Language Agents with Reinforcement Learning for
Strategic Play in the Werewolf Game

Zelai Xu'! Chao Yu'! FeiFang? Yu Wang™'! Yi Wu™!?

Abstract

Agents built with large language models (LLMs)
have shown great potential across a wide range of
domains. However, in complex decision-making
tasks, pure LLM-based agents tend to exhibit in-
trinsic bias in their choice of actions, which is in-
herited from the model’s training data and results
in suboptimal performance. To develop strategic
language agents, i.e., agents that generate flexi-
ble language actions and possess strong decision-
making abilities, we propose a novel framework
that powers LLM-based agents with reinforce-
ment learning (RL). We consider Werewolf, a
popular social deduction game, as a challenging
testbed that emphasizes versatile communication
and strategic gameplay. To mitigate the intrinsic
bias in language actions, our agents use an LLM
to perform deductive reasoning and generate a di-
verse set of action candidates. Then an RL policy
trained to optimize the decision-making ability
chooses an action from the candidates to play in
the game. Extensive experiments show that our
agents overcome the intrinsic bias and outperform
existing LLM-based agents in the Werewolf game.
We also conduct human-agent experiments and
find that our agents achieve human-level perfor-
mance and demonstrate strong strategic play.

1. Introduction

Building agents that are capable of logical reasoning, strate-
gic decision-making, and communication with humans has
been a longstanding aspiration in the field of Al (Wooldridge
& Jennings, 1995; Goodwin, 1995). With their extensive
knowledge and emergent generalizability, large language

“Equal advising !'Tsinghua University, Beijing, China
2Carnegie Mellon University, Pittsburgh, United States *Shanghai
Qi Zhi Institute, Shanghai, China. Correspondence to: Zelai Xu
<zelai.eecs @gmail.com>, Yi Wu <jxwuyi @ gmail.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Prompt

You are playing the Rock-Paper-Scissors game. You should first reason
about the Nash equilibrium of this game, and then choose one action
from Rock, Paper, and Scissors based on your reasoning.

Reasoning

In the Rock-Paper-Scissors game, the Nash equilibrium occurs when
each player is randomly choosing their action with equal probability,
making it impossible for the other player to predict or gain an
advantage based on patterns. Thus, the strategy is to play each of
Rock, Paper, and Scissors with a probability of 1/3 for each choice.

Action Distribution X

GPT-4 Optimal
0.8 - 0.67 0.8 -
0.6 - 0.6 -
0.4- 0.27 0.4- 0.33 0.33 0.33
0.2- . o0s 02
0.0- == ‘ = 00- "% ‘ ‘
Rock Paper Scissors Rock Paper Scissors

Figure 1: The intrinsic bias in the action distribution of pure
LLM-based agents despite the correct reasoning result.

models (LLMs) have shown great potential in constructing
intelligent agents and have led to many recent advance-
ments (Ouyang et al., 2022; Wei et al., 2022a). These LLM-
based agents demonstrate proficiency in a wide range of
tasks including web surfing (Nakano et al., 2021; Yao et al.,
2022b; Zheng et al., 2024), complex video games (Wang
et al., 2023a; Ma et al., 2023), and real-world applica-
tions (Ahn et al., 2022; Shah et al., 2023). Moreover, in
multi-agent scenarios, LLM-based agents exhibit the abil-
ity to produce human-like interactions (Park et al., 2023;
Williams et al., 2023), achieve zero-shot cooperation (Li
etal., 2023; Chen et al., 2023), and compete with adversarial
players (Meta et al., 2022; Wang et al., 2023b).

Despite the impressive achievements, we observe that in
complex decision-making tasks such as multi-agent games,
pure LLM-based agents built with prompting techniques
tend to exhibit intrinsic bias in their choice of actions, result-
ing in suboptimal performance. Consider a simple example
where we use GPT-4 to play the Rock-Paper-Scissors game.
To generate the optimal strategy, we prompt the LLM to

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

first reason about the Nash equilibrium of this game and
then choose an action based on the reasoning result. We
let this pure LLM-based agent play 100 independent games
and profile its reasoning result and action distribution in
Fig 1. In all 100 games, the agent successfully identifies the
optimal strategy as randomly choosing an action. However,
even with this perfect reasoning result, the agent’s actual
action distribution shows a clear bias toward choosing Rock,
which can be easily exploited by an opponent who always
plays Paper. This intrinsic bias is inevitably inherited from
the model’s pretraining data and hinders pure LLM-based
agents from strong strategic play in more complex scenar-
i0s. A recent work, Cicero (Meta et al., 2022), addresses
this issue in the game of Diplomacy by learning a policy to
choose from predefined actions that specify the agents’ in-
tents and then generating action-conditioned dialogues with
a language model. Nevertheless, the action space of their
policy is a fixed, finite set of game-specific actions, while
real-world interactions between humans often feature free-
form conversations with nuanced intents, which induces an
unbounded action space for agents to play.

In this work, we aim to develop strategic language agents,
i.e., agents that generate flexible language actions and pos-
sess strong decision-making abilities. We consider the Were-
wolf game as a challenging mixed cooperative-competitive
multi-agent testbed. Werewolf is one of the most popular
social deduction games where two teams of players with
hidden roles interact in natural language to uncover and
defeat their opponents. During gameplay, the Werewolves
need to lie about their roles and secretly eliminate other
players, while the Villagers need to share information and
vote out the hidden Werewolves. The game’s high demand
for language proficiency necessitates the use of LLMs to
build intelligent agents. However, pure LLM-based agents
face the challenges of deducing hidden roles with decep-
tive information and overcoming intrinsic bias in language
actions, which result in unsatisfactory performance.

To build strategic language agents for the Werewolf game,
we propose a novel framework that powers LLM-based
agents with reinforcement learning (RL) to address these
challenges. Our framework consists of three components.
The first component is hidden role deduction, which uses an
LLM to distinguish between truths and lies and explicitly
deduce the hidden role of each player to facilitate subsequent
decision-making. The second component is diverse action
generation, which prompts the LLM to generate a diverse
set of action candidates instead of a single action to mitigate
the intrinsic bias. The last component is population-based
RL training, which learns an RL policy to optimize the
distribution over the action candidates and improves policy
robustness by playing against a population of various agents.
The combination of the LLM and the RL policy enables our
agents to deduce hidden information and overcome intrinsic

bias, leading to strong strategic play in the Werewolf game.

We conduct extensive experiments to evaluate the perfor-
mance of strategic language agents in Werewolf and demon-
strate the benefit of our design. We first perform case studies
and visualize the action distributions to validate that our
agents overcome the intrinsic bias and learn better policy.
Then we compare our agents with four state-of-the-art base-
lines in a round-robin tournament where our agents achieve
the highest win rate against all agents. Moreover, we let our
agents play with human players and find they achieve com-
parable win rates to average humans as both teammates and
opponents. We also conduct systematic ablations to show
the effectiveness of the key components in our framework.

2. Related Work

Building Agents with Large Language Models. There is a
recent trend in developing agents with large language mod-
els for various domains including website scenarios (Nakano
etal., 2021; Yao et al., 2022a; Deng et al., 2023), game and
simulation (Huang et al., 2022a; Wang et al., 2023c;a; Ma
et al., 2023), real-world embodiment (Ahn et al., 2022;
Huang et al., 2022b; Vemprala et al., 2023), and multi-agent
environments (Park et al., 2023; Li et al., 2023; Chen et al.,
2023). A shared foundation of these works is to utilize the
reasoning and in-context learning ability of LLMs to facili-
tate decision-making. Chain-of-Thought (CoT) (Wei et al.,
2022b) is perhaps the most well-known work that unlocks
the reasoning ability of LLMs by asking them to think step-
by-step. To synergize reasoning and acting, ReAct (Yao
et al., 2022b) uses LLMs to generate both reasoning traces
and action plans and proves effective in various benchmarks.
Follow-up work continues to improve performance by in-
corporating self-reflection (Shinn et al., 2023) and strategic
reasoning (Gandhi et al., 2023). However, even with the per-
fect reasoning results, these pure LLM-based agents could
suffer from the model’s intrinsic bias and make suboptimal
decisions in more complex scenarios. Our work takes a step
further to address this issue by using the LLM to generate
a diverse set of action candidates with minimal bias and
training an RL policy to optimize decision-making.

Some other works also augment LLMs with external mod-
ules to enhance the agents’ decision-making ability. One
representative work is Cicero (Meta et al., 2022) which
combines LL.Ms with RL and achieves human-level play
in the game of Diplomacy. The main difference from our
work is that their policy can choose from a fixed finite set of
game-specific actions because Diplomacy is a board game
with negotiation. By contrast, Werewolf is a language game
without predefined actions, requiring our agents to generate
language actions in an unbounded space. Another work is
Tree-of-Thought (ToT) (Yao et al., 2023) which generalizes
CoT by producing multiple thoughts at each reasoning step

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Setup) Gameplay Winning
night <€ > day
The Werewolves Werewolves Announcement The Werewolves win

X 2
Kill Player 4.
Werewolves: Player 0, Player 5.
Seer
The Villagers
\\““.'"/,
E‘é
7 >
(°50) See Player 0 is a Werewolf.

Player 4 was killed last night.

Discussion

* Player 0 (Werewolf): I don’t have
leads on who the Werewolves might
be. Anyone have any suspicions?
Player 1 (Doctor): It’s unfortunate
that we lost Player 0. I’'m the Doctor
and | saved myself last night.

The number of remaining
Werewolves equals the
number of remaining Villagers.

Player 6 (Villager): | agree that player
0 is indeed very suspicious, let’s vote

The Villagers win
them out today.

Seer: Player 3. Doctor: Player 1.

Doctor

©)

Save Player 1.

X 3

Villager: Player 2, Player 4, Player 6.

Voting

Vote for Player O: Player 1, Player 3,
Player 6.

Vote for Player 3: Player O, Player 5.
* Do not Vote: Player 2.

Result: Player 0 is eliminated. There is no Werewolf left.

Figure 2: An example of the Werewolf game. Players are randomly assigned a hidden role and divided into the Werewolves
and the Villagers. The game alternates between night and day rounds until one team achieves the winning condition.

to create a tree structure and search for optimal plans. The
extensive tree search could be inefficient in complex envi-
ronments with prohibitively large or even infinite game trees.
LLM+P (Liu et al., 2023) incorporate classic planners by
converting natural language task descriptions into planning
domain definition language (PDDL). However, PDDL is
limited to classic planning problems and cannot be applied
to non-cooperative language games like Werewolf.

Reinforcement Learning in Non-Cooperative Games.
Applying reinforcement learning to non-cooperative games
has achieved great success in the game of Go (Silver et al.,
2016; 2018), poker (Moravcik et al., 2017; Brown & Sand-
holm, 2018; 2019), and video games (Vinyals et al., 2019;
Berner et al., 2019). The most popular method underly-
ing these achievements is self-play and its variants (Hein-
rich et al., 2015; Heinrich & Silver, 2016; Hennes et al.,
2020; Xu et al., 2023b), which learn a policy by training
against itself and its past checkpoints. Population-based
training (PBT) methods like policy-space response oracles
(PSRO) (Lanctot et al., 2017; Muller et al., 2019) and league
training (Vinyals et al., 2019) generalize self-play by main-
taining a pool of various policies and training against the
population. Another notable line of work is based on regret
minimization techniques such as counterfactual regret mini-
mization (CFR) (Zinkevich et al., 2007; Lanctot et al., 2009;
Tammelin, 2014; Brown et al., 2019) that iteratively refine
the strategies by minimizing the difference between actual

outcomes and potential better choices. Most prior works
apply these methods to typical RL environments with vec-
torized actions, while we combine LLM with RL to generate
language actions and learn in the Werewolf game.

AT Agents for Social Deduction Games. Social deduction
games like Werewolf require both strong communication
skills and strategic decision-making. Earlier agents (Wang
& Kaneko, 2018) lack language proficiency and usually rely
on predefined protocols instead of natural language to play a
simplified game. DeepRole (Serrino et al., 2019) integrates
deductive reasoning into CFR to play another social deduc-
tion game named Avalon without communication. With the
presence of LLMs, more agents have been developed to play
these games in natural language. A concurrent study (Xu
et al., 2023a) builds a Werewolf agent by heuristic informa-
tion retrieval and past experience reflection. Another work
proposes ReCon (Wang et al., 2023b) to play Avalon by
thinking from both the agent’s and the opponents’ perspec-
tive. Despite their deliberate designs, these pure LLM-based
agents are not strong enough in decision-making as they still
face the issue of intrinsic bias. We use them as baselines to
compare with our agents in the experiments.

