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ABSTRACT

The current era has witnessed the success of the transformer in the field of classical
deep neural networks (DNNs) and the potential of quantum computing. One
naturally expects that quantum computing can offer significant speedup for the
transformer. Recent developments of quantum transformer models are faced with
challenges including the expensive cost of non-linear operations and the information
loss problem caused by measurements. To address this issue, this paper proposes a
scheme called measurement information multiple-reuse (MIMR). MIMR enables
the repeated utilization of intermediate measurement data from former layers, thus
enhancing information-transferring efficiency. This scheme facilitates our quantum
vision transformer (QViT) capable of achieving exponential speedup compared to
classical counterparts, with the support of many parameters and large depth. Our
QViT model is further examined with an instance of 86 million parameters, which
halves the requirements for tomography error compared to the one without MIMR.
This demonstrates the superior performance of MIMR over existing schemes. Our
findings underscore the importance of exploiting the value of information from
each measurement, offering a key strategy towards scalable quantum deep neural
networks.

1 INTRODUCTION

The transformative era of deep learning has witnessed the rise of varieties of large-scale models,
wherein the transformer Vaswani et al.|(2017)) emerges as a cornerstone in this evolution. At the heart
of the transformer’s success lies its attention mechanism, a paradigm-shifting approach that allows
for the effective management of billions of parameters, maintaining trainability and adaptability
across diverse applications. However, the computing resource of the transformer scales quadratically
with the sequence length. This limitation has emerged as a bottleneck in the continued scaling of
transformer models, necessitating innovative approaches to extend their capabilities.

Quantum computing is a promising solution to the computational limitations of classical machine
learning, offering exponential speedup and enhanced computing capabilities. In the field of quantum
deep neural networks (QDNNS5), plenty of works have been proposed [Beer et al.|(2020); Liu et al.
(2024); L1 et al.| (2020); |[Kerenidis et al.|(2020a). Their potential applications include fields of image
recognition Li et al.[(2020), quantum physics|Liu et al.[(2022), data classification Hur et al.| (2022)),
and so forth. Despite the relatively mature development of QDNNSs, the advancement of quantum
algorithms for transformers has lagged behind.

Early attempts at quantum transformer have been made, based on either variational quantum circuits
(VQCs)|Cerezo et al.|(2021), or quantum linear algebra (QLA)|Childs et al.|(2017); |Liu et al.|(2021);
Krovi| (2023). The VQC-based quantum transformers (Cherrat et al.|(2022); [Evans et al.| (2024) lack
provable quantum advantage and also suffer from trainability problems like barren plateaus|{Wang et al.
(2021); McClean et al.|(2018]) and local minima |Anschuetz & Kianil (2022)); Bittel & Kliesch|(2021).
The QLA-based quantum transformers |Guo et al.| (2024); Liao & Ferrie| (2024)) have theoretical
speedup while lacking full end-to-end implementation. Neither multi-layer implementation nor
backpropagation has been realized yet. Nikhil et al. presented a quantum transformer model which
utilizes the Linear Combination of Unitaries and Quantum Singular Value Transform primitives as
building blocks, this model provides a quantum attention layer, the implementation of other layers,
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the complexity of quantum-classical data conversion between different layers, and the end-to-end
implementation needs further investigation.

In this work, we propose a full implementation of a multi-layer quantum transformer based on
QLA, including the realization of forward pass and backpropagation. Our quantum transformer has
exponential speedup on the sequence length on both forward pass and backpropagation compared
to the classical counterpart. To enable the stacking of layers, a major improvement of our work
is the utilization strategy of classical information reuse. While the classical information that can
be extracted from the quantum state in every single measurement is limited, we argue that the
measured information has not been carefully utilized in previous works, inducing an unexpected
information loss and forbidding the deepening of a quantum neural network. This phenomenon has
been observed in the similar QLA-based quantum deep neural network |[Kerenidis et al.|(2020a) and
is further explored in this work. To address this issue, we propose the Measurement Information
Multiple-Reuse (MIMR) scheme to mitigate the information loss across layers by making full use
of the measured information. To showcase the utility of MIMR, we construct a quantum vision
transformer (QViT) with 86 million parameters, demonstrating improvement in accuracy with image
classification tasks of real-world datasets as well as strong robustness against information loss.

2 MULTIPLE-REUSE OF MEASUREMENT INFORMATION

2.1 MOTIVATION: NECESSITY OF INFORMATION REUSE IN CONSTRUCTING QUANTUM DEEP
NEURAL NETWORK

In this section, we discuss the pivotal role of reusing intermediate measurement information to
accelerate classical deep neural networks (DNNs) via quantum computing. A multi-layer DNN,
involving nonlinear operations at each layer, can be viewed as a discrete nonlinear system where each
layer symbolizes a step in its evolution. Current research indicates that quantum computing struggles
to effectively accelerate the evolution of strongly nonlinear systems, with complexity potentially
increasing exponentially with the number of evolution steps [Liu et al|(2021). This exponential
increase in complexity directly conflicts with the expectations for quantum speedup and presents a
significant challenge for QDNNSs. This discussion extends to limitations in efficiently implementing
quantum backpropagation, necessitated not only by the non-linear operations of gradients but also by
the need for information on intermediate quantum states.

One approach to addressing the challenges mentioned above involves incorporating measurement
operations at intermediate steps of QDNNs. Specifically, we can introduce intermediate measurements
after each layer, using measurement outcomes to reconstruct the output before feeding it into the
next layer. Consequently, the complexity increases linearly with the number of layers. Similar
ideas are employed in many recent works, including the quantum convolutional neural networks
(QCNNGs) [Kerenidis et al.|(2020a) and quantum algorithms for solving nonlinear systems Xue et al.
(2021)); Krovi (2023)); |Chen et al.|[(2022).

However, the cost associated with intermediate measurements can be substantial, potentially under-
mining the quantum advantage offered by QDNNs. Thus, a cost-effective scheme for intermediate
measurements becomes essential. Intermediate measurement, a form of quantum tomography, in-
volves several efficient tomography techniques such as /., tomography Kerenidis et al.| (2020b)),
shadow tomography |Aaronson| (2018)); [Huang et al.| (2020), and neural network-based methods
Carrasquilla et al.| (2019); Torlai et al.|(2018).

Given Holevo’s bound Holevo| (1973), each measurement on an n-dimensional quantum state can
extract only log n bits of information, rendering the process of extracting classical information from
quantum states highly inefficient. Efficient tomography algorithms aim to reduce the number of
measurements, maximizing the utility of the classical data derived from each measurement. Despite
these advancements, existing quantum acceleration methods for DNNs, such as QCNNSs, do not fully
exploit the potential of intermediate measurements. Typically, each layer in these networks blocks
the output obtained from previous layers and only conveys the most recent measurement information
to the next layer.
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2.2 MEASUREMENT INFORMATION MULTIPLE-REUSE

To address this inefficiency, we propose a multiple-reuse strategy for intermediate measurement data,
developing techniques to repeatedly leverage this information throughout the network. This strategy
ensures more efficient use of quantum resources and enhances the practical scalability of QDNNSs.

