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Abstract001

As large language models continue to scale002
up, knowledge editing techniques that modify003
models’ internal knowledge without full retrain-004
ing have gained significant attention. MEMIT,005
a prominent batch editing algorithm, stands006
out for its capability to perform mass knowl-007
edge modifications. However, we uncover that008
MEMIT’s editing efficacy significantly dete-009
riorates when processing batches containing010
multiple edits sharing the same subject. Our011
analysis reveals this stems from MEMIT’s key012
value modeling framework: identical keys (de-013
rived from the shared subject) are forced to014
represent different values (corresponding to dif-015
ferent knowledge), resulting in updates con-016
flicts during editing. Addressing this issue, we017
propose MEMIT-Merge, an enhanced approach018
that merges value computation processes for019
facts sharing the same subject, effectively re-020
solving the performance degradation in same-021
subject batch editing scenarios. Experimental022
results demonstrate that when MEMIT’s edit023
success rate drops to around 50% at larger batch024
sizes, MEMIT-Merge maintains a success rate025
exceeding 90%, showcasing remarkable robust-026
ness to subject entity collisions.027

1 Introduction028

As large language models (LLMs) continue to scale029

up, the prohibitive cost of full model retraining has030

made knowledge editing increasingly crucial in031

this domain. Among prevalent editing algorithms,032

a class of algorithms, termed “Locate and Edit”033

methods by Zhang et al. (2024), enables targeted034

modifications through precise manipulation of spe-035

cific regions. MEMIT (Meng et al., 2023), one of036

the most prominent algorithms in this class, has037

gained significant attention (Li et al., 2024; Fang038

et al., 2024; Gupta et al., 2024). It extends ROME’s039

architecture (Meng et al., 2022) and enables the si-040

multaneous modification of multiple knowledge041

instances within a single update operation.042
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Figure 1: The edit success rate of the MEMIT method
on same-subject and distinct-subject datasets, showing
the changes with varying batch sizes. A significant
decline is observed when the subjects are the same.

However, our investigation reveals a critical lim- 043

itation in MEMIT: When handling batches with 044

multiple edits that share the same subject (such 045

as “John Smith now plays basketball.” and “John 046

Smith comes from England.” share the same sub- 047

ject “John Smith”, while “Paul Morand comes from 048

England” has a different subject), the method will 049

exhibit significant performance degradation. In 050

contrast, edits with different subjects maintain sta- 051

ble efficacy. 052

To systematically demonstrate this performance 053

degradation, we constructed two contrastive 054

datasets comprising batches with identical subjects 055

versus fully unique subjects, named distinct-subject 056

and same-subject, respectively. The experimental 057

results are in Fig. 1, where the vertical axis rep- 058

resents efficacy (which means the editing success 059

rate) and the horizontal axis indicates the batch size 060

per edit. The results reveal that MEMIT maintains 061

a high success rate as batch size increases when 062

editing distinct-subject cases, but exhibits signifi- 063

cant performance degradation for the same subject 064

cases. However, same subject cases are also critical 065

in the real-world practices (e.g, updating a person’s 066

occupation, workplace, and employer simultane- 067

ously). More detailed experimental settings can be 068
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found in Sec. 4.3.069

