
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEASUREMENT INFORMATION MULTIPLE-REUSE AL-
LOWS DEEPER QUANTUM TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

The current era has witnessed the success of the transformer in the field of classical
deep neural networks (DNNs) and the potential of quantum computing. One
naturally expects that quantum computing can offer significant speedup for the
transformer. Recent developments of quantum transformer models are faced with
challenges including the expensive cost of non-linear operations and the information
loss problem caused by measurements. To address this issue, this paper proposes a
scheme called measurement information multiple-reuse (MIMR). MIMR enables
the repeated utilization of intermediate measurement data from former layers, thus
enhancing information-transferring efficiency. This scheme facilitates our quantum
vision transformer (QViT) capable of achieving exponential speedup compared to
classical counterparts, with the support of many parameters and large depth. Our
QViT model is further examined with an instance of 86 million parameters, which
halves the requirements for tomography error compared to the one without MIMR.
This demonstrates the superior performance of MIMR over existing schemes. Our
findings underscore the importance of exploiting the value of information from
each measurement, offering a key strategy towards scalable quantum deep neural
networks.

1 INTRODUCTION

The transformative era of deep learning has witnessed the rise of varieties of large-scale models,
wherein the transformer Vaswani et al. (2017) emerges as a cornerstone in this evolution. At the heart
of the transformer’s success lies its attention mechanism, a paradigm-shifting approach that allows
for the effective management of billions of parameters, maintaining trainability and adaptability
across diverse applications. However, the computing resource of the transformer scales quadratically
with the sequence length. This limitation has emerged as a bottleneck in the continued scaling of
transformer models, necessitating innovative approaches to extend their capabilities.

Quantum computing is a promising solution to the computational limitations of classical machine
learning, offering exponential speedup and enhanced computing capabilities. In the field of quantum
deep neural networks (QDNNs), plenty of works have been proposed Beer et al. (2020); Liu et al.
(2024); Li et al. (2020); Kerenidis et al. (2020a). Their potential applications include fields of image
recognition Li et al. (2020), quantum physics Liu et al. (2022), data classification Hur et al. (2022),
and so forth. Despite the relatively mature development of QDNNs, the advancement of quantum
algorithms for transformers has lagged behind.

Early attempts at quantum transformer have been made, based on either variational quantum circuits
(VQCs) Cerezo et al. (2021), or quantum linear algebra (QLA) Childs et al. (2017); Liu et al. (2021);
Krovi (2023). The VQC-based quantum transformers Cherrat et al. (2022); Evans et al. (2024) lack
provable quantum advantage and also suffer from trainability problems like barren plateaus Wang et al.
(2021); McClean et al. (2018) and local minima Anschuetz & Kiani (2022); Bittel & Kliesch (2021).
The QLA-based quantum transformers Guo et al. (2024); Liao & Ferrie (2024) have theoretical
speedup while lacking full end-to-end implementation. Neither multi-layer implementation nor
backpropagation has been realized yet. Nikhil et al. presented a quantum transformer model which
utilizes the Linear Combination of Unitaries and Quantum Singular Value Transform primitives as
building blocks, this model provides a quantum attention layer, the implementation of other layers,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the complexity of quantum-classical data conversion between different layers, and the end-to-end
implementation needs further investigation.

In this work, we propose a full implementation of a multi-layer quantum transformer based on
QLA, including the realization of forward pass and backpropagation. Our quantum transformer has
exponential speedup on the sequence length on both forward pass and backpropagation compared
to the classical counterpart. To enable the stacking of layers, a major improvement of our work
is the utilization strategy of classical information reuse. While the classical information that can
be extracted from the quantum state in every single measurement is limited, we argue that the
measured information has not been carefully utilized in previous works, inducing an unexpected
information loss and forbidding the deepening of a quantum neural network. This phenomenon has
been observed in the similar QLA-based quantum deep neural network Kerenidis et al. (2020a) and
is further explored in this work. To address this issue, we propose the Measurement Information
Multiple-Reuse (MIMR) scheme to mitigate the information loss across layers by making full use
of the measured information. To showcase the utility of MIMR, we construct a quantum vision
transformer (QViT) with 86 million parameters, demonstrating improvement in accuracy with image
classification tasks of real-world datasets as well as strong robustness against information loss.

2 MULTIPLE-REUSE OF MEASUREMENT INFORMATION

2.1 MOTIVATION: NECESSITY OF INFORMATION REUSE IN CONSTRUCTING QUANTUM DEEP
NEURAL NETWORK

In this section, we discuss the pivotal role of reusing intermediate measurement information to
accelerate classical deep neural networks (DNNs) via quantum computing. A multi-layer DNN,
involving nonlinear operations at each layer, can be viewed as a discrete nonlinear system where each
layer symbolizes a step in its evolution. Current research indicates that quantum computing struggles
to effectively accelerate the evolution of strongly nonlinear systems, with complexity potentially
increasing exponentially with the number of evolution steps Liu et al. (2021). This exponential
increase in complexity directly conflicts with the expectations for quantum speedup and presents a
significant challenge for QDNNs. This discussion extends to limitations in efficiently implementing
quantum backpropagation, necessitated not only by the non-linear operations of gradients but also by
the need for information on intermediate quantum states.

One approach to addressing the challenges mentioned above involves incorporating measurement
operations at intermediate steps of QDNNs. Specifically, we can introduce intermediate measurements
after each layer, using measurement outcomes to reconstruct the output before feeding it into the
next layer. Consequently, the complexity increases linearly with the number of layers. Similar
ideas are employed in many recent works, including the quantum convolutional neural networks
(QCNNs) Kerenidis et al. (2020a) and quantum algorithms for solving nonlinear systems Xue et al.
(2021); Krovi (2023); Chen et al. (2022).

However, the cost associated with intermediate measurements can be substantial, potentially under-
mining the quantum advantage offered by QDNNs. Thus, a cost-effective scheme for intermediate
measurements becomes essential. Intermediate measurement, a form of quantum tomography, in-
volves several efficient tomography techniques such as l∞ tomography Kerenidis et al. (2020b),
shadow tomography Aaronson (2018); Huang et al. (2020), and neural network-based methods
Carrasquilla et al. (2019); Torlai et al. (2018).

Given Holevo’s bound Holevo (1973), each measurement on an n-dimensional quantum state can
extract only log n bits of information, rendering the process of extracting classical information from
quantum states highly inefficient. Efficient tomography algorithms aim to reduce the number of
measurements, maximizing the utility of the classical data derived from each measurement. Despite
these advancements, existing quantum acceleration methods for DNNs, such as QCNNs, do not fully
exploit the potential of intermediate measurements. Typically, each layer in these networks blocks
the output obtained from previous layers and only conveys the most recent measurement information
to the next layer.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

𝑀1Q A 𝑀2

𝑀1
𝑚1Q ⋯Q 𝑀2 Q 𝑀𝑙

𝑚2 𝑚𝑙−1

Multiple-reuse strategy

𝑀𝑖 𝑖-th measurement, the output is 𝑚𝑖

𝑚2

Quantum layer

Measurement

Quantum layer

Measurement

Quantum add

𝑥,𝑚1𝑥

𝑚1

𝑥

Q A Q 𝑀𝑙 A⋯
𝑚𝑙

𝑥,𝑚1, 𝑚2, ⋯ ,𝑚𝑙−1

Q Quantum layer A Quantum add

× 𝒍

× 𝒍

𝑚𝑙

Figure 1: Multiple-reuse strategy.

2.2 MEASUREMENT INFORMATION MULTIPLE-REUSE

To address this inefficiency, we propose a multiple-reuse strategy for intermediate measurement data,
developing techniques to repeatedly leverage this information throughout the network. This strategy
ensures more efficient use of quantum resources and enhances the practical scalability of QDNNs.

The multiple-reuse strategy is derived from residual connection, a basic building block in DNNs.
Residual connection is written as y = x + f(x), where f(x) is the output of a layer with input x.
The idea of implementing a multiple-reuse strategy is to add intermediate measurements to a branch
of the residual connection layer. Then the previous information can be transferred from the other
branch and perform Quantum Add, as shown in Figure 1.

As a comparison, previous works adopted single-reuse strategy Kerenidis et al. (2024); Guo et al.
(2024), of which the intermediate measurements are executed after each quantum layer, and only
the most recent measurement results are passed to the next layer. Quantum residual connections
have been explored in the context of quantum neural networks based on variational quantum circuits.
Wen et al. introduced a residual connection framework utilizing the linear combination of unitary
operations to enhance the expressivity of quantum neural networks on NISQ devices Wen et al.
(2024). Similarly, Muhammad et al. proposed a residual approach, termed ResQNets, to mitigate
the barren plateaus problem in quantum neural networks Kashif & Al-Kuwari (2024). While these
residual connection strategies are well-suited for variational quantum circuits operating on NISQ
devices, their direct application to quantum transformers presents significant challenges. Notably,
the success rate decreases exponentially with the number of residual layers, and the computational
complexity grows polynomially with the context length, posing substantial scalability limitations.

In our multiple-reuse strategy, each layer contains a residual connection that allows all previous
intermediate measurement results to be passed through an independent branch of the residual con-
nection without additional measurement. As shown in the bottom part of Figure 1, the input x and
the measurement results m1,m2, · · · ,ml are all passed to the final quantum layer. Compared to the
single-reuse strategy, the data flow in the multiple-reuse strategy is more active. Wen et al. realized
residual connections by the frame of a linear combination of unitary to enhance the expressivity of
quantum neural networks in NISQ devices Wen et al. (2024), the complexity of their scheme increases
exponentially with the residual connection layers, and their scheme cannot solve the “exponential
increase” problem caused by nonlinear layers. Muhammad et al. also proposed a residual approach
for mitigating barren plateaus in quantum neural networksKashif & Al-Kuwari (2024).