The multiple-reuse strategy is derived from residual connection, a basic building block in DNNs.
Residual connection is written as y = x + f(z), where f(z) is the output of a layer with input z.
The idea of implementing a multiple-reuse strategy is to add intermediate measurements to a branch
of the residual connection layer. Then the previous information can be transferred from the other
branch and perform Quantum Add, as shown in Figure[I]

As a comparison, previous works adopted single-reuse strategy [Kerenidis et al.| (2024])); \Guo et al.
(2024), of which the intermediate measurements are executed after each quantum layer, and only
the most recent measurement results are passed to the next layer. Quantum residual connections
have been explored in the context of quantum neural networks based on variational quantum circuits.
Wen et al. introduced a residual connection framework utilizing the linear combination of unitary
operations to enhance the expressivity of quantum neural networks on NISQ devices [Wen et al.
(2024). Similarly, Muhammad et al. proposed a residual approach, termed ResQNets, to mitigate
the barren plateaus problem in quantum neural networks |[Kashif & Al-Kuwari| (2024). While these
residual connection strategies are well-suited for variational quantum circuits operating on NISQ
devices, their direct application to quantum transformers presents significant challenges. Notably,
the success rate decreases exponentially with the number of residual layers, and the computational
complexity grows polynomially with the context length, posing substantial scalability limitations.

In our multiple-reuse strategy, each layer contains a residual connection that allows all previous
intermediate measurement results to be passed through an independent branch of the residual con-
nection without additional measurement. As shown in the bottom part of Figure|[T] the input 2 and
the measurement results mq, ms, - - - , my are all passed to the final quantum layer. Compared to the
single-reuse strategy, the data flow in the multiple-reuse strategy is more active. Wen et al. realized
residual connections by the frame of a linear combination of unitary to enhance the expressivity of
quantum neural networks in NISQ devices|Wen et al.|(2024), the complexity of their scheme increases
exponentially with the residual connection layers, and their scheme cannot solve the “exponential
increase” problem caused by nonlinear layers. Muhammad et al. also proposed a residual approach
for mitigating barren plateaus in quantum neural networksKashif & Al-Kuwari| (2024).

We can make full use of the information obtained from all intermediate measurements to build
more efficient QDNNSs based on the multiple-reuse strategy. To study the practical influences, in
Appendix [B| we compare the extent of information loss using single- and multiple-reuse strategies,
by observing the cosine similarity between input and output through two processes. It shows that
it mitigates information loss for state reconstruction. In Figure fig-tomography-error-cub-forward,
numerical evidence shows that it achieves less information loss during the forward pass of the
quantum transformer, thus likely improving the effectiveness of the training process. The multiple-
reuse strategy can alleviate the problem of information loss with the number of layers and therefore
help build up a deeper quantum neural network.
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3 QUANTUM VISION TRANSFORMER

In this section, we introduce our developed QViT. Traditional transformer architectures consist of
nonlinear layers and non-unitary matrix computations, presenting substantial challenges in leveraging
quantum computing for acceleration. Current research faces the following challenges: (1) The
complexity increases exponentially with the number of layers; (2) The success probability of imple-
menting non-unitary matrix operations in quantum linear algebra is less than 1. Our QViT effectively
addresses the challenge of exponential resource growth associated with an increase in layers and
significantly reduces the probabilistic steps during the execution process. This enhancement is derived
from two major innovations in our implementation of QViT: (1) We employ the MIMR scheme
within the transformer encoder layer to prevent the issue of complexity from increasing exponentially
with the number of layers. (2) Apart from the Attention layer, the computational processes in other
layers of the transformer are independent for different tokens. We implement these layers using
quantum arithmetic operations, thereby circumventing the probabilistic issues typically encountered
with quantum linear algebra.

Based on the above ideas, we build the complete forward pass and backpropagation process for
the QViT. Both the forward pass and backpropagation processes achieve exponential speedup with
respect to the sequence length n, while the complexity increases linearly with the number of layers [,
as detailed in Theorem [3.11

Theorem 3.1 (Query complexity of forward pass and backpropagation of QViT) Given an in-
put X € R¥*™, there exists a quantum algorithm to realize the forward pass and backpropagation of

~ 2
an l layers vision transformer, the query complexity to X is O (%), where 0 represents

the tomography error, and € is the computational accuracy.

Remark. Our QVIT utilizes the MIMR scheme, incorporating [, tomography as described in
Kerenidis et al.| (2020b) within this framework. In this context, § denotes the tomography error
associated with the [, tomography. Detailed explanations and mathematical formulations of [,
tomography are presented in Theorem[C.2] For intuitive comparison, the complexity of the classical
ViT is O(Ind(n + d) log(1/€)), which confirms our statement of exponential speedup with respect to
n. The dependence on d is the same as the classical ViT. € and § also influence the complexity of
the QViT. The computing accuracy e can be moderate in large models, such as 8-bit, or even 4-bit
computing accuracy. The tomography error § can also be moderate, in the following numerical tests,
the QViT shows high performance with moderate tomography error (i.e. 6 = 0.003). Thus, as n
increases, the exponential acceleration capabilities of the QViT become increasingly pronounced.

3.1 FRAMEWORK

We first introduce the framework of the QViT, which is shown in Figure 2] Note that in the remaining
part of the paper, we will use abbreviations to avoid repeats, see Table d As shown in subfigure
(a), (b), and (c), the naming and usage of the major components remain the same as their classical
counterparts, including QPos layer, quantum transformer encoder, and QHead layer.

There are two types of layers in the QViT, the quantum layers and the quantum-classical data transfer
layers, as shown in Figure 2(d). Quantum layers are compatible with quantum input and output,
providing quantum speedup with existing quantum algorithms, displayed as black circles. Quantum-
classical data transfer layers, including quantum-to-classical and classical-to-quantum, displayed as
red and blue circles, are used to implement the QSave and QLoad techniques, which will be further
introduced in the following sections.

3.1.1 QUANTUM LAYERS

Quantum layers are the layers that provide quantum speedup, including QPos, QNorm, QAttn, QAdd,
and QFFN. One method to implement these operations involves quantum linear algebra, inherently
producing probabilistic outcomes at each step. We notice that, apart from the QAttn layer, other
layers can be regarded as n independent d-dimensional operations. Consequently, we can implement
these layers using d-dimensional quantum arithmetic operations, which are not affected by success
probability. This approach significantly reduces the number of probabilistic steps involved.
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Figure 2: Framework of quantum vision transformer. (a) The primary structure of the QViT
proposed in this paper, includes a quantum version of position embedding, transformer encoder, and
QHead. (b-c) Detailed implementations of the QHead, quantum transformer encoder, and quantum
embedding layer, respectively. (d) The color of the logo indicates the type of each layer. (e) QSave &
QLoad process.
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Figure 3: Backpropagation process of QViT.

Next, we introduce the implementation of QAttn and other layers. The QViT incorporates two distinct
data encoding strategies: Analog-Encoding (A-Encoding) and Digital-Encoding (D-Encoding),
defined as:

n—1
1
A-Encoding : O4()[0) = |a) = T2l > aili), (1)
i=0
D-Encoding : Op(a)|i)|0) = |i)|ey),i =0,1,--- ,n — 1. )

For a specific layer utilizing A-Encoding, the input/output is the amplitude encoding state of the
target data. Conversely, for layers employing D-Encoding, the input/output corresponds to the Op
operation on the target vector.

The input of the QAttn layer is the D-Encoding of X. We implement QAttn using quantum linear
algebra, quantum amplitude estimation, and other algorithms to obtain the A-Encoding of the QAttn
output Y. The details are introduced in Appendix Following the QAttn layer, quantum-classical
data transfer layers are executed to achieve the D-Encoding of Y, where Y is the sampled version
of QAttn output Y. Detailed information about these quantum-classical data transfer layers can be
found in Section[3.1.2

Then, we establish the D-Encoding for the input to the next QAttn layer using quantum arithmetic.
The implementation details are introduced in Appendix [D}
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3.1.2 QUANTUM-CLASSICAL DATA TRANSFER LAYERS

As stated in the previous section, the QViT construction process also requires intermediate measure-
ment steps, which are realized in quantum-classical data transfer layers. The quantum-classical data
transfer layers contain QSave and QLoad processes. QSave is a quantum tomography process, we
use [, tomography to realize QSave procedure. QLoad procedure is used to encode the tomography
results into the following quantum operations, the QLoad is realized by querying QRAM followed
by QDAC. See Appendix and [C 3] for relevant knowledge of I, tomography, qRAM and
QDAC.