The performance degradation stems from070

MEMIT’s key-value modeling paradigm: identi-071

cal keys (derived from shared subject represen-072

tations) map to conflicting values during same-073

subject batch edits. MEMIT formulates knowledge074

updates as MLP key-value pairs where the output075

linear layer’s weights are adjusted to align keys076

with edited values. 1 However, when multiple edits077

share subjects, their identical keys require divergent078

value mappings - an inherent contradiction since079

single-layer perceptrons cannot produce multiple080

outputs for identical inputs.081

To resolve this fundamental conflict, we propose082

MEMIT-Merge, an enhanced variant of MEMIT.083

Our key insight is to enforce value consistency by084

merging multiple knowledge entries that share iden-085

tical keys. Experimental results show that MEMIT-086

Merge consistently outperforms MEMIT on same-087

subject dataset, maintaining a success rate above088

90%, whereas MEMIT drops to around 50%. For089

distinct-subject data, both methods perform com-090

parably with no significant differences.091

2 Problem092

2.1 Preliminaries093

The MEMIT framework hypothesizes that factual094

knowledge in models is stored within the param-095

eters of MLP layers. Each MLP layer contains096

input/output linear layers with parameter matrices097

Win and Wout, where Wout serves as the key-value098

mapping targeted by MEMIT editing. The key099

corresponds to the hidden state at the MLP’s inter-100

mediate layer while the value represents the MLP’s101

final output.102

Knowledge is represented as triples (s, r, o).103

During editing, complete sentences are constructed104

from these triples. The key is determined by the105

subject s and its contextual prefix, while the value106

is obtained by inversely optimizing the object o:107

v = argmin
v

(− logPv[o|(s, r)]) (1)108

All (k, v) pairs are processed in batch to update109

Wout via closed-form solution:110

Wout = W0+(V −W0K)KT (C+KKT )−1 (2)111

1Note that the key-value here refers to the hidden state and
output within the MLP module as described by Meng et al.
(2022), rather than the query, key and value in the attention
module.

Here, K and V denote batched key/value matri- 112

ces, W0 represents original parameters, and C is a 113

knowledge-preservation constant. 114

2.2 Same subject issue in MEMIT 115

Normally, MEMIT is capable of maintaining its 116

efficacy without a pronounced decline in perfor- 117

mance when the edit batch size approaches 1,000. 118

However, we have identified a notable issue: when 119

the edit batch encompasses knowledge triples 120

sharing the same subject, the editing capacity of 121

MEMIT experiences a substantial degradation. 122

To verify this phenomenon, we constructed two 123

counterfactual editing datasets. In the first dataset, 124

the subjects of the knowledge triples are all distinct. 125

In the second dataset, the subjects of the knowl- 126

edge triples are replaced by a single, fixed subject, 127

while all other parts of these two datasets remain 128

identical. The details of the datasets construction 129

are provided in App. A. 130

As illustrated in Fig. 1, when the subjects are 131

identical, the performance of the MEMIT method 132

drops sharply with a batch size of only 2, and the 133

edit success rate falls below 50% when the batch 134

size reaches 10. In contrast, when subjects are 135

distinct, increasing the batch size has virtually no 136

impact on edit success. 137

3 Approach 138

3.1 Cause Analysis 139

In our analysis, the degradation of editing capabil- 140

ity caused by identical subjects is closely related to 141

the key-value modeling of knowledge inherent in 142

locate-and-edit class editing methods. 143

In the standard MEMIT, a piece of knowledge to 144

be edited can be represented by a knowledge triplet 145

(subject, relation, object), and a complete sentence 146

is constructed based on this triplet for the editing 147

process. In this paper, we use the format “subject’s 148

relation is object” to construct the sentence. For 149

example, the knowledge triple (John,father,Bob) 150

is formulated into the sentence “John’s father is 151

Bob.”. 152

As described in Sec. 2.1, during MEMIT editing, 153

the key is derived from the subject, while the value 154

is determined by the object. However, when editing 155

multiple pieces of knowledge with the same subject 156

but different objects in one batch, this mechanism 157

forces the MLP to map the same key to two distinct 158

values. As illustrated in Fig. 2, a given key can only 159

produce a single fixed value through deterministic 160
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Figure 2: The architecture of MEMIT processing two same subject sentences. The left and right sides of the figure
depict the processing flow of the two sentences respectively. Below, we expand the details of the MLP module to be
modified, which consists of two linear layers. In MEMIT, the key is determined by the subject, resulting in identical
keys on both sides. The value is optimized from the relation and object, leading to different values on each side.
Consequently, the optimization target for the editable Wout requires producing different values for the same input
key.

