomly choose k1 ∈ [K]. Since EΓK

{[
Ṽ ∗
1 (s0)− Ṽ πk

1 (s0)
]
1GK

}
≥ 0 hold for ∀k ∈ [K], by

Markov inequality and Lemma 6.8, the following holds with probability at least 1
16 .

EΓK

{[
Ṽ ∗
1 (s0)− Ṽ πk

1 (s0)
]
1GK

}
≤ 8

[
O

(
S
√
A√
K

polylog(S,A,K)ι2conf

)]
. (19)

Since
[
Ṽ ∗(s0)− Ṽ πk1

(s0)
]
1GK

≥ 0 also always hold, we apply Markov inequality and derive that with probability at

least 1
16 , [

Ṽ ∗
1 (s0)− Ṽ πk1

1 (s0)
]
1GK

≤ 8EΓK

{[
Ṽ ∗
1 (s0)− Ṽ πk1

1 (s0)
]
1GK

}
. (20)

From Lemma D.4 and the definition of GK we know that GK holds with probability at least 1− δksp− 2S2AKδconf . Since
δksp = 1

4 in MDP-RBUCBI, by further setting δconf = 1
16S2AK , we have that with probability at least 5

8 , GK holds. By
taking union bound with equation 19 and equation 20, we have that with probability at least 1

2 ,

Ṽ ∗
1 (s0)− Ṽ πk1

1 (s0) =
[
Ṽ ∗
1 (s0)− Ṽ πk1

1 (s0)
]
1GK

(21)

≤ O

(
S
√
A√
K

polylog(S,A,K)ι2conf

)

= O

(
S
√
A√
K

polylog(S,A,K)

)
. (22)
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Here line 21 holds since GK and line 22 holds since we have set δconf = 1
16S2AK . We can further set K = Õ

(
S2A
ϵ2ucb

)
which

satisfies O
(

S
√
A√
K

polylog(S,A,K)
)
= ϵucb. Therefore

Ṽ ∗(s0)− Ṽ πk1
(s0) ≤ O(ϵucb).

Since G0 holds, by Lemma 6.6 we have that
∣∣∣V π

1 (s0)− Ṽ π
1 (s0)

∣∣∣ ≤ ϵksp holds for any π. Here we use Ṽ ∗∗ to denote the
value function of the best policy for the original model in the auxiliary Markovian environment. Note that by definition,
Ṽ ∗
1 (s0) ≥ Ṽ ∗∗

1 (s0).

V ∗
1 (s0)− V πk1

1 (s0) ≤ Ṽ ∗∗
1 (s0)− Ṽ πk1

1 (s0) + 2ϵksp

≤ Ṽ ∗
1 (s0)− Ṽ πk1

1 (s0) + 2ϵksp

≤ O (ϵucb + ϵksp) .

E.2. MDP-Evaluation

In this section, we present MDP-Evaluation(Algorithm 7) and prove Lemma 6.4.

Algorithm 7 MDP-Evaluation
1: Input: MDP M , Policy π, ϵeval, δeval.
2: Initialization:V k

H+1(s) = 0, V k
H+1(s) = 0,∀k, s.

3: Set ϵksp ← ϵeval, δksp ← δeval
2T .

4: Run T = log
(

2
δeval

)
times independently.

5: for t = 1, 2, . . . , T do
6: M̃t ← RFKSP(M, ϵksp, δksp).

7: Use K = Õ
(

S2A
ϵ2eval

)
episodes.

8: for episode k = 1, 2, . . . ,K do
9: for step h = H,H − 1, H − 2, . . . , 1 do

10: Compute Q
k

h(s, a) as in equation 1.
11: Compute V

k

h(s) = Ea∼πh(·|s)Q
k

h(s, a).
12: end for
13: Play policy π, collect trajectory τk.
14: Calculate Pk+1,Rk+1 based on Γk.
15: end for
16: Randomly select V

k

1(s0), denote as V t(s0).
17: end for
18: Output: V̂ π

1 (s0) = min
{
V 1(s0), . . . , V T (s0)

}
.