We can make full use of the information obtained from all intermediate measurements to build
more efficient QDNNs based on the multiple-reuse strategy. To study the practical influences, in
Appendix B we compare the extent of information loss using single- and multiple-reuse strategies,
by observing the cosine similarity between input and output through two processes. It shows that
it mitigates information loss for state reconstruction. In Figure fig-tomography-error-cub-forward,
numerical evidence shows that it achieves less information loss during the forward pass of the
quantum transformer, thus likely improving the effectiveness of the training process. The multiple-
reuse strategy can alleviate the problem of information loss with the number of layers and therefore
help build up a deeper quantum neural network.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 QUANTUM VISION TRANSFORMER

In this section, we introduce our developed QViT. Traditional transformer architectures consist of
nonlinear layers and non-unitary matrix computations, presenting substantial challenges in leveraging
quantum computing for acceleration. Current research faces the following challenges: (1) The
complexity increases exponentially with the number of layers; (2) The success probability of imple-
menting non-unitary matrix operations in quantum linear algebra is less than 1. Our QViT effectively
addresses the challenge of exponential resource growth associated with an increase in layers and
significantly reduces the probabilistic steps during the execution process. This enhancement is derived
from two major innovations in our implementation of QViT: (1) We employ the MIMR scheme
within the transformer encoder layer to prevent the issue of complexity from increasing exponentially
with the number of layers. (2) Apart from the Attention layer, the computational processes in other
layers of the transformer are independent for different tokens. We implement these layers using
quantum arithmetic operations, thereby circumventing the probabilistic issues typically encountered
with quantum linear algebra.

Based on the above ideas, we build the complete forward pass and backpropagation process for
the QViT. Both the forward pass and backpropagation processes achieve exponential speedup with
respect to the sequence length n, while the complexity increases linearly with the number of layers l,
as detailed in Theorem 3.1.

Theorem 3.1 (Query complexity of forward pass and backpropagation of QViT) Given an in-
put X ∈ Rd×n, there exists a quantum algorithm to realize the forward pass and backpropagation of
an l layers vision transformer, the query complexity to X is Õ

(
ld2polylog(n)

ϵδ2

)
, where δ represents

the tomography error, and ϵ is the computational accuracy.

Remark. Our QViT utilizes the MIMR scheme, incorporating l∞ tomography as described in
Kerenidis et al. (2020b) within this framework. In this context, δ denotes the tomography error
associated with the l∞ tomography. Detailed explanations and mathematical formulations of l∞
tomography are presented in Theorem C.2. For intuitive comparison, the complexity of the classical
ViT is Õ(lnd(n+ d) log(1/ϵ)), which confirms our statement of exponential speedup with respect to
n. The dependence on d is the same as the classical ViT. ϵ and δ also influence the complexity of
the QViT. The computing accuracy ϵ can be moderate in large models, such as 8-bit, or even 4-bit
computing accuracy. The tomography error δ can also be moderate, in the following numerical tests,
the QViT shows high performance with moderate tomography error (i.e. δ = 0.003). Thus, as n
increases, the exponential acceleration capabilities of the QViT become increasingly pronounced.

3.1 FRAMEWORK

We first introduce the framework of the QViT, which is shown in Figure 2. Note that in the remaining
part of the paper, we will use abbreviations to avoid repeats, see Table 4. As shown in subfigure
(a), (b), and (c), the naming and usage of the major components remain the same as their classical
counterparts, including QPos layer, quantum transformer encoder, and QHead layer.

There are two types of layers in the QViT, the quantum layers and the quantum-classical data transfer
layers, as shown in Figure 2(d). Quantum layers are compatible with quantum input and output,
providing quantum speedup with existing quantum algorithms, displayed as black circles. Quantum-
classical data transfer layers, including quantum-to-classical and classical-to-quantum, displayed as
red and blue circles, are used to implement the QSave and QLoad techniques, which will be further
introduced in the following sections.

3.1.1 QUANTUM LAYERS

Quantum layers are the layers that provide quantum speedup, including QPos, QNorm, QAttn, QAdd,
and QFFN. One method to implement these operations involves quantum linear algebra, inherently
producing probabilistic outcomes at each step. We notice that, apart from the QAttn layer, other
layers can be regarded as n independent d-dimensional operations. Consequently, we can implement
these layers using d-dimensional quantum arithmetic operations, which are not affected by success
probability. This approach significantly reduces the number of probabilistic steps involved.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝒍 ×

Quantum Embedding Layer

Quantum Transformer Encoder

Quantum Head

Classification

2 3 4 5 6 7 80 1 9

Quantum Vision Transformer(a)

Quantum Feedforward

Quantum Norm

Quantum Add

Quantum MLP Layer

N

F

A

QMulti-head Attention

Quantum Tomography

Quantum Norm

Data Encoding

Quantum Add

M

N

T

E

(b)

Quantum Feedforward

Quantum Tomography

Quantum Head

Quantum Pos. Embedding
P

Data Encoding
E

F

T

Quantum MLP

Layer

Quantum

Attention Layer

Quantum Transformer Encoder

Quantum Embedding Layer

(c)

(d)
A Quantum Algorithm

E Classical to Quantum

T Quantum to Classical

(e)

E

qRAM

T

QSave QLoad

A

Quantum Attention Layer

Figure 2: Framework of quantum vision transformer. (a) The primary structure of the QViT
proposed in this paper, includes a quantum version of position embedding, transformer encoder, and
QHead. (b-c) Detailed implementations of the QHead, quantum transformer encoder, and quantum
embedding layer, respectively. (d) The color of the logo indicates the type of each layer. (e) QSave &
QLoad process.

T

F

× 𝒍

T TT

QSave & QLoad

A F N M T E N P

Obtaining gradients

A

Figure 3: Backpropagation process of QViT.

Next, we introduce the implementation of QAttn and other layers. The QViT incorporates two distinct
data encoding strategies: Analog-Encoding (A-Encoding) and Digital-Encoding (D-Encoding),
defined as:

A-Encoding : OA(α)|0⟩ = |α⟩ = 1

∥x∥

n−1∑
i=0

αi|i⟩, (1)

D-Encoding : OD(α)|i⟩|0⟩ = |i⟩|αi⟩, i = 0, 1, · · · , n− 1. (2)

For a specific layer utilizing A-Encoding, the input/output is the amplitude encoding state of the
target data. Conversely, for layers employing D-Encoding, the input/output corresponds to the OD

operation on the target vector.

The input of the QAttn layer is the D-Encoding of X . We implement QAttn using quantum linear
algebra, quantum amplitude estimation, and other algorithms to obtain the A-Encoding of the QAttn
output Y . The details are introduced in Appendix D.4. Following the QAttn layer, quantum-classical
data transfer layers are executed to achieve the D-Encoding of Ỹ , where Ỹ is the sampled version
of QAttn output Y . Detailed information about these quantum-classical data transfer layers can be
found in Section 3.1.2.

Then, we establish the D-Encoding for the input to the next QAttn layer using quantum arithmetic.
The implementation details are introduced in Appendix D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1.2 QUANTUM-CLASSICAL DATA TRANSFER LAYERS

As stated in the previous section, the QViT construction process also requires intermediate measure-
ment steps, which are realized in quantum-classical data transfer layers. The quantum-classical data
transfer layers contain QSave and QLoad processes. QSave is a quantum tomography process, we
use l∞ tomography to realize QSave procedure. QLoad procedure is used to encode the tomography
results into the following quantum operations, the QLoad is realized by querying QRAM followed
by QDAC. See Appendix C.2, C.5 and C.3 for relevant knowledge of l∞ tomography, qRAM and
QDAC.

In the QViT, we add the QSave and QLoad procedures after the quantum multi-attention layer. There
are two reasons: (1) The QAdd layer is behind the quantum multi-attention layer, which means we
add the QSave and QLoad procedures before the QAdd layer. Then, based on the multiple-reuse
strategy introduced in Section 2.2, the previous measurement information can also be reused from the
other branch of the QAdd (The red line of the Figure 2(c)). (2) The quantum multi-attention layer is
different from other layers, Other layers can be regarded as n independent d-dimensional operations,
but the quantum multi-attention layer cannot. So other layers can be realized by implementing
d-dimensional quantum arithmetic operations in parallel, and the implementation process does not
require measurement, the implementation details are introduced in Appendix D. Therefore, we add
the QSave and QLoad procedures after QAttn.

In the QViT architecture, we integrate the QSave and QLoad procedures subsequent to the quantum
multi-attention layer for two primary reasons: (1) The QSave and QLoad procedures are prior to
the QAdd layer, which allows for the reuse of previous measurement information from the alternate
branch of the QAdd layer, as delineated in the multiple-reuse strategy discussed in Section 2.2 and
illustrated by the red line in Figure 2(c). (2) The QAttn layer differs fundamentally from other
layers, which typically consist of n independent d-dimensional operations. Unlike these layers, the
quantum multi-attention layer contains n × n-dimensional operations. Consequently, while other
layers can execute d-dimensional quantum arithmetic operations in parallel without intermediate
measurement, the implementation of the QAttn layer is more complex, the details are shown in
Appendix D. Therefore, we add the QSave and QLoad procedures after the QAttn layer.

3.2 FORWARD PASS

The forward pass is directly built by executing each layer according to its definition, so we will delay
the overall algorithm procedure of the forward pass to the Appendix, shown in Algorithm 1. The
implementation details of all layers are explicitly shown in Appendix D.

As for complexity, because each layer equipped with quantum linear algebra has provided speedup, the
overall quantum speedup is thus naturally given. The proof of Theorem 3.1 is shown in Appendix E.

3.3 BACKPROPAGATION

Next, we detail the backpropagation process, which mirrors the structure of the forward pass. The
implementation is depicted in Figure 3. There are key differences between the backpropagation
and forward propagation processes: (1) We incorporate layer tomography prior to the QAttn layer,
performing tomography subsequent to the backpropagation through the QAttn layer. (2) The back-
propagation process involves computing gradients for parameters across the MLP, Attention, and
Position Embedding layers. We prepare the amplitude encoding of these parameter gradients by
querying the intermediate data from the propagation process and then apply l∞ tomography to
capture the sampled parameter gradients. Comprehensive implementation details for each phase of
the backpropagation are provided in Appendix D.

The backpropagation also contains QSave and QLoad procedures, which are performed after the
backpropagation of the QAttn layer. Alike the forward pass, the previous measurement information
during the backpropagation process can be reused from the alternate branch of the QAdd layer,
thereby implementing the multiple-reuse strategy. This approach ensures that information measured
during the backpropagation is efficiently utilized.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 NUMERICAL TESTS

In this section, we validate the performance of the QViT utilizing the multiple-reuse strategy through
numerical tests. Specifically, we conduct the following experiments: (1) We test the impact of
multiple-reuse and single-reuse strategies on the output of each layer of QViT when different
tomography errors are selected. (2) We also test QViT’s fine-tuning process using multiple-reuse and
single-reuse strategies with different tomography errors.