3. The Werewolf Game

We aim to build strong agents for the seven-player Werewolf
game with two Werewolves, one Seer, one Doctor, and three

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Villagers. An example of the game is shown in Fig. 2 and
the detailed rules can be found in Appendix A.

3.1. Text-Based Environemnt

We implement a pure text-based Werewolf environment that
does not consider external factors like the players’ tone or
facial expressions. The observations and actions are text in
natural language and the game proceeds as follows.

Setup. At the beginning of the game, each player is ran-
domly assigned a hidden role, which divides them into the
Werewolves and the Villagers (Seer, Doctor, and Villagers).
The two Werewolves know each other’s role and hence also
know which players are the Villagers. Their goal is to “kill”
the other players without being discovered. The Villagers
do not know the hidden roles of other players and their goal
is to identify and eliminate the Werewolves.

Gameplay. The game alternates between night and day
rounds, starting with the night. In the night round, everyone
closes their eyes to let the Werewolves, Seer, and Doctor
take secret actions. The Werewolves choose one player
to kill, the Seer chooses one player to check if they are
a Werewolf, and the Doctor chooses one player to save
without knowing who is the target of the Werewolves. If
the Doctor chooses the same player as the Werewolves, the
player is successfully saved and no one is killed in the night
round. Otherwise, the player is eliminated from the game.

In the day round, an announcement is first made to every
player about who was killed or no one was killed last night.
Then the remaining players take turns to speak in a dis-
cussion about who might be the Werewolves. Players can
claim or lie about their roles, share or withhold information
they have discovered, and accuse or defend other players to
achieve their purposes. After all players have participated
in the discussion, a vote is held to eliminate one suspicious
player. Each player can vote for one player or choose not
to vote, and the player with the most votes is eliminated.
Then the game continues to the next night round until the
Werewolves or the Villagers win the game.

Winning. The Werewolves win if the number of remaining
Werewolves is equal to the number of remaining Villagers.
The Villagers win if both Werewolves are eliminated.

The observation of each player is a list of information in
natural language that describes the current game history.
This includes their ID, hidden role, secret actions at night
(if any) as well as the announcements, discussions, and
voting results in the day rounds. Werewolves also have
their teammate’s ID and secret actions in the observation.
The players’ actions are also in natural language and can
be divided into three types. The first type is secret actions
at night including killing, seeing, and saving that choose a
specific player as the target. The second type is statement

actions during discussion that share information and convey
the player’s opinion. The last type is voting actions that vote
for one surviving player or choose not to vote.

3.2. Challenges for LLM-Based Agents

Werewolf is a challenging mixed cooperative-competitive
game that involves deceptive communication and strategic
gameplay. Its high demand for language proficiency ne-
cessitates the use of LLMs to build intelligent agents. We
identify two major challenges of Werewolf that pose higher
requirements on the ability of LLM-based agents.

The first challenge is to deduce hidden information from
deceptive communication. With the existence of unknown
opponents, agents could be misled by manipulative state-
ments and fail to make accurate judgments about other play-
ers. This requires the agents to distinguish between truths
and lies and deduce the hidden roles of other players.

The second challenge is to overcome the intrinsic bias in
LLMs and optimize decision-making. As illustrated by
the Rock-Paper-Scissor example in Fig 1, pure LLM-based
agents could have suboptimal biases in their action distri-
butions, hindering their ability to make stronger decisions.
This issue becomes more pronounced in competitive games
like Werewolf because opponents can exploit the biased dis-
tributions to predict the agents’ behaviors and counteract to
gain advantages. Therefore, agents must overcome intrinsic
bias to reduce exploitation and achieve strong performance.

4. Strategic Language Agents

To address the aforementioned challenges, we propose a
novel framework that powers LLM-based agents with RL
training to build agents that generate flexible language ac-
tions and possess strong decision-making ability, which we
call strategic language agents. As shown in Fig. 3, our
agents consist of three components: hidden role deduction,
diverse action generation, and population-based RL training.

4.1. Hidden Role Deduction

The first component aims to improve our agents’ deductive
reasoning ability in the presence of deceptive information.
we use an LLM to convert the raw observation into an orga-
nized information record and a structured deduction result.
The information record extracts key information and distin-
guishes between truthful and deceptive statements, while
the deduction result infers the hidden role of each player
and rates their reliability. These structured and informative
data serve as inputs for the next two components and lay the
foundation for subsequent decision-making.

Concretely, the information record categorizes the raw ob-
servation, which is a list of information in natural language,

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

(1) Hidden Role Deduction

-

(3) Population-Based
RL Training

(2) Diverse Action
Generation

Action 1: I'm the Seer and | saw
Player 0 is a Werewolf ...

RL policy

1 Population-based training

Action 2: | think Player O is a little
suspicious because ...

®

Action N: I'm saddened by the loss
of Player 4 ...

[Werewolf] [Werewolf]

style 1 style M

Villager .
style 1

Villager
style M

raw observation information record deduction result

1
1
1
1
1
1
You are Player 3, your : Facts Player 0
role is the Seer. : [1] You are Player 3, your * Role: Werewolf.
| role is the Seer. * Reliability: 1.
You saw Player O is a 1 | [2] You saw Player O is a <+« Reasoning: | saw Player 0
Werewolf in night 1. : Werewolf in night 1. is a Werewolf.
| [3] Player 4 was killed in * Evidence: [1, 2].
Player 4 was killed in 1 night 1.
night 1. - : +
1 | Potential truths
In day 1 | [4] In day 1, Player 1 said: ... @ Player 6
Player 0 said: ... : * Role: ...
Player 1 said: ... I | Potential deceptions . Reliability : ...
Player 2 said: ... ! | [5]In day 1, Player O said: ... * Reasoning: ...
: [6] In day 1, Player 2 said: ... * Evidence: [...]
1
1
1
1

1 1
1 1
1 1
1 1
1 1
1 1
! 1
| 1
1 1
1 1
1 1
1 1
1 1
1 1
I RL policy . Past 1
: itself checkpoints) :
1 1
1 1
[1
1 1
1 1
[1
1 1
1 1
[1
1 1
1 1
[1

action candidates

Figure 3: Overview of strategic language agents. (1) Hidden role deduction: categorize key information and deduce hidden
roles with the LLM to facilitate subsequent decision-making. (2) Diverse action generation: prompt the LLM for a diverse
set of action candidates to mitigate intrinsic bias. (3) Population-based RL training: learn a separate RL policy to optimize
the distribution over action candidates and enhance decision-making by playing against a population of various agents.

into three types including facts, potential truths, and po-
tential deceptions. All information except the statements
in discussion is categorized as facts, which encompass the
player’s role, secret actions, announcements, and voting
results. The statements are categorized according to the
speaker’s reliability in the deduction result. In our imple-
mentation, the reliability is rated on a scale from 1 to 10. If
a player’s reliability is larger than 6, their statements are re-
garded as potential truths, otherwise as potential deceptions.

With the organized information record, we then prompt
the LLM to deduce the hidden roles of other players. For
each player, the LLM is asked to generate four attributes
including role, reliability, reasoning, and evidence. The role
attribute infers the most likely hidden role of the player and
the reliability attribute rates the credibility of their state-
ments from 1 to 10. The reasoning attribute is an auxiliary
one that explicitly shows the deduction process. The last
evidence attribute is a list of integers that cite items from the
information record to support the current deduction. The ev-
idences are used to extract key information that contributes
to the deduction of hidden roles. If a statement is never
cited as evidence, it is regarded as an uninformative item
and removed from the information record. More detailed
designs and prompts can be found in Appendix B.

4.2. Diverse Action Generation

To mitigate the intrinsic bias of LLMs and reduce exploita-
tion from adversarial players, agents should be able to con-
sider a broader range of reasonable actions instead of a
single biased action. We propose the diverse action gen-
eration component to prompt the LLM for a set of action
candidates with strategic diversity. More specifically, given
the information record and deduction result as input, we

consider two approaches to generate [V action candidates.

Vanilla Prompting. The first approach generates all ac-
tion candidates in a single inference by asking the LLM
to propose IV diverse action candidates that correspond to
different strategies. This approach is simple yet effective for
easier actions like secret actions and voting actions, which
only need to choose a player as the target.

Iterative Prompting. The second approach prompts the
LLM for N times and iteratively generates one action candi-
date at a time. In each inference, we add the existing action
candidates to the input and ask the LLM to propose a new
action candidate that is strategically different from existing
ones. By having more interactions with the LL.M, this ap-
proach is empirically found to produce better performance
for more complex actions like statement actions.

In our implementation, we use the first approach to generate
secret actions and vote actions for fewer inferences, and the
second approach to generate statement actions for higher
quality. We also ask the LLM to output their reasoning for
each action candidate for interpretability and better perfor-
mance. The detailed prompts can be found in Appendix B.

4.3. Population-Based RL Training

With the diverse set of action candidates, agents can avoid
fixed patterns and choose from a variety of actions to take.
Although random sampling already leads to unpredictable
play, the optimal policy in most cases is a non-uniform dis-
tribution over the action candidates. Directly fine-tuning the
LLM to refine the distribution requires a substantial amount
of data and computation. We take an alternative approach
that efficiently learns a smaller RL policy to optimize the
action distribution and enhance decision-making ability by

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Pure LLM-Based Agent

1.0-

04-. 0.38
0.29
0.2- 012 o011 0.5-
0.06
oo e
0.0 - ‘ ‘ ‘ ————— - 0.0 -
0 1 2 3

4 5 6

Strategic Language Agent

0.4- 1.0-
) 0.17 -
02- 013 o1 014 013 0.16 0.15 0.5
0.0- =% ' ' ' ' ' ‘ 0.0-
0 1 2 3 4 5 6

(a) Werewolf first night action.

Pure LLM-Based Agent

Strategic Language Agent

(b) Doctor first night action.

Pure LLM-Based Agent

0.75 - 0.69
0.62 0.50 -
0.38
. - - -
0.0
0.0 H I NN °

self others not vote right wrong others

Strategic Language Agent

0.94 0.75 -
0.49
0.50 0.37
0.25 0.13
0.06 0.01
0 i 0.00 0 0 0 0
self others not vote right wrong others

(c) Villager voting action.

Figure 4: Comparison of the action distributions of the pure LLM-based agent and our strategic language agent.

playing against a population of various agents.

The main difference between our setting and classic RL
environments is that the action space of our policy is a set
of language actions generated during the game. Because
the action space is not predefined, we cannot use typical
policy networks that only take the observation as input and
produce a distribution over the fixed action set. Instead, we
adopt a self-attention network (Vaswani et al., 2017) that
takes the observation and all action candidates as input to
produce the action distribution. Concretely, the observation
and action candidates in natural language are converted to
vector embeddings using the LLM embedding API. We also
use a vector to include player-specific information like their
ID, role, etc. and pass it through an encoder to produce
a player embedding of the same dimension. The player
embedding, observation embedding, and action candidate
embeddings are passed through a residual self-attention
block, and the probability to sample an action candidate is
proportional to the scaled dot-product attention between the
observation embedding and action candidate embedding.

To achieve strong and robust performance with various team-
mates and opponents, we train the RL policy with a popula-
tion of diverse agents. This is because real-world games are
usually non-transitive (Czarnecki et al., 2020), i.e., the poli-
cies may cycle like Rock-Paper-Scissors, and population-
based training can help agents get over the endless cycles
and achieve a higher level of play. Our agent population con-
sists of two types of policies. The first type is the RL policy
itself and its past checkpoints. Training with these policies
resembles self-play and fictitious play. The second type is
pure LLM-based agents with predefined play styles, which
introduce more strategic diversity. These agents only have
the first hidden role deduction component and generate one

action according to their predefined styles. In our implemen-
tation, we consider three common styles for the Werewolves
and three styles for the Villagers. More implementation and
training details can be found in Appendix C.

5. Experiments

We conduct experiments from four different aspects to com-
prehensively evaluate the performance of strategic language
agents. We first perform case studies and visualize the ac-
tion distributions of our agents to check if they address the
intrinsic bias issue. Then we compare our agents with four
existing LLM-based agents in a round-robin tournament
to assess their decision-making ability. Furthermore, we
conduct human-agent experiments to evaluate their perfor-
mance with and against human players. We also perform
ablation studies to investigate the contribution of the key
components in our design. More experiments, discussions,
and emergent behaviors can be found in Appendix D, E, F.