Note: Each time we run MDP-Evaluation, we run the subroutine in it for T = log( 2
δeval

) times independently. In particular,
each time we run RFKSP with ϵksp = ϵeval and δksp = δeval

2T , we use

K = O

(
S9A3ιksp
ϵksp

polylog

(
S,A,

1

ϵksp

))
= O

(
S9A3ιeval
ϵeval

polylog

(
S,A,

1

ϵeval

))
episodes. Here we use the fact that log

(
ιeval
δeval

)
≤ O (ιeval). The total number of episodes used in MDP-Evaluation is

K = O

(
S9A3ιeval
ϵeval

polylog

(
S,A,

1

ϵeval

))
+O

(
S2Aιeval
ϵ2eval

polylog

(
S,A,

1

ϵeval

))
.
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Lemma E.6. In MDP-Evaluation (Algorithm 7), for ∀k ∈ [K], if P̃s,a ∈ Pk
s,a and E

[
R̃(s, a)

]
∈ Rk

s,a holds for any (s, a),

for ∀h ∈ [H] and ∀h-reachable state sh, V
k

h(sh) ≥ Ṽ π
h (sh).

Proof. For fixed k, we do induction on h = H + 1, H, . . . , 1. When h = H + 1,

V
k

H+1(sH+1) = Ṽ π
H+1(sH+1) = 0.

Suppose the equation holds for h+ 1, then for ∀a,

Q
k

h(sh, a) = min

(
rk(sh, a) + max

p∈Pk
sh,a

pV
k

h+1, 1

)
≥ min

(
ER̃(sh, a) + P̃sh,aV

k

h+1, 1
)

(23)

≥ min
(
ER̃(sh, a) + P̃sh,aṼ

π
h+1, 1

)
(24)

= Q̃π
h(sh, a). (25)

Here line 23 holds since we assume P̃sh,a ∈ Pk
sh,a

. And if P̃sh,a,sh+1
̸= 0, then sh+1 is h + 1-th reachable. So by our

induction, V
k

h+1(sh+1) ≥ Ṽ π
h+1(sh+1). Thus line 24 also holds. As for line 25, by definition we have Q̃π

h(sh, a) =

ER̃(sh, a) + P̃sh,aṼ
π
h+1. We are left to prove that Q̃π

h(sh, a) ≤ 1. We can take π′ where π′ = π except π′
h(sh) = a. Hence

by our reward assumption, Q̃∗
h(sh, a) = Ṽ π

h (sh) ≤ 1. We further conclude our induction by

V
k

h(sh) = Ea∼πh(sh)Q
k

h(sh, a) ≥ Ea∼πh(sh)Q̃
π
h(sh, a) = Ṽ π

h (sh).

Lemma E.7. In each independent running time t ∈ [T ] in MDP-Evaluation (Algorithm 7),

EΓK

{
K∑

k=1

[
V

k

1(s0)− Ṽ π
1 (s0)

]
1GK

}
≤ O(S

√
AKpolylog(S,A,K)ι2conf).

Proof. This proof is similar to the proof of Lemma 6.8. The only difference is that we run one policy throughout this
procedure and overestimate it here.

Lemma E.8. In each independent running time t ∈ [T ] in MDP-Evaluation (Algorithm 7), the returned estimation V t(s0)
satisfies that with probability 1

2 ,

0 ≤
[
V t(s0)− Ṽ π

1 (s0)
]
≤ O(ϵeval).

Proof. We focus on a fixed independent running time t ∈ [T ]. From Lemma E.7 we have that

EΓK

{
K∑

k=1

[
V

k

1(s0)− Ṽ π
1 (s0)

]
1GK

}
≤ O(S

√
AKpolylog(S,A,K)ιconf).

By Lemma E.6, we know that
[
V

k

1(s0)− Ṽ π
1 (s0)

]
1GK

≥ 0. And therefore EΓK

{[
V

k

1(s0)− Ṽ π
1 (s0)

]
1GK

}
is positive

for any k ∈ [K]. We randomly choose episode k1 ∈ [K] and denote V
k1

1 (s0) as V t(s0). Using Markov inequality twice
and taking union bound, we have that with probability at least 7

8 ,

EΓK

{[
V

k1

1 (s0)− Ṽ π
1 (s0)

]
1GK

}
≤ O(S

√
AKpolylog(S,A,K)ι2conf), (26)[

V
k1

1 (s0)− Ṽ π
1 (s0)

]
1GK

≤ 16EΓK

{[
V

k1

1 (s0)− Ṽ π
1 (s0)

]
1GK

}
. (27)

27



Horizon-free Learning for MDP and Games: Stochastically Bounded Rewards and Improved Bounds 28

