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ABSTRACT

The rapid progress of large foundation models has accelerated the development
of task-specialized agents across diverse domains. However, the effectiveness of
agents remains tightly coupled with the quality of training data, while curating
task-specific datasets remains costly and often infeasible in real-world scenar-
ios. Recent work has explored self-improving agents that autonomously gener-
ate, refine, and re-train on their own trajectories. A prominent line of approaches
further leverages preference optimization by pairing predicted trajectories with
scarce ground-truth trajectories, enabling agents to learn directly from their own
failures. While these methods outperform supervised fine-tuning, their heavy re-
liance on predicted trajectories under limited ground-truth supervision leaves them
prone to overfitting. To address this, we propose a co-evolving agents framework
in which a target agent improves jointly with an auxiliary failure agent. The fail-
ure agent learns through preference optimization over failure trajectories from
both the target and itself, thereby generating hard negatives that are close to suc-
cess yet remain failures. Incorporating these informative hard negatives into the
target agent’s optimization sharpens decision boundaries and enhances general-
ization. Our comprehensive analysis and experiments across benchmark datasets
show that our method not only show improved performance but also highlights
that failures, instead of being used as-is, can be systematically transformed into
structured and valuable learning signals in self-improving agents.

1 INTRODUCTION

The rapid progress of large foundation models (OpenAlL 2025} Yang et al., 2025; MetaAl, 2025} An-
thropic} 2025} |Gemini Team, 2025) has facilitated the rise of task-specialized agents across diverse
domains, ranging from open-domain dialogue to scientific reasoning tasks (SU et al., 2025} [Zeng
et al.| [2024a; [Fu et al.| 2025; Bousmalis et all 2024). These agents inherit the broad generaliza-
tion capacity of pretrained models, allowing effective adaptation to new tasks with relatively limited
supervision. This promise has motivated growing interest in developing methods that adapt founda-
tion models into reliable and effective domain-specialized agents. Recent advances in multi-agent
systems and preference optimization further highlight the potential of combining broad pretrain-
ing with specialized adaptation. In particular, the ability to automatically curate training signals
from agent interactions opens opportunities for scaling beyond static, human-labeled corpora. At
the same time, the increasing deployment of agents in dynamic, real-world settings emphasizes the
importance of approaches that can continuously refine behavior without costly retraining. Such de-
velopments make it timely to revisit how failures, long viewed as undesirable artifacts, can instead
be leveraged as constructive learning signals.

Nevertheless, the effectiveness of such agents remains constrained by the quality of task-specific
training data (Zhou et al., 2024} |Zhao et al.l [2024). High-quality datasets are essential for reliable
reasoning and decision making, providing the signals required for adaptation to specialized domains.
Yet, constructing such datasets is expensive and labor-intensive, often requiring domain expertise
and extensive annotation. In many real-world scenarios, constructing large curated datasets is infea-
sible. In addition to the prohibitive cost of collecting interactions at scale, the need to repeatedly
curate data to keep pace with non-stationary environments makes this approach impractical. This
bottleneck has motivated growing interest in methods that enable agents to improve autonomously
without relying on continuous manual curation (Yuan et al., 2025b; Nguyen et al., [2025} |Yin et al.
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2025)). Such methods aim to bridge the gap between the flexibility of foundation models and the
rigorous demands of domain-specific tasks, while keeping human intervention to a minimum. A
central challenge is therefore to design mechanisms that transform abundant but noisy interaction
data into structured supervision that drives reliable improvement.

Self-improving agents (SU et al., 2025 |Zeng et al 2024a; [Fu et al., |2025) have emerged as a
promising paradigm to reduce reliance on costly human annotation. Maintaining agents at state-of-
the-art performance would require continuous human annotation, which is prohibitively costly and
infeasible at scale. Instead, self-improving agents automate parts of the data construction process
by synthesizing expert-like trajectories from external resources such as documentation or databases,
and by repurposing predicted failures as preference data for training.

Building on this idea, Exploration-Based Trajectory Optimization (ETO) (Song et al.| [2024) con-
structs preference datasets by pairing agent-generated failures with ground-truth trajectories using a
given reward model, enabling preference optimization (Rafailov et al., 2023). Despite the promise
of autonomous improvement, these approaches remain limited, as they depend on a small set of
ground-truth successes paired with predicted failures, leaving them prone to overfitting.