5.1. Case Studies

To validate that our method overcomes the intrinsic bias in
LLMs, we investigate three typical situations in the Were-
wolf game and compare the action distributions of our agents
with a pure LLM-based agent that only has the hidden role
deduction component and follows ReAct (Yao et al., 2022b)
to generate one single action to play.

Werewolf First Night Action. On the first night, the Were-
wolves need to choose a player to kill without any informa-
tion. Their optimal policy is to randomly choose a player
other than themselves so that the Doctor cannot predict and
save the victim. However, as shown in Fig. 4(a), the pure
LLM-based agent has a clear bias toward killing Player O,

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Win Rate of the Villagers

) 0.19
g (0.03)
S 026 0.26
g (0.02) (0.02) (0.03)

0 .

Do

S £ 027 025 026

> 2 (0.02) (0.01) (0.04)

o 9

c O

—
£ 0.34 0.31 0.33 0.30 0.27
S (0.02) (0.03) (0.03) (0.02) (0.02)
g 0.36 0.30
3 (0.02) (0.03)

ReAct ReCon Concurrent Atomic Ours

The Werewolves

Figure 5: Win rate matrix of the round-robin tournament.

which could be exploited by a Doctor who always saves
Player 0. By contrast, our agents produce an almost uniform
distribution which is close to the optimal policy.

Doctor First Night Action. The Doctor also needs to
choose a player to save without knowing who is the vic-
tim on the first night. From the Doctor’s perspective, any
player other than themselves could be a Werewolf, and sav-
ing others may waste the action on a Werewolf. Therefore,
the optimal policy for the Doctor is to always save them-
selves on the first night. As shown in Fig. 4(b), the pure
LLM-based agent exhibits a suboptimal policy that saves
others with a probability of 0.38, while our agents learn to
save themselves with a high probability of 0.94.

Villager Voting Action with Two Self-Proclaimed Seers.
Another common situation is when two players claim to be
the Seer and the Villagers need to choose their actions in
the voting phase. The pure LLM-based agent tends to make
conservative decisions and chooses not to vote with a high
probability of 0.69, as shown in Fig 4(c). However, one of
the self-proclaimed Seers must be a Werewolf and not voting
for any player only makes it easier for the Werewolves to
control the voting result and eliminate the real Seer. In
comparison, our agents have a much lower probability for
choosing not to vote and learn to identify and vote out the
right Werewolf who pretends to be the Seer.

5.2. Round-Robin Tournament

We evaluate the performance of our agents in the Werewolf
game by playing against existing LLM-based agents. Be-

cause there is only one agent (Xu et al., 2023a) that works
out of the box for Werewolf, we make our best effort to se-
lect four representative methods as baselines and make them
compatible with our environment. We implement the Re-
Act (Yao et al., 2022b) agent by directly prompting the LLM
with the raw observation to generate both reasoning and
action. ReCon (Wang et al., 2023b) is originally designed
for Avalon and generates actions by planning from their own
perspective and refining the plan from others’ perspective.
The Concurrent agent (Xu et al., 2023a) considers a differ-
ent version of the Werewolf game and employs heuristic
information retrieval and reflection on past experiences. We
make necessary changes to the prompts of ReCon and Con-
current to apply them in our setting. The Afromic agent is
inspired by Cicero (Meta et al., 2022) and has a predefined
set of 13 atomic actions like “target Player 0, “claim to
be the Seer”, etc. This agent learns an RL policy to select
an atomic action based on the raw observation and then
prompts the LLM to follow the atomic action and generate
the language action used in actual gameplay.

We let our agents and these four baseline agents participate
in a round-robin tournament that runs head-to-head compe-
titions between each pair of agents. For a pair of agents (A,
B), we run 100 Werewolf games with five A agents being
the Villagers and two B agents being the Werewolves. This
leads to a 5 x 5 cross-play matrix in Fig. 5 that records
the win rates of the Villagers. For example, the value in
the first row and last column corresponds to the win rate
of ReAct when it plays as the Villagers against our agents
as the Werewolves. The row in the matrix represents the
agent’s performance as the Villagers against different oppo-
nents, and a row with higher (red) values means stronger
performance as the Villagers. As shown by the bold num-
bers in the last row, our agents achieve the highest win rates
as the Villagers against all agents. Similarly, the column
represents the agent’s performance as the Werewolves and
smaller (blue) values mean lower win rates of their oppo-
nents, indicating stronger performance as the Werewolves.
The last column with underlined numbers shows that our
agents also achieve the best performance as the Werewolves.

The strong decision-making ability of our agents comes
from the combination of an LLM to generate flexible lan-
guage actions and an RL policy to overcome intrinsic bias.
The React, ReCon, and Concurrent agents directly generate
language actions with an LLM. Even if the latter two have
specific designs for social deduction games, they still face
the intrinsic bias issue and have unsatisfactory performance.
On the other hand, although the Afomic agent also combines
an LLM with an RL policy, its language generation is con-
ditioned on the predefined action set which is hard, if not
impossible, to cover the unbounded language space. More
examples and analysis can be found in Appendix E.

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Play with Six Copies of Our Agents

Play with Six Human Players

Win Rate Pure LLM-Based Ours Human Pure LLM-Based Ours Human
As the Villagers 0.25 (0.03) 0.30 (0.03) 0.28 (0.06) 0.29 (0.06) 0.36 (0.05) 0.38 (0.07)
As the Werewolves 0.61 (0.05) 0.70 (0.03) 0.67 (0.08) 0.54 (0.08) 0.67 (0.06) 0.66 (0.08)
Overall 0.42 (0.04) 0.50 (0.03) 0.48 (0.07) 0.42 (0.07) 0.52 (0.06) 0.52 (0.08)

Table 1: Win rate of one Al agent or human when playing with six copies of our agents and playing with six human players.

Win Rate As the Villagers As the Werewolves Win Rate As the Villagers As the Werewolves
Ours 0.30 (0.03) 0.70 (0.03) Ours (PBT) 0.30 (0.03) 0.70 (0.03)
- RL Policy 0.23 (0.03) 0.61 (0.04) Self-Play 0.26 (0.04) 0.66 (0.02)
- Diversity 0.22 (0.04) 0.61 (0.05)
- Deduction 0.16 (0.02) 0.54 (0.04) Table 4: Ablation on agent population.

Table 2: Ablation on key components.

Win Rate As the Villagers As the Werewolves
Ours 0.30 (0.03) 0.70 (0.03)
- Evidence 0.28 (0.04) 0.67 (0.03)
- Reasoning 0.25 (0.03) 0.66 (0.05)
- Reliability 0.23 (0.02) 0.62 (0.04)

Table 3: Ablation on deduction attributes.

5.3. Human Evaluation

We further conduct human-agent experiments to evaluate
the performance of our agents. Concretely, we compare
our agents with human players and the pure LLM-based
agent used in Section 5.1 in two setups of the seven-player
Werewolf game. The first setup is to let one human or
one Al agent play with six copies of our agents, and the
second setup is to let one Al agent or one human play with
six human players. We recruited 160 human players and
randomly assigned each player to one of the two setups to
play 10 consecutive games. The human players know who
are the Al agents and the hidden roles are assigned randomly
in each game. Additional details of the human evaluation
procedure can be found in Apendix D.7.

We report the win rate of the one Al agent and one human
player both as the Werewolves and as the Villagers in Table 1
and each entry is averaged over 100 games. In both setups,
comparing the results in the “Pure LLM-Based” column
and “Ours” column shows that our agents achieve higher
win rates than the pure LLM-based agent when playing with
six copies of our agents and when playing with six human
players. This result validates that our framework to combine
the LLM with the RL policy leads to stronger performance
in the Werewolf game. In addition, when playing with six
copies of our agents, the results in the “Ours” column and
the “Human” column show that our agents achieve higher
win rates than human players, both as the Werewolves and as

the Villagers. More interestingly, when playing with six hu-
man players, our agents also achieve comparable win rates
to human players. Note that our agents are not trained with
real humans, this result shows the strong robustness of our
agents to both cooperate with and compete against unseen
human players and achieve human-level performance.

5.4. Ablation Study

Key Components. We consider three ablated agents by
gradually removing the three key components from our
agents and evaluating their performance by playing against
our agents. The “- RL policy” agent uses the LLM to choose
from the action candidates instead of the RL policy. The
“- Diversity” agent further removes the diverse action gener-
ation component and directly prompts the LLM to produce
one action. The “- Deduction” agent removes all three com-
ponents and directly generates an action based on the raw
observation. The results in Table 2 show that all three com-
ponents contribute to the improvement in performance. It
is also worth noting that, although the “- RL policy” agent
generates diverse action candidates, its win rates are compa-
rable to the “- Diversity” agent. This is because using the
LLM to choose from the action candidates still suffers from
intrinsic bias. This issue is fully solved by adding the RL
policy to optimize decision-making.

Deduction Attributes. We study the contribution of the
four attributes in hidden role deduction by gradually remov-
ing the evidence, reasoning, and reliability attributes and
evaluating against our agents. The results in Table 3 show
that using all four attributes gives the best performance.

Agent Population. We also learn an agent using self-play
instead of population-based training (PBT) and compare it
with our agents. The results in Table 4 show that our agents
achieve higher win rate both as the Villagers and as the
Werewolf. This aligns with the results in other real-world
games that introducing more diversity to the population
makes the policy more robust (Czarnecki et al., 2020).

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

6. Conclusion

We propose a novel framework that combines an LLM with
an RL policy to build strategic language agents that over-
come the intrinsic bias of pure LLM-based agents. Our
agents deduce hidden information by categorizing key infor-
mation and inferring hidden roles with the LLM. To address
the issue of intrinsic bias, our agents generate a diverse set
of action candidates and learn an RL policy to choose from
the action candidates. By powering LLM-based agents with
an RL policy, our agents outperform existing LLM-based
agents and achieve human-level play in the Werewolf game.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China (N0.62325405, U19B2019, M-0248),
Tsinghua University Initiative Scientific Research Program,
Tsinghua-Meituan Joint Institute for Digital Life, Beijing
National Research Center for Information Science, Tech-
nology (BNRist), Beijing Innovation Center for Future
Chips and 2030 Innovation Megaprojects of China (Pro-
gramme on New Generation Artificial Intelligence) Grant
No. 2021AAA0150000.

Impact Statement

While the intent of our work is to develop LLM-based agents
with strong decision-making ability in the Werewolf games,
it also raises important ethical concerns regarding Al agents’
deceptions to human participants and the potential misuse
of our approach. We strictly follow principles for ethical
research in our study and make our best efforts to reduce any
potential harm to participants in our human-Al experiment
and the broader human society.

To ensure minimal negative impact on human participants in
our study, we conduct the human-agent experiment with de-
partment approval and allow each participant to take part in
the study after agreeing to the consent form. We mention ex-
plicitly in the consent form that the Werewolf game contains
deceptive communications and the Al agents may have dis-
honest statements in the game. The participant can choose
to stop participating at any time during the experiment.

We are also committed to prevent the misuse of our approach
in ways that could harm human society. On the one hand,
our implementation of strategic language agents focuses on
the pure text-based environment of Werewolf and cannot
be directly applied to other real-world situations. On the
other hand, our experiment results show that our agents have
stronger ability to identify and counteract deceptions than
existing LLM-based agents. This make it possible to use
our agents to help humans recognize manipulative content
and prevent potential malicious use with harmful intent.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P,,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418-424, 2018.

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885-890, 2019.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep
counterfactual regret minimization. In International con-
ference on machine learning, pp. 793-802. PMLR, 2019.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C., Chan,
C.-M,, Qin, Y., Lu, Y., Xie, R., et al. Agentverse: Facili-
tating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848,
2023.

Czarnecki, W. M., Gidel, G., Tracey, B., Tuyls, K., Omid-
shafiei, S., Balduzzi, D., and Jaderberg, M. Real world
games look like spinning tops. Advances in Neural Infor-
mation Processing Systems, 33:17443-17454, 2020.

Deng, X., Gu, Y., Zheng, B., Chen, S., Stevens, S., Wang,
B., Sun, H., and Su, Y. Mind2web: Towards a generalist
agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Gandhi, K., Sadigh, D., and Goodman, N. D. Strate-
gic reasoning with language models. arXiv preprint
arXiv:2305.19165, 2023.