Since δksp = 1
4 , by further setting δconf = 1

16S2AK , we have that with probability at least 5
8 = 1 − 2S2AKδconf − δksp,

GK holds. By taking union bound with equation 26 and equation 27, we have that with probability at least 1
2 ,

[
V

k1

1 (s0)− Ṽ π
1 (s0)

]
=
[
V

k1

1 (s0)− Ṽ π
1 (s0)

]
1GK

(28)

≤ O

(
S
√
A√
K

polylog(S,A,K)ι2conf

)

= O

(
S
√
A√
K

polylog(S,A,K)

)
. (29)

Here line 28 holds since GK holds. Line 29 holds since we have set δconf = 1
16S2AK . We can further set K = Õ

(
S2A
ϵ2ucb

)
which satisfies O

(
S
√
A√
K

polylog(S,A,K)
)
= ϵeval. Therefore with probability at least 1

2 ,

0 ≤
[
V

k1

1 (s0)− Ṽ π
1 (s0)

]
=
[
V

k1

1 (s0)− Ṽ π
1 (s0)

]
1GK

≤ O(ϵeval).

Lemma E.9 (Restatement of Lemma 6.4). The estimate V̂ π(s0) returned by MDP-Evaluation satisfies that with probability
1− δeval,

|V̂ π
1 (s0)− V π

1 (s0)| ≤ O(ϵeval).

Proof. By Lemma 6.4 we have that for any independent running time t ∈ [T ], with probability 1
2 ,

0 ≤
[
V t(s0)− Ṽ π

1 (s0)
]
≤ O(ϵeval).

Since we run the algorithm T = log
(

2
δeval

)
times independently, with probability 1− δeval

2 , there exists i ∈ [T ] that

0 ≤ V i(s0)− Ṽ π
1 (s0) ≤ O(ϵeval).

In MDP-Evaluation, we set δksp = δeval
2T . Taking union bound, G0 holds in any running time t ∈ [T ] with probability at least

1− δeval
2 . Combining with Lemma 6.6, we have that with probability at least 1− δeval,

0 ≤ min
t∈[T ]

V t(s0)− Ṽ π
1 (s0)

≤ min
t∈[T ]

V t(s0)− V π
1 (s0) + ϵeval

≤ V i − V π
1 (s0) + ϵeval

≤ V i − Ṽ π
1 (s0) + 2ϵeval

≤ O(ϵeval).

We must mention that the auxiliary Markovian environment M̃t differs between different episodes. Here Ṽ in the first
line refers to the auxiliary Markovian environment in episode argmint∈[T ] V t(s0) and the latter Ṽ refers to the auxiliary
Markovian environment in the i-th episode. Rearranging the above equation leads to

| min
t∈[T ]

V t(s0)− V π(s0)| ≤ O(ϵeval).

Here mint∈[T ] V t(s0) is the returned value V̂ π(s0) of MDP-Evaluation (Algorithm 7).

28



Horizon-free Learning for MDP and Games: Stochastically Bounded Rewards and Improved Bounds 29

F. Proofs for MG(Theorem 6.3)
In this section we give proofs and algorithms in MG setting. The main structure resembles the MDP.

Algorithm 8 MG-Full
1: Input: MG G (S,A,B, P,R,H, µ0), ϵ, δ.
2: Set ϵksp, ϵucb, ϵeval = O(ϵ), δksp = 1

4 , δeval =
δ
4T .

3: Run T = log
(
2
δ

)
times independently.

4: for t = 1, 2, . . . , T do
5: G̃t← RFKSP (G, ϵksp, δksp).
6: πt = (µt, νt)←MG-RBUCBI(G̃t, ϵucb).
7: V̂ ∗,νt

1 (s0), V̂
µt,∗
1 (s0)←MG-Evaluation(G, ϵeval, δeval, πt).

8: end for
9: i← argmint∈[T ]

[
V̂ ∗,νt

1 (s0)− V̂ µt,∗
1 (s0)

]
.

10: Output: πi.

Theorem F.1 (Restatement of Theorem 6.3). For any ϵ, δ > 0, with probability 1− δ, MG-Full returns an ϵ-approximate
NE policy pair by sampling at most K = KReward +KRFKSP episodes, where

KReward = O

(
S2ABι3

ϵ2
polylog

(
S,A,B,

1

ϵ

))
,

KRFKSP = O

(
S9A3B3ι3

ϵ
polylog

(
S,A,B,

1

ϵ

))
.

