
Under review as a conference paper at ICLR 2023

EVERYONE’S PREFERENCE CHANGES DIFFERENTLY:
WEIGHTED MULTI-INTEREST RETRIEVAL MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

User embeddings (vectorized representations of a user) are essential in recom-
mendation systems. Numerous approaches have been proposed to construct a
representation for the user in order to find similar items for retrieval tasks, and they
have been proven effective in industrial recommendation systems. Recently people
have discovered the power of using multiple embeddings to represent a user, with
the hope that each embedding represents the user’s interest in a certain topic. With
multi-interest representation, it’s important to model the user’s preference over
the different topics and how the preference change with time. However, existing
approaches either fail to estimate the user’s affinity to each interest or unreasonably
assume every interest of every user fades with an equal rate with time, thus hurting
the performance of candidate retrieval. In this paper, we propose the Multi-Interest
Preference (MIP) model, an approach that not only produces multi-interest for
users by using the user’s sequential engagement more effectively but also automati-
cally learns a set of weights to represent the preference over each embedding so
that the candidates can be retrieved from each interest proportionally. Extensive
experiments have been done on various industrial-scale datasets to demonstrate the
effectiveness of our approach. 1

1 INTRODUCTION

Today, the recommendation system is widely used in online platforms to help users discover relevant
items and deliver a positive user experience. In the industrial recommendation systems, there are
usually billions of entries in the item catalog, which make it impossible to calculate the similarity
between a user and every item. The common approach is, illustrated in Figure 1, retrieving only
hundreds or thousands of candidate items based on their similarity to the user embedding on an
approximate level (e.g. inverted indexes, location sensitive hashing) without consuming too much
computational power, and then sending the retrieved candidates to the more nuanced ranking models.
Thus, finding effective user embedding is fundamental to the recommendation quality.

The user representations learned from the neural networks are proven to work well on large-scale
online platforms, such as Google (Cheng et al., 2016), YouTube (Covington et al., 2016), and Alibaba
(Wang et al., 2018). Mostly, the user embeddings are learned by aggregating the item embeddings
from the user engagement history, via sequential models (?Hidasi et al., 2015; Quadrana et al., 2017;
Kang & McAuley, 2018; You et al., 2019). These works usually rely on the sequential model, e.g. a
recurrent neural network (RNN) model or an attention mechanism, to produce a single embedding
that summarizes the user’s one or more interests from recent and former actions.

Recently researchers (Epasto & Perozzi, 2019; Weston et al., 2013; Pal et al., 2020; Li et al., 2005)
have discovered the importance of having multiple embeddings for an individual, especially in the
retrieval phase, with the hope that they can capture a user’s multiple interests. The intuition is quite
clear: if multiple interests of a user are collapsed into a single embedding, though this embedding
could be similar to and can be decoded to all the true interests of the user, directly using the single
collapsed embedding to retrieve the closest items might result in items that the user is not quite
interested in, as illustrated in Figure 1.

1The code is available at https://anonymous.4open.science/r/MIP-802B
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Figure 1: Mis-representation with single user embedding in the retrieve-then-rank framework.

Though, conventional sequential models like RNN or the Transformer network do not naturally
produce multiple sequence-level embeddings as desired in the multi-interest user representation.
Existing solutions fall into two directions: 1) split-by-cluster approaches first cluster the items in the
user engagement history by category labels (Li et al., 2019) or item embedding vectors (Pal et al.,
2020) and then compute a representation embedding per cluster; 2) split-by-attention models adopt
transformer-like architecture with two modifications. The query vectors in the attention are learnable
vectors instead of the projections from the input and the results of each attention head are directly
taken as multiple embeddings (Zhuang et al., 2020; Cen et al., 2020). The limitation of the two
approaches is obvious: the split-by-cluster method works best with dense the item feature (Xue et al.,
2005); and split-by-attention models bias towards the popular categories owing to its shared query
vector among all the users and are inflexible to adjust the number of interests, which is fixed in the
training phase as the number of attention heads.

Moreover, the existing multi-interest works ignore one important aspect: the weights for each
embedding. In the retrieval stage, given the limited number of items to return, retrieving items from
each embedding uniformly will cause a recall problem when the user clearly indicates a high affinity
towards one or two categories. Some existing approaches, e.g. PinnerSage (Pal et al., 2020), use
exponentially decayed weights to assign a higher score to interests that have more frequent and recent
engagements. However, the methods still assume that in the same period, regardless of the interest is
enduring or ephemeral, the level of interest decays equally for any user. Furthermore, these works
also assume the number of embeddings to be fixed across all users. Not only is this hyperparameter
costly to find, but also the assumption that all users have the same number of interests is questionable.
Some dormant users can be well represented using one or two vectors, while others might have a far
more diverse set of niche interests that requires tens of embeddings to represent.

In this paper, we propose Multi-Interest Preference (MIP) model that learns user embeddings on
multiple interest dimensions with personalized and context-aware interest weights. The MIP model
is consist of a clustering-enhanced multi-head attention module to compute multiple interests and
a feed-forward network to predict the weights for each embedding from the interest embedding
as well as the temporal patterns of the interest. The clustering-enhanced attention overcomes the
aforementioned shortcomings from two aspects: the query, key, and value vectors are projected
from the user’s engaged items, thus the output of the attention is personalized and minimized the
bias toward globally popular categories; moreover, the clustering module can be applied before or
after the multi-head attention, releasing the assumption that item features are pre-computed or the
item-category labels are available. The main contribution of this paper and the experimental evidence