4.1 SETUP

Datasets. In our simulation, we test four classification datasets: CUB-200-2011 Wah et al. (2011),
Cifar-10/100 Krizhevsky et al. (2009), and Oxford-IIIT Pets Parkhi et al. (2012), the details of the
datasets are listed in Table 1.

Table 1: Overview of classification datasets.
Dataset Name Number of Categories Image Resolution Dataset Size
CUB-200-2011 200 Varies 11,788
CIFAR-10 10 32x32 60,000
CIFAR-100 100 32x32 60,000
Oxford-IIIT Pets 37 Approx. 200x300 7,349

Model. We use the “ViT-Base” model in Dosovitskiy et al. (2021). The details of the model are
listed in Table 2. The hidden size D is the embedding dimension of one patch, and the FFN size is
the dimension of the hidden layer in feedforward.

Table 2: Details of the vision transformer.

Model Layer Hidden size D MLP size Heads Params

ViT-Base 12 768 3072 12 86M

Training and Fine-tuning. In the training process, we use the model pre-trained on the ImageNet-
21k Deng et al. (2009) and transfer the model to the specific datasets with fine-tuning. In fine-
tuning process, we use AdamW Loshchilov & Hutter (2019) optimizer with lr = 0.0001 and
weight decay = 0.05. The batch size is 64.

Hardware. The following experiments were conducted on a server equipped with Intel Xeon Gold
6230 (2.10 GHz) × 2 and NVIDIA RTX A6000, with a total running memory of 512 GB. The training
time for one fine-tuning (3000 iterations) on a single NVIDIA RTX A6000 GPU is approximately 12
hours.

Software. Our numerical experiments utilized MMPretrain Contributors (2023), an open-source
model, as the core framework. For our study, we developed a specialized quantum deep neural
network toolkit, which was instrumental in implementing the forward pass and backpropagation
processes of the QViT. This toolkit features a configurable QSave operator. Designed as an extension
of PyTorch, it seamlessly integrates with a broad spectrum of existing toolchains, enhancing its
applicability and utility in quantum deep learning research. The source code is available at https:
//github.com/anonymous0618/qvit.

Pre-trained model. The pre-trained QViT model was trained on the ImageNet-21k dataset,
which can be downloaded from https://mmpretrain.readthedocs.io/en/latest/
papers/vision_transformer.

4.2 EFFECTS OF THE MULTIPLE-REUSE STRATEGY ON FORWARD PASS

We first study the impact of the multiple-reuse strategy on the QViT forward pass. Specifically, we
evaluate the cosine similarity between the output from each layer and the expected output under

7

https://github.com/anonymous0618/qvit
https://github.com/anonymous0618/qvit
https://mmpretrain.readthedocs.io/en/latest/papers/vision_transformer
https://mmpretrain.readthedocs.io/en/latest/papers/vision_transformer

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

conditions of multiple-reuse and single-reuse strategies. The results, illustrated in Figure 11, are
obtained using various tomography errors. The findings demonstrate that when the tomography errors
are consistent, the layer outputs of the QViT with the multiple-reuse strategy significantly outperform
those using the single-reuse strategy. This indicates that the multiple-reuse strategy enhances the
forward pass process of the QViT.

4.3 EFFECTS OF MULTIPLE-REUSE STRATEGY ON FINE-TUNING

0 100 200 300 400
Iterations

0

1

2

3

4

5

6

L
os

s

0 5 10 15 20
Validation Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

0 100 200 300 400
Iterations

0

1

2

3

4

L
os

s

0 5 10 15 20
Validation Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Classical, ε = 0.000, δ = 0.00

Multiple, ε = 0.000, δ = 0.01

Single, ε = 0.000, δ = 0.01

Classical, ε = 0.004, δ = 0.00

Multiple, ε = 0.004, δ = 0.01

Single, ε = 0.004, δ = 0.01

(a) (b)

(c) (d)

CUB-200-2011

Oxford III-T PETS

Figure 4: Fine-tuning curve for the QViT with multiple/single-reuse strategies. The loss and top
1 accuracy as the functions of steps of the QViT with the multiple/single-reuse strategies are shown
in the left/right subfigures. Different colors represent different tomography strategies, tomography
error δ or computing error ϵ. Each experiment is repeated five times, and the data points or curves
with higher transparency in the figure represent the results of a single experiment.

The fine-tuning convergence curves with different δ and ϵ for four datasets are shown in Figure 4
and Figure 12, showing both loss function and classification accuracy. Each numerical experiment
is repeated 5 times to ensure reasonability. A more direct comparison between multiple and single-
reuse strategies is given in Figure 5, which gives the classification accuracy under more parameter
combinations. Corresponding data are listed in Table ??. The two figures clearly show that the
’multiple’ strategy always performs better, demonstrating enhanced convergence, tomography error
resilience, and improved classification accuracy under every parameter combination. Another
observation is that there is a threshold for both ϵ and δ, around which the parameter fluctuation
significantly influences the model performance while only delaying the convergence anywhere else.
The ’multiple’ strategy postpones the threshold of sampling so that the model can work with weaker
conditions. As computing and tomography error grows, this strategy improves the worst performance,
avoiding complete failure like the ’single’ strategy does.

5 CONCLUSION

In this paper, we have proposed a novel strategy, measurement information multiple-reuse (MIMR),
and an efficient multi-layer quantum vision transformer (QViT) model based on MIMR. While our
QViT achieves exponential speedup for both forward pass and backpropagation processes, MIMR

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 0.005 0.01 0.015 0.02
Tomography error δ

0

20

40

60

80

100

A
cc

u
ra

cy

Cifar-10

0 0.005 0.01 0.015 0.02
Tomography error δ

0

20

40

60

80

100

A
cc

u
ra

cy

Cifar-100

0 0.005 0.01 0.015 0.02
Tomography error δ

0

20

40

60

80

100

A
cc

u
ra

cy

CUB-200-2011

0 0.005 0.01 0.015 0.02
Tomography error δ

0

20

40

60

80

100

A
cc

u
ra

cy

Oxford III-T PETS

Multiple, ε = 0.0

Multiple, ε = 0.004

Multiple, ε = 0.008

Single, ε = 0.0

Single, ε = 0.004

Single, ε = 0.008

(a) (b)

(c) (d)

Figure 5: The relationship curve between model performance, sampling, and computational
error. The classification accuracy after fine-tuning is significantly influenced by tomography error δ
and computing error ϵ. The relation is plotted in four figures, one for each dataset. Different colors
consistently correspond to the two different measurement strategies and computing errors. The square
markers represent the average of multiple numerical results, while individual experimental results are
shown as hollow circles.

effectively addresses the critical bottleneck of information loss observed in previously proposed
quantum deep neural network models, maximizing the utilization of measured information across
layers. Benefiting from these advancements, we successfully constructed a transformer with more
than 86 million parameters and numerically assessed its performance on real-world datasets for image
classification. Our model demonstrated superior performance across four datasets—CUB-200-2011,
CIFAR-10, CIFAR-100, and Oxford-IIIT PETS—achieving an average halving of the requirements
for tomography precision, which implies a decrease in sampling costs to 25%. As a future direction,
MIMR could be explored in other architectures to further demonstrate its generality and effectiveness
as a universal strategy, independent of the specific QViT implementation. This study paves the way
for future research toward exploring more efficient quantum deep neural networks, potentially leading
to more scalable and powerful quantum artificial intelligence capable of tackling complex, real-world
problems with unprecedented efficiency.

6 LIMITATIONS

Finally, we address some limitations of our work. First, the QViT requires fault-tolerant quantum
computers and cannot run on NISQ devices. Second, the implementation of the QViT relies on
qRAM, for which no effective physical realization currently exists. In Appendix C.5.2, we examine
the practicality of qRAM in the context of the QViT. Although fault-tolerant quantum computers
may become available in the next few decades, the physical realization of qRAM could be even more
challenging. This suggests that the QViT may not be implementable on real quantum hardware for a
considerable time.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th annual ACM
SIGACT symposium on theory of computing, pp. 325–338, 2018.

Eric R Anschuetz and Bobak T Kiani. Quantum variational algorithms are swamped with traps.
Nature Communications, 13(1):7760, 2022.

Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel
Scheiermann, and Ramona Wolf. Training deep quantum neural networks. Nature communications,
11(1):808, 2020.

Mihir K Bhaskar, Stuart Hadfield, Anargyros Papageorgiou, and Iasonas Petras. Quantum algorithms
and circuits for scientific computing. arXiv preprint arXiv:1511.08253, 2015.

Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is np-hard. Physical
review letters, 127(12):120502, 2021.

Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and
estimation. Contemporary Mathematics, 305:53–74, 2002.

Juan Carrasquilla, Giacomo Torlai, Roger G Melko, and Leandro Aolita. Reconstructing quantum
states with generative models. Nature Machine Intelligence, 1(3):155–161, 2019.

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke
Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

Zhao-Yun Chen, Cheng Xue, Si-Ming Chen, Bing-Han Lu, Yu-Chun Wu, Ju-Chun Ding, Sheng-Hong
Huang, and Guo-Ping Guo. Quantum approach to accelerate finite volume method on steady
computational fluid dynamics problems. Quantum Information Processing, 21(4):137, 2022.

El Amine Cherrat, Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, and
Yun Yvonna Li. Quantum vision transformers. arXiv preprint arXiv:2209.08167, 2022.

Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision. SIAM Journal on Computing, 46
(6):1920–1950, 2017.

MMPreTrain Contributors. Openmmlab’s pre-training toolbox and benchmark. https://github.
com/open-mmlab/mmpretrain, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Ethan N Evans, Matthew Cook, Zachary P Bradshaw, and Margarite L LaBorde. Learning with
sasquatch: a novel variational quantum transformer architecture with kernel-based self-attention.
arXiv preprint arXiv:2403.14753, 2024.

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pp. 193–204, 2019.

Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. Physical
review letters, 100(16):160501, 2008.