In the QViT, we add the QSave and QLoad procedures after the quantum multi-attention layer. There
are two reasons: (1) The QAdd layer is behind the quantum multi-attention layer, which means we
add the QSave and QLoad procedures before the QAdd layer. Then, based on the multiple-reuse
strategy introduced in Section[2.2} the previous measurement information can also be reused from the
other branch of the QAdd (The red line of the Figure 2{c)). (2) The quantum multi-attention layer is
different from other layers, Other layers can be regarded as n independent d-dimensional operations,
but the quantum multi-attention layer cannot. So other layers can be realized by implementing
d-dimensional quantum arithmetic operations in parallel, and the implementation process does not
require measurement, the implementation details are introduced in Appendix D] Therefore, we add
the QSave and QLoad procedures after QAttn.

In the QVIiT architecture, we integrate the QSave and QLoad procedures subsequent to the quantum
multi-attention layer for two primary reasons: (1) The QSave and QLoad procedures are prior to
the QAdd layer, which allows for the reuse of previous measurement information from the alternate
branch of the QAdd layer, as delineated in the multiple-reuse strategy discussed in Section[2.2]and
illustrated by the red line in Figure 2(c). (2) The QAttn layer differs fundamentally from other
layers, which typically consist of n independent d-dimensional operations. Unlike these layers, the
quantum multi-attention layer contains n X n-dimensional operations. Consequently, while other
layers can execute d-dimensional quantum arithmetic operations in parallel without intermediate
measurement, the implementation of the QAttn layer is more complex, the details are shown in
Appendix [D| Therefore, we add the QSave and QLoad procedures after the QAttn layer.

3.2 FORWARD PASS

The forward pass is directly built by executing each layer according to its definition, so we will delay
the overall algorithm procedure of the forward pass to the Appendix, shown in Algorithm|[I} The
implementation details of all layers are explicitly shown in Appendix [D]

As for complexity, because each layer equipped with quantum linear algebra has provided speedup, the
overall quantum speedup is thus naturally given. The proof of Theorem [3.1]is shown in Appendix [E]

3.3 BACKPROPAGATION

Next, we detail the backpropagation process, which mirrors the structure of the forward pass. The
implementation is depicted in Figure [3] There are key differences between the backpropagation
and forward propagation processes: (1) We incorporate layer tomography prior to the QAttn layer,
performing tomography subsequent to the backpropagation through the QAttn layer. (2) The back-
propagation process involves computing gradients for parameters across the MLP, Attention, and
Position Embedding layers. We prepare the amplitude encoding of these parameter gradients by
querying the intermediate data from the propagation process and then apply [, tomography to
capture the sampled parameter gradients. Comprehensive implementation details for each phase of
the backpropagation are provided in Appendix

The backpropagation also contains QSave and QLoad procedures, which are performed after the
backpropagation of the QAttn layer. Alike the forward pass, the previous measurement information
during the backpropagation process can be reused from the alternate branch of the QAdd layer,
thereby implementing the multiple-reuse strategy. This approach ensures that information measured
during the backpropagation is efficiently utilized.
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4 NUMERICAL TESTS

In this section, we validate the performance of the QViT utilizing the multiple-reuse strategy through
numerical tests. Specifically, we conduct the following experiments: (1) We test the impact of
multiple-reuse and single-reuse strategies on the output of each layer of QViT when different
tomography errors are selected. (2) We also test QViT’s fine-tuning process using multiple-reuse and
single-reuse strategies with different tomography errors.

4.1 SETUP

Datasets. In our simulation, we test four classification datasets: CUB-200-2011 |Wah et al.| (2011),
Cifar-10/100 Krizhevsky et al.|(2009), and Oxford-IIIT Pets |Parkhi et al.|(2012)), the details of the
datasets are listed in Table

Table 1: Overview of classification datasets.

Dataset Name Number of Categories | Image Resolution | Dataset Size
CUB-200-2011 200 Varies 11,788
CIFAR-10 10 32x32 60,000
CIFAR-100 100 32x32 60,000
Oxford-1IIT Pets 37 Approx. 200x300 | 7,349

Model. We use the “ViT-Base” model in [Dosovitskiy et al.|(2021)). The details of the model are
listed in Table 2| The hidden size D is the embedding dimension of one patch, and the FFN size is
the dimension of the hidden layer in feedforward.

Table 2: Details of the vision transformer.

Model Layer Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

Training and Fine-tuning. In the training process, we use the model pre-trained on the ImageNet-
21k Deng et al.| (2009) and transfer the model to the specific datasets with fine-tuning. In fine-
tuning process, we use AdamW [Loshchilov & Hutter| (2019)) optimizer with Ir = 0.0001 and
weight decay = 0.05. The batch size is 64.

Hardware. The following experiments were conducted on a server equipped with Intel Xeon Gold
6230 (2.10 GHz) x 2 and NVIDIA RTX A6000, with a total running memory of 512 GB. The training
time for one fine-tuning (3000 iterations) on a single NVIDIA RTX A6000 GPU is approximately 12
hours.

Software. Our numerical experiments utilized MMPretrain Contributors| (2023)), an open-source
model, as the core framework. For our study, we developed a specialized quantum deep neural
network toolkit, which was instrumental in implementing the forward pass and backpropagation
processes of the QViT. This toolkit features a configurable QSave operator. Designed as an extension
of PyTorch, it seamlessly integrates with a broad spectrum of existing toolchains, enhancing its
applicability and utility in quantum deep learning research. The source code is available at ht tps :
//github.com/anonymous0618/gvit.

Pre-trained model. The pre-trained QViT model was trained on the ImageNet-21k dataset,
which can be downloaded from https://mmpretrain.readthedocs.io/en/latest/
papers/vision_transformer.

4.2 EFFECTS OF THE MULTIPLE-REUSE STRATEGY ON FORWARD PASS

We first study the impact of the multiple-reuse strategy on the QViT forward pass. Specifically, we
evaluate the cosine similarity between the output from each layer and the expected output under
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conditions of multiple-reuse and single-reuse strategies. The results, illustrated in Figure [TT] are
obtained using various tomography errors. The findings demonstrate that when the tomography errors
are consistent, the layer outputs of the QViT with the multiple-reuse strategy significantly outperform
those using the single-reuse strategy. This indicates that the multiple-reuse strategy enhances the
forward pass process of the QViT.

4.3 EFFECTS OF MULTIPLE-REUSE STRATEGY ON FINE-TUNING
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Figure 4: Fine-tuning curve for the QViT with multiple/single-reuse strategies. The loss and top
1 accuracy as the functions of steps of the QViT with the multiple/single-reuse strategies are shown
in the left/right subfigures. Different colors represent different tomography strategies, tomography
error § or computing error €. Each experiment is repeated five times, and the data points or curves
with higher transparency in the figure represent the results of a single experiment.

The fine-tuning convergence curves with different ¢ and ¢ for four datasets are shown in Figure [4]
and Figure [I2] showing both loss function and classification accuracy. Each numerical experiment
is repeated 5 times to ensure reasonability. A more direct comparison between multiple and single-
reuse strategies is given in Figure 5] which gives the classification accuracy under more parameter
combinations. Corresponding data are listed in Table ??. The two figures clearly show that the
‘multiple’ strategy always performs better, demonstrating enhanced convergence, tomography error
resilience, and improved classification accuracy under every parameter combination. Another
observation is that there is a threshold for both € and 4, around which the parameter fluctuation
significantly influences the model performance while only delaying the convergence anywhere else.
The *multiple’ strategy postpones the threshold of sampling so that the model can work with weaker
conditions. As computing and tomography error grows, this strategy improves the worst performance,
avoiding complete failure like the ’single’ strategy does.