To overcome these limitations, we introduce a co-evolving agents framework in which a target agent
improves jointly with an auxiliary failure agent. The failure agent specializes in preference opti-
mization over failure trajectories from both the target and itself, enabling it to learn a fine-grained
landscape of failures rather than merely preferring expert trajectories. By doing so, it generates hard
negatives (Robinson et al.,2021; Rafailov et al., 2023 |Chen et al., 2020), which are failures close to
success, and these provide stronger and more diverse contrastive signals. Incorporating these infor-
mative hard negatives into the target agent’s preference optimization sharpens decision boundaries
and yields more generalizable performance.

We validate our framework through comprehensive analysis and experiments across diverse do-
mains, including the online shopping environment WebShop (Yao et al., |2022), the science rea-
soning environment ScienceWorld (Wang et al., [2022), and the interactive SQL environment Inter-
CodeSQL (Yang et al.,|2023). Our analysis on these benchmarks verifies that the failure agent does
not simply imitate expert trajectories but continues to generate high-reward failures that serve as
informative hard negatives.

Experiments further demonstrate substantial improvements over competitive baselines, achieving
large margins of gain across benchmarks and reflecting stronger generalization to diverse tasks.
These findings highlight that systematically harnessing failures as structured learning signals, rather
than treating them as byproducts, opens a promising direction for advancing self-improving agents.

Our contributions are summarized as follows: double-check

* We introduce a failure agent that, unlike prior frozen negative agents trained on human-curated
data, continuously learns from failure trajectories and captures a fine-grained failure landscape.

* We propose a co-evolving agents framework where a target and failure agent improve jointly,
with the failure agent generating hard negatives that sharpen decision boundaries and enhance
generalization.

* Our experiments further confirm that failures, when systematically harnessed, can be transformed
into structured learning signals that drive more robust self-improving agents.

2 RELATED WORK

Self-Improving Agents Building high-performing agents requires high-quality datasets, which
are costly and often infeasible in real-world scenarios. Self-improving agents address this by au-
tonomously generating, refining, and reusing data for continual learning. Some approaches synthe-
size trajectories from tutorials, documentation, or persona hubs (SU et al., [2025} [Zeng et al.| [2024a;
Fu et al.;2025)), while others use planning methods such as Monte Carlo Tree Search (MCTS) (Yuan
et al.| 2025b). Beyond dialogue, self-improvement has been explored in programmatic action com-
position (Nguyen et al., 2025), robotics (Bousmalis et al., |2024)), and code generation (Yin et al.,
2025)). Another line leverages failure trajectories paired with expert ones for preference optimiza-
tion (Song et al.| [2024; Xiong et al.| 2024), but these typically use failures as-is, limiting general-
ization. Multi-agent variants (Zhang et al., [2024)) employ negative agents trained on curated failure
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Figure 1: Overview of our co-evolving agents framework.

datasets, yet these are frozen and restricted to dialogue tasks, offering only limited benefit compared
to success-based supervision.

Hard Negatives in Contrastive Optimization Reinforcement Learning from Human Feedback
(RLHF) (Lee et al.l [2024) has been the standard paradigm for aligning language models, but it re-
quires costly reward modeling and policy optimization. Recent contrastive methods such as Direct
Preference Optimization (DPO) (Rafailov et al. 2023) and Generalized Preference Optimization
(GRPO) (Tang et al., 2024)) simplify this process by directly optimizing policies on preference pairs,
bypassing explicit reward models. At the core of contrastive optimization is the idea that learn-
ing benefits most from informative comparisons. In particular, hard negatives that are difficult to
distinguish from the preferred ones and thus yield small preference margins, are known to provide
stronger supervision and promote sharper decision boundaries (Robinson et al., 2021} Rafailov et al.,
2023 |Chen et al . [2020).

3 PRELIMINARIES

The interaction between an LLM agent and its environment can be formalized as a partially ob-
servable Markov decision process (POMDP) () (U4, S, A, O,T, R), as in|Song et al.| (2024). Here,
U denotes the instruction space, S the state space, A the action space, O the observation space,
T :S8 x A — S the transition function, and R : S x A — [0, 1] the reward function. In our
LLM-agents setting, I/, A, and O are expressed in natural language.