Goodwin, R. Formalizing properties of agents. Journal of
Logic and Computation, 5(6):763-781, 1995.

Heinrich, J. and Silver, D. Deep reinforcement learning
from self-play in imperfect-information games. arXiv
preprint arXiv:1603.01121, 2016.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play
in extensive-form games. In International conference on
machine learning, pp. 805-813. PMLR, 2015.

Hennes, D., Morrill, D., Omidshafiei, S., Munos, R., Pero-
lat, J., Lanctot, M., Gruslys, A., Lespiau, J.-B., Parmas,
P., Duéfiez-Guzman, E., et al. Neural replicator dynam-
ics: Multiagent learning via hedging policy gradients. In

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Proceedings of the 19th international conference on au-
tonomous agents and multiagent systems, pp. 492-501,
2020.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pp. 9118-9147.
PMLR, 2022a.

Huang, W., Xia, F,, Xiao, T., Chan, H., Liang, J., Florence,
P, Zeng, A., Tompson, J., Mordatch, 1., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022b.

Lanctot, M., Waugh, K., Zinkevich, M., and Bowling, M.
Monte carlo sampling for regret minimization in exten-

sive games. Advances in neural information processing
systems, 22, 2009.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,
Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement

learning. Advances in neural information processing
systems, 30, 2017.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for" mind"
exploration of large scale language model society. arXiv
preprint arXiv:2303.17760, 2023.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas,
J., and Stone, P. LIm+ p: Empowering large language
models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Ma, W., Mi, Q., Yan, X., Wu, Y., Lin, R., Zhang, H., and
Wang, J. Large language models play starcraft ii: Bench-
marks and a chain of summarization approach. arXiv
preprint arXiv:2312.11865, 2023.

Meta, Bakhtin, A., Brown, N., Dinan, E., Farina, G., Fla-
herty, C., Fried, D., Goff, A., Gray, J., Hu, H., et al.
Human-level play in the game of diplomacy by combin-

ing language models with strategic reasoning. Science,
378(6624):1067-1074, 2022.

Moravcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508-513,
2017.

Muller, P., Omidshafiei, S., Rowland, M., Tuyls, K., Perolat,
J., Liu, S., Hennes, D., Marris, L., Lanctot, M., Hughes,
E., et al. A generalized training approach for multiagent
learning. arXiv preprint arXiv:1909.12823, 2019.

10

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim,
C., Hesse, C., Jain, S., Kosaraju, V., Saunders, W., et al.
Webgpt: Browser-assisted question-answering with hu-
man feedback. arXiv preprint arXiv:2112.09332, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in Neural Information
Processing Systems, 35:27730-27744, 2022.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R,
Liang, P, and Bernstein, M. S. Generative agents: In-
teractive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Serrino, J., Kleiman-Weiner, M., Parkes, D. C., and Tenen-
baum, J. Finding friend and foe in multi-agent games.

Advances in Neural Information Processing Systems, 32,
2019.

Shah, D., Osinski, B., Levine, S., et al. Lm-nav: Robotic
navigation with large pre-trained models of language,

vision, and action. In Conference on Robot Learning, pp.
492-504. PMLR, 2023.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, L.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140-1144, 2018.

Tammelin, O. Solving large imperfect information games
using cfr+. arXiv preprint arXiv:1407.5042, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vemprala, S., Bonatti, R., Bucker, A., and Kapoor, A. Chat-
gpt for robotics: Design principles and model abilities.
Microsoft Auton. Syst. Robot. Res, 2:20, 2023.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P, et al. Grandmaster level in starcraft ii

using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, S., Liu, C., Zheng, Z., Qi, S., Chen, S., Yang, Q.,
Zhao, A., Wang, C., Song, S., and Huang, G. Avalon’s
game of thoughts: Battle against deception through re-
cursive contemplation. arXiv preprint arXiv:2310.01320,
2023b.

Wang, T. and Kaneko, T. Application of deep reinforcement
learning in werewolf game agents. In 2018 Conference on
Technologies and Applications of Artificial Intelligence
(TAAI), pp. 28-33. IEEE, 2018.

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. Describe,
explain, plan and select: Interactive planning with large
language models enables open-world multi-task agents.
arXiv preprint arXiv:2302.01560, 2023c.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V,, Zhou, D, et al. Chain-of-thought
prompting elicits reasoning in large language models.

Advances in Neural Information Processing Systems, 35:
24824-24837, 2022b.

Williams, R., Hosseinichimeh, N., Majumdar, A., and Ghaf-
farzadegan, N. Epidemic modeling with generative agents.
arXiv preprint arXiv:2307.04986, 2023.

Wooldridge, M. and Jennings, N. R. Intelligent agents:
Theory and practice. The knowledge engineering review,
10(2):115-152, 1995.

Xu, Y., Wang, S., Li, P,, Luo, F., Wang, X., Liu, W., and Liu,
Y. Exploring large language models for communication
games: An empirical study on werewolf. arXiv preprint
arXiv:2309.04658, 2023a.

Xu, Z., Liang, Y., Yu, C., Wang, Y., and Wu, Y. Fictitious
cross-play: Learning global nash equilibrium in mixed
cooperative-competitive games. In Proceedings of the
2023 International Conference on Autonomous Agents
and Multiagent Systems, pp. 1053-1061, 2023b.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
shop: Towards scalable real-world web interaction with
grounded language agents. Advances in Neural Informa-
tion Processing Systems, 35:20744-20757, 2022a.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting

11

in language models. arXiv preprint arXiv:2210.03629,
2022b.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate prob-
lem solving with large language models. arXiv preprint
arXiv:2305.10601, 2023.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A.,
and Wu, Y. The surprising effectiveness of ppo in cooper-
ative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611-24624, 2022.

Zheng, B., Gou, B., Kil, J., Sun, H., and Su, Y. Gpt-4v
(ision) is a generalist web agent, if grounded. arXiv
preprint arXiv:2401.01614, 2024.

Zinkevich, M., Johanson, M., Bowling, M., and Piccione, C.
Regret minimization in games with incomplete informa-
tion. Advances in neural information processing systems,
20, 2007.

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Our project website is at https://sites.google.com/view/strategic-language-agents/

A. Detailed Rules of the Game

Setup. At the beginning of each game, seven roles including two Werewolves, one Seer, one Doctor, and three Villagers are
randomly assigned to the seven players. The Werewolves know each other’s identity, while the Seer, Doctor, and Villagers
only know their own identity. The players are denoted as “player_0”, “player_1", ... “player_6" in the game.

Night Round. In the night round, the alive Werewolves, Seer, and Doctor can use their ability and take secret actions. These
actions are only known to themselves and their teammates.

* Werewolf: choose a player to kill. If there are two Werewolves alive, the Werewolf with a smaller ID first proposes
a player to kill. Then the proposal is added to the observation of the other Werewolf and this Werewolf decides the
final kill target. For example, if player_O and player_2 are the Werewolves, player_O first proposes to kill player_i,
then player_2 knows this information and decides to kill player_j. The final kill target is player_j. If there is only one
Werewolf alive, then this Werewolf’s action is the final kill target. The Werewolf is not allowed to kill a dead player or
kill themselves or kill their teammate.

» Seer: choose a player to see if they are a Werewolf. The Seer is not allowed to see the identity of a dead player or
themselves. The Seer is allowed to see the same player in different nights, though it is a waste of action.

* Doctor: choose a player to save without knowing who is the target of the Werewolves. The Doctor is not allowed to
save a dead player and is allowed to save themselves.

Day Round Announcement. An announcement about last night’s result is announced to all remaining players. If a player is
killed, they are immediately moved out of the game and cannot reveal their role or communicate with other players. The
announcement is as follows.

* If the Werewolves choose to kill player_i and the Doctor chooses to save a different player_j (or the Doctor is dead),
then player_i is killed and the announcement will be “player_i was killed last night”.

* If the Werewolves choose to kill player_i and the Doctor also chooses to save player_i, then no player is killed and the
announcement will be “no player was killed last night”.

Day Round Discussion. All remaining players take turns to speak only once in an open discussion. For example, if the
remaining players are player_0, player_2, and player_5, then the discussion will start with player_0, continue to player_2,
and end with player_5.

Day Round Voting. All remaining players simultaneously vote for one player or choose not to vote. Players are not allowed
to vote for a dead player or themselves. The player with the most votes will be eliminated without revealing their role. If
multiple players have the most votes, one player is randomly chosen and eliminated. The voting result is public and can be
observed by all players.

Winning. The Werewolves win the game when the number of remaining Werewolves is equal to the number of other
remaining players. The Werewolves do not have to eliminate all other players to win the game. The Villagers win the game
when both Werewolves are eliminated.

B. Detailed Prompts

Since any prompting technique can be combined with our diverse action generation component and the population-based RL
training component, we do not optimize every detail of the prompting choices as long as they produce reasonable results. It
is possible to further improve the performance of our agents by using better prompting techniques.

B.1. Prompt for the Rock-Paper-Scissor Example

The prompt used in the Rock-Paper-Scissor Example in Fig 1 is listed below. We use “gpt-4-1106-preview” model to
produce the result.

12

https://sites.google.com/view/strategic-language-agents/

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

You are playing the Rock-Paper-Scissors game. You should first reason about the Nash equilibrium
strategy of this game, and then choose one action from Rock, Paper, and Scissors based on your reasoning.

You should only respond in JSON format as described below Response Format

{
"reasoning”: reason about the Nash equilibrium strategy of this game,
"action”: choose one action from ["Rock”, "Paper"”, "Scissors"] based on your reasoning
}
B.2. System Prompt

The system prompt used in our method is listed below.

You are an expert in playing the social deduction game named Werewolf. The game has seven roles
including two Werewolves, one Seer, one Doctor, and three Villagers. There are seven players including
player_@, player_1, player_2, player_3, player_4, player_5, and player_6.

At the beginning of the game, each player is assigned a hidden role which divides them into
the Werewolves and the Villagers (Seer, Doctor, Villagers). Then the game alternates between the night
round and the day round until one side wins the game.

In the night round: the Werewolves choose one player to kill; the Seer chooses one player to
see if they are a Werewolf; the Doctor chooses one player including themselves to save without knowing
who is chosen by the Werewolves; the Villagers do nothing.

In the day round: three phases including an announcement phase, a discussion phase, and a
voting phase are performed in order.

In the announcement phase, an announcement of last night’s result is made to all players. If player_i
was killed and not saved last night, the announcement will be "player_i was killed”; if a player was
killed and saved last night, the announcement will be "no player was killed”

In the discussion phase, each remaining player speaks only once in order from player_@ to player_6 to
discuss who might be the Werewolves.

In the voting phase, each player votes for one player or choose not to vote. The player with the most
votes is eliminated and the game continues to the next night round.

The Werewolves win the game if the number of remaining Werewolves is equal to the number of
remaining Seer, Doctor, and Villagers. The Seer, Doctor, and Villagers win the game if all Werewolves
are eliminated.

B.3. Prompt for Secret Actions

The prompt for secret actions in our method is listed below.

Now it is night <n_round> round, you (and your teammate) should choose one player to kill/see/save. As
player_<id> and a <role>, you should first reason about the current situation, then choose from the
following actions: <action_0>, <action_1>, .,
You should only respond in JSON format as described below.
Response Format:

13

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

"reasoning”: "reason about the current situation”,
n i3 n n 5 s n
action”: "kill/see/save player_i

3

Ensure the response can be parsed by Python json.loads

B.4. Prompt for Statement Actions

The prompt for statement actions in our method is listed below.

Now it is day <n_round> discussion phase and it is your turn to speak. As player_<id> and a <role>,
before speaking to the other players, you should first reason the current situation only to yourself,
and then speak to all other players. You should only respond in JSON format as described below.
Response Format:

{
"reasoning”: "reason about the current situation only to yourself”,
"statement”: "speak to all other players”

}

Ensure the response can be parsed by Python json.loads

B.5. Prompt for Voting Actions

The prompt for voting actions in our method is listed below.