5 CONCLUSION

In this paper, we have proposed a novel strategy, measurement information multiple-reuse (MIMR),
and an efficient multi-layer quantum vision transformer (QViT) model based on MIMR. While our
QViT achieves exponential speedup for both forward pass and backpropagation processes, MIMR
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Figure 5: The relationship curve between model performance, sampling, and computational
error. The classification accuracy after fine-tuning is significantly influenced by tomography error §
and computing error €. The relation is plotted in four figures, one for each dataset. Different colors
consistently correspond to the two different measurement strategies and computing errors. The square
markers represent the average of multiple numerical results, while individual experimental results are
shown as hollow circles.

effectively addresses the critical bottleneck of information loss observed in previously proposed
quantum deep neural network models, maximizing the utilization of measured information across
layers. Benefiting from these advancements, we successfully constructed a transformer with more
than 86 million parameters and numerically assessed its performance on real-world datasets for image
classification. Our model demonstrated superior performance across four datasets—CUB-200-2011,
CIFAR-10, CIFAR-100, and Oxford-IIIT PETS—achieving an average halving of the requirements
for tomography precision, which implies a decrease in sampling costs to 25%. As a future direction,
MIMR could be explored in other architectures to further demonstrate its generality and effectiveness
as a universal strategy, independent of the specific QViT implementation. This study paves the way
for future research toward exploring more efficient quantum deep neural networks, potentially leading
to more scalable and powerful quantum artificial intelligence capable of tackling complex, real-world
problems with unprecedented efficiency.

6 LIMITATIONS

Finally, we address some limitations of our work. First, the QViT requires fault-tolerant quantum
computers and cannot run on NISQ devices. Second, the implementation of the QViT relies on
qRAM, for which no effective physical realization currently exists. In Appendix [C.5.2] we examine
the practicality of gqRAM in the context of the QViT. Although fault-tolerant quantum computers
may become available in the next few decades, the physical realization of gRAM could be even more
challenging. This suggests that the QViT may not be implementable on real quantum hardware for a
considerable time.
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A SYMBOLS, ABBREVIATIONS, AND DEFINITIONS

A.1 MATHEMATICAL SYMBOLS

The mathematical symbols of this paper is shown in Table 3]

Table 3: Mathematical symbols

Notation Nomenclature
X, X, xou Input/output data in each layer of QViT encoder.
(d,n) d:the dimension of each patch; n: the patch number
T; The i-th column of X.
P Position embedding parameters
h Head number of the multi-head attention.
L QViT encoder layer depth.
C Cost function of the QViT.
F Parameters of a specific QViT layer.
|-l Frobenius norm.
Il oo Infinite norm of a vector.
é Tomography error of the o, tomography.

A.2 ABBREVIATIONS

The abbreviations in this paper is shown in Table @]

B THE PERFORMANCE COMPARISON OF THE MULTIPLE-REUSE AND THE
SINGLE-REUSE STRATEGIES

In this section, we test the performance comparison of the multiple-reuse and the single-reuse
strategies. In detail, we use randomly distributed vectors = and y, defining z = = + y, where 7 and
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Table 4: Abbreviations

Notation Nomenclature
ViT Vision Transformer
QViT Quantum Vision Transformer
QRAM Quantum Random Access Memory
QPos Quantum Position Embedding
QHead Quantum Head
QNorm Quantum Norm
QAttn Quantum Multi-head Attention
QAdd Quantum Add
QFFN Quantum Feedforward
QSave Quantum Tomography
QLoad Quantum Digital-Analog conversion

Z represent the results of applying measurements to y and z, respectively. z; = Zand 2z, =y + 2
represent the outputs of the single-reuse and multiple-reuse strategies, respectively. We compare the
cosine similarity between z, 21, and z, 22 and found that the latter is obviously better than the former,

thus illustrating the effectiveness of the multiple-reuse strategy.
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Figure 6: The performance comparison of the multiple-reuse and the single-reuse strategies. The
target state is randomly generated, and the dimensions of states are 10°, 106, and 107, respectively.
The results indicate that the multiple-reuse strategy achieves higher cosine similarity than single-reuse,
particularly in scenarios with relatively large tomography errors.

C BASICS OF QUANTUM COMPUTING

C.1 QUANTUM ARITHMETIC

Quantum arithmetic is a fundamental module in quantum computing, involving the implementation
of classical arithmetic operations using quantum circuits. The complexity of a specific quantum
arithmetic operation is equivalent to that of the corresponding classical arithmetic operation, as
detailed in Lemma [C.I] Notably, the input of quantum arithmetic can be a superposition state,
enabling the realization of the process:
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S e l0) = 3 )£ o)
i=0 =0

with a complexity of O(polylog(1/e)).
Lemma C.1 Given a basic function f(x) : R — R, there exists a quantum algorithm to implement

quantum arithmetic |z)|0) — |x)|f(z)), where | f(x) — f(z)| < € and € represents the computing
accuracy. The gate complexity of the algorithm is O(polylog(1/e)).

Proof When the computing accuracy is €, the number of bits required is O(log(1/¢)), and the
complexity of the corresponding classical arithmetic is O(polylog(1/¢)). Classical arithmetic is
constructed using general logic operations, which can be realized by basic quantum gates. Therefore,
the target arithmetic can be implemented using basic quantum gates, with a gate complexity of

O(polylog(1/e)).

Next, we introduce existing quantum arithmetic algorithms required by our QViT except for the most
basic quantum adders and multipliers.

C.1.1 RECIPROCAL

We use the Newton method to calculate the reciprocal on a quantum computer Bhaskar et al.| (2015).
This target is expressed as:

1
0) = |z, —). 3
2,0) = [, ) )
This can be approximately achieved through the following iteration:

T(kt1) = T(k) (2 — 22T (k))- )

C.1.2 ARC COSINE

The Quantum Function-value Binary Expansion method is chosen to calculate arccos Wang et al.
(2020), which realizes approximately the transformation

|z,0) — |x,arccos z). )

The iteration reads

22, —1 Ty >0
o _ (k) ) (k) )
Ty =T, = (6)
© (k1) {1 -2, wp <0,
C.1.3 RELU
The ReLU function,
f(z) = max(0, z), 7

can be implemented directly by a controlled quantum adder. We represent the signed number z as a
bit string xo|x|, where x¢ is the sign bit, and || is the magnitude in either s-qubit true form or two’s
complement. Apply a quantum adder and CNOT controlled by x( and we have

|0, [z]) @ [0%%) — |z, |2) @ [0, 20 x |2]) ®)
— |z, |2]) ® |z, o X |2|) 9)
= |20, 2l) ® | max(0, 2)). (10)

C.2 QUANTUM TOMOGRAPHY

Theorem C.2 [l vector state tomography Kerenidis et al.|(20200) |Given access to unitary U such
that U|0) = |z) and its controlled version in time T (U), there is a tomography algorithm with
time complexity O(T(U)*8%) that produces unit vector X € R® such that | X — x||sc < & with
probability at least (1 — l/spoly(d)).
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C.3 QUANTUM DIGITAL-ANALOG CONVERSION

In the QViT implementation process, we utilize quantum digital-analog conversion (QDAC), as
introduced in Mitarai et al.|(2019). We present the main results of QDAC in Lemma@ It’s worth
noting that the expression provided in Lemma[C.3]may not align completely with the one in Mitarai
et al| (2019). Therefore, we provide the proof of Lemma[C.3]to clarify any discrepancies.