Naixu Guo, Zhan Yu, Aman Agrawal, and Patrick Rebentrost. Quantum linear algebra is all you need
for transformer architectures. arXiv preprint arXiv:2402.16714, 2024.

10

https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alexander Semenovich Holevo. Bounds for the quantity of information transmitted by a quantum
communication channel. Problemy Peredachi Informatsii, 9(3):3–11, 1973.

Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
system from very few measurements. Nature Physics, 16(10):1050–1057, 2020.

Tak Hur, Leeseok Kim, and Daniel K Park. Quantum convolutional neural network for classical data
classification. Quantum Machine Intelligence, 4(1):3, 2022.

Muhammad Kashif and Saif Al-Kuwari. Resqnets: a residual approach for mitigating barren plateaus
in quantum neural networks. EPJ Quantum Technology, 11(1):4, 2024.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolu-
tional neural networks. In International Conference on Learning Representations, 2020a. URL
https://openreview.net/forum?id=Hygab1rKDS.

Iordanis Kerenidis, Jonas Landman, and Anupam Prakash. Quantum algorithms for deep convolu-
tional neural networks. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020b.

Iordanis Kerenidis, Natansh Mathur, Jonas Landman, Martin Strahm, Yun Yvonna Li, et al. Quantum
vision transformers. Quantum, 8:1265, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hari Krovi. Improved quantum algorithms for linear and nonlinear differential equations. Quantum,
7:913, 2023.

YaoChong Li, Ri-Gui Zhou, RuiQing Xu, WenWen Hu, and Ping Fan. Quantum algorithm for the
nonlinear dimensionality reduction with arbitrary kernel. Quantum Science and Technology, 6(1):
014001, 2020.

Yidong Liao and Chris Ferrie. Gpt on a quantum computer. arXiv preprint arXiv:2403.09418, 2024.

Jin-Peng Liu, Herman Øie Kolden, Hari K Krovi, Nuno F Loureiro, Konstantina Trivisa, and
Andrew M Childs. Efficient quantum algorithm for dissipative nonlinear differential equations.
Proceedings of the National Academy of Sciences, 118(35):e2026805118, 2021.

Junyu Liu, Minzhao Liu, Jin-Peng Liu, Ziyu Ye, Yunfei Wang, Yuri Alexeev, Jens Eisert, and Liang
Jiang. Towards provably efficient quantum algorithms for large-scale machine-learning models.
Nature Communications, 15(1):434, 2024.

Zidu Liu, L-M Duan, and Dong-Ling Deng. Solving quantum master equations with deep quantum
neural networks. Physical Review Research, 4(1):013097, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

John M Martyn, Zane M Rossi, Andrew K Tan, and Isaac L Chuang. Grand unification of quantum
algorithms. PRX Quantum, 2(4):040203, 2021.

Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren
plateaus in quantum neural network training landscapes. Nature communications, 9(1):4812, 2018.

Kosuke Mitarai, Masahiro Kitagawa, and Keisuke Fujii. Quantum analog-digital conversion. Physical
Review A, 99(1):012301, 2019.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In 2012
IEEE conference on computer vision and pattern recognition, pp. 3498–3505. IEEE, 2012.

Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko, and Giuseppe
Carleo. Neural-network quantum state tomography. Nature Physics, 14(5):447–450, 2018.

11

https://openreview.net/forum?id=Hygab1rKDS

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and
Patrick J Coles. Noise-induced barren plateaus in variational quantum algorithms. Nature commu-
nications, 12(1):6961, 2021.

Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Guolong Cui, Zhiqiang Wei, and Yongjian
Gu. Quantum circuits design for evaluating transcendental functions based on a function-
value binary expansion method. Quantum Information Processing, 19(10):347, Sep 2020.
ISSN 1573-1332. doi: 10.1007/s11128-020-02855-7. URL https://doi.org/10.1007/
s11128-020-02855-7.

Jingwei Wen, Zhiguo Huang, Dunbo Cai, and Ling Qian. Enhancing the expressivity of quantum
neural networks with residual connections. Communications Physics, 7(1):220, 2024.

Cheng Xue, Yu-Chun Wu, and Guo-Ping Guo. Quantum homotopy perturbation method for nonlinear
dissipative ordinary differential equations. New Journal of Physics, 23(12):123035, 2021.

A SYMBOLS, ABBREVIATIONS, AND DEFINITIONS

A.1 MATHEMATICAL SYMBOLS

The mathematical symbols of this paper is shown in Table 3.

Table 3: Mathematical symbols

Notation Nomenclature

X,Xin, Xout Input/output data in each layer of QViT encoder.

(d, n) d:the dimension of each patch; n: the patch number

xi The i-th column of X .

P Position embedding parameters

h Head number of the multi-head attention.

L QViT encoder layer depth.

C Cost function of the QViT.

F Parameters of a specific QViT layer.

∥ · ∥F Frobenius norm.

∥ · ∥∞ Infinite norm of a vector.

δ Tomography error of the l∞ tomography.

A.2 ABBREVIATIONS

The abbreviations in this paper is shown in Table 4.

B THE PERFORMANCE COMPARISON OF THE MULTIPLE-REUSE AND THE
SINGLE-REUSE STRATEGIES

In this section, we test the performance comparison of the multiple-reuse and the single-reuse
strategies. In detail, we use randomly distributed vectors x and y, defining z = x+ y, where ỹ and

12

https://doi.org/10.1007/s11128-020-02855-7
https://doi.org/10.1007/s11128-020-02855-7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 4: Abbreviations

Notation Nomenclature

ViT Vision Transformer

QViT Quantum Vision Transformer

QRAM Quantum Random Access Memory

QPos Quantum Position Embedding

QHead Quantum Head

QNorm Quantum Norm

QAttn Quantum Multi-head Attention

QAdd Quantum Add

QFFN Quantum Feedforward

QSave Quantum Tomography

QLoad Quantum Digital-Analog conversion

z̃ represent the results of applying measurements to y and z, respectively. z1 = z̃ and z2 = ỹ + x
represent the outputs of the single-reuse and multiple-reuse strategies, respectively. We compare the
cosine similarity between z, z1, and z, z2 and found that the latter is obviously better than the former,
thus illustrating the effectiveness of the multiple-reuse strategy.

10−2 10−1

Tomography Error

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

S
im

il
ar

it
y

Multiple, n = 105

Single, n = 105

Multiple, n = 106

Single, n = 106

Multiple, n = 107

Single, n = 107

Figure 6: The performance comparison of the multiple-reuse and the single-reuse strategies. The
target state is randomly generated, and the dimensions of states are 105, 106, and 107, respectively.
The results indicate that the multiple-reuse strategy achieves higher cosine similarity than single-reuse,
particularly in scenarios with relatively large tomography errors.

C BASICS OF QUANTUM COMPUTING

C.1 QUANTUM ARITHMETIC

Quantum arithmetic is a fundamental module in quantum computing, involving the implementation
of classical arithmetic operations using quantum circuits. The complexity of a specific quantum
arithmetic operation is equivalent to that of the corresponding classical arithmetic operation, as
detailed in Lemma C.1. Notably, the input of quantum arithmetic can be a superposition state,
enabling the realization of the process:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

n−1∑
i=0

|xi⟩|0⟩ →
n−1∑
i=0

|xi⟩|f(xi)⟩

with a complexity of O(polylog(1/ϵ)).

Lemma C.1 Given a basic function f(x) : R → R, there exists a quantum algorithm to implement
quantum arithmetic |x⟩|0⟩ → |x⟩|f̃(x)⟩, where |f̃(x)− f(x)| ≤ ϵ and ϵ represents the computing
accuracy. The gate complexity of the algorithm is O(polylog(1/ϵ)).

Proof When the computing accuracy is ϵ, the number of bits required is O(log(1/ϵ)), and the
complexity of the corresponding classical arithmetic is O(polylog(1/ϵ)). Classical arithmetic is
constructed using general logic operations, which can be realized by basic quantum gates. Therefore,
the target arithmetic can be implemented using basic quantum gates, with a gate complexity of
O(polylog(1/ϵ)).

Next, we introduce existing quantum arithmetic algorithms required by our QViT except for the most
basic quantum adders and multipliers.

C.1.1 RECIPROCAL

We use the Newton method to calculate the reciprocal on a quantum computer Bhaskar et al. (2015).
This target is expressed as:

|x, 0⟩ → |x, 1
x
⟩. (3)

This can be approximately achieved through the following iteration:

x(k+1) = x(k)(2− xx(k)). (4)

C.1.2 ARC COSINE

The Quantum Function-value Binary Expansion method is chosen to calculate arccos Wang et al.
(2020), which realizes approximately the transformation

|x, 0⟩ → |x, arccosx⟩. (5)

The iteration reads

x(0) = x, x(k+1) =

{
2x2(k) − 1, x(k) > 0,

1− 2x2(k), x(k) ≤ 0.
(6)

C.1.3 RELU

The ReLU function,
f(x) = max(0, x), (7)

can be implemented directly by a controlled quantum adder. We represent the signed number x as a
bit string x0|x|, where x0 is the sign bit, and |x| is the magnitude in either s-qubit true form or two’s
complement. Apply a quantum adder and CNOT controlled by x0 and we have

|x0, |x|⟩ ⊗ |0⊗s⟩ → |x0, |x|⟩ ⊗ |0, x0 × |x|⟩ (8)
→ |x0, |x|⟩ ⊗ |x0, x0 × |x|⟩ (9)
= |x0, |x|⟩ ⊗ |max(0, x)⟩. (10)

C.2 QUANTUM TOMOGRAPHY

Theorem C.2 [l∞ vector state tomography Kerenidis et al. (2020b)]Given access to unitary U such
that U |0⟩ = |x⟩ and its controlled version in time T (U), there is a tomography algorithm with
time complexity O(T (U) log d

δ2) that produces unit vector X̃ ∈ Rd such that ∥X̃ − x∥∞ ≤ δ with
probability at least (1− 1/poly(d)).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C.3 QUANTUM DIGITAL-ANALOG CONVERSION

In the QViT implementation process, we utilize quantum digital-analog conversion (QDAC), as
introduced in Mitarai et al. (2019). We present the main results of QDAC in Lemma C.3. It’s worth
noting that the expression provided in Lemma C.3 may not align completely with the one in Mitarai
et al. (2019). Therefore, we provide the proof of Lemma C.3 to clarify any discrepancies.
Lemma C.3 (Generalized QDAC) Given the D-Encoding of x ∈ Rn, let fx =
[f(x1), f(x2), · · · , f(xn)], where f(xi) represents some basic functions of xi. Then, there exists an
algorithm to prepare the A-Encoding of fx with Ω(1) success probability. The query complexity to the
D-Encoding of x is O(1/

√
ν + µ2), where ν and µ are the variance and mean value of fx/∥fx∥∞,

respectively.