At the beginning of each episode, the agent receives an instruction © € U and generates its first
action a; ~ mg(- | u) € A from its policy mp parameterized by 6. The action updates the latent
state s; € S and produces an observation o; € . Subsequent actions are conditioned on the full
interaction history, so that

a; ~mo(- | u,a1,01,...,a;-1,04_1) € A.

This process unfolds until either the task is solved or the step budget is exceeded. A trajectory can
therefore be written as
e:(uvalaolv"wonflaan)Nﬂ—@(elu)u (l)

with likelihood

n
7.l-e(elu):1_[71-‘9(a/j |u7a17017'-~,0j—1)7 (2)
j=1

where n is the trajectory length.

Finally, a reward r(u, ) € [0, 1] is assigned to the trajectory, where 7(u, e) = 1 corresponds to full
task success and lower values indicate partial or failed attempts. This formulation sets up the basis
for preference-based training methods that compare trajectories according to their rewards.
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4 METHOD

In this section, we propose our co-evolving agents framework in which a target agent and a failure
agent are trained in alternating phases and gradually improve through mutual interaction. In Sec-
tion we describe the behavioral cloning stage used to initialize the base policy from supervised
fine-tuning on expert trajectories. Next, in Section[4.2] we introduce the failure agent, which learns
via preference optimization over failure trajectories from both the target and itself and generates
fine-grained hard negatives that are close to success yet still failures. Finally, in Section we
describe how the target agent leverages expert trajectories, its own predicted failures, and failures
generated by the failure agent to construct diverse preference datasets for direct preference opti-
mization (DPO) (Rafailov et al.,[2023)). By training on this richer set of comparisons and alternating
with the failure agent, the target agent achieves more effective learning and stronger generalization
within a co-evolutionary loop. The overall pipeline is illustrated in Figure [T}

4.1 BEHAVIORAL CLONING WITH SUPERVISED FINE-TUNING

We first initialize a base policy through behavioral cloning, which equips the agent with fundamental

task-solving ability before self-improvement. Given an expert dataset D = {(u?, e(i))},‘izll, each
trajectory e = (u,ai,01,...,a,) consists of a task instruction u, actions a; € A, and observa-
tions o; € O. The agent policy 7y is trained with an autoregressive supervised fine-tuning (SFT)
objective:

Lspr(0) = —Ecp [logmg(e | u)], 3)

where the trajectory likelihood decomposes as
mo(e | u) = Hﬂe(at | u, act, 0<4). “4)

t=1

In practice, the instruction, actions, and observations are concatenated into a single text sequence
t = (t1,t2,...,t;). The loss is then computed by applying the autoregressive likelihood only to
tokens corresponding to agent actions:
l
Lspr(0) ==Y logmy(ty | ter) - 1ty € A), ®)
k=1
where 1(t; € \A) is an indicator that selects tokens generated as agent actions.

This supervised fine-tuning stage provides the base policy mp,se, Which serves as the starting point
for co-evolution with the failure agent. To ensure simplicity, both target and failure agents are ini-
tialized from independently trained base policies on the same expert dataset, providing a comparable
starting point while allowing only minor stochastic differences.

4.2 FAILURE AGENT FOR GENERATING HARD NEGATIVES

We introduce an auxiliary failure agent mp, whose role is to specialize in unsuccessful trajectories
and refine them into informative hard negatives (). Unlike the target agent 7, , which is optimized
toward expert success, the failure agent focuses on modeling the space of failures and extracting fine-
grained signals from them. This complementary specialization enables the two agents to co-evolve
in alternating phases.