Proof of Theorem 6.3. Theorem 6.3 is mainly based on Theorem F.4 and Theorem F.5. Given these two theorems, we
derive Theorem 6.3 as follows. In each running time t ∈ [T ], by Theorem F.4 we have that with probability 1/2,

0 ≤ V ∗,ν̂
1 (s0)− V µ̂,∗

1 (s0) ≤ O (ϵucb + ϵksp) .

As we run the subroutine T = log(2δ ) times independently, with probability 1 − δ
2 , there exists j ∈ [T ] that the above

equation holds. By Theorem F.5, the estimation V̂ ∗,νt

1 (s0) and V̂ µt,∗
1 (s0) returned by MDP-Evaluation satisfy that with

probability 1− 2δeval, ∣∣∣V̂ ∗,νt

1 (s0)− V ∗,νt

1 (s0)
∣∣∣ ≤ O(ϵeval).∣∣∣V̂ µt,∗

1 (s0)− V µt,∗
1 (s0)

∣∣∣ ≤ O(ϵeval).

Since we set δeval = δ
4T in MG-Full, with probability 1 − δ

2 , the above equation hold for ∀t ∈ [T ]. Suppose we denote

i = argmint∈[T ]

[
V̂ ∗,νt

1 (s0)− V̂ µt,∗
1 (s0)

]
. Taking union bound, we have that the following equation holds with probability

1− δ.

V ∗,νi

1 (s0)− V µi,∗
1 (s0) ≤ V̂ ∗,νi

1 (s0)− V̂ µi,∗
1 (s0) +O(ϵeval)

≤ V̂ ∗,νj

1 (s0)− V̂ µj ,∗
1 (s0) +O(ϵeval)

≤ V ∗,νj

1 (s0)− V µj ,∗
1 (s0) +O(ϵeval)

≤ O (ϵeval + ϵucb + ϵksp) .

Since we set ϵksp, ϵucb, ϵeval = O(ϵ), we conclude that with probability 1− δ, MG-Full returns an ϵ-approximate NE policy
pair. Each time we run RFKSP with δksp = 1

4 and ϵksp = O(ϵ), we use

K = O

(
S9A3B3ι2ksp

ϵksp
polylog

(
S,A,B,

1

ϵksp

))
= O

(
S9A3B3

ϵ
polylog

(
S,A,B,

1

ϵ

))
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episodes. Each time we run MG-RBUCBI, we use K = Õ
(

S2AB
ϵ2ucb

)
episodes. Each time we run MG-Evaluation, we use

K = O

(
S9A3B3ι2eval

ϵeval
polylog

(
S,A,

1

ϵeval

))
+O

(
S2ABι2eval

ϵ2eval
polylog

(
S,A,B,

1

ϵeval

))
episodes(See discussion under MDP-Evaluation(Algorithm 7)). Summing up, we have that we use

K = O

(
S9A3B3ι30

ϵ
polylog

(
S,A,B,

1

ϵ

))
+O

(
S2ABι30

ϵ2
polylog

(
S,A,B,

1

ϵ

))
episodes in MG-Full.

F.1. MG-RBUCBI

In this section, we prove the lemmas regarding MG-RBUCBI(Algorithm 3).

Lemma F.2. In MG-RBUCBI (Algorithm 3), for ∀k ∈ [K], if P̃s,a,b ∈ Pk
s,a,b and E

[
R̃(s, a, b)

]
∈ Rk

s,a,b holds for any

(s, a, b), for ∀h ∈ [H] and ∀h-reachable state sh,

V
k

h(sh) ≥ Ṽ
∗,νk

h (sh) ≥ Ṽ πk

h (sh) ≥ Ṽ µk,∗
h (sh) ≥ V k

h(sh).

Proof. In the above equation, Ṽ ∗,νk

h (sh) ≥ Ṽ πk

h (sh) ≥ Ṽ µk,∗
h (sh) hold naturally by the definition. Here we only prove the

overestimation while the underestimation is almost the same.