Now it is day <n_round> voting phase, you should vote for one player or do not vote to maximize the
Werewolves’ benefit (for the Werewolves) / you should vote for one player that is most likely to be a
Werewolf or do not vote (for the Villagers). As player_<id> and a <role>, you should first reason about
the current situation, and then choose from the following actions: do no vote, <action_0>, <action_1>,

°©p

You should only respond in JSON format as described below.
Response Format:
{
"reasoning”: "reason about the current situation”,
"action”: "vote for player_i"

3

Ensure the response can be parsed by Python json.loads

B.6. Prompt for Deductive Reasoning

For clarity of the main text, we introduce four attributes including role, reliability, reasoning, and evidence. However, in
practice, the word “reliability” can be confusing to LLMs because it can refer to the reliability of the player or refer to the
reliability of the deduction result, which leads to completely rating results. To avoid this problem, we use “confidence” to
replace “reliability” in our implementation to prompt the LLM for deduction result. Concretely, “confidence” is an integer
ranging from 5 to 10 that rates the certainty of the deduction result of the current player’s role. A confidence of 5 means a
random guess of role and a confidence of 10 means absolutely sure about the role.

After the LLM produces the confidence for each player’s role, we then use confidence to compute the player’s reliability. If
a player is deduced to be a Werewolf and the confidence for this deduction is high, then this player is likely to be a real
Werewolf and should have a low reliability. Therefore, the reliability of a player deduced to be a Werewolf is calculated as
11 - confidence. Likewise, if a player is deduced to be a non-Werewolf and the confidence is high, then this player should
have a high reliability. We let the reliability of such players to be equal to the confidence. We also allow the LLM to deduce
the role of a player as “Uncertain”. The confidence for an “Uncertain” player is set to a fixed value of 6.

The prompt for deductive reasoning in our method is listed below.

14

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

As player_<id> and a <role>, you should reflect on your previous deduction and reconsider the hidden
roles of <remaining players>. You should provide your reasoning, rate your confidence, and cite all
key information as evidence to support your deduction.

You should only respond in JSON format as described below.
Response Format:

{
"player_i": {
"role”: select the most likely hidden role of this player from
["Werewolf"”, "Seer"”, "Doctor”, "Villager"”, "Uncertain"],
"reasoning”: your reflection and reasoning,
"confidence"”: rate the confidence of your deduction from 5 (pure guess)
to 10 (absolutely sure),
"evidence”: list of integers that cite the key information
}
}

Ensure the response can be parsed by Python json.loads

B.7. Prompt for Diverse Action Generation

We use two kinds of methods to get NV action candidates.

* For the secret actions and voting actions, we produce all actions in a single inference by adding the following prompt
in the action prompt: “propose N diverse actions that correspond to different strategies.”

* For the statement actions, we iteratively asks the LLMs to produce one new action at a time by adding the following
prompt in the action prompt: “consider a new action that is strategically different from existing ones.”

Below are two examples of the diverse action candidates generated by the LLM.

Our agent (player_0) as the Doctor in the night round.

Action candidate 1.

e Reasoning: Based on the facts and deductions, player_2 is likely to be a Seer. If I save player_2
tonight, it will prevent the Werewolf from eliminating another player. This strategy focuses on
protecting the remaining non-Werewolf players

e Action: save player_2.
Action candidate 2.

* Reasoning: Considering that player_3 may be a Non-Werewolf, saving player_3 tonight could benefit
the non-Werewolf team. It would increase the chances of eliminating the Werewolf in the upcoming
day round. This strategy prioritizes potential collaboration with player_3.

e Action: save player_3.
Action candidate 3.

e Reasoning: As player_0, I have information that I am the Doctor. Protecting myself could be a wise
choice to ensure the non-Werewolf team has a higher chance of winning. This strategy prioritizes
self-preservation.

e Action: save player_0.

15

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Our agent (player_4) as a Werewolf in the discussion phase.

Action candidate 1.

e Reasoning: As a Werewolf, my goal is to eliminate the Seer, Doctor, and Villagers in order to
win the game. Since player_1 is likely to be a Seer, it is in my best interest to cast suspicion
on them and try to get them eliminated. This will make it easier for me to target the remaining
players in the following nights.

e Discussion: I think we should start by discussing player_1’s role. As a Seer, I saw that they are
the Werewolf last night and we should vote to eliminate them. I encourage everyone to share their
thoughts on player_1 and provide any information or suspicions they may have.

Action candidate 2.

* Reasoning: Another possible strategy is to divert suspicion away from player_1 and instead focus
on player_2 or player_3. By doing this, we can create confusion among the remaining players and
make it harder for them to trust each other. This can potentially lead to miscommunication and
mistakes in their decision-making process.

* Discussion: I suggest we consider the possibility that player_2 or player_3 might be the Werewolf.
It’s important for us to thoroughly discuss and analyze their behavior, actions, and any information
we may have about them. Let’s hear from each player and gather as much information as possible.

Action candidate 3.

* Reasoning: A third strategy is to remain silent and not actively participate in the discussion. By
doing so, I can create doubt and suspicion among the other players. They may start suspecting each
other and questioning why I am not participating. This can potentially lead to a split in their
trust and unity, making it easier for me to manipulate the situation in my favor.

e Discussion: I would like to observe the discussion for now and hear what each player has to say.
It’s important for us to thoroughly analyze all the information and opinions shared. Let’s have an
open and honest discussion where everyone gets a chance to voice their thoughts and suspicions.

B.8. Prompt for Different Styles

We consider the following three different play styles for the pure LLM-based Werewolf agent in our population-based
training. The prompt for each style is listed below.

1.

Quiet follower: “As a Werewolf, you should be a quiet follower that lays low and follow others’ opinion to avoid
drawing attention to yourself.”

Active contributor: “As a Werewolf, you should be an active contributor that pretends to be one of the Villagers by
actively engaging in discussion and looking for Werewolves.”

Aggressive accusor: “As a Werewolf, you should be an aggressive accuser that accuses others to create chaos and divert
suspicion from yourself.”

We also consider the three different play styles for the pure LLM-based Villager agent in our population-based training. The
prompt for each style is listed below.

1

. Secretive player: “As the Seer / the Doctor / a Villager, you should be a secretive player that hides your role to gather

more information.”

2. Proactive player: “As the Seer / the Doctor / a Villager, you should be a proactive player that reveals you identity once

you obtain crucial information.”

3. Default player: no additional prompt.

B.9. Text Embedding

We use OpenAl’s “text-embedding-ada-002” model to get the text embeddings.

16

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Player Vector
ID, role, ...

Language Observation
Information record

Language Action 1: you
say “I'm the Seer and |

Language Action 2: you
say “I think player_0O is a

Language Action N: you
say “I’'m saddened by

Deduction ... deduction result saw player_Ois ...” little suspicious ...” the loss of player_4 ...”

[[I [[

[Encoder] [LLM Embedding API]
v v v v v

| €player | | €obs | | €action_1 | | €action_2 o €action_ N |
v v v v v

[Self-Attention]
v v v v v

| éplayer | | €obs | | éaction_l | | éacticn_z éaction_N |

average pooling |

= 1 dot-product attention
| Estate [

[
[Critic Head]

v v v 4
| value | | prob(action 1) | | prob(action 2) prob(action N)

Figure 6: Self-attention policy architecture.

C. Implementation Details
C.1. Self-Attention Policy Architecture

We use a self-attention policy and the architecture is shown in Fig. 6. The inputs are divided into three types and their
embeddings are produced as follows.

Player Vectors (Yellow). We first generate a player vector that includes information like the player’s ID, role, deductions,
etc. by one-hot encoding. The detail of the player vector is listed in Table 5. Then the player vector is fed into an MLP
encoder to get the player embedding for self-attention input.

Language Observation (Blue). The raw observation input is in the form of natural language and is the concatenation of the
information record and deduction result described in Section 4.1. This language observation input is then converted into
vector embedding using LLM embedding API. In our case, we use OpenAl’s “text-embedding-ada-002” and the length of
the embedding is 1536.

Language Action Candidates (Orange). For each action candidate, the raw input is also in the form of natural language
and is the concatenation of the reasoning and action as described in Section 4.2. Each raw input is then converted into vector
embedding using the same LLM embedding API as the language observation.

We use a residual self-attention network without position embeddings to generate contextualized player embedding,
observation embedding, and action embeddings. Then we average pool the player embedding and the observation embedding
to get the state embedding. The state embedding is fed into an MLP critic head to produce the predicted value. The
probability to sample an action candidate is proportional to the dot-product attention between the state embedding and the
corresponding action embedding.

C.2. Reward Design

The reward for the Werewolf environment is mainly the winning reward. We also designed several shaping rewards to
accelerate training. More specifically, we consider the following reward.

* Winning Reward: all winners +100, all losers -100.

* Werewolf Killing Reward: if the Werewolves successfully kill a player at night, the Werewolves +5, the Villagers
(Seer, Doctor, Villagers) -5.

17

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Length Description
ID 7 one hot encoding of ID.
ROle 4 " On? IVIVOt en'(':o"dlng Of 'I"O}'e’ . "
["Werewolf", "Seer", "Doctor", "Villager"].
Round 1 current round.
Phase 3 or'l'e hot fn::qdlng Qf c'l'lrl‘r‘ent 'phevlvse,
["night", "discussion", "voting"].
Alive players 7 alive flag for each player.
secret action 7 one hot encoding of the target player,

For each round (all zero if do not act).

(3 rounds) one hot encoding of the dead player,
announcement 7 . .
(all zero if no player is dead).
votine result 49 one hot encoding of the each player’s choice,
£ (all zero if the player does not vote or is dead).
one hot encoding of deduced role,
For each player role 4 " - " on "o "
(7 players) ["Werewolf", "Seer", "Doctor", "Villager"].
play confidence 1 confidence of deduction on scale 5-10.

Table 5: Details of the player vector.

* Seer Seeing Reward: if the Seer successfully identifies a Werewolf at night, the Werewolves -2, the Seer +2.
* Doctor Saving Reward: if the Doctor successfully saves a player at night, the Werewolves -5, the Doctor +5.

¢ Voting Result Reward:

— If a Werewolf is voted out, the Werewolves -5, the Villagers (Seer, Doctor, Villagers) -5.
— If a non-Werewolf is voted out, the Werewolves +5, the Villagers -5.

 Individual Voting Reward:

— If the current player votes for a Werewolf, the Werewolves -1, the current player +1.
— If the current player votes for a non-Werewolf, the Werewolves +1, the current player -1.

— If the current player chooses not to vote, no additional reward for any player.

C.3. Population-Based RL Training and Hyperparameters

We use MAPPO (Yu et al., 2022) as the RL algorithm and use population-based training to learn the policy. The population
is initialized to a set of six pure LLM-based agents including a quiet follower (Werewolf), an active contributor (Werewolf),
an aggressive accusor (Werewolf), a secretive player (non-Werewolf), a proactive player (non-Werewolf), and a default
player (non-Werewolf). As training progresses, we gradually add checkpoints of the RL policy into the population.

More specifically, at the beginning of each episode, we randomly select four players to be the learning agents who use the
current policy and three players to be the fixed agents who use policies sampled from in the population. For each fixed agent,
it randomly samples one policy from the population and uses this policy till the end of the game. In this way, we make
the RL policy play with a wide range of policies both as teammates and opponents The rollout data of the four learning
agents are then collected and used to train the RL policy. In our implementation, we use a distributed RL training system to
run parallel environments and utilize multiple API accounts to maximize the throughput of LLM inference calls. To make
the RL training start with a good initial policy, we first apply behavior cloning with data generated by pure LLM-based
agents with hidden role deduction only. Then we use this BC policy as the initial policy and run MAPPO for 10M steps.
The hyperparameters for RL training are listed in Table 7.

18

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Hyper-parameters Value Win Rate As the Villagers As the Werewolves
Learning rate Se-4 ReAct 0.16 (0.02) 0.54 (0.03)
Discount rate (7) 0.95 ReCon 0.20 (0.02) 0.61 (0.02)
GAE parameter (Agag) ~ 0.95 Concurrent 0.22 (0.02) 0.60 (0.04)
Gradient clipping 10.0 Hidden Role Deduction 0.22 (0.04) 0.61 (0.05)
Adam stepsize le-5
Value loss coefficient 1 Figure 8: Comparison with other prompting techniques.
Entropy coefficient 0.01
PPO clipping 0.2
PPO epochs 10
MLP encoder layer num 3 Win Rate w.o. communication w. communication
MLP encoder layer size ~ 1536
Attention layer head num 12 ReAct 0.05 (0.01) 0.16 (0.02)
Attention layer size 128 ReCon 0.04 (0.01) 0.20 (0.02)

Critic head layer num 1 Concurrent 0.04 (0.01) 0.22 (0.02)
Weight decay coefficient le-6 Atomic 0.05 (0.02) 0.27 (0.02)
Action candidate num N 3 Ours 0.06 (0.02) 0.30 (0.03)

Figure 7: Training hyperparameters. Figure 9: Ablation on communication.
N 2 3 4 5

increased diversity 0.35 0.37 0.23 0.16

Table 6: Ablation on the number of action candidates V.