Proof The preparation process of |fx⟩ is as follows:

(1) Prepare superposition state 1√
n

∑n
i=1 |i⟩.

(2) Execute U to obtain 1√
n

∑n
i=1 |i⟩|xi⟩.

(3) Add an ancilla qubit and perform rotation operations controlled by |xi⟩, resulting in the
quantum state:

1√
n

n∑
i=1

|i⟩|xi⟩(
f(xi)

C
|0⟩+

√
1− f2(xi)

C2
|1⟩). (11)

(4) Measure the ancilla qubit to |0⟩ and uncompute |xi⟩, yielding:

1

∥fx∥

n∑
i=1

f(xi)|i⟩. (12)

The success probability of this process is p =
∑n

i=1 f2(xi)

nC2 = ν + µ2, where ν and µ are the
variance and mean value of fx/∥fx∥∞. Utilizing the amplitude amplification algorithm,
|fx⟩ can be prepared by querying U O(1/

√
ν + µ2) times.

In QDAC, 1/
√
ν + µ2 is related to specific data distribution. Different specific problems correspond

to different 1/
√
ν + µ2. Therefore, in subsequent analysis, we ignore the influence of 1/

√
ν + µ2

and treat it as a constant.

C.4 BLOCK-ENCODING

Block-encoding offers a methodology for executing non-unitary operations in the domain of quantum
computing Gilyén et al. (2019); Martyn et al. (2021). This technique involves encapsulating a
non-unitary operator A within a unitary matrix UA, a process referred to as the block-encoding of
A. The operator A can then be applied probabilistically through the execution of its block-encoded
counterpart UA.
Definition C.4 (Block-encoding) Suppose that A is an s-qubit operator, α, ϵ ∈ R+ and a ∈ N, then
we say that the (s+ a)-qubit unitary U is an (α, a, ϵ)-block-encoding of A, if

∥A− α(⟨0|⊗a ⊗ I)U(|0⟩⊗a ⊗ I)∥ ≤ ϵ. (13)

In our work, we construct the block-encoding of X by querying the D-Encoding of X . The result is
presented in Lemma C.5.
Lemma C.5 Given D-Encoding of X = [x0, x1, · · · , xn−1] ∈ Rd×n, a (∥X∥F , ⌈log(d+ n)⌉, ϵ)-
block-encoding of X can be built by querying qRAM Õ(d) times.

Proof First, by querying the D-Encoding d times, we construct the following unitary transformations:

UR :|0⟩|j⟩ 7→ |xj⟩|j⟩, (14)
V :|0⟩|j⟩ 7→ |yj⟩|j⟩, yj = ∥xj∥. (15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Then, we utilize QDAC to build:

UL : |i⟩|0⟩ 7→ |i⟩
∑n

j=1 ∥xj∥F |j⟩
∥X∥F

, (16)

We have

|ψi⟩ = UR|i⟩|0⟩, |ϕj⟩ = UL|0⟩|j⟩, ⟨ϕj |ψi⟩ =
Xij

∥X∥F
. (17)

Therefore, U†
LUR is a (∥X∥F , ⌈log(d+ n)⌉, ϵ)-block-encoding of X , the query complexity to the

qRAM is Õ(d).

C.5 QUANTUM RANDOM ACCESS MEMORY

C.5.1 INTRODUCTION

In this section, we introduce quantum random access memory (qRAM) Giovannetti et al. (2008), a
quantum architecture fundamental to our framework. QRAM serves as a generalization of classical
RAM, leveraging quantum mechanical properties to enhance computational efficiency.

In classical RAM, a discrete address i is provided as input, retrieving the memory element xi stored
at that location. Conversely, in qRAM, a quantum superposition of different addresses |ψin⟩ is input,
and qRAM returns an entangled state |ψout⟩ where each address is correlated with the corresponding
memory element:

|ψin⟩ =
N−1∑
i=0

αi|i⟩A|0⟩D
qRAM−−−→ |ψout⟩ =

N−1∑
i=0

αi|i⟩A|xi⟩D, (18)

where N is the size of the data vector x, and the superscripts A and D denote "address" and "data"
respectively.

While we have characterized our QViT as the quantum deep learning framework in the fault-tolerant
era, it is still imperative to incorporate the simulation of noisy qRAM. It is frequently used in
QSave and QLoad in QViT. Within this framework, the primary role of qRAM is to retrieve pixel
information stored in a massive matrix of size 220 by 210. Each pixel can hold either 32 or 64 bits,
necessitating a (30, 64) or (30, 32)-qRAM configuration. Our numerical simulations demonstrate
promising results. For a (30, 64)-qRAM configuration, we observe an average state fidelity of 87%.
This fidelity increases to 91% for the (30, 32)-qRAM configuration.

C.5.2 PRACTICALITY OF QRAM USED IN QVIT

The practicality of qRAM has been investigated on such a scale under our numerical experiments.
Prior research indicates that qRAM infidelity scales as O(n(n+ k)), where n represents the address
size and k denotes the word length. This implies that infidelity exhibits quadratic growth with respect
to address size for a fixed k and increases with word length for a fixed address size n. Based on these
established relationships, our experiments employed data with a fixed word length k to maintain
consistency with the established infidelity relation. Subsequently, we extrapolated the findings to the
case of n = 30. Using these extrapolated data F (30, k), we employed a linear function to predict the
infidelity value when k = 64.

All simulations were conducted under a controlled environment with 10−5 damping noise. We suc-
cessfully simulated qRAM configurations ranging from (20, 20) and below. The observed infidelities
agree to the O(n(n+ k)) relationship, demonstrating a quadratic dependence on address size n for a
fixed word length k, as shown in Figure 7 and Figure 8.

We leveraged the data obtained from these simulations to derive polynomial expressions that accu-
rately capture the relationship between infidelity and address size. Subsequently, these quadratic
expressions were utilized to extrapolate and predict the infidelities of (30, k)-QRAM for a range
of k values from 1 to 20. As a result, we have obtained a comprehensive set of predicted QRAM
infidelities for (30, k) configurations, where k ranges from 1 to 64, as shown in Figure 9.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: The figure shows the relation between address size and infidelity with the fixed k. The blue
points are from the numerical experiments with 100 repetitions and each repetition of experiments
consists of 1000 shots. The orange points are experiments with 10 repetitions with 1000 shots each.
The Green ones are experiments with 10 repetitions with 10 shots each. The fitting function is
completely decided by the data of blue points.

Figure 8: The figure presents the scattering points and sketches the linear relations between data size
k and the infidelity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 9: The figure presents the fitting function and annotates the predicted fidelities of (30, 32)-
QRAM and (30, 64)-QRAM.

D IMPLEMENTATION DETAILS OF THE QVIT

In this section, we introduce details of the implementation of the QViT. Appendix D.1 gives an
overview, and concrete implementations of the forward pass and backpropagation of each layer are
included in the rest of this section.

D.1 OVERVIEW

Some layers within the QViT utilize D-Encoding for their input/output, necessitating the construction
of corresponding D-Encoding operations. In the QViT, the data is stored in the QRAM; for a given
X ∈ Rd×n stored in QRAM, the D-Encoding of X is realized through QRAM querying.

Then, we present the process of implementing the QViT’s forward pass and backpropagation, as
outlined in Algorithms 1 and 2. As defined in Eq. (2), building the D-Encoding of X ∈ Rn×d means
building OD(X) which satisfies

OD(X)|i, j⟩|0⟩ = |i, j⟩|Xi,j⟩, i = 0, 1, · · · , n− 1, j = 0, 1, · · · , d− 1. (19)

In Algorithms 1 and 2, the D-Encoding is built by quantum arithmetic. Because QPos, QNorm,
QAdd, and QFFN layer can be viewed as n d-dimensional operations, the D-Encoding in these layers
can be built by O(d) basic quantum arithmetic operations.

The QAttn layer is different from other layers. The input of the QAttn layer is the D-Encoding ofXin,
we first prepare the amplitude encoding state |Xout⟩. Then, we sample |Xout⟩ with l∞ tomography
and construct the D-Encoding of Xout with the sampled results.

Then, we establish the D-Encoding for the input to the next QAttn layer using quantum arithmetic.
The corresponding quantum circuit is depicted in Figure 10. By querying X0, Ỹ 0, through to Ỹ l

twice, we construct the D-Encoding of X l+1, which serves as the input for the l + 1-th QAttn layer.
As shown in Figure 10, the initial input and all intermediate measurement data are propagated forward,
reflecting the MIMR scheme and thereby enhancing the utilization of intermediate information.

We further explicate the implementation of each layer in the QViT.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Process for constructing D-Encoding of X l+1. s represents the precision of quantum
arithmetic, it can be 8, 16, etc. i denotes the column number. X0 is the input for the initial quantum
attention layer, while Ỹ j denotes the tomography results from the output of the j-th QAttn layer,
where j ranges from 0 to l. Blocks labeled with “X0” or “Ỹ j” indicate queries to the QRAM
storing the respective “X0” or “Ỹ j”. Other blocks represent the d-dimensional quantum arithmetic
operations, including “Add”, “MLP”, and “Norm”. Specifically, “MLP” involves “Norm”, “FFN”,
and “Add”. The block labeled “U†” denotes the uncomputing block.