Wout. This creates a conflict when optimizing the161

parameter matrix, making it extremely challenging.162

We refer to this issue as the key collision problem.163

Consequently, when a batch contains multiple edits164

with the same subject, as demonstrated in Fig. 1,165

the editing capability of MEMIT is significantly166

degraded.167

Furthermore, we analyzed the relationship be-168

tween MEMIT editing capability and key distance169

within a batch, finding that closer keys lead to170

greater capability degradation. Due to space con-171

straints, detailed analysis is in the App. B172

3.2 The MEMIT-Merge Approach173

To address this issue, we develop a new optimiza-174

tion objective to merge the value computation of175

the set of knowledge with the same key:176

v = argmin
v

∑
(s,rj ,oj)∈S

− logPv[oj |(s, rj)], (3)177

where S represents the set of knowledge triples178

with the same key, v is the value to be optimized179

in a backward manner, and Pv denotes the model180

when the value is equal to v.181

Compared with Eq. 1, this approach ensures that182

knowledge sharing same key gets the same value,183

thereby significantly alleviating the decline in edit184

efficacy observed in standard MEMIT as evidenced185

in the next section.186

4 Experiments 187

4.1 Dataset 188

We constructed two Wikidata-based counterfactual 189

knowledge editing datasets: (1) a "same-subject" 190

set with 100 triples sharing the subject John Smith, 191

and (2) a "distinct-subject" set with unique sub- 192

jects while maintaining identical relations/objects 193

(construction details in App. A). 194

In terms of evaluation metrics, we refer to the 195

metrics used by Meng et al. (2023), namely Effi- 196

cacy, Paraphrase, and Specificity. Efficacy mea- 197

sures the edit success rate on original sentences, 198

paraphrase measures the success rate on para- 199

phrased sentences. Specificity measures the proba- 200

bility that facts unrelated to the edit remain consis- 201

tent before and after the edit. 202

While our datasets are novel, they address crit- 203

ical real-world needs. Editing multiple attributes 204

of an entity (e.g, updating a person’s profile) is 205

a highly realistic demand, making same-subject 206

scenarios essential for practical applications. 207

4.2 Experimental Setup 208

We conducted experiments on three models with 209

different architectures: Qwen2.5-1.5B-Instruct 210

(Qwen et al., 2025), GPT-J-6B (Wang and Komat- 211

suzaki, 2021), and Llama-3-8B-Instruct (AI@Meta, 212

2024). 213

For MEMIT-based baselines, we use MEMIT 214
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Model Dataset Method Efficiency Parapharse Specificity

GPT-J-6B

same-subject

FT 0.52 0.19 0.23
MEMIT 0.27 0.21 1.00
PMET 0.26 0.21 0.98

MEMIT-Merge 0.51 0.32 1.00

distinct-subject

FT 0.47 0.28 0.22
MEMIT 1.00 0.77 0.93
PMET 0.25 0.25 0.99

MEMIT-Merge 1.00 0.77 0.93

Table 1: The complete results of the four editing methods—MEMIT, MEMIT-Merge, PMET, and FT-L—on
the same-subject and distinct-subject datasets at a batch size of 100. All experimental results were obtained by
re-running each editing method on our dataset.

and an improved version of MEMIT, PMET (Li215

et al., 2024). In addition to the MEMIT-based216

methods, we also included FT-L (Zhu et al., 2020),217

which was used for comparison in the ROME paper,218

as another baseline to verify that the same-subject219

issue exists only in methods with the MEMIT-based220

architecture.221

4.3 Results when Batch Size is 100222

We first compared the edit success rates of standard223

MEMIT, PMET, MEMIT-Merge, and FT-L on the224

two datasets across several models. 2225

As shown in Tab. 1, our method outperforms226

standard MEMIT on the same-subject dataset with227

improved paraphrase accuracy, attributed to en-228

hanced edit success rates. Notably, MEMIT’s229

anomalously high specificity for same-subject ed-230

its (indicating ineffective editing and a minimal231

impact on the original model) is corrected by our232

approach, achieving specificity levels comparable233

to FT and distinct-subject scenarios. Results of234

other models are detailed in App. D.235

Comparing the results of MEMIT and PMET236

to FT-L, it can be observed that the performance237

drop in same-subject edits is unique to MEMIT-238

based methods. This phenomenon is consistent239

with our analysis in Sec. 3.1. By resolving key col-240

lisions through key-wise value merging, MEMIT-241

Merge successfully mitigates this issue, empirically242

confirming that key collision is the root cause of243

MEMIT’s limitations in same-subject cases.244

4.4 Results with Varying Batch Sizes245

As can be seen in Fig. 3, when the subjects of the246

editing knowledge in the edit batch are the same,247

the standard edit success rate plummets at a batch248

2The results for all baselines were obtained by running the
code from the Easyedit framework on our datasets.
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Figure 3: The results of MEMIT-Merge and MEMIT
methods on same-subject and distinct-subject datasets
using the GPT-J-6B model, showing the changes with
varying batch sizes. MEMIT-Merge is capable of sig-
nificantly alleviating the decline in editing performance
under the same-subject condition.