D. Experiment Details and Additional Results
D.1. Compare Hidden Role Deduction with Other Prompting Techniques

Any prompting technique can be combined with the diverse action generation component and the population based RL
training component of our framework. Although we do not optimize every detail of our prompting choice, we compare our
current design of hidden role deduction with other prompting methods to show that it produces reasonable performance.
We compare our agents with the hidden role deduction component only and compare it with ReAct (Yao et al., 2022b),
ReCon (Wang et al., 2023b), and Concurrent (Xu et al., 2023a) by playing against our agents. As shown in Table 8, our
agents using only the hidden role deduction components achieve the highest win rates both as the Villagers and as the
Werewolves. It is possible to further improve the performance of our agents by using better prompt techniques, but the focus
of our work is to overcome the intrinsic bias in LLM-based agents using reinforcement learning.

D.2. Ablation on Communication

Werewolf is a language game that heavily relies on natural language communication between agents. To show the importance
of communication to achieve strong performance, we perform an ablation by removing the communication ability of the
four agents in the round-robin tournament Section 5.2, i.e., the agents always return an empty string in the discussion phase.
We evaluate these agents by playing 100 games against our agent and their mean win rate is shown in Table 9.

D.3. Ablation on Different Actions

We perform an ablation study to separate the influence of statement actions from secret and vote actions to better understand
their relative contributions to overall performance. We consider the following three agents. (1) Ours: use the RL policy for
all three kinds of actions (statement actions in discussions, secret actions at night, and voting actions). (2) Statement w.o.
RL policy: use the LLM to generate one action for statement actions and use the RL policy for secret actions and voting
actions. (3) All w.o. RL policy: use the LLM to generate one action for all three kinds of actions.

As shown in Table 7., using RL policy for both statement actions and strategic actions (secret and voting actions) contributes
to the improvement in performance. Interestingly, using RL policy for secret and voting actions leads to more improvement
as the Villagers, while using RL policy for statement actions leads to more improvement as the Werewolves. A possible

19

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Win Rate As the Villagers As the Werewolves
Ours 0.30 (0.03) 0.70 (0.03)
Statement w.o. RL policy 0.28 (0.05) 0.66 (0.05)
All w.o. RL policy 0.22 (0.04) 0.61 (0.05)

Table 7: Ablation on Different Actions.

Win Rate GPT-4 LLaMA-7B ChatGLM-6B

w.o. policy 0.23(0.02) 0.14 (0.01) 0.11 (0.01)
w. policy 0.35(0.04) 0.19 (0.02) 0.21 (0.03)

Table 8: Zero-shot transfer to other LLMs.

explanation for this difference is that the Villagers can simply be honest with their statements and focus more on finding and
voting out the Werewolves, while the Werewolves are required to make up convincing statements to deceive the Villagers
and also choose the best killing and voting target.

D.4. Ablation on the Number of Action Candidates NV

We perform an ablation on the number of action candidates N to investigate the effect of [V and validate that the newly added
action candidates increase the overall diversity. Given an action set .4, we define the increased diversity introduced by a
new action a as div(A, a) = ming ¢ 4lle(a) — e(a’)||, where e(a) is the embedding of a produced by the LLM. This metric
uses the minimum Euclidean distance between the embeddings of the new action and the existing actions to compute the
increased diversity. If the embedding of the new action is similar to any of the existing actions, the increased diversity will
be small and close to zero. Note this is one possible way to define diversity in actions and there are many other reasonable
definitions. A good way to decide if an action is diverse is to use human evaluation, and we provide two examples of the
diverse action candidates proposed by the LLM in Appendix B.7.

We consider N = 2, 3,4, 5 and evaluate the increased diversity introduced by the last action. As shown in Table 6, the
increased diversity of the last action is relatively large when N = 2,3 and becomes smaller when N = 4, 5. This aligns
with the intuition that it is harder to propose new actions when there are already many actions. Another reason for small
increased diversity when /N = 4, 5 is that sometimes the number of possible actions is small. For example, when there are 5
players alive and 2 of them are Werewolves (a common situation on the second night), the Werewolves only have 3 possible
actions at night and prompting for a 4th or 5th action cannot improve any diversity. In our implementation, we set N = 3.

D.5. Zero-Shot Transfer to Other LLMs

Since our RL policy takes natural language state and actions as input and is decoupled from the LLLM used in previous
steps, it can be directly combined with any other LLMs and improve the performance of the LLM-based agent. We
evaluate this zero-shot transfer ability of our RL policy trained with gpt-3.5-turbo by applying it to unseen LLMs including
GPT-4, LLaMA-7B, and ChatGLM-6B. We implemented two agents for each LLM, one using our RL policy learned with
gpt-3.5-turbo and the other without the policy. The agent with our RL policy (w. policy) follows the design of our agent and
uses the RL policy to select actions, while the agent without policy (w.o. policy) uses the LLM instead of the RL policy to
select actions. These two agents are evaluated by playing against our agents for 100 games and their average win rates are
shown in Table 8. Although not trained with any of these LLMs, the RL policy is shown to improve the performance of all
these LLMs from stronger models like GPT-4 to weaker models like LLaMA-7B as shown by the bold numbers in the table.
This is because we use natural language as a general interface between LLMs and the RL policy. As long as the LLMs can
produce a set of language actions, the RL policy can be used to improve the strategic ability in a zero-shot way.

D.6. Generalization to Different Settings of Werewolf

For generalization to new forms of the Werewolf game, the first two components in our framework (hidden role deduction
and diverse action generation) can be directly generalized to new settings like changing the number of players, adding new
roles, and changing the winning conditions, with only slight changes in the prompt.

The population-based RL training method can also be directly used in different settings, but the policy needs to be retrained

20

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Win Rate 6-player 8-player

w.o. the 7-player policy 0.18 (0.04) 0.27 (0.05)
w. the 7-player policy 0.23 (0.05) 0.30 (0.06)

Table 9: Generalization to Werewolf game with different numbers of players.

for a new setting to achieve the best performance. We expect an RL policy trained under one specific game setting to
generalize to similar settings like adding or removing one player, but we do not expect it to generalize to games with
significant changes like changing the winning conditions. To evaluate the transferability of a trained RL policy to slightly
different game settings, we considered a 6-player and an 8-player Werewolf game and compared agents with and without the
RL policy trained on the 7-player game. As shown in Table 9, the RL policy trained in 7-player setting can generalize to the
6-player and 8-player settings and improve the performance.

D.7. Human Evaluation

Experiment Procedure. We conduct the human-agent experiment with department approval and recruited 160 human
players to participate in the evaluation. The participants are required to be fluent in English and over 18 years old. They
are paid $10 per hour and are allowed to participate in the experiment after agreeing to our consent form, which explicitly
explained that the Werewolf game contains deceptive communications and the Al agents may have dishonest statements in
the game. The participant can choose to withdraw from the experiment at any time.

We randomly divide the 160 participants into 2 groups. The first group has 20 participants and each of the participants play
with 6 copies of our agents for 10 consecutive games. In 5 of the 10 games, we let the human participant play as one of the
Villagers. In the rest 5 games, we let the participant play as one of the Werewolves. The hidden roles of each players are
randomly assigned and the order of 5 games as the Werewolves and 5 games as the Villagers are also randomly generated.
This lead to 100 games of one human participant playing as the Villagers with six copies of our agents, and also 100 games
of one human participant playing as the Werewolves with six of our agents. The win rates averaged over 100 games is
shown in the “Human” column in the left part of Table 1.

The second group has 140 participants. We further split them to 20 teams of 7 players and each team plays 30 consecutive
games. In 10 of the 30 games, we randomly sample 6 human players from the team and let them play with our agents.
Similarly, in 10 of the 30 games, we randomly 6 human players from the team to play with the pure LLM-based agent. In the
rest 10 games, we let these 7 human player play the game without Al agents. We also randomly generated the order of these
30 games and randomly assign the hidden roles that each Al agent plays as the Werewolf for 5 games and as the Villagers
for 5 games. This lead to a total number of 600 games and gives the 6 averaged win rates in the right part of Table 1.

Consent Form.

Introduction: You are invited to participate in a research study that aims to evaluate the performance
of an AI agent developed to play the Werewolf game. The purpose of this research is to assess the
strategic capabilities of the AI agent in a social deduction game setting, where participants engage
in discussions and try to identify hidden roles among the players.

Study Overview:
e The research involves playing the Werewolf game with an AI agent developed by the researcher.

e Participants will interact with the AI agent through text-based communication within the Werewolf
game environment.

e The game involves deceptive communication and the AI agent may make dishonest statements to achieve
their objectives in the game.

Voluntary Participation: Your participation in this study is entirely voluntary. You have the right
to refuse to participate or withdraw from the experiment at any time without any consequences. If you
choose to withdraw, it will not affect your relationship with the researcher or your access to any
benefits.

21

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

Risks and Benefits:

e The primary risks associated with this study are related to the social and psychological aspects
of playing the Werewolf game, including potential frustration or disappointment.

e The participant will be paid $1@ per hour and your involvement will contribute to the understanding
of AI agent in social deduction games.

Confidentiality:

* Your identity will be kept confidential, and your personal information will not be disclosed in
any publications or presentations resulting from this research.

e The data collected will be anonymized, and any quotes used will be attributed without identifying
details.

Deceptive Communications:

* The Werewolf game involves deceptive communication, and the AI agent may make dishonest statements
as part of its strategy.

e It is essential to understand that the AI agent’s behavior is not reflective of the researcher’s
personal values or intentions.

Questions and Concerns: If you have any questions or concerns about the study, you can contact the
researcher at ...

Consent: I have read and understood the information provided in this consent form. I agree to
participate voluntarily in the study and acknowledge that I can withdraw at any time without
consequences.

Signature:

Example Input for Human Players.

Basic Information:

e you are player_5, your role is Doctor.

e current round and phase: night 2.

* remaining players: player_0, player_1, player_2, player_5, player_6.
Round 1:

* night 1: you chose to save player_5.

e day 1 announcement: player_4 was killed last night.

e day 1 discussion:

— player_0 said: Good day, fellow players. As a Villager, my objective is to help identify and
eliminate the Werewolves. Since player_4 was killed last night, we know there is at least one
Werewolf among us. I would like to hear everyone’s thoughts and suspicions about who might be
the Werewolves. Let’s work together to find the culprits and ensure the safety of our village.

— player_1 said:

— player_2 said:

— player_3 said:

— you said: ...

— player_6 said:

22

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

e day 1 voting result: player_3 had the most votes and was eliminated.

— voted for player_3: player_1, player_6.
— voted for player_1: player_3.
— choose not to vote: player_0, player_2, player_5.

Now it is night 2 round and you should choose one player to save. As player_5 and the Doctor, you
should choose from the following actions: save player_0, save player_1, save player_2, save player_5,
save player_6.

E. Discussions
E.1. Application to Other Games

Our approach has three components: (1) hidden role deduction, (2) diverse action generation, and (3) population-based RL
training. We believe our framework of using these three components is general enough to be adapted to other social deduction
games. The main changes would be specific prompt designs but the general framework stays the same. Specifically, while
some prompts used in the first component are specifically designed for the Werewolf game, the prompts for generating
diverse actions, and the population-based reinforcement learning method in the second and third components are general to
be applied in other tasks like social deduction games (e.g., The Resistance: Avalon (Wang et al., 2023b)) and board games
with negotiations (e.g., Diplomacy (Meta et al., 2022)).

Take The Resistance: Avalon as an example. To apply our method in this game, we need to specialize the deduction template
in the first component and maybe use additional prompting techniques like in (Wang et al., 2023b). We also need to change
the prompt in the third component to generate reasonable agent pool for this game. Then our framework can be applied to
this game without changing the diverse action generation and RL training components.