Lemma C.3 (Generalized QDAC) Given the D-Encoding of z € R"™ let f, =
[f(z1), f(x2), -, f(xn)], where f(x;) represents some basic functions of ;. Then, there exists an
algorithm to prepare the A-Encoding of f, with Q(1) success probability. The query complexity to the

D-Encoding of x is O(1/+/v + p?), where v and i are the variance and mean value of fz. /|| fz !l cos
respectively.

Proof The preparation process of | f.) is as follows:
(1) Prepare superposition state ﬁ S 1)
(2) Execute U to obtain ﬁ o liY|@).

(3) Add an ancilla qubit and perform rotation operations controlled by |x;), resulting in the
quantum state:
1 ¢ S (i)
—= > li)]wi)(
Vi

)
[0) +14/1— o2
(4) Measure the ancilla qubit to |0) and uncompute |x;), yielding:

1) (1)

”fl ” > F(@i)li). (12)
=1

The success probability of this process is p = M v + p?, where v and v are the
variance and mean value of [ /|| fx|leo. Utilizing the amplitude amplification algorithm,

| fz) can be prepared by querying U O(1/+/v + p?) times.

In QDAC, 1/+/v + u? is related to specific data distribution. Different specific problems correspond

to different 1/+/v + p2. Therefore, in subsequent analysis, we ignore the influence of 1/4/v + p?
and treat it as a constant.

C.4 BLOCK-ENCODING

Block-encoding offers a methodology for executing non-unitary operations in the domain of quantum
computing [Gilyén et al.| (2019); Martyn et al.| (2021). This technique involves encapsulating a
non-unitary operator A within a unitary matrix U4, a process referred to as the block-encoding of
A. The operator A can then be applied probabilistically through the execution of its block-encoded
counterpart U 4.

Definition C.4 (Block-encoding) Suppose that A is an s-qubit operator, a, € € Ry and a € N, then
we say that the (s + a)-qubit unitary U is an («, a, €)-block-encoding of A, if

[A—a((0]** @ DHU(|0)** @ I)|| <. (13)

In our work, we construct the block-encoding of X by querying the D-Encoding of X. The result is
presented in Lemma

Lemma C.5 Given D-Encoding of X = [x0,%1,"++ ,Zn-1] € R a (| X||F, [log(d + n)], €)-
block-encoding of X can be built by querying gRAM O(d) times.

Proof First, by querying the D-Encoding d times, we construct the following unitary transformations:

Ur :|0)[7) = [z)15), (14)
V10)17) = Jyi)li)s vs = [l - (15)
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Then, we utilize QDAC to build:

L L\ 2i=1 Izl Fld)
We have
Xii
i) = URli)|0),165) = ULI0) ), (&5]¢) = i (17)
X1 r

Therefore, UzUR is a (|| X||F, [log(d + n)], €)-block-encoding of X, the query complexity to the
qRAM is O(d).

C.5 QUANTUM RANDOM ACCESS MEMORY
C.5.1 INTRODUCTION

In this section, we introduce quantum random access memory (QRAM) |Giovannetti et al.[ (2008), a
quantum architecture fundamental to our framework. QRAM serves as a generalization of classical
RAM, leveraging quantum mechanical properties to enhance computational efficiency.

In classical RAM, a discrete address ¢ is provided as input, retrieving the memory element x; stored
at that location. Conversely, in qRAM, a quantum superposition of different addresses |),) is input,
and qRAM returns an entangled state |1, ) Where each address is correlated with the corresponding
memory element:

N-1 N-1

i) = D aili)alo)p T ow) = Y aili)alei)p, (18)

i=0 =0

where N is the size of the data vector x, and the superscripts A and D denote "address" and "data"
respectively.

While we have characterized our QViT as the quantum deep learning framework in the fault-tolerant
era, it is still imperative to incorporate the simulation of noisy qRAM. It is frequently used in
QSave and QLoad in QViT. Within this framework, the primary role of qRAM is to retrieve pixel
information stored in a massive matrix of size 220 by 2'Y. Each pixel can hold either 32 or 64 bits,
necessitating a (30, 64) or (30, 32)-qRAM configuration. Our numerical simulations demonstrate
promising results. For a (30, 64)-qRAM configuration, we observe an average state fidelity of 87%.
This fidelity increases to 91% for the (30, 32)-qRAM configuration.

C.5.2 PRACTICALITY OF QRAM USED IN QVIT

The practicality of qRAM has been investigated on such a scale under our numerical experiments.
Prior research indicates that qRAM infidelity scales as O(n(n + k)), where n represents the address
size and k denotes the word length. This implies that infidelity exhibits quadratic growth with respect
to address size for a fixed k and increases with word length for a fixed address size n. Based on these
established relationships, our experiments employed data with a fixed word length & to maintain
consistency with the established infidelity relation. Subsequently, we extrapolated the findings to the
case of n = 30. Using these extrapolated data F'(30, k), we employed a linear function to predict the
infidelity value when k = 64.

All simulations were conducted under a controlled environment with 10~ damping noise. We suc-
cessfully simulated qRAM configurations ranging from (20, 20) and below. The observed infidelities
agree to the O(n(n + k)) relationship, demonstrating a quadratic dependence on address size n for a
fixed word length k, as shown in Figure[7]and Figure

We leveraged the data obtained from these simulations to derive polynomial expressions that accu-
rately capture the relationship between infidelity and address size. Subsequently, these quadratic
expressions were utilized to extrapolate and predict the infidelities of (30, k)-QRAM for a range
of k values from 1 to 20. As a result, we have obtained a comprehensive set of predicted QRAM
infidelities for (30, k) configurations, where k ranges from 1 to 64, as shown in Figure@
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Figure 7: The figure shows the relation between address size and infidelity with the fixed k. The blue
points are from the numerical experiments with 100 repetitions and each repetition of experiments
consists of 1000 shots. The orange points are experiments with 10 repetitions with 1000 shots each.
The Green ones are experiments with 10 repetitions with 10 shots each. The fitting function is
completely decided by the data of blue points.
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Figure 8: The figure presents the scattering points and sketches the linear relations between data size
k and the infidelity.
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Figure 9: The figure presents the fitting function and annotates the predicted fidelities of (30, 32)-
QRAM and (30, 64)-QRAM.

D IMPLEMENTATION DETAILS OF THE QVIT

In this section, we introduce details of the implementation of the QViT. Appendix gives an
overview, and concrete implementations of the forward pass and backpropagation of each layer are
included in the rest of this section.

D.1 OVERVIEW

Some layers within the QViT utilize D-Encoding for their input/output, necessitating the construction
of corresponding D-Encoding operations. In the QViT, the data is stored in the QRAM; for a given
X € R¥*" stored in QRAM, the D-Encoding of X is realized through QRAM querying.

Then, we present the process of implementing the QViT’s forward pass and backpropagation, as
outlined in Algorithms and As defined in Eq. , building the D-Encoding of X € R™*? means
building Op (X') which satisfies

OD(X)|Z’=7>|0> = ‘Z7J>‘X1,J>7Z = Ovla"' N — 17] :0717"' vd_ 1. (19)

In Algorithms [T] and [2] the D-Encoding is built by quantum arithmetic. Because QPos, QNorm,
QAdd, and QFFN layer can be viewed as n d-dimensional operations, the D-Encoding in these layers
can be built by O(d) basic quantum arithmetic operations.

The QAttn layer is different from other layers. The input of the QAttn layer is the D-Encoding of X",
we first prepare the amplitude encoding state | X °“!). Then, we sample | X °“t) with ., tomography
and construct the D-Encoding of X°“! with the sampled results.

Then, we establish the D-Encoding for the input to the next QAttn layer using quantum arithmetic.