size of 2, whereas MEMIT-Merge is able to main- 249

tain a much higher success rate, with a significantly 250

smaller decline compared to MEMIT. This also 251

confirms the effectiveness of our method. The re- 252

sults of other models are given in App. E 253

In the case of distinct subjects, the editing capa- 254

bility of both MEMIT and MEMIT-Merge does not 255

exhibit a significant decline even at a batch size of 256

100, which is consistent with our previous analysis. 257

The results of other editing methods are given in 258

App. F. 259

5 Conclusion 260

This paper identifies the issue of significant perfor- 261

mance degradation in MEMIT when a batch con- 262

tains knowledge sharing the same subject during 263

batch editing. This is fundamentally caused by pa- 264

rameter update conflicts arising from identical keys 265

requiring divergent values in the same-subject sce- 266

narios. Our proposed MEMIT-Merge resolves this 267

ahd significantly improves same-subject edit per- 268

formance while maintaining original performance 269

on distinct-subject cases. These findings advance 270

mass-editing techniques for evolving LLM knowl- 271

edge bases. 272
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Limitations273

While this study provides insights into same-274

subject issues within MEMIT-based method, sev-275

eral limitations should be acknowledged. First,276

the constructed same-subject and distinct-subject277

datasets contain only 100 instances, which may278

cause unstable results. Second, all knowledge279

triples are restricted to person-related entities, leav-280

ing the generalization to other subject types (such281

as locations or organizations) untested. While our282

theoretical framework suggests that subject type283

should not fundamentally alter the conclusions, em-284

pirical validation across diverse categories remains285

necessary. Third, the experiments focus solely on286

lexical-level subject distinctions; potential effects287

of semantic similarity in embedding space were288

not explored. Future work could extend this investi-289

gation by incorporating larger datasets, multi-type290

knowledge triples, and embedding-space analyses291

to further validate the theoretical predictions.292
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A Details of Constructing Same-Subject378