Algorithm 1 Forward pass of QViT.
1: Input: data X .
2: Output: classification label of X .
3: QPos: Build D-Encoding of Xout = Xin + P , where P represents position embedding.
4: for i = 0, 1, 2, · · · , L− 1 do
5: QNorm: Build D-Encoding of Xout = Norm(Xin).
6: QAttn: Prepare the A-Encoding state |Xout⟩ where Xout is the output of the multi-head

attention. Then, sample |Xout⟩ with l∞ tomography and construct the D-Encoding of Xout

with the sampled results.
7: QAdd: Build the D-Encoding of Xout = X(1) +X(2), where X(1) represents the output of

step 6, and X(2) represents the input of step 5.
8: QNorm: Build the D-Encoding of Xout = Norm(Xin).
9: QFFN: Build the D-Encoding of Xout =W2f(W1X

in + b1) + b2.
10: QAdd: Build the D-Encoding of Xout = X(1) +X(2), where X(1) represents the output of

step 9, and X(2) represents the input of step 8.
11: QHead: Prepare A-Encoding state |Xout⟩ where Xout =Wxin0 + b, then sample |Xout⟩ and

obtain the classification label from the sampled results.

D.2 POSITION EMBEDDING

The formulation for Position Embedding is given by Xout = Xin + P , where P ∈ Rd×n represents
the position embedding parameters.

D.2.1 FORWARD

The input and output are the D-Encoding of Xin and Xout, respectively. The D-Encoding of P is
built through a single query to the QRAM. Therefore, the D-Encoding of Xout is constructed by
querying the D-Encoding of Xin and P once.

D.2.2 BACKPROPAGATION

The input is the D-Encoding of ∂C
∂Xout , and the output is the sampled ∂C

∂P . We have

∂C

∂P
=

∂C

∂Xout
, (20)

therefore, we obtain the D-Encoding of ∂C
∂P . Subsequently, we employ QDAC to prepare the A-

Encoding state |∂C∂P ⟩ and obtain the sampled ∂C
∂P through l∞ tomography.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 2 Backpropagation of QViT.
1: Input: data X , forward pass results.
2: Output: Sampled ∂C

∂F , where F represents parameters in the QViT.
3: Build D-encoding of ∂C

∂Xout through the forward pass results, where Xout is the output of the
QHead.

4: QHead: (1) Prepare A-Encoding state |∂C∂F ⟩, where F represents parameters of the QHead, then
obtain the sampled ∂C

∂F . (2) Build D-Encoding of ∂C
∂Xin .

5: for i = L− 1, L− 2, · · · , 1, 0 do
6: QAdd: Build D-encoding of ∂C

∂X(1) , ∂C
∂X(2) .

7: QFFN: (1) Prepare A-Encoding state |∂C∂F ⟩, where F represents the parameters of the QFFN,
then obtain the sampled ∂C

∂F . (2) Build D-Encoding of ∂C
∂Xin .

8: QNorm: Build D-Encoding of ∂C
∂Xin .

9: QAdd: Build D-encoding of ∂C
∂X(1) , ∂C

∂X(2) .
10: QAttn: Prepare A-Encoding states | ∂C

∂Xin ⟩ and |∂C∂F ⟩, F represents parameters of the QAttn,
then obtain sampled ∂C

∂F and ∂C
∂Xin . Next, build D-Encoding of ∂C

∂Xin .
11: QNorm: Build D-Encoding of ∂C

∂Xin .
12: QPos: Prepare A-Encoding state ∂C

∂P and obtain the sampled ∂C
∂P .

D.3 QNORM LAYER

The norm layer is formulated as Xout = Norm(Xin), detailed by:

Xout = [
xin1 − µ1

σ1
,
xin2 − µ2

σ2
, · · · , x

in
n − µn

σn
], (21)

where µi =
∑d

j=1 xin
ij

d , σ2
i =

∑d
j=1 (xin

ij −µi)
2

d .

D.3.1 FORWARD

In the QNorm layer, the D-Encoding of Xin serves as the input, producing the D-Encoding of Xout

as output. For each xini ∈ Rd with i = 0, 1, · · · , n− 1, both µi and σi can be computed by querying
the D-Encoding of Xin d times, which means the following two operations:

|i⟩|0⟩ 7→ |i⟩|µi⟩, |i⟩|0⟩ 7→ |i⟩|σi⟩. (22)

Following this, the D-Encoding of Xout is constructed by querying the operations defined in Eq. (22)
and the D-Encoding of Xin.

D.3.2 BACKPROPAGATION

During the backpropagation procedure, we can establish the relationship between the D-Encoding of
∂C

∂Xin and the D-Encoding of ∂C
∂Xout . This relationship is formulated as follows:

∂C

∂xini
=

∂C

∂xouti

∂xouti

∂xini
,
∂xouti

∂xini
=
dI − 1⃗

dσi
− (xini − µi)(x

in
i − µi)

T

dσ3
i

, (23)

where 1⃗ represents a matrix in which all elements equal to 1. By applying the above equation, the
D-Encoding of ∂C

∂xin
i

is obtained by querying the D-Encoding of both ∂C
∂Xout and Xin d times.

D.4 QUANTUM ATTENTION

The attention operation is defined as:

Attention(Xin,Wq,Wk,Wv) = V A
′
, A

′
= softmax(

A√
d
), A = KTQ, [Q,K, V] = [Wq,Wk,Wv]X

in,

(24)
where Wq,Wk,Wv ∈ Rd×d, and the softmax function is applied column-wise.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The multi-head attention is defined as:

Xout =WConcat(H0, H1, · · · , Hh−1), Hm = Attention(X,Wqm,Wkm,Wvm), (25)

where W = [W0,W1, · · · ,Wh−1] ∈ Rd×hd; Wqm,Wkm,Wvm ∈ Rd×d, for m = 0, 1, · · · , h− 1.

D.4.1 FORWARD

In the quantum attention layer, the process begins with the D-Encoding of Xin. The aim is to prepare
the A-Encoding state |Xout⟩, followed by sampling |Xout⟩ using l∞ tomography, and finally build
the D-Encoding of Xout by querying the tomography results.

First, we prepare the A-Encoding of A
′

with Lemma D.1. Then we build the D-Encoding of V by
querying the D-Encoding of X d times and (∥V ∥F , ⌈log(d+ n)⌉, ϵ)-block-encoding of V following
the method described in Lemma C.5. Finally, we apply the block-encoding of V on |A′⟩ and measure
the ancilla qubits to |0⟩, resulting in:

|Xout⟩ = 1

∥Xout∥
∑
j

V |A
′

:,j⟩|j⟩, (26)

where A
′

:,j represents the j-th column of A
′
.

Furthermore, multi-head attention is constructed for l = 0, 1, · · · , h− 1, executing quantum attention
in parallel to achieve:

|H⟩ = 1

∥H∥

h−1∑
l=0

|l⟩ ⊗ ∥Hl∥|Hl⟩, (27)

where Hl = Attention(Qi,Ki, V i), V i = WviX , Ki = WkiX , Qi = WqiX , and H =
Concat(H0, H1, · · · , Hh−1). Then we construct realize W operation with block-encoding tech-
nique and obtain

|Xout⟩ =W |H⟩. (28)

Ultimately, Xout is sampled Õ(log(dn)δ2) times, with the D-Encoding of Xout being constructed from
querying the tomography results.

Lemma D.1 Given D-Encoding of X ∈ Rd×n, Wq,Wk ∈ Rd×d,A = XTWT
k WqX , A

′
=

softmax(A√
d
), then there exists a quantum algorithm to prepare |A′⟩ = 1

∥A′∥
∑

i,j A
′

ij |i⟩|j⟩ with

Ω(1) success probability. The query complexity to the D-Encoding of X is Õ(d/ϵ).

Proof Firstly, the element of A is calculated as Aij = xTi W
T
k Wqxj . Therefore, the D-Encoding

of A is built by querying the D-Encoding of X 2d times. Then we define matrix A
′′

which satisfies
A

′′

ij = eAij/
√
d and prepare state

|
√
A′′⟩ = 1

∥
√
A′′∥

∑
i,j

√
A

′′
ij |i⟩|j⟩ (29)

with QDAC. For a specific j
′
, the state |

√
A′′⟩ manifests as

|
√
A′′⟩ =

√
bj′

∥
√
A′′∥

(
1√
bj′

∑
i

√
A

′′

ij′
)|j

′
⟩+ |ψ⊥⟩, (30)

where ⟨j′ |ψ⊥⟩ = 0. Amplitude estimation algorithm Brassard et al. (2002) is then employed to

determine
√

b
j
′

∥
√

A′′∥
. Since ∥

√
A′′∥ is known from |

√
A′′⟩’s preparation, bj′ is obtained. By executing

amplitude estimation in parallel for each j
′
, we realize the following operation

|
√
A′′⟩|0⟩ → 1

∥
√
A′′∥

∑
i,j

√
A

′′
ij |i⟩|j⟩|bj⟩ → |ψ⟩ = 1

∥
√
A′′∥

∑
i,j

√
A

′′
ij |i⟩|j⟩|

√
A

′′
ij/bj⟩, (31)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

with a query complexity to |
√
A′′⟩ of O(1/ϵ). Finally, we use QDAC to prepare

1

∥A′∥
∑
i,j

√
A

′′
ij/bj

√
A

′′
ij |i⟩|j⟩ = |A

′
⟩. (32)

In summary, the query complexity to the D-Encoding of X is Õ(d/ϵ).

Lemma D.2 (Forward pass of QAttn) Given the D-Encoding of X , Wq,Wk,Wv ∈ Rh×d×d, W ∈
Rd×hd, where h denotes the head number, then there exists a quantum algorithm to implement the
QAttn layer. This process constructs the D-Encoding of the layer output, with the query complexity to
the D-Encoding of X being Õ(log(n)hdϵδ2).

Proof First, for each m = 0, 1, · · · , h − 1, |A′

m⟩ is prepared by querying the D-Encoding
of X Õ(d/ϵ) times. For each column (Vm)i, which is computed using xi, by lemma C.5, a
(∥Vm∥F , ⌈log(d+ n)⌉, ϵ)-block-encoding of Vm is constructed by querying D-Encoding of X
Õ(d/

√
ν + µ2) times, where ν and µ are variance and mean of y/∥y∥∞, respectively, with

y = [(Vm)0, (Vm)1, · · · , (Vm)n−1].

Then, |Hm⟩ is prepared by querying both the preparation of |A′

m⟩ and the block-encoding of Vm.
Therefore, |Hm⟩ is prepared by querying the D-Encoding of X Õ(d/ϵ) times and cumulatively,
Õ(hd/ϵ) for all heads in the construction of |H⟩.