The corresponding quantum circuit is depicted in Figure By querying X°, Yo, through to y!
twice, we construct the D-Encoding of X1, which serves as the input for the [ + 1-th QAttn layer.
As shown in Figure[I0] the initial input and all intermediate measurement data are propagated forward,
reflecting the MIMR scheme and thereby enhancing the utilization of intermediate information.

We further explicate the implementation of each layer in the QViT.
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Figure 10: Process for constructing D-Encoding of X'+, s represents the precision of quantum
arithmetic, it can be 8, 16, etc. i denotes the column number. X is the input for the initial quantum
attention layer, while Y7 denotes the tomography results from the output of the j-th QAttn layer,
where j ranges from 0 to I. Blocks labeled with “X°” or “Y9” indicate queries to the QRAM
storing the respective “X°” or “Y3”_ Other blocks represent the d-dimensional quantum arithmetic
operations, including “Add”, “MLP”, and “Norm”. Specifically, “MLP” involves “Norm”, “FFN”,
and “Add”. The block labeled “Ut”” denotes the uncomputing block.

Algorithm 1 Forward pass of QViT.

1: Input: data X.
2: Output: classification label of X.
3: QPos: Build D-Encoding of X°“ = X + P, where P represents position embedding.
4: fori =0,1,2,--- ,L —1do
5: | QNorm: Build D-Encoding of X°“! = Norm(X).
6: QAuttn: Prepare the A-Encoding state | X °“?) where X°“! is the output of the multi-head
attention. Then, sample | X °“*) with [, tomography and construct the D-Encoding of X °“¢
with the sampled results.
7: QAdd: Build the D-Encoding of X°* = X(1) 4 X () where X (1) represents the output of
step 6, and X (?) represents the input of step 5.

8: QNorm: Build the D-Encoding of X %! = Norm(X").

9:  QFFN: Build the D-Encoding of X°%* = Wy f(W, X 4 b;) + bs.
10: QAdd: Build the D-Encoding of X°"¢ = X(1) 4+ X ) where X (V) represents the output of
.~ step9,and X (?) represents the input of step 8.
11: QHead: Prepare A-Encoding state | X %) where X°4! = Wz + b, then sample | X °“*) and

obtain the classification label from the sampled results.

D.2 PoSITION EMBEDDING

The formulation for Position Embedding is given by X°% = X + P, where P € RY*™ represents
the position embedding parameters.

D.2.1 FORWARD

The input and output are the D-Encoding of X" and X °“!, respectively. The D-Encoding of P is
built through a single query to the QRAM. Therefore, the D-Encoding of X°“* is constructed by
querying the D-Encoding of X*" and P once.

D.2.2 BACKPROPAGATION

The input is the D-Encoding of %, and the output is the sampled g—g. We have
o0 __oc
oP  gXxout’
therefore, we obtain the D-Encoding of g—g. Subsequently, we employ QDAC to prepare the A-
Encoding state g—g) and obtain the sampled g—g through [, tomography.

(20)
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Algorithm 2 Backpropagation of QViT.
1: Input: data X, forward pass results.
2: Output: Sampled 2 SF F , where F' represents parameters in the QViT.

3: Build D-encoding of 5 Xﬁt through the forward pass results, where X °%! is the output of the
QHead.

4: QHead: (1) Prepare A-Encoding state > where F represents parameters of the QHead, then
obtain the sampled gg (2) Build D- Encodrng of a Xm .

5:fori=L—-1,L—2,- 1()do

6: | QAdd: Build D- encodrng of 52%, a%

QFFN: (1) Prepare A-Encoding state > where F' represents the parameters of the QFFN,

then obtain the sampled 3 ac (2) Burld D-Encoding of

8: QNorm: Build D- Encodlng of

: QAdd: Build D-encoding of 3 X(l)’ a?(%

10 QAttn: Prepare A-Encoding states | -2 X ¢ and | ), F represents parameters of the QAttn,

then obtain sampled 9¢ SF and 8 Xm . Next, build D-Encoding of 3 X“L .

11: QNorm: Build D-Encoding of a Xw .

12: QPos Prepare A-Encoding state and obtain the sampled g—g

aXrn. .

th .

D.3 QNORM LAYER

The norm layer is formulated as X °“* = Norm(X "), detailed by:

min — xin _ l_in .
out __ 1 1 2 M2 n Hn
X - [ ) st ]a (21)
g1 g2 On
d in d in 2
1 75 G
Whereui:Z]*j ],03:271((; "

D.3.1 FORWARD

In the QNorm layer, the D-Encoding of X" serves as the input, producing the D-Encoding of X °%¢

as output. For each xﬁ” € R? withi =0,1,--- ,n — 1, both i; and &; can be computed by querying
the D-Encoding of X*” d times, which means the following two operations:
2)10) = [i)]pa), [8)]0) = 2}|os). (22)

Following this, the D-Encoding of X out js constructed by querying the operations defined in Eq. ( .
and the D-Encoding of X",

D.3.2 BACKPROPAGATION

During the backpropagation procedure, we can establish the relationship between the D-Encoding of
and the D-Encoding of 8)8(%. This relationship is formulated as follows:

9C
aX‘Ln
oC oC 9zt 9zt dl -1  (a™ — py)(ai™ — pg)T

__ — . B — 23
ox™ dzout 8:172"’ ox™ do; dai ’ 23

where 1 represents a matrix in which all elements equal to 1. By applying the above equation, the
D-Encoding of 2%~ is obtained by querying the D-Encoding of both a)a(% and X'" d times.

8 7,7L
D.4 QUANTUM ATTENTION
The attention operation is defined as:

. ’ ! A
Attention( X", Wy, Wy, W,) =VA A = softmax(ﬁ

where W,, Wy, W, € R¥*¢_and the softmax function is applied column-wise.

(24)
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The multi-head attention is defined as:
X" = WConcat(Ho, Hy," -+ , Hp—1), Hy, = Attention(X, Wy, Wi, Wom), (25)
where W = [Wo, Wy, -+, Wjy_1] € R W Wi, Wem € R form = 0,1, h— 1.

D.4.1 FORWARD

In the quantum attention layer, the process begins with the D-Encoding of X", The aim is to prepare
the A-Encoding state | X °“!), followed by sampling | X °“!) using [, tomography, and finally build
the D-Encoding of X°“ by querying the tomography results.

First, we prepare the A-Encoding of A’ with Lemma Then we build the D-Encoding of V' by
querying the D-Encoding of X d times and (||V|| 7, [log(d 4+ n)], €)-block-encoding of V' following

the method described in Lemma Finally, we apply the block-encoding of V' on |A/) and measure
the ancilla qubits to |0), resulting in:

[X) = HX‘”“H ZVlA i) (26)

where A ; represents the j-th column of A

Furthermore, multi-head attention is constructed for l = 0, 1,--- , h — 1, executing quantum attention
in parallel to achieve:
=
|H) = MZUMHHAHH», 27)
1=0

where H, = Attention(Q%, K',V*), Vi = W, X, K' = WX, Q" = Wy X, and H =
Concat(Hy, Hy,--- ,Hp_1). Then we construct realize W operation with block-encoding tech-
nique and obtain

| X) = WIH). (28)
Ultimately, X out js sampled O (2&{d) log(d") ) times, with the D-Encoding of X °“! being constructed from
querying the tomography results.

Lemma D.1 Given D-Encoding of X € R*™, Wy, Wi € RIxd A = XTWEWX A =
J) with

softmax( f) then there exists a quantum algorithm to prepare |A') = ‘A i D Azyl i)
Q(1) success probability. The query complexity to the D-Encoding of X is O(d/e).