For fixed k, we do induction on h = H + 1, H, . . . , 1. When h = H + 1, V
k

H+1(sH+1) = Ṽ ∗,νk

H+1(sH+1) = 0. Suppose the
equation holds for h+ 1, then for ∀(a, b) ∈ A× B,

Q
k

h(sh, a, b) = min

(
rk(sh, a, b) + max

p∈Pk
sh,a,b

pV
k

h+1, 1

)
≥ min

(
ER(sh, a, b) + P̃sh,a,bV

k

h+1, 1
)

(30)

≥ min
(
ER(sh, a, b) + P̃sh,a,bṼ

∗,νk

h+1 , 1
)

(31)

= Q∗,νk

h (sh, a, b). (32)

Here 30 holds since we assume P̃sh,a,b ∈ Pk
sh,a,b

and E
[
R̃(s, a, b)

]
∈ Rk

s,a,b. And if P̃sh,a,b,sh+1
̸= 0, sh+1 is h+ 1-th

reachable. So by induction 31 also holds. As for 32, we can take π′ where (µ′, ν′) = (µ∗, ν∗) except µ′
h(sh) = a, ν′h(sh) =

b. Hence by our reward assumption, Q∗
h(sh, a, b) = Ṽ µ′,ν′

h (sh) ≤ 1. We further conclude our induction by

V
k

h(sh) = Ea∼µk
h(·|sh),b∼νk

h(·|sh)
Q

k

h(sh, a, b)

≥ Ea∼∗,b∼νk
h(·|sh)

Q
k

h(sh, a, b) (33)

≥ Ea∼∗,b∼νk
h(·|sh)

Q̃∗,νk

h (sh, a, b)

= Ṽ ∗,νk

h (sh).

Here 33 holds by the property of CCE since there exists a deterministic policy to be the best response of ν.

Lemma F.3. In MG-RBUCBI (Algorithm 3), the expectation of regret concerning the auxiliary Markovian environment can
be bounded by

EΓK

{
K∑

k=1

[
Ṽ ∗,νk

1 (s0)− Ṽ µk,∗
1 (s0)

]
1GK

}
≤ O(S

√
ABKpolylog(S,A,B,K)ι2conf).
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Proof. By Lemma F.2, we have the following equation.

EΓK

K∑
k=1

{[
Ṽ ∗,νk

1 (s0)− Ṽ µk,∗
1 (s0)

]
1GK

}
≤ EΓK

K∑
k=1

{[
V

k

1(s0)− V
k
1(s0)

]
1GK

}
= EΓK

K∑
k=1

{[
V

k

1(s0)− Ṽ πk

1 (s0)
]
1GK

}
+ EΓK

K∑
k=1

{[
Ṽ k
1 (s0)− V k

1(s0)
]
1GK

}
.

By our reward assumption and the construction of overestimation and underestimation, we can similarly bound the two
terms above. Following the same analysis in Lemma 6.8, we can bound the first term and thus conclude the proof for this
lemma.

The only difference in the proof is that since the policy is deterministic in MDP, we can derive the following equation
directly by definition.

K∑
k=1

EΓk

H∑
h=1

V
k

h(s
k
h)

2Ikh1Gk−1
≤

K∑
k=1

EΓk

H∑
h=1

rk (skh, akh)+ max
p∈Pk

sk
h
,ak

h

pV
k

h+1

2

Ikh1Gk−1
.

A similar equation also holds in the MG setting, but it requires more refined analysis since the policy in MG is nondetermin-
istic.

EΓk

[
V

k

h(s
k
h)

2Ikh1Gk−1

]
= EΓk


Ea∼µk

h(skh),b∼νk
h(skh)

rk(skh, a, b) + max
p∈Pk

sk
h
,a,b

pV
k

h+1(s
k
h)


2

Ikh1Gk−1


≤ EΓk


Ea∼µk

h(skh),b∼νk
h(skh)

rk(skh, a, b) + max
p∈Pk

sk
h
,a,b

pV
k

h+1(s
k
h)

2
 Ikh1Gk−1

 (34)

= EΓk


rk (skh, akh, bkh)+ max

p∈Pk

sk
h
,ak

h
,bk

h

pV
k

h+1(s
k
h)

2

Ikh1Gk−1

 (35)

Here line 34 holds since [E [X]]
2 ≤ E

[
X2
]
. Since γk is the trajectory following πk and the term in the large bracket is

independent of the other part, we can absorb the action’s expectation into the trajectory’s expectation (i.e., line 35). This
step shows the power of taking expectations.

Theorem F.4. The policy pair π̂ = (µ̂, ν̂) returned by MG-RBUCBI (Algorithm 3) satisfies that with probability 1
2 ,

V ∗,ν̂
1 (s0)− V µ̂,∗

1 (s0) ≤ O (ϵucb + ϵksp) .