Ultimately, |Xout⟩ is prepared by operating WF on |H⟩. Finally, we sample |Xout⟩ Õ(log(dn)δ2)
times and build the corresponding D-Encoding with the tomography results. In summary, the query
complexity to the D-Encoding of X is Õ(hd log(n)

ϵδ2).

D.4.2 BACKPROPAGATION

In the backpropagation process, the input is the D-Encoding of ∂C
∂Xout . The procedure begins

with preparing the A-Encoding state | ∂C
∂Xin ⟩ and |∂C∂F ⟩, where F denotes the parameters of this

layer. Subsequently, these two A-Encoding states are sampled with l∞ tomography, building the
D-Encoding of ∂C

∂Xin based on the tomography results of ∂C
∂Xin .

Firstly, we prepare the state |∂C∂F ⟩, where F containsW ,Wvm,Wqm andWkm form = 0, 1, · · · , h−
1. The derivative of C with respect to W is expressed as:

∂C

∂W
=

∂C

∂Xout

∂Xout

∂W
, (
∂Xout

∂W
)ijkl = δikH

T
jl , (33)

For m = 0, 1, · · · , h− 1, the derivative with respect to ∂C
∂Wvm

and ∂C
∂Wqm

are given by:

∂C

∂Wvm
=

∂C

∂Xout

∂Xout

∂Hm

∂Hm

∂Vm

∂Vm
∂Wvm

, (34)

(
∂Xout

∂Hm
)ijkl = δjl(Wm)ik, (

∂Hm

∂Vm
)ijkl = δik(A

′

m)Tjl, (
∂Vm
∂Wvm

)ijkl = δikX
in
lj , (35)

∂C

∂Wqm
=

∂C

∂Xout

∂Xout

∂Hm

∂Hm

∂A′
m

∂A
′

m

∂Am

∂Am

∂Qm

∂Qm

∂Wqm
, (36)

(
∂Hm

∂A′
m

)ijkl = δjl(Vm)ik, (
∂A

′

m

∂Am
)ijkl =

1√
d
δjl(δik(A

′

m)ij − (A
′

m)ij(A
′

m)kj), (37)

(
∂Am

∂Qm
)ijkl = δjl(K

T)ik, (
∂Qm

∂Wqm
)ijkl = δikX

in
lj . (38)

The expression of ∂C
∂Wkm

is similar to ∂C
∂Wqm

introduced in Eq. (36). From Eq. (33) to (38), each

component of ∂C
∂F consists of H , W , A

′

m, Qm, Km, Vm, or Xin. The corresponding D-Encoding,
A-Encoding or block-encoding of these matrices are introduced before. Therefore, we can prepare
A-Encoding of each component of ∂C

∂F with quantum linear algebra, that is, prepare A-Encoding of
∂C
∂F . After sampling the A-Encoding state |∂C∂F ⟩, parameters are updated based on the sampled results.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Next, we consider ∂C
∂Xin , which is given by:

∂C

∂Xin
=

∂C

∂Xout

∂Xout

∂H

∂H

∂Xin
. (39)

For m = 0, 1, · · · , h− 1,
∂Hm

∂Xin
=

∂Vm
∂Xin

A
′

m + Vm
∂A

′

m

∂Xin
, (40)

∂A
′

m

∂Xin
=
∂A

′

m

∂Am
(
∂KT

m

∂Xin
Qm +KT

m

∂Qm

∂Xin
), [

∂Vm
∂Xin

,
∂Qm

∂Xin
,
∂Km

∂Xin
]ijkl = δjl[Wvm,Wqm,Wkm]ik.

(41)
Similar to ∂C

∂F , ∂C
∂Xin also consists of ∂C

∂Xout , W , A
′
, Qm, Km, Vm, Wvm, Wqm, and Wkm, and the

corresponding D-Encoding, A-Encoding or block-encoding of these matrices are introduced before.
Therefore, we can prepare A-Encoding of ∂C

∂Xin and sample | ∂C
∂Xin ⟩ with l∞ tomography, then we

build D-Encoding of ∂C
∂Xin with the sampled results. The cost associated with backpropagation of

QAttn can be summarized in the following lemma.
Lemma D.3 (Backpropagation of QAttn) Given D-Encoding of Xin, Xout and ∂C

∂Xout ,
Wq,Wk,Wv ∈ Rh×d×d, W ∈ Rd×hd, where h represents the head number, then there exists a
quantum algorithm to prepare the A-Encoding state of ∂C

∂F and D-Encoding of ∂C
∂Xin , where F repre-

sents the parameters of the QAttn. The query complexity to the related D-Encodings is Õ(hd log(n)
ϵδ2).

Proof Firstly, we notice that
∂C

∂F
=

∂C

∂Xout

∂Xout

∂F
, (42)

where F contains W , Wvm, Wqm and Wkm for m = 0, 1, · · · , h − 1. For each component of F ,
the expression of ∂Xout

∂F is based on Eq. (33), (35), (37), and (38). Therefore the A-Encoding of
each component of ∂Xout

∂F can be prepared by A-Encoding or Block-encoding of H , A
′
, K, Q, and

V . Subsequently, we construct the block-encoding of ∂C
∂Xout and apply this to the A-Encoding state

|∂X
out

∂F ⟩, thereby preparing the A-Encoding of ∂C
∂F . The query complexity to the related D-Encodings

is Õ(hdϵ). Then we sample |∂C∂F ⟩ Õ(
log(hd2)

δ2) times and obtain the sampled results. The query
complexity to the related D-Encodings of this process is Õ(hd

ϵδ2).

Secondly, we consider the derivative of the cost function relative to Xin:

∂C

∂Xin
=

∂C

∂Xout

∂Xout

∂Xin
=

∂C

∂Xout

∂Xout

∂H

∂H

∂Xin
. (43)

The D-Encoding process of ∂C
∂Xin is detailed in the earlier segment of this section, with the query

complexity of this process being Õ(hd2/ϵ). Following this, we sample | ∂C
∂Xin ⟩ Õ(log(dn)δ2) times, and

build the D-Encoding of ∂C
∂Xin using the sampled results. The related D-Encodings’ query complexity

in this case is Õ(hd log(n)
ϵδ2).

In summary, the query complexity to the related D-Encodings of backpropagation is Õ(hd log(n)
ϵδ2).

D.5 QADD

The QAdd layer is written as:
X = X(1) +X(2), (44)

where X,X(1), X(2) ∈ Rd×n. The forward pass and backpropagation of the QAdd layer are
introduced as follows.

D.5.1 FORWARD

The input is the D-Encoding of X(1) and X(2), the output is the D-Encoding of X . We have

xi = x
(1)
i + x

(2)
i , i = 0, 1, 2, · · · , n− 1, (45)

therefore, the D-Encoding of X is directly built by querying the D-Encoding of X(1) and X(2) once.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.5.2 BACKPROPAGATION

The input consists of the D-Encoding of ∂C
∂X(α) and ∂C

∂X(β) , where ∂C
∂X(α) is backpropagated from the

next QAdd layer, and ∂C
∂X(β) originates from the subsequent QNorm layer. The output comprises the

D-Encoding of ∂C
∂X(1) and ∂C

∂X(2) , with ∂C
∂X(1) being directed backpropagated to the preceding QAdd

layer, and ∂C
∂X(2) being backpropagated to the previous layer.

We have
∂C

∂X(1)
=

∂C

∂X(2)
=

∂C

∂X(α)
+

∂C

∂X(β)
. (46)

Therefore, the D-Encoding of ∂C
∂X(1) and ∂C

∂X(2) is built directly by querying the D-Encoding of ∂C
∂X(α)

and ∂C
∂X(β) once.

D.6 QFFN

The feedforward layer is written as
Xout =W2f(W1X

in + b1) + b2, (47)
where f is the activation function. In our model, we employ the ReLU function as f . The forward
pass and backpropagation of the QFFN layer are introduced as follows.

D.6.1 FORWARD PASS

The process involves the D-Encoding of the input matrix Xin and subsequently produces the D-
Encoding of the output matrix Xout. Each output element xouti is determined through the equation:

xouti =W2f(W1x
in
i + b1) + b2, i = 0, 1, 2, · · · , n− 1, (48)

where each xini is a vector in Rd. The D-Encoding of Xout is then constructed by querying the
D-Encoding of Xin d times.

D.6.2 BACKPROPAGATION

The input is the D-Encoding of ∂C
∂Xout , and the output comprises the D-Encoding of ∂C

∂Xin along with
the sampled ∂C

∂F , where F denotes the parameters in the QFFN layer.

First, we have
∂C

∂xini
=

∂C

∂xouti

∂xouti

∂xini
, i = 0, 1, · · · , n− 1, (49)

therefore, the D-Encoding of ∂C
∂Xin is constructed by querying the D-Encoding of ∂C

∂Xout and Xin d
times.

Next, we prepare the state |∂C∂F ⟩. We define Xmid = W1X
in + [b1, b1, · · · , b1], similarly to ∂C

∂Xin ,
the D-Encoding of ∂C

∂Xmid can also be constructed by querying the D-Encoding of ∂C
∂Xout and Xin d

times. F consists of W1, b1 and W2, b2, we have

[
∂C

∂W2
,
∂C

∂b2
] =

∂C

∂Xout
[
∂Xout

∂W2
,
∂Xout

∂b2
], (
∂Xout

∂W2
)ijkl = δikf(X

mid)Tjl, (
∂Xout

∂b2
)ijk = δik, (50)

[
∂C

∂W1
,
∂C

∂b1
] =

∂C

∂Xmid
[
∂Xmid

∂W1
,
∂Xmid

∂b1
], (
∂Xmid

∂W1
)ijkl = δik(X

in)Tjl, (
∂Xmid

∂b2
)ijk = δik. (51)

We construct block-encoding of ∂C
∂Xout and ∂C

∂Xmid by Lemma C.5. From Eq. (50) and (51), we can
also prepare A-Encoding |∂X

out

∂W2
⟩, |∂X

out

∂b2
⟩, |∂X

mid

∂W1
⟩, and |∂X

mid

∂b1
⟩. Then | ∂C

∂W1
⟩, | ∂C

∂W2
⟩, | ∂C∂b1

⟩ and
| ∂C∂b2

⟩ can be prepared and obtain its sampled distribution with l∞ tomography algorithm.