Proof Firstly, the element of A is calculated as A;; = xI W' W, ;. Therefore, the D-Encoding
of A is built by querying the D-Encoding of X 2d times. Then we define matrix A" which satisfies

"

A.=e AV gpg prepare state

J
VA") = — Sl (29)
II\/ I3 Z 7

with QDAC. For a specific j , the state |\/A") manifests as

s
VA") = od \/»Zr )+ o) (30)

where <j/ |v1) = 0. Amplitude estimation algorithm Brassard et al.|(2002)) is then employed to

A /bj/

determine AT Since ||V A" || is known from |V A")’s preparation, b, is obtained. By executing

amplitude estimation in parallel for each j/, we realize the following operation

VATY|0) — )b Ty o1
[VA")l0) ||W\|Z AG5lidi) o) = 1) = ”ﬁ”Z AN AG/b), @D
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with a query complexity to |V A”) of O(1/€). Finally, we use QDAC to prepare
1 " "o . . 4
m¥ A b JAGLG) = 14). (32)

In summary, the query complexity to the D-Encoding of X is O(d/e).

Lemma D.2 (Forward pass of QAttn) Given the D-Encoding of X, Wy, Wy, W,, € R>dxd 1) ¢

R¥*hd yyhere h denotes the head number, then there exists a quantum algorithm to implement the
QAttn layer. This process constructs the D-Encoding of the layer output, with the query complexity to

the D-Encoding of X being 6(%)

Proof First, for each m = 0,1,--- h — 1, A;n) is prepared by querying the D-Encoding
of X O(d/¢) times. For each column (V,,);, which is computed using x;, by lemma a
(HV I, [1og(d +n)], €)-block-encoding of Vi, is constructed by querying D-Encoding of X

O(d/\/v + p?) times, where v and p are variance and mean of y/||yl|c, respectively, with
Y= [(V )07 (V )17 to 7<Vm)n 1]

Then,

m) IS prepared by querying both the preparation of |A;n>~and the block-encoding of V,,.

H,,) is prepared by querying the D-Encoding of X O(d/¢) times and cumulatively,
O(hd/¢) for all heads in the construction of |H).

Ultimately, | X°“') is prepared by operating W on |H). Finally, we sample | X°"") 5(10%(#'))
times and build the corresponding D-Encoding with the tomography results. In summary, the query

complexity to the D-Encoding of X is 6(%&;‘(")).

D.4.2 BACKPROPAGATION

In the backpropagation process, the input is the D—Encoding of %. The procedure begins
with preparing the A-Encoding state |5 X> and | ) where F' denotes the parameters of this
layer. Subsequentl Cy these two A-Encoding states are samapled with [, tomography, building the
D-Encoding of based on the tomography results of 55 .

8X7”n

Firstly, we prepare the state |5 F} where F' contains W, W, Wem, and Wi, form =0,1,--- [ h—
1. The derivative of C' with respect to W is expressed as:

oC oC a9xeut gxewt

T
W axoui ow oW )ikt = di Hjp, (33)
Form =0,1,---,h — 1, the derivative with respect to 8‘?‘5 and 3 aC are given by:
oc  9C 0X°" OH,, OV, (34)
anm - oXout 8H’m 8‘/7n aI/an7
axout 0H,, / OV in
(aT)ijkl = 0;;(Wi)ik, (W)ijkl = 5ik(Am)§;7 (W)ijkl =0 X/}, (35)
aC  9C 9X°" OH,, OA,, 0A, 9Qm 36)
Wy 0XOut OH,, 0AL, 0Apm 0Qum OWym,’
OH,, oA, 1 : , ,
(G ikt = it (Vin)ins (57 )it = ﬁ(sjl(éik(Am)ij — (An)ii (A ks ), 37
8Am 8 m mn
(W)ijkl = 0(K" )ik, (%)zjkl =0 X[} (38)
m qm

The expression of a‘?vf is similar to

B{?VS - introduced in Eq. . From Egq. to , each

component of gg consists of H, W, A;n, Qm» Ky Vip, or X in_ The corresponding D-Encoding,
A-Encoding or block-encoding of these matrices are introduced before Therefore, we can prepare
A Encodlng of each component of W1th quantum linear algebra, that is, prepare A-Encoding of

Z=. After sampling the A- Encodmg state ) parameters are updated based on the sampled results.
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Next, we consider %, which is given by:
oC oC oxe°vt 9H

X~ 9Xowt 9H oXin’ %9)
Form=0,1,--- Jh—1,
oH,, OV, oA,
oxcin = gginm + Vo “0
DA, 9A, OKT 7 OQm . OV OQum 0K,
aXin 8A (8XLIL Qm Km OXin ) [aXin ’ OXin ’ oXin }ijkl - 5jl [va7 qu’ ka]lk

(41)
Similar to 6F’ axm also consists of axouf’ w, A, Qms K, Vin, Woms Wem, and Wy, and the
corresponding D-Encoding, A-Encoding or block- encodmg of these matrices are introduced before.
Therefore, we can prepare A-Encoding of 8(2(6;" and sample | ai%} with [, tomography, then we

build D-Encoding of - Xm with the sampled results. The cost associated with backpropagation of
QAttn can be summarized in the following lemma.

Lemma D.3 (Backpropagation of QAttn) Given D-Encoding of X™, X°“ and %,
Wo, Wi, W, € Rhxdxd 17 ¢ RAxhd \here h represents the head number; then there exists a

quantum algorithm to prepare the A-Encoding state of g—g and D-Encoding of 6‘2(%, where F' repre-
hdlog(n) )
€62 '

sents the parameters of the QAttn. The query complexity to the related D-Encodings is 6(

Proof Firstly, we notice that
oCc oC oxow

OF — dXout §F
where F' contains W, Wy, Wy, and Wi,y for m = 0,1,--- ,h — 1. For each component of F,

8X o ‘ tis based on Eq. , , , and . Therefore the A-Encoding of
each component of a)a(;“ can be prepared by A-Encoding or Block-encoding of H, ALK, Q, and

(42)

the expression o,

V. Subsequently, we construct the block- encoding of d;zgm and apply this to the A-Encoding state
BX

> thereby preparing the A-Encoding of 25 S5~ The query complexity to the related D-Encodings
is O(%). Then we sample |8—F> O(logg#)) times and obtain the sampled results. The query

complexity to the related D-Encodings of this process is 5(%)

Secondly, we consider the derivative of the cost function relative to X'™:
oC oC oxew aC 9X°“ OH

dXin — §Xout 9Xin  gXout 9H OXn

The D-Encoding process of 3‘?571 is detailed in the earlier segment of this section, with the query

(43)

complexity of this process belng O(hd? /€). Following this, we sample | 5 Xm) 5(10%(7;1")) times, and

build the D-Encoding of 25~ 3 Xm using the sampled results. The related D-Encodings’ query complexity

in this case is O(hdl:fgz(”)).

In summary, the query complexity to the related D-Encodings of backpropagation is O(%%(")).

D.5 QADD

The QAdd layer is written as:

X=xW4x®, (44)
where X, X, X(2) ¢ RI*"  The forward pass and backpropagation of the QAdd layer are
introduced as follows.

D.5.1 FORWARD

The input is the D-Encoding of X (1) and X (?), the output is the D-Encoding of X. We have
zi=aV 42 i=01,2,- n—1, (45)

therefore, the D-Encoding of X is directly built by querying the D-Encoding of X ") and X ® once.
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D.5.2 BACKPROPAGATION

The input consists of the D Encoding of 5 X(a) and 5 X( 3y, Where a?ﬁw is backpropagated from the

next QAdd layer, and X( B) originates from the subsequent QNorm layer. The output comprises the

D- Encodmg of 6X(1) and 2% with

IxXD being directed backpropagated to the preceding QAdd

8X(1)

layer, and 5 X@) being backpropagated to the previous layer.
We have
oc  oCc  oC oC 46
aX<1 T OX®  oxX@ T gx @ (46)
Therefore, the D-Encoding of X<1> and 5 oc, Sx 1s built directly by querying the D-Encoding of 5 X(a)

le;
and 55757 once.