Preference Dataset. The preference dataset for the failure agent consists of failure trajectories
generated by both the target and itself. Formally, let Fige = {eg | 7(u, €ge) < 1} and Frait = {€fait |
r(u,eqi) < 1} denote the sets of failure trajectories generated by the target and failure agents,
respectively. We construct a preference dataset by pairing failures with different reward levels:

Dfail = {(ua €chosen 6rejf:ctf:d) | €chosen; Erejected S JT'.tgt X -Ffailv T'(U, echosen) > T(”; erejected)}~ (6)
Here, both echosen and €rejectea are failure trajectories, and their relative preference is determined
by evaluating rewards with the given reward model, where the higher-reward trajectory is selected
as €chosen and the lower as erjecrea- This construction enables the failure agent to exploit not only

its own generated failures but also those produced by the target, providing a richer set of pairwise
comparisons.
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Preference Optimization. We adopt the direct preference optimization (DPO) objective (Rafailov
et al., 2023) for training on failure trajectories. Given a reference policy ., the failure agent 7y, is
updated by

W@f (echnsenlu) 7T9f (erejectedlu)

‘CDPO(Hf) - 7]E(uvechosen1€rejected)NDfail |:10g O—(ﬂ log Wref(ech(,gen‘u) - ﬂ log Trref(erejecled\u) )] ’ (7)

where w is the task instruction, o (+) is the logistic sigmoid, and 3 is a scaling factor. This objective
drives the failure agent to distinguish between relatively better and worse failures, thereby capturing
subtle distinctions within the failure space.

Hard Negatives. By constructing preference datasets over failure—failure pairs and training with
the DPO objective, the failure agent learns to capture nuanced differences among failures rather
than only aligning with expert trajectories. This enables fine-grained learning of the failure trajectory
landscape by considering diverse failure cases and, in particular, generating near-success failures that
remain informative despite not solving the task. Such hard negatives provide informative signals that
cannot be obtained from simple expert-versus-failure comparisons, allowing the model to establish
a sharper decision boundary between success and failure. As a result, we incorporate these refined
failure trajectories into the target agent’s optimization, leading to improved robustness and stronger
generalization. To better understand the role of the failure agent, we further conduct both quantitative
and qualitative analyses of the generated failure trajectories (Section[5.2.T).

4.3 CO-EVOLUTIONARY TRAINING

The target agent improves by incorporating failure trajectories generated by the failure agent into
its preference optimization. We construct a preference dataset Dy consisting of three types of
trajectory pairs: (i) expert trajectories versus target-predicted trajectories, (ii) expert trajectories
versus failure-agent trajectories, and (iii) failure trajectories from the target versus those from the
failure agent. Formally,

Dtgt = {(’U,7 €chosen erejected) (echosena erejecled) S {(eexp7 etgt)7 (eexpa efail)} ) (]:tgt X ]:fail)}7 (8)

where ey, denotes expert trajectories, ey target-predicted trajectories, and eg,; failure-agent trajec-
tories. Here, Figt = {ew | 7(u, eq) < 1} and Fait = {egait | 7(w, eait) < 1} denote the sets of
failed trajectories generated by the target and failure agents, respectively.

The target agent is optimized with a weighted DPO objective (Rafailov et al., 2023) together with
an auxiliary supervised fine-tuning (SFT) loss on the chosen trajectories:

Liarget = Appo L0 + ASFT E(u,epon) ~Dig | — 108 76 (€chosen | 1)]- )

As noted by |Yuan et al|(2025a), DPO alone maximizes relative preference margins but can be-
come unstable, since the space of chosen trajectories is much smaller than that of rejected ones.
This imbalance may lead the model to over-penalize rejected samples while insufficiently rein-
forcing preferred ones. To stabilize training, we introduce the auxiliary SFT loss on the chosen
trajectories, which grounds the policy toward high-reward behaviors. For expert—prediction pairs,
we set (Appo, Asrr) = (0.5,0.5) so that the total contribution approximates the conventional ex-
pert—prediction preference setup. For failure—failure pairs, we use (Appo, Aser) = (1.0, 0.0), relying
purely on preference optimization to avoid confusing supervision from incorrect trajectories.

This design prevents over-counting of expert signals while ensuring that failure pairs receive full
emphasis. Failure—failure comparisons are especially valuable, as they capture subtle distinctions
between suboptimal behaviors, thereby sharpening the agent’s decision boundaries. As training
alternates with the failure agent, the two agents form an implicit arms race: the failure agent gen-
erates increasingly challenging negatives, while the target agent learns to overcome them. This
co-evolutionary loop not only enhances robustness within the training domain but also improves
generalization to unseen environments where expert supervision is limited.
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Figure 2: Analysis of Failure Trajectory