and Distinct-Subject Data379

Our dataset construction is based on Wikidata.380

First, we retrieve all relations and properties asso-381

ciated with human subject entities from Wikidata.382

Then, we manually filter the relations, removing383

those that are less commonly used, such as ID and384

Wikidata categories. Finally, we obtain 100 rela-385

tions.386

Subsequently, we select a number of individ-387

uals from Wikidata and query their correspond-388

ing objects for the knowledge triples composed of389

these relations. Finally, we retain only one knowl-390

edge triple for each relation, thereby obtaining 100391

knowledge triples, formatted as (subject, relation,392

object).393

We then select another 100 distinct names from394

Wikidata and replace the subject entities in the pre-395

viously obtained 100 knowledge triples with these396

new names, thereby creating the distinct-subject397

dataset. Conversely, we replace the subject entities398

in the 100 knowledge triples with a single, identical399

name to create the same-subject dataset.400

Using the template “subject’s relation is object,”401

we construct natural language sentences from these402

knowledge triples, which form the edit sentences in403

the dataset. For example, a knowledge triple in the404

same-subject dataset is (John Smith, doctoral advi-405

sor, Dennis W. Sciama), which is formulated into406

the natural sentence John Smith’s doctoral advisor407

is Dennis W. Sciama. In the distinct-subject dataset,408

the corresponding knowledge triple with the same409

relation and object is (Paul Morand, doctoral advi-410

sor, Dennis W. Sciama), which is formulated into411

the natural sentence Paul Morand’s doctoral advi-412

sor is Dennis W. Sciama.413

Subsequently, following the dataset metrics in414

Meng et al. (2022), we add two types of questions:415

specificity and paraphrase. For paraphrase ques-416

tions, we use the same knowledge triples as the417

edit sentences, but with a different template format:418

“The name of the relation of subject is object.”. For419

specificity, there are two types of questions. One420

is completely unrelated knowledge, for which we421

use the prompt “The capital city of America is”.422

The other type has the same relation as the edited423

knowledge but a different subject. For example, if424

the edited knowledge is (John, father, Bob), a speci-425

ficity question could be (Paul, father, Eugène).426

B Further Analysis of Cause 427

To further investigate the relationship between the 428

decline in editing capability and the distance be- 429

tween keys, we propose an evaluation metric: the 430

Average Keys Distance Inside Batch (AKD). This 431

metric is defined as the average Euclidean distance 432

between the key values of all pairs of knowledge 433

within a batch. It reflects the average distance be- 434

tween keys in the batch and is represented as 435

AKD(l) =
1(|B|
2

) ∑
e1∈B
e2∈B

||k(l)e1 − k(l)e2 ||2 (4) 436

where l represents the l-th layer, B denotes the 437

batch of knowledge to be edited, k(l)e1 represents the 438

key value computed by the MLP module in the l-th 439

layer for the input knowledge e1. 440

We compute the AKD for all layers of the 441

model at the subject’s last token position. As the 442

degree of subject variation increases across sen- 443

tences, the AKD value proportionally rises. Con- 444

versely, when all sentences share identical subjects, 445

the AKD value remains constant at 0. 446

We construct sentence batches using predefined 447

templates, where batches sharing the same template 448

exhibited similar AKD values, while distinct tem- 449

plates yielded significantly different AKD mea- 450

surements. The specific templates and correspond- 451

ing AKD values are detailed in App. C. For experi- 452

mental validation, we select three AKD groups (0, 453

10, 25) and conduct editing tests using Qwen2.5- 454

1.5B-Instruct. As shown in Fig. 4, where AKD 455

values are computed using keys from MEMIT’s fi- 456

nal editing layer, the results demonstrate an inverse 457

relationship: lower AKD values correspond to re- 458

duced editing success rates. This pattern remains 459

consistent across other AKD values, establishing 460

a statistically significant negative correlation be- 461

tween AKD and editing efficacy. 462

C Diverse AKD Dataset 463

dataset formatting template AKD

same-subject {subject}’s {relation} is {object} 0.0
distinct-subject {subject}’s {relation} is {object} 25.8
same-subject The name of the {relation} of {subject} is {object} 10.5
distinct-subject The name of the {relation} of {subject} is {object} 26.2

Table 2: The average AKD values obtained using dif-
ferent data and templates.

The construction of datasets with three distinct 464

AKD values, where the keys within each dataset 465
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Figure 4: Datasets with different AKD values and the
results of edit efficacy. The lower the AKD value, the
more severe the decline in edit capability.

have a relatively consistent distance between each466

other.467

We utilize the knowledge triples from the same-468

subject and distinct-subject datasets collected in469

Sec. A to construct data using different natural470

language sentence templates. The two templates471

we employ are “subject’s relation is object” and472

“The name of the relation of subject is object”.473

Tab. 2 presents the average AKD values ob-474

tained using different data and templates with the475

Qwen2.5-1.5B-Instruct model. We selected several476

datasets with distinct AKD values. Since these477

datasets have consistent internal templates, the keys478

of the multiple knowledge triples within them are479

relatively uniform and close in distance. Therefore,480

when performing batch editing on these datasets,481

they can be used to study the correlation between482

efficacy and AKD.483

0 20 40 60 80 100
batch size

0.2

0.4

0.6

0.8

1.0

ef
fic

ac
y

same-subject, MEMIT-Merge
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same-subject, FT
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Figure 5: Editing same-subject dataset using Qwen2.5-
1.5B-Instruct with four editing methods.

D Results of Other Models At Batch Size484

100485

Tab. 3 shows results using Llama-3-8B-Instruct,486

Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct487

at batch size 100.488
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Figure 6: Editing same-subject dataset using Llama-3-
8B-Instruct with four editing methods.

E Results with Varying Batch Sizes of 489

other models 490
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Qwen2.5-7B-Instruct
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distinct-subject, MEMIT

same-subject, MEMIT-Merge
same-subject, MEMIT

Figure 7: The results of MEMIT-Merge and MEMIT
methods on same-subject and distinct-subject datasets
using the Qwen2.5-7B-Instruct and Llama-3-8B-
Instruct.