E.2. Discussion on the Atomic Agent

The atomic agent predefines a set of high-level atomic actions and trains an RL policy with this fixed action space. The RL
policy takes the embeddings of the information record and deduction result as input and selects the atomic action based on
this input. Then the natural language actions used in gameplay are generated by prompting the LLM to follow the selected
atomic actions. In our case, the atomic action set consists of 13 actions including “idle”, “target player_0”, “target player_1",
“target player_2”, “target player_3”, “target player_4”, “target player_5", “target player_6", “claim to be a Werewolf”, “claim

CLINNT3 CLINT3

to be a Seer”, “claim to be a Doctor”, “claim to be a Villager”, and “do not reveal role”.

As shown in the results of the round-robin tournament in Fig 5, although both our agent and the atomic agent combine RL
with LLMs, our agent achieves much better performance. This is because the predefined atomic actions can be too general
and fail to generate more fine-grained actions. Consider the situation where the agent is a Werewolf and their teammate is
accused. The agent can choose to defend the teammate, avoid discussing the accusation, or support the accusation, but none
of these actions can be stably generated by prompting LLMs with any of the predefined atomic actions. By contrast, our
agent produces the action set during gameplay and can generate diverse actions at any granularity, which greatly improves
the performance.

E.3. Failure Cases

Unintentional Disclosure of Hidden Role. One failure case of our agents is that the Werewolf agents could unintentionally
reveal their identity in the discussion phase. This is because the Werewolf agents need to first reason as a Werewolf, and then
pretend to be a non-Werewolf in discussion. This mismatch in their thoughts and words could make the LLM get confused
and accidentally speak out their thought as a Werewolf. Fortunately, the probability of such a failure case is significantly
reduced by generating multiple diverse actions and using an RL policy to choose the best one. A potential way to further
mitigate this issue is to get the reasoning as a Werewolf and the statement as a non-Werewolf in two separate calls of LLM.

Inconsistent Behaviors. Another failure case is that our agents could produce inconsistent behaviors, especially when they
are lying. For example, our agent is a Werewolf and claims to be the Doctor on the first day round. However, on the second
day, our agent may claim to have no information in the night, which contradicts the previous claim as the Doctor. This issue

23

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

is mitigated by the diverse action generation and the RL policy learns to choose other better actions.

E.4. Limitations

Pure Text-Based Setting In this work, we focus on powering LLM-based agents with RL to overcome intrinsic bias and
improve decision-making ability. Therefore, we only consider a simplified pure text-based setting of the Werewolf game.
In real-world games, Werewolf also involves other non-verbal elements like tone of voice, facial expressions, and body
language. These multi-modal data are also important for deducing hidden roles and making better decisions. It would be an
interesting future direction to build strategic Al agents that utilize multi-modal information.

Without using Human Data Since human gameplay data are usually expensive and hard to collect, we take an alternative
approach by generating human-like agents using LLM and training our agents with these agents to make the learned policy
more compatible with human strategies. However, the language style and game strategy of the learned agent may still have
some difference from real human players. An potential future direction is to collect human data and fine-tune the LLM to
make the agents more human-like and even indistinguishable from human players.

F. Emergent Behaviors

To more intuitively demonstrate the performance and strategic behaviors of our agent, we provide a qualitative as well as
a quantitative study on the emergent behaviors exhibited by our agent. We first show two common and basic behaviors,
concealment and cooperation, that typically appear in mixed cooperative-competitive games with hidden identities. Then,
we report two more advanced and strategic behaviors including bluffing and sacrificing that demonstrate the sophistication
and strength of our agent.

Concealment. Concealment refers to the act of hiding or disguising the true identity or intention of the players, which
is a fundamental skill for all roles. Werewolves should strike a balance between engagement and discretion to avoid
detection, while roles with special abilities like the Seer should also consider hiding their identities to prevent being killed
by Werewolves. Below is an example where our agent plays as the Seer and chooses to conceal their identity because they
do not have any important information.

Our agent as the Seer in the discussion phase.

* Reasoning: Since I’'m the Seer, I know player_0 was not a Werewolf. However, he was killed, so
there are still two Werewolves among us. I need to be careful not to reveal my role too early, as
Werewolves might target me next. Since I don’t have any more information right now, I should not
make any specific accusations, but encourage discussion and observe the reactions of others.

e Discussion: It’s unfortunate that player_0 is dead. We need to work together to find out who is
responsible for this. Pay attention to who is too eager to accuse or too quick to defend. Let’s
discuss.

Moreover, concealment is not just about what to say but also involves ensuring your actions align with your words.
Werewolves sometimes need to give up advantageous actions like voting to eliminate their opponents which may reveal their
true identities, as shown in the following example.

Our agent as a Werewolf in the voting phase.

e Reasoning: Since everyone is advocating for unity and careful observation, accusing someone outright
could backfire and make me a target. Therefore, it might be best to go along with the majority and
not vote in this round.

e Action: Do not vote.

Cooperation. It is crucial for players to cooperate in multi-agent environments to achieve their common goals. Werewolves
should strive for a common approach when casting suspicion, defending themselves, or voting eliminations. Cooperation is
even harder for the Villagers because they do not know the role of each other and need to first distinguish friend and foe and
then achieve coordination. Below we give an example where the Doctor manages to cooperate with the Seer.

24

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

The Seer (player_2) revealed their identity and asked the Doctor for protection.
Our agent as the Doctor in the night round.

e Reasoning: In the first day discussion, player_2 claimed to be the Seer and identified player_0
as a Werewolf. Player_@ is indeed very suspicious because they accused me without valid reasons.
Therefore, I think player_2 is probably the true Seer and is very likely to be the Werewolves’
target. It would be best to save player_2 instead of myself tonight.

e Action: save player_2.

In this case, our agent successfully identifies the Seer and decides to save player_2 instead of themselves. This allows the
Seer to survive for another round to provide more information, which leads to the final victory.

Bluffing. Bluffing is a more advanced strategy that deceives or misleads other players about one’s true identity. It is often
adopted by the Werewolves to pretend to be important roles like the Seer or the Doctor to misdirect the voting and eliminate
innocent players. Bluffing is a high-risk, high-reward strategy that requires skill, timing, and keen awareness of other players’
perceptions in order to be executed effectively, as demonstrated in the example below.

Our agent as a Werewolf in the discussion phase.

e Reasoning: Since I’m the last player to speak before voting and no one has come forward as the
Seer, I should claim to be the Seer. This could take the heat off of me, additionally, it might
guide other players to suspect and possibly vote out whoever I indicate as a Werewolf.

* Discussion: I believe it’s important for us to become more open; I am the Seer. I checked player_4
last night, and he is a Werewolf. I understand it’s a risky move to reveal my identity. But we need
to unite and use all the resources we have to identify the Werewolves. I hope my move encourages
the Doctor to protect me tonight, and we should vote player_4 out today.

Our agent astutely observes that no player has declared themselves as the Seer and no one can refute their claim because
they are the last one to speak. This is the perfect time to pretend to be the Seer. Our agent seizes the chance to gain others’
trust and persuades everyone to eliminate player_4, who is an innocent player.

Sacrificing. In most cases, Werewolves should secretly help each other to stay undercover. However, when their teammates
are suspected by many players and are very likely to be voted out, it would be suspicious not to vote for the teammate.

Therefore, agents sometimes need to sacrifice their fellow Werewolf to reduce suspicion of themselves, which is shown in
the following example.

Our agent’s Werewolf teammate (player_6) has been accused by the Seer.
Our agent as a Werewolf in the voting phase.

e Reasoning: While it would indeed be disadvantageous to lose player_6, as they are my Werewolf
teammate, at this point in the game, the suspicion against them is quite high. Therefore, voting

for player_6 may contribute to maintaining my disguise and trust among other players, which are
crucial for us to win.

e Action: vote for player_6.

G. Game Log Examples

The Werewolves Win. This is an example game log where the Werewolves win the game.

25

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

role assignments:

* player_0: Werewolf.
* player_1: Villager.
* player_2: Villager.
* player_3: Villager.
* player_4: Werewolf.
* player_5: Doctor.

* player_6: Seer.
night 1:

* Werewolves: player_0 and player_4 chose to kill player_1.
* Seer: player_6 saw player_0 is a Werewolf.
* Doctor: player_5 chose to save player_5.

day 1 announcement: player_1 was killed last night.
remaining players: player_@ (Werewolf), player_2 (Villager), player_3 (Villager), player_4 (Werewolf),
player_5 (Doctor), player_6 (Seer).

day 1 discussion:

* player_0 (Werewolf) said: "Good morning, everyone. As player_0, it is unfortunate that player_1 was
killed last night. I think we should focus on finding the Seer and Doctor who can provide valuable
information about who might be the Werewolves. Let’s all share our thoughts and suspicions regarding
the remaining players and try to figure out who might be the Werewolf."

* player_2 (Villager) said: "Good morning, everyone. As a Villager, I believe our priority should be
to find the Werewolves among us. Since player_1 was killed last night, we can rule out the possibility
of player_1 being the Werewolf. I would like to hear everyone’s thoughts on who they suspect might be
the Werewolves. Let’s share our suspicions and try to gather as much information as we can to make an
informed decision during the voting phase.”

* player_3 (Villager) said: "Hello everyone, as a Villager, I don’t have any special abilities to help
us determine who the Werewolves might be. I will carefully listen to everyone’s opinions and votes.
Let’s work together to find the Werewolves and eliminate them."”

* player_4 (Werewolf) said: "Good morning, everyone. As a Villager, I agree with player_2 that our
priority should be to find the Werewolves among us. Since player_1 was killed last night, we can
rule out the possibility of player_1 being the Werewolf. I think it’s important for us to share our
suspicions and gather as much information as possible. Let’s work together to identify the Werewolves
and eliminate them. I’m interested to hear what everyone’s thoughts are on who might be the Werewolves."
* player_5 (Doctor) said: "During the night, I chose to save myself as I am the Doctor. Unfortunately,
player_1 was killed last night. This means that player_0, player_2, player_3, player_4, player_6, and
I are the remaining players. Let’s discuss and share our suspicions on who the Werewolves might be.
It’s crucial for us to work together to identify and eliminate the Werewolves to ensure the safety of
our village."

* player_6 (Seer) said: "During the night, I used my ability as the Seer and discovered that
player_@ is a Werewolf. This means we already have one Werewolf identified. We should focus our
discussion on the remaining players to try and identify any other potential Werewolves. Let’s
hear everyone’s thoughts and suspicions about player_2, player_3, player_4, and player_5. We need
to work together to eliminate all the Werewolves and secure victory for the Seer, Doctor, and Villagers."

day 1 voting: player_0 had the most votes and was eliminated.

* voted for player_0: player_2, player_5, player_6.

* voted for player_2: player_4.

* voted for player_6: player_0.

* chose not to vote: player_3.

remaining players: player_2 (Villager), player_3 (Villager), player_4 (Werewolf), player_5 (Doctor),
player_6 (Seer).

26

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

night 2:

* Werewolf: player_4 chose to kill player_2.

* Seer: player_6 saw player_2 is not a Werewolf.
* Doctor: player_5 chose to save player_5.

day 2 announcement: player_2 was killed last night.
remaining players: player_3 (Villager), player_4 (Werewolf), player_5 (Doctor), player_6 (Seer).

day 2 discussion:

* player_3 (Villager) said: "I have been listening carefully to everyone’s opinions and observations.
It is clear that player_0 was a Werewolf based on player_6’s claim as the Seer. However, we should not
solely rely on this information. I would like to hear from player_4 and player_5 about their suspicions
and any potential insights they might have. Additionally, player_6, since you claimed to be the Seer,
can you provide any further information or suspicions about the remaining players? Let’s discuss and
share our thoughts to make an informed decision for today’s voting.”

* player_4 (Werewolf) said: "Good morning, everyone. It’s unfortunate that player_2 was killed last
night. Based on the deductions and information shared yesterday, we have already identified player_0 as
a Werewolf. Now, let’s focus our attention on the remaining players - player_3, player_5, and player_6.
We need to thoroughly discuss and analyze their behaviors and statements to find any inconsistencies
or suspicious actions. It’s crucial that we work together to eliminate all the Werewolves and secure
victory for the Seer, Doctor, and Villagers. Let’s start the discussion and share our thoughts on who
we believe might be the Werewolves."”

* player_5 (Doctor) said: "I have been consistently saving myself as the Doctor, so I can confirm that
I am still alive. However, we lost player_2 last night, which means they were not saved. This raises
suspicions on player_3 and player_4 as they have not been confirmed or suspected by anyone yet. We
should discuss and share our suspicions to uncover the Werewolves among us. It’s crucial for us to
work together to identify and eliminate the Werewolves to ensure the safety of our village."”