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets We conduct experiments on three representative benchmarks: WebShop for web naviga-
tion, ScienceWorld for scientific reasoning, and InterCodeSQL for interactive SQL querying. All
three environments provide continuous final rewards in [0, 1], enabling fine-grained evaluation of
task completion. Expert trajectories are collected through a combination of human annotations and
GPT-4-assisted generation in the ReAct format (Yao et al.,[2023)), with additional filtering based on
final rewards to ensure quality. Example trajectory samples for each dataset are provided in Fig-
ures [] to 6] Further details of the environments and trajectory collection process are provided in

Appendix [A]

Implementation Details We adopt Llama-2-7B-Chat (Touvron et al.| [2023) as the primary base
model, following prior work (Song et al.;|2024)). All models are optimized with AdamW (Loshchilov
& Hutter, [2017), and each training phase is performed for 3 epochs with co-evolution iterations set
to 3 for WebShop and ScienceWorld and 5 for InterCodeSQL. All other hyperparameters are kept
identical across datasets to ensure fair comparison. Experiments are conducted on 8§ NVIDIA H100
GPUs with 80GB memory, and further implementation details are provided in Appendix

Baselines We compare our framework with standard imitation learning and several strong post-
imitation baselines following the baseline |Song et al.| (2024)). Supervised fine-tuning (SFT) (Chen
et al., 2023 |Zeng et al.,2024b) trains agents via behavioral cloning on expert trajectories and serves
as the base policy for other methods. Rejection Fine-Tuning (RFT) (Yuan et al.| 2023 augments the
expert dataset with success trajectories identified by rejection sampling, while Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017)) directly optimizes the SFT policy with reinforcement learn-
ing to maximize task rewards. For reference, we also report results from GPT-3.5-Turbo (Ouyang
et al.,2022), GPT-4 (Achiam et al.,[2023)) with in-context learning. We report average reward as the
primary evaluation metric.

5.2 RESULTS
5.2.1 ANALYSIS ON FAILURE TRAJECTORIES

To better understand the role of the failure agent, we conduct a quantitative and qualitative analysis
of the generated failure trajectories.
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ScienceWorld

Adaptation Models WebShop — = InterCodeSQL Avg.
Seen Unseen

In-context GPT-4 63.2 429 38.1 38.5 45.7
GPT-3.5-Turbo 62.4 7.9 10.5 37.8 29.7
Llama-2-7B-Chat + SFT 59.2 473 419 30.8 44.8
Llama-2-7B-Chat + PPO 64.2 59.4 51.7 52.4 56.9

Fine-tuning Llama-2-7B-Chat + RFT 61.3 71.6 54.3 35.6 55.7
Llama-2-7B-Chat + ETO 63.0 65.6 55.5 51.7 59.0
Llama-2-7B-Chat + Ours 68.5 72.0 66.3 49.6 64.1

Table 1: Main results.

Quantitative Analysis For this analysis, we exclude instructions that are already solved during
supervised fine-tuning and focus on the remaining failure cases. We then compare ETO and our
method in terms of (i) the total number of failure trajectories produced and (ii) the average reward of
failures shared by both methods. As shown in Figure[2] our method not only generates a larger pool
of failures but also produces failures with higher rewards on overlapping samples, which correspond
to more informative hard negatives that are closer to success yet still unsuccessful. This confirms
that the failure agent operates as intended, generating more informative near-success failures that
serve as valuable hard negatives for training.

Qualitative Analysis To better understand the role of failure trajectories, we qualitatively compare
trajectories generated by ETO and by our method on the ScienceWorld, using the task of boiling a
marshmallow as an illustrative example. As shown in the box below, ETO produces a degenerate
failure: after issuing invalid actions that prevent the marshmallow from being placed in the pot,
the agent falls into a loop of repeatedly inspecting the stove, ultimately reaching the step limit
with negligible reward. More generally, ETO trajectories tend to collapse into such trivial loops or,
conversely, achieve perfect 1.0 success, leaving few informative cases in between. In contrast, our
method generates more structured failure trajectories: the agent navigates to the kitchen, retrieves a
pot, places the marshmallow inside, and activates the stove. Although not always successful, these
attempts achieve substantially higher reward and capture essential sub-skills such as navigation,
object manipulation, and device control.