Additionally, the experimental results for 491

Qwen2.5-1.5B-Instruct and Llama-3-8B-Instruct, 492

two models with different architectures, as shown 493

in Fig. 7, demonstrate that the same phenomenon 494

observed in the GPT-J model also exists in these 495

models. Moreover, MEMIT-Merge is equally ca- 496

pable of significantly mitigating the performance 497

degradation of standard MEMIT under the same- 498

subject condition. Therefore, it can be concluded 499

that this phenomenon is universally present across 500

different model architectures, and our method is 501

applicable to various model structures. 502

F Results with Varying Batch Sizes of 503

other methods 504

Here in Fig. 5 and Fig. 6 we demonstrate some 505

more results about editing same subject batch with 506

varying batch sizes. 507

It shows clearly that MEMIT-based methods suf- 508

fers from same subject issue, while methods like 509

FT doesn’t. 510
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Model Dataset Method Efficiency Parapharse Specificity

Qwen2.5-1.5B-Instruct

same-subject

FT 0.26 0.23 0.95
MEMIT 0.30 0.24 1.00
PMET 0.23 0.17 0.99

MEMIT-Merge 0.55 0.36 0.99

distinct-subject

FT 0.23 0.21 0.99
MEMIT 1.00 0.77 0.90
PMET 0.51 0.40 0.85

MEMIT-Merge 1.00 0.77 0.90

Llama-3-8B-Instruct

same-subject

FT 0.67 0.47 0.27
MEMIT 0.38 0.29 0.98
PMET 0.23 0.21 0.98

MEMIT-Merge 0.71 0.44 0.98

distinct-subject

FT 0.73 0.58 0.24
MEMIT 0.99 0.91 0.82
PMET 0.46 0.46 0.92

MEMIT-Merge 1.00 0.91 0.81

Qwen2.5-7B-Instruct

same-subject

FT 0.28 0.23 0.99
MEMIT 0.31 0.25 1.00
PMET 0.23 0.18 0.99

MEMIT-Merge 0.67 0.43 0.99

distinct-subject

FT 0.23 0.22 0.98
MEMIT 0.99 0.84 0.91
PMET 0.52 0.47 0.84

MEMIT-Merge 1.00 0.86 0.90

Table 3: results of models in various size and architecture when batch size is 100

G Related Work511

Knowledge editing techniques for large language512

models (LLMs) primarily fall into two paradigms:513

non-parametric approaches that preserve original514

parameters and parametric methods that directly515

modify model weights. Parametric approaches,516

while effective for targeted updates, often intro-517

duce uncontrolled parameter perturbations that ad-518

versely affect unrelated knowledge — a challenge519

addressed through various constraint mechanisms.520

The parametric category features two dominant sub-521

classes: One is “Meta-Learning Based Methods”,522

such as MEND (Mitchell et al., 2022) and MAL-523

MEN (Tan et al., 2024) which train meta-networks524

using carefully designed datasets containing both525

unrelated knowledge samples and paraphrased sen-526

tences, aiming to enhance generalization while min-527

imizing collateral damage. Another is Locate-and-528

Edit Methods, which includes techniques such as529

Knowledge Neuron (KN) (Dai et al., 2022), iden-530

tify critical knowledge storage locations before ex-531

ecuting precise edits. ROME (Meng et al., 2022)532

extends this by incorporating knowledge preserva-533

tion terms in its optimization objective to maintain534

model integrity.535

Our work builds upon MEMIT (Meng et al.,536

2023), a state-of-the-art locate-and-edit approach537

that enables batch knowledge editing through MLP 538

layer modifications. Building on MEMIT, many 539

recent methods have made modifications to param- 540

eter update methods during editing or to the archi- 541

tecture and location of the edits. PMET (Li et al., 542

2024) incorporates the output of the attention layer 543

in the calculation of parameter updates. AlphaEdit 544

(Fang et al., 2024) improves upon MEMIT’s pa- 545

rameter matrix update method by projecting the 546

update matrix into the null space of the original 547

knowledge to mitigate interference with unrelated 548

knowledge. UNKE (Deng et al., 2024) extends 549

structured knowledge editing to unstructured edit- 550

ing. 551
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