* player_6 (Seer) said: "Good morning, everyone. After the events of the previous night, we
have confirmed that player_0 was a Werewolf. However, player_2, who was killed last night, was not
a Werewolf as I saw them and they were innocent. This means that the remaining Werewolves are still
among us. I believe we should focus our attention on player_3, player_4, and player_5 as potential
suspects. I would like to hear from each of you about your observations and suspicions regarding these
players. It’s important that we work together to uncover the true identities of the Werewolves and
secure victory for the Seer, Doctor, and Villagers. Let’s discuss and share our thoughts on who we
believe might be the Werewolves."”

day 2 voting: player_5 had the most votes and was eliminated.

* voted for player_5: player_3, player_4.

* voted for player_4: player_5.

* chose not to vote: player_6.

remaining players: player_3 (Villager), player_4 (Werewolf), player_6 (Seer).

night 3:
* Werewolf: player_4 chose to kill player_6.

* Seer: player_6 saw player_4 is a Werewolf.

day 3 announcement: player_5 was killed last night.
remaining players: player_3 (Villager), player_4 (Werewolf).

game result: the Werewolves win the game.

The Villagers Win. This is an example game log where the Villagers win the game.

27

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

role assignments:

* player_0: Doctor.

* player_1: Seer.

* player_2: Werewolf.
* player_3: Werewolf.
* player_4: Villager.
* player_5: Villager.
* player_6: Villager.
night 1:

* Werewolves: player_2 and player_3 chose to kill player_0.
* Seer: player_1 saw player_0 is not a Werewolf.
* Doctor: player_0 chose to save player_0.

day 1 announcement: no player was killed last night.
remaining players: player_@ (Doctor), player_1 (Seer), player_2 (Werewolf), player_3 (Werewolf),
player_4 (Villager), player_5 (Villager), player_6 (Villager).

day 1 discussion:

* player_0@ (Doctor) said: "Good morning everyone! It’s day 1, and fortunately, no one was killed last
night. I think we should analyze the night 1 announcement and share our thoughts. Let’s all discuss
who we suspect might be the Werewolves and any suspicions we have based on the limited information we
have so far.”

* player_1 (Seer) said: "Hello everyone! As the Seer, I can confirm that player_0 is not a Werewolf.
Unfortunately, I don’t have any information about the other players yet. I would suggest that we all
share any suspicions or observations we might have to narrow down our search for the Werewolves."”

* player_2 (Werewolf) said: "Hello everyone! As we start the discussion, I want to remind
everyone that we should consider all possibilities and not solely rely on player_1’s claim as the
Seer. While player_0 seems to be cleared for now, it doesn’t mean they are completely innocent. We
should keep an open mind and look for other clues or suspicions. Let’s all share our observations and
suspicions to help us narrow down the search for the Werewolves.”

* player_3 (Werewolf) said: "I think we should focus our attention on player_1. While they claim to
be the Seer and have cleared player_0, we should be cautious as they could be lying. It’s possible
that player_1 is a Werewolf trying to gain our trust. We need to consider other players’ observations
and suspicions as well. Let’s share any information we have and work together to identify the true
Werewolves among us."

* player_4 (Villager) said: "Hello everyone! As a Villager, I don’t have any special abilities or
information to share. However, player_1 claims to be the Seer and has cleared player_0. While we should
remain skeptical and consider other possibilities, it might be beneficial to focus our attention on
players who have not been cleared yet. Let’s hear from player_2, player_3, player_5, and player_6. Do
any of you have any suspicions or observations that could help us identify the Werewolves?”

* player_5 (Villager) said: "I think it’s important for us to share any suspicions or observations
we may have. I think it is plausible that player_1 is the true Seer and player_0 is innocent. As a
Villager, I agree with player_4 that I should focus on players who have not been cleared yet. Player_6,
we have not heard from you yet. Do you have any suspicions or observations that could help us identify
the Werewolves?”

* player_6 (Villager) said: "I agree with player_1 that we should share any suspicions or observations
we might have. Let’s keep an open mind and encourage everyone to contribute to the discussion. It
would be helpful if players could share any suspicions they might have based on their interactions or
observations so far. Together, we can work towards identifying the true Werewolves among us."

28

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

day 1 voting: player_2 had the most votes and was eliminated.

* voted for player_2: player_1, player_4, player_5.

* voted for player_1: player_2, player_3.

* chose not to vote: player_0, player_6.

remaining players: player_@ (Doctor), player_1 (Seer), player_3 (Werewolf), player_4 (Villager),
player_5 (Villager), player_6 (Villager).

night 2:

* Werewolf: player_3 chose to kill player_1.
* Seer: player_1 saw player_3 is a Werewolf.
* Doctor: player_0 chose to save player_1.

day 2 announcement: no player was killed last night.
remaining players: player_@ (Doctor), player_1 (Seer), player_3 (Werewolf), player_4 (Villager),
player_5 (Villager), player_6 (Villager).

day 2 discussion:

* player_0 (Doctor) said: "I would like to share my reasoning with all the players. Based on the night
2 announcement, it is possible that I successfully saved the targeted player. Since I am the Doctor and
I saved player_1, it means that the Werewolves targeted player_1 last night. Therefore, player_1, who
received two votes in the previous round and was targeted, is likely to be the Seer. I encourage the other
players to share their suspicions and any information they might have to help us identify the Werewolves."

* player_1 (Seer) said: "Hello everyone! As the Seer, I have important information to share.
Last night, I discovered that player_3 is a Werewolf. This means we have at least one Werewolf among
us. I also confirmed that player_0 is not a Werewolf based on my previous investigation. I encourage
all of you to share any suspicions or observations you might have to help us identify the remaining
Werewolves. Let’s work together to eliminate them and secure a victory for the villagers."”

* player_3 (Werewolf) said: "Hello everyone! In response to player_1’s claim, I have reason to believe
that they are either a Werewolf or made a mistake as the Seer. As a Villager myself, I know that
player_1 is lying and is likely a Werewolf. We should not solely rely on player_1’s information and
should continue to gather more evidence. I encourage everyone to share any suspicions or observations
they might have to help us identify the remaining Werewolves. Let’s work together to eliminate them
and secure a victory for the villagers."”

* player_4 (Villager) said: "Hello everyone! As a Villager, I don’t have any special abilities or
information to share. However, we have conflicting claims from player_1 and player_3. Player_1 claims
to be the Seer and has cleared player_0, but player_3 doubts their claim and suggests player_1 is not
the Seer. It is essential that we gather more information and evidence before making any decisions. I
encourage player_1 and player_3 to provide any additional information or reasoning that could help us
resolve this conflict. Furthermore, I urge all players to share their suspicions or observations to
help us identify the Werewolves. Let’s work together to find the truth and make the right decision.”
* player_5 (Villager) said: "Hello everyone! After considering the conflicting claims from player_1
and player_3, we need to gather more information to resolve this conflict. It is crucial for player_1
and player_3 to provide additional information or reasoning to support their claims. We should also
keep player_4 in mind as they have not been cleared or suspected yet. I encourage all players to share
their suspicions and observations to help us identify the Werewolves. Let’s work together to find the
truth and make the right decision.”

* player_6 (Villager) said: "Hello everyone! It’s interesting to see the developments from the previous
day. Player_1 claims to be the Seer and has shared valuable information about player_@ not being a
Werewolf. However, player_3 has raised concerns about the accuracy of player_1’s claim, suggesting
that they may be a Werewolf or made a mistake. We should consider both possibilities and gather more
evidence before making any final judgments. I encourage all players to share their suspicions and
observations to help us identify the remaining Werewolves. Let’s keep an open mind and continue working
together towards a victory for the villagers.”

29

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

day 2 voting: player_3 had the most votes and was eliminated.

* voted for player_3: player_0, player_1, player_4, player_5, player_6.

* voted for player_1: player_3.

remaining players: player_@ (Doctor), player_1 (Seer), player_4 (Villager), player_5 (Villager),
player_6 (Villager).

game result: the Villagers win the game.

Human Evaluation. This is an example game log where 6 humans play with 1 Al agent.

role assignments:

* player_@: Human as Werewolf.
* player_1: Human as Seer.

* player_2: Human as Villager.
* player_3: Human as Villager.
* player_4: Human as Werewolf.
* player_5: AI as Doctor.

* player_6: Human as Villager.
night 1:

* Werewolves: player_0 and player_4 chose to kill player_3.
* Seer: player_1 saw player_0 is a Werewolf.
* Doctor: player_5 chose to save player_5.

day 1 announcement: player_3 was killed last night.
remaining players: player_0 (Human as Werewolf), player_1 (Human as Seer), player_2 (Human as Villager),
player_4 (Human as Werewolf), player_5 (AI as Doctor), player_6 (Human as Villager).

day 1 discussion:

* player_0 (Human as Werewolf) said: "I’m just a Villager and I have no information, the Seer should
come out and give us information."”

* player_1 (Human as Seer) said: "hhh I’m the Seer, and I saw player_0 is a Werewolf. We have lost
player_3 and must vote out a Werewolf today, or the Werewolf will kill another player and we will
lose.”

* player_2 (Human as Villager) said: "Case 1: player 1 is the Seer and player @ is the
Werewolf. Case 2: player 1 is a Werewolf pretending to be the Seer and frames player 0. We need more
information and vote out one of them today."

* player_4 (Human as Werewolf) said: "Nonono, only case 2 is true because I’m the Seer, I saw player_5
is not a Werewolf. player_1 is a Werewolf eager to vote out good players and we should all vote
player_1. I’11 keep an eye on the voting result and check identity tomorrow night."”

* player_5 (AI as Doctor) said: "I agree with player_4 that we should vote out player_1. Player_1’s
claim of being the Seer is suspicious, especially since player_4 has confirmed being the actual Seer
and saw that I am not a Werewolf. Let’s eliminate player_1 and ensure the safety of our village."

* player_6 (Human as Villager): "1 say he is the Seer and @ is a Werewolf, 4 then said he is the Seer
and 5 is not a Werewolf. I don’t know why 5 think 4 is true and 1 is suspicious, 4 can be a Werewolf
pretending Seer and give you good credit. It seems that 5 and 4 is on the same side or just stupid. I
think we should agree on the vote. If you believe 1, vote @. If you believe 4, vote 1. I’1l1 vote 1."

30

Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game

day 1 voting: player_0@ had the most votes and was eliminated.

* voted for player_0: player_1, player_2, player_6.

* voted for player_1: player_0, player_4.

* voted for player_6: player_5.

remaining players: player_1 (Human as Seer), player_2 (Human as Villager), player_4 (Human as Werewolf),
player_5 (AI as Doctor), player_6 (Human as Villager).

night 2:

* Werewolf: player_4 chose to kill player_6.
* Seer: player_1 saw player_4 is a Werewolf.
* Doctor: player_5 chose to save player_4.

day 2 announcement: player_6 was killed last night.
remaining players: player_1 (Human as Seer), player_2 (Human as Villager), player_4 (Human as Werewolf),
player_5 (AI as Doctor).

day 2 discussion:

* player_@ (Human as Seer) said: "I think the situation is very clear. If I’m not a Seer, then 3 good
players are dead and we have 2 Werewolves among the remaining 4 players and the game is over. But the
game is not over, so player_0 must be a dead Werewolf and I’m the true Seer. Everyone should believe
my words now. I checked player_4 and he is a Werewolf. Let’s vote him and win the game."”

* player_2 (Human as Villager) said: "Agree. player 1 is a confirmed Seer. We don’t need to
listen to player 4’s lie. Just vote him."”

* player_4 (Human as Werewolf) said: "" (empty)

* player_5 (AI as Doctor) said: "I agree with player_1 being the Seer. Player_4’s confirmation of my
identity as the Villager is misleading and player_1’s correct identification of player_0 as a Werewolf
on day 1 provide strong evidence. We should vote to eliminate player_4 as he claimed to be the Seer
but provided false information about player_1 being a Werewolf."

day 2 voting: player_4 had the most votes and was eliminated.

* voted for player_4: player_1, player_2, player_5.

* chose not to vote: player_4.

remaining players: player_1 (Human as Seer), player_2 (Human as Villager), player_5 (AI as Doctor).

game result: the Villagers win the game.

31