Such near-successful attempts correspond to hard negatives—failures that are close to the correct
solution and therefore more informative for preference learning than either degenerate failures or
trivial successes. Because our framework explicitly emphasizes these hard negatives, the resulting
target agent is trained on richer supervision, which in turn explains the consistent improvements
over conventional expert—prediction baselines.

Predicted Trajectories

Instruction: Your task is to boil marshmallow. For compounds without a boiling point,
combusting the substance is also acceptable. First, focus on the substance. Then, take
actions that will cause it to change its state of matter.

ETO (baseline): Attempts to combine marshmallow and pot fail due to invalid actions. The
pot remains empty, after which the agent repeatedly issues “look at stove” without
progress until the step limit. Reward: 0.03  Steps: 100 Outcome: Failure.

Ours: The agent retrieves a pot, correctly moves the marshmallow inside, places it on the
stove, and activates heating. Subsequent checks show the marshmallow turning into liquid,
completing the task. Reward: 0.75  Steps: 43 Outcome: Success.

5.2.2 MAIN RESULTS

We evaluate our framework on three representative benchmarks: WebShop for web navigation, Sci-
enceWorld for scientific reasoning, and InterCodeSQL for interactive SQL querying. Each bench-
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Figure 3: Average reward across iterations.

mark requires multi-step decision making with final rewards in [0, 1], providing a fine-grained mea-
sure of task success.

Table[T]reports the results. Under in-context learning without fine-tuning, GPT-4 and GPT-3.5-Turbo
achieve 63.2 and 62.4 on WebShop, but their performance collapses to 42.9 and 7.9 on Science-
World, highlighting the limitations of prompt-only adaptation in reasoning-intensive or previously
unseen domains. Fine-tuning methods substantially boost performance by aligning models with
domain-specific interaction patterns. Among them, ETO serves as a strong baseline, reaching an
average reward of 59.0. Please note that the results of PPO and RFT on ScienceWorld are taken

from |Song et al.| (2024); Xiong et al.| (2024)

Our method achieves an average reward of 64.1, outperforming ETO by +5.1 points. The improve-
ments are consistent across benchmarks: +5.5 on WebShop, +6.4 on seen ScienceWorld, and +10.8
on unseen ScienceWorld. In contrast, performance on InterCodeSQL remains on par with the base-
line. A closer analysis indicates that InterCodeSQL exhibits an extremely sparse reward structure,
where trajectories are almost always scored as either O or 1. This binary feedback limits the con-
struction of informative failure pairs, reducing the advantage of our framework and leading both
methods to converge to similar outcomes. Notably, the largest gain arises on unseen ScienceWorld
tasks, where our approach surpasses ETO by more than 10.8 points, demonstrating significantly
stronger generalization to novel scientific scenarios. Overall, these results highlight that leverag-
ing failure-agent trajectories to generate informative hard negatives provides richer training signals,
yielding both higher robustness and improved out-of-distribution generalization.

5.3 ABLATION STUDY

We conduct ablation studies to better understand the contribution of each component in our frame-
work. First, we analyze performance across co-evolution iterations (Figure[3). Our method achieves
strong improvements even with fewer iterations, suggesting that the failure agent generates more
effective trajectories that accelerate learning compared to standard exploration.

Additionally, on WebShop, we evaluate whether the failure agent is genuinely beneficial by replac-
ing it with a conventional positive agent that, like ETO, learns solely from expert-versus-predicted
comparisons. This variant achieves an average reward of 62.76, which is almost identical to ETO,
yet notably lower than the 68.5 obtained with the failure agent, confirming that explicitly modeling
and refining failures is more effective than simply ensembling additional success-oriented agents.

6 CONCLUSION

We introduced a co-evolving agents framework where a target agent and a failure agent learn in
alternating phases and improve through mutual interaction. By training the failure agent on fail-
ure—failure preferences, it generates near-success failures that serve as informative hard negatives.
Incorporating these trajectories into the target agent’s preference optimization sharpens decision
boundaries and improves robustness and generalization. Experiments across WebShop, Science-
World, and InterCodeSQL demonstrate consistent gains in diverse domains, underscoring that fail-
ures, when refined into structured signals, can be transformed into valuable resources for self-
improving agents. We hope our findings facilitate more principled handling of failure trajectories,
ultimately contributing to the advancement of the next generation of self-improving agents.
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