D.6 QFFN

The feedforward layer is written as
X =Wo f(W1X"™ + by) + b, (47)

where f is the activation function. In our model, we employ the ReL.U function as f. The forward
pass and backpropagation of the QFFN layer are introduced as follows.

D.6.1 FORWARD PASS

The process involves the D-Encoding of the input matrix X" and subsequently produces the D-

Encoding of the output matrix X °“*. Each output element z¢“* is determined through the equation:
a0 = Waof(Whzl™ + b)) +bs, i=0,1,2,--,n—1, (48)

where each 7" is a Vector in R%. The D-Encoding of X°“ is then constructed by querying the
D-Encoding of X*” d times.

D.6.2 BACKPROPAGATION

The input is the D-Encoding of 5 Xout , and the output comprises the D-Encoding of 5%+ Xm along with
the sampled 2& S5F» Where F' denotes the parameters in the QFFN layer.
First, we have
ocC aC  Oxout
_ 1'14 ,L':()’]_’...vn_]_’ (49)

oxin  Qx¢vt dxin’
therefore, the D-Encoding of 8(2(% is constructed by querying the D-Encoding of % and X" d
times.

Next, we prepare the state > We define X™ = Wy X™ + [by, by, ,by), similarly to 8‘3(07” ,

the D-Encoding of 5 ,,“d can also be constructed by querying the D-Encoding of 5 th and X" d
times. F’ consists of Wl, by and W5, bo, we have
oC  oC oC 8Xout 8Xout aXout aXout
At ) oL | T 3 —51 Xmld y\—Fa7 Jijk —
s a6, = oot Cawy  an, o Ykt = 9 i a0y itk
oCc oC oC gx™d gxmid  gxmid oxmd
—_— —] = . i S (X1 iik = 0. (51
oWy By~ axmial gy, b } oW Jiwt = 8an(X)jor (Sgp i = b 5D
We construct block-encoding of Xou, and ,,”d by Lemma From Eq. ( b and (51)), we can
out out mid mia
also prepare A-Encoding |8§(W2 )s |8§b2 )s |‘9X ), and d)gb ). Then |8W1> |aw2> |8b1> and
gl? ) can be prepared and obtain its sampled dlstrlbutlon with [, tomography algorithm.

dix, (50)

D.7 QHEAD

The head layer of ViT is written as

Xout = Wi (52)
where zi* € RY, X°* ¢ RX, and K represents the class number. The forward pass and backpropa-
gation of the QHead layer are introduced as follows.
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D.7.1 FORWARD PASS

The input is the D-Encoding of X", and the output is the sampled X°“*. The D-Encoding of
X°u is constructed by querying the D-Encoding of X" d times. Subsequently, we prepare the
A-Encoding state | X°“*) using QDAC and obtain the sampled X °“! through the I, tomography
algorithm. Finally, the classification label of X is derived from the sampled results.

D.7.2 BACKPROPAGATION

The input is the D-Encoding of along with

the sampled 2%

XW , and the output includes the D-Encoding of
where F' denotes the parameters in the QHead layer.

in
OF°

Notice that the QHead layer is a simplified version of the QFFN layer without hidden layers. Therefore,
the backpropagation of the QHead layer can be directly implemented using the backpropagation of
the QFFN layer.

E PROOF OF THEOREMS [3.1]

Proof 1. Forward pass

The query complexity of the QViT increases linearly with the number of encoder layers. Here, we
analyze the complexity of one encoder layer of the QViT.

First, the dependence of the query complexity of the QPos, QAdd, OQNorm, QFFN, and QHead layers
on d is the same as in the classical case, and the dependence on n is O(1).

Second, by Lemma the query complexity of the X in the QAtn is O( dlof(n)) where § represents
the tomography error (Notice that we omit the head number h here). The query complexity of the
parameters in the QAttn is the query complexity of the X multiplied by the factor d, because in the
process Wx;, the parameter matrix W has O(d?) elements, x; has O(d) elements. Therefore, the

query complexity of the QAtin is O(Lg’(”)).
Third, the query complexity of the following QAdd, QNorm, and QFFN is O(d?).

Therefore, the query complexity of one QViT encoder layer is O(%). Finally, the query

complexity of the QHead layer is O(d).

In summary, for an l-layer QViT, the query complexity of the forward pass is O(m)

2. Backpropagation

In the QHead layer, the D-Encoding of % is built by querying the results obtained in the forward
pass, and the query complexity to D-Encoding of % is O(d).

Next, we analyze the complexity of a layer of the QViT encoder from back to front.

(1) The first layer is the QAdd, as introduced in Appendix|D.5.2] the query complexity to the
D-Encoding of 25— axoﬂf is O(1).

(2) In the QFFN layer, we build the D-Encoding of % and obtain the sampled , where
F' represents the parameters of the QFFN layer As introduced in Appendlx the
query complexity to build the D-Encoding of -5~ 3 Xm is O(d?) because each is computed

a ‘LTL
by O(d?) elements of X°"* and the QFFN layer parameters, and the query complexity to

~ log(dz)

prepare each component of |3%.) is O(d?). Then we sample 19S) O(=52) times and

obtain the sampled results. The query complexity of the QFFN layer is 6(?—;)
(3) In the QNorm layer, the query complexity to the D-Encoding of % and X™ is O(d).

(4) In the next QAdd layer, the query complexity to the D-Encoding of % is O(1).
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(5) By Lemma- the query complexity of the D-Encodings of X, X°“, and af(?m in the

dl .
= dlog(n) ) times

QA layer is O( dlog n)) and the query complexity of the parameters is O 250
the factor d. Therefore, the query complexity of the QAttn layer is O(%%(")).

(6) In the next norm layer, the query complexity to the D-Encoding of % and X is O(d).
We have analyzed the complexity of a QViT encoder layer, the query complexity is mainly determined
by the QAtin layer, which is O(M).

Finally, in the QPos layer; the query complexity is O( log(d"))

In summary, for an l-layer QViT, the query complexity of the backpropagation process is 5(%)

F ADDITIONAL RESULTS

The numerical results referred to in Section [2.2]that examine the cosine similarity between the output
and input is shown in Figure

In Section[d} we present the fine-tuning convergence curve of the CUB-200-2011 dataset, depicted in
Figure[d] Additionally, we conduct tests on the Cifar-10, and Cifar-100 in Figure[T2] yielding results
similar to those obtained in the main text.

We conclude all the numerical results of the fine-tuning QViT models in Table[5] where each data
represents the mean of five individual training processes.

Table 5: Classification accuracy (in %) of the QViT with multiple/single-reuse strategy. 6 = 0
represents the results of the classical vision transformer. Each data point is the average of five
experimental results, with each experiment using a different random seed.

Dataset € Method 6=0 6=0.006 6=0.01 6=0.015 6=0.02
omo E s N T wm
ot oo W s BE 2wk ow
ome s g BN wn s aw
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Figure 11: The cosine similarity between the output of each layer of the QViT with
multiple/single-reuse strategies and the correct output. Subfigures (a), (b), (c), and (d) rep-
resent the CUB-200-2011, Cifar-10/100, and Oxford-IIIT Pets datasets respectively. The solid/dashed
line represents the QViT with multiple/single-reuse strategy.
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Figure 12: The fine-tuning convergence curve of Cifar-10 and Cifar-100 datasets.
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