Proof. Suppose we randomly choose k1 ∈ [K]. Since EΓK

[
Ṽ ∗,νk

(s0)− Ṽ µk,∗(s0)
]
1GK

≥ 0 hold for ∀k ∈ [K], by

Markov inequality, the following equation holds with probability at least 15
16 ,

EΓK

[
Ṽ ∗,νk1

(s0)− Ṽ µk1 ,∗(s0)
]
1GK

≥ 16

[
O

(
S
√
AB√
K

polylog(S,A,B,K)ι2conf

)]
. (36)

Since
[
Ṽ ∗,νk

(s0)− Ṽ µk,∗(s0)
]
1GK

≥ 0 hold for ∀k ∈ [K], by Markov inequality, the following equation holds with

probability at least 15
16 .[

Ṽ ∗,νk1
(s0)− Ṽ µk1 ,∗(s0)

]
1GK

≥ 16EΓK

[
Ṽ ∗,νk1

(s0)− Ṽ µk1 ,∗(s0)
]
1GK

. (37)
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Since δksp = 1
4 , by setting δconf = 1

16S2ABK , GK holds with probability at least 5
8 = 1− δksp − 2S2ABKδconf . Taking

union bound, we have that with probability at least 1
2 , GK holds and both equation 36, equation 37 hold. Therefore

Ṽ ∗,νk1
(s0)− Ṽ µk1 ,∗(s0) ≤ O

(
S
√
AB√
K

polylog(S,A,B,K)

)
.

We set K = Õ
(

S2AB
ϵucb2

)
which satisfies that O

(
S
√
AB√
K

polylog(S,A,B,K)
)
= ϵucb. Since G0 holds, by Lemma 6.6 we

have the following equation.

V ∗,νk1
(s0)− V µk1 ,∗(s0) ≤ Ṽ ∗,νk1

(s0)− Ṽ µk1 ,∗(s0) + 2ϵksp ≤ O (ϵucb + ϵksp) .

F.2. MG-Evaluation

In this section, we illustrate our MG-Evaluation algorithm and give its proof.

Algorithm 9 MG-Evaluation
1: Input: MG G (S,A,B, P, r,H, µ0), ϵeval, δeval, π = (µ, ν).
2: V̂ ∗,ν

1 (s0)←MDP-Full(G + ν, ϵeval, δeval).
3: G′ ← (S,A,B, P,−1 ∗ r,H, µ0).
4: V̂ µ,∗

1 (s0)←−1·MDP-Full(G′ + µ, ϵeval, δeval).
5: Output:V̂ ∗,ν

1 (s0), V̂
µ,∗
1 (s0).

Theorem F.5. In each running time t ∈ [T ] in MG-Full (Algorithm 8), with probability 1− 2δeval, the returned estimated
value V̂ ∗,νt

1 (s0) and V̂ µt,∗
1 (s0) satisfy that∣∣∣V̂ ∗,νt

1 (s0)− V ∗,νt

1 (s0)
∣∣∣ ≤ O(ϵeval).∣∣∣V̂ µt,∗

1 (s0)− V µt,∗
1 (s0)

∣∣∣ ≤ O(ϵeval).

Proof. This theorem is a direct extension of Theorem 6.1. For the given MG environment G, if one of the players is fixed,
the environment degenerates into MDP. Here G + µ refers to the case in which the max player is fixed while G + ν refers to
the case in which the min player is fixed. Applying Theorem 6.1 to G + ν and G′ + µ respectively, and taking union bound
will lead to the result. Note that the second Markov game is slightly modified to turn the fixed player µ to be the min player
to apply our theorem in MDP setting where the unfixed player aims to maximize the sum of rewards.

G. Proofs for Generative Setting
In this section, we present our PAC results for generative setting formally.
Theorem G.1. In the generative setting, for any ϵ, δ > 0, with probability 1 − δ, MDP-Full(Algorithm 1) returns an
ϵ-optimal policy by sampling at most K episodes, where

K = O

(
S2Aι2

ϵ2
polylog

(
S,A,

1

ϵ

))
.

MG-Full returns an ϵ-approximate NE policy pair by sampling at most K episodes, where

K = O

(
S2ABι3

ϵ2
polylog

(
S,A,B,

1

ϵ

))
.

Proof. This theorem is the direct extension of Theorem 6.1 and Theorem 6.3. The only difference is that the generative
setting provides us with an RFKSP algorithm with K1 = O(SA). Substituting into the proof of Theorem 6.1 and
Theorem 6.3 leads to the result.
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