D.7 QHEAD

The head layer of ViT is written as
Xout =Wxin0 + b, (52)

where xin0 ∈ Rd, Xout ∈ RK , and K represents the class number. The forward pass and backpropa-
gation of the QHead layer are introduced as follows.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.7.1 FORWARD PASS

The input is the D-Encoding of Xin, and the output is the sampled Xout. The D-Encoding of
Xout is constructed by querying the D-Encoding of Xin d times. Subsequently, we prepare the
A-Encoding state |Xout⟩ using QDAC and obtain the sampled Xout through the l∞ tomography
algorithm. Finally, the classification label of X is derived from the sampled results.

D.7.2 BACKPROPAGATION

The input is the D-Encoding of ∂C
∂Xout , and the output includes the D-Encoding of ∂C

∂Xin along with
the sampled ∂C

∂F , where F denotes the parameters in the QHead layer.

Notice that the QHead layer is a simplified version of the QFFN layer without hidden layers. Therefore,
the backpropagation of the QHead layer can be directly implemented using the backpropagation of
the QFFN layer.

E PROOF OF THEOREMS 3.1

Proof 1. Forward pass

The query complexity of the QViT increases linearly with the number of encoder layers. Here, we
analyze the complexity of one encoder layer of the QViT.

First, the dependence of the query complexity of the QPos, QAdd, QNorm, QFFN, and QHead layers
on d is the same as in the classical case, and the dependence on n is O(1).

Second, by Lemma D.2, the query complexity of the X in the QAttn is Õ(d log(n)
ϵδ2), where δ represents

the tomography error (Notice that we omit the head number h here). The query complexity of the
parameters in the QAttn is the query complexity of the X multiplied by the factor d, because in the
process Wxi, the parameter matrix W has O(d2) elements, xi has O(d) elements. Therefore, the
query complexity of the QAttn is Õ(d

2 log(n)
ϵδ2).

Third, the query complexity of the following QAdd, QNorm, and QFFN is O(d2).

Therefore, the query complexity of one QViT encoder layer is O(d
2 log(n)
ϵδ2). Finally, the query

complexity of the QHead layer is O(d).

In summary, for an l-layer QViT, the query complexity of the forward pass is Õ(ld
2 log(n)
ϵδ2).

2. Backpropagation

In the QHead layer, the D-Encoding of ∂C
∂Xout is built by querying the results obtained in the forward

pass, and the query complexity to D-Encoding of ∂C
∂Xout is O(d).

Next, we analyze the complexity of a layer of the QViT encoder from back to front.

(1) The first layer is the QAdd, as introduced in Appendix D.5.2, the query complexity to the
D-Encoding of ∂C

∂Xout is O(1).

(2) In the QFFN layer, we build the D-Encoding of ∂C
∂Xin and obtain the sampled ∂C

∂F , where
F represents the parameters of the QFFN layer. As introduced in Appendix D.6.2, the
query complexity to build the D-Encoding of ∂C

∂Xin is O(d2) because each ∂C
∂xin

i
is computed

by O(d2) elements of Xout and the QFFN layer parameters, and the query complexity to

prepare each component of |∂C∂F ⟩ is Õ(d2). Then we sample |∂C∂F ⟩ Õ(
log(d2)

δ2) times and
obtain the sampled results. The query complexity of the QFFN layer is Õ(d

2

δ2).

(3) In the QNorm layer, the query complexity to the D-Encoding of ∂C
∂Xout and Xin is O(d).

(4) In the next QAdd layer, the query complexity to the D-Encoding of ∂C
∂Xout is O(1).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

(5) By Lemma D.3, the query complexity of the D-Encodings of Xin, Xout, and ∂C
∂Xout in the

QAttn layer is Õ(d log(n)
ϵδ2), and the query complexity of the parameters is Õ(d log(n)

ϵδ2) times

the factor d. Therefore, the query complexity of the QAttn layer is Õ(d
2 log(n)
ϵδ2).

(6) In the next norm layer, the query complexity to the D-Encoding of ∂C
∂Xout and Xin is O(d).

We have analyzed the complexity of a QViT encoder layer, the query complexity is mainly determined
by the QAttn layer, which is Õ(d

2 log(n)
ϵδ2).

Finally, in the QPos layer, the query complexity is Õ(log(dn)δ2).

In summary, for an l-layer QViT, the query complexity of the backpropagation process is Õ(ld
2 log(n)
ϵδ2).

F ADDITIONAL RESULTS

The numerical results referred to in Section 2.2 that examine the cosine similarity between the output
and input is shown in Figure 11.

In Section 4, we present the fine-tuning convergence curve of the CUB-200-2011 dataset, depicted in
Figure 4. Additionally, we conduct tests on the Cifar-10, and Cifar-100 in Figure 12, yielding results
similar to those obtained in the main text.

We conclude all the numerical results of the fine-tuning QViT models in Table 5, where each data
represents the mean of five individual training processes.

Table 5: Classification accuracy (in %) of the QViT with multiple/single-reuse strategy. δ = 0
represents the results of the classical vision transformer. Each data point is the average of five
experimental results, with each experiment using a different random seed.

Dataset ϵ Method δ = 0 δ = 0.005 δ = 0.01 δ = 0.015 δ = 0.02

Cifar-10

0.000 Multiple 98.19 98.18 97.75 96.79 94.05
Single 96.77 67.48 32.87 24.85

0.004 Multiple 95.74 95.28 92.75 86.04 69.80
Single 89.69 53.09 33.50 23.20

0.008 Multiple 47.41 46.01 46.79 44.75 42.85
Single 41.15 30.95 22.00 19.88

Cifar-100

0.000 Multiple 89.41 89.23 87.50 81.69 56.21
Single 87.44 27.43 10.43 6.61

0.004 Multiple 74.13 70.30 56.68 40.99 29.02
Single 48.24 18.16 9.01 4.89

0.008 Multiple 14.13 14.59 13.87 13.36 12.59
Single 12.20 8.09 4.01 1.84

CUB-200-2011

0.000 Multiple 89.48 89.06 87.51 82.85 66.53
Single 87.60 52.13 10.80 3.29

0.004 Multiple 80.07 78.28 70.89 52.63 36.60
Single 64.02 18.72 5.12 1.41

0.008 Multiple 11.32 11.72 11.87 9.48 7.83
Single 8.19 2.65 0.92 0.69

Oxford III-T PETS

0.000 Multiple 92.85 92.21 90.53 85.32 69.45
Single 91.22 48.05 10.43 6.30

0.004 Multiple 84.29 81.55 73.86 62.21 49.38
Single 69.93 25.96 7.89 4.93

0.008 Multiple 18.88 19.68 17.50 15.24 12.86
Single 11.44 5.37 3.63 3.18

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0
Layer Number

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

S
im

ila
ri

ty

CUB-200-2011

Multiple, δ=0.002

Single, δ=0.002

Multiple, δ=0.003

Single, δ=0.003

Multiple, δ=0.004

Single, δ=0.004

(a)

0.0 2.5 5.0 7.5 10.0
Layer Number

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

S
im

ila
ri

ty

Cifar-10

Multiple, δ=0.002

Single, δ=0.002

Multiple, δ=0.003

Single, δ=0.003

Multiple, δ=0.004

Single, δ=0.004

(b)

0.0 2.5 5.0 7.5 10.0
Layer Number

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

S
im

ila
ri

ty

Cifar-100

Multiple, δ=0.002

Single, δ=0.002

Multiple, δ=0.003

Single, δ=0.003

Multiple, δ=0.004

Single, δ=0.004

(c)

0.0 2.5 5.0 7.5 10.0
Layer Number

0.5

0.6

0.7

0.8

0.9

1.0

C
os

in
e

S
im

ila
ri

ty

Oxford-IIIT Pets

Multiple, δ=0.002

Single, δ=0.002

Multiple, δ=0.003

Single, δ=0.003

Multiple, δ=0.004

Single, δ=0.004

(d)

Figure 11: The cosine similarity between the output of each layer of the QViT with
multiple/single-reuse strategies and the correct output. Subfigures (a), (b), (c), and (d) rep-
resent the CUB-200-2011, Cifar-10/100, and Oxford-IIIT Pets datasets respectively. The solid/dashed
line represents the QViT with multiple/single-reuse strategy.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 100 200 300 400
Iterations

0

0.5

1

1.5

2

2.5

L
os

s

0 5 10 15 20
Validation Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

0 100 200 300 400
Iterations

0

1

2

3

4

5

L
os

s

0 5 10 15 20
Validation Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Classical, ε = 0.000, δ = 0.00

Multiple, ε = 0.000, δ = 0.01

Single, ε = 0.000, δ = 0.01

Classical, ε = 0.004, δ = 0.00

Multiple, ε = 0.004, δ = 0.01

Single, ε = 0.004, δ = 0.01

Cifar-10

Cifar-100

(a) (b)

(c) (d)

Figure 12: The fine-tuning convergence curve of Cifar-10 and Cifar-100 datasets.

28

	Introduction
	Multiple-reuse of measurement information
	Motivation: necessity of information reuse in constructing quantum deep neural network
	Measurement information multiple-reuse

	Quantum vision transformer
	Framework
	Quantum layers
	Quantum-classical data transfer layers

	Forward pass
	Backpropagation

	Numerical tests
	Setup
	Effects of the multiple-reuse strategy on forward pass
	Effects of multiple-reuse strategy on fine-tuning

	Conclusion
	Limitations
	Symbols, abbreviations, and definitions
	Mathematical symbols
	Abbreviations

	The performance comparison of the multiple-reuse and the single-reuse strategies
	Basics of quantum computing
	Quantum arithmetic
	Reciprocal
	Arc cosine
	ReLU

	Quantum Tomography
	Quantum Digital-Analog Conversion
	Block-encoding
	Quantum Random Access Memory
	Introduction
	Practicality of qRAM used in QViT

	Implementation details of the QViT
	Overview
	Position Embedding
	Forward
	Backpropagation

	QNorm layer
	Forward
	Backpropagation

	Quantum Attention
	Forward
	Backpropagation

	QAdd
	Forward
	Backpropagation

	QFFN
	Forward pass
	Backpropagation

	QHead
	Forward pass
	Backpropagation

	Proof of Theorems 3.1
	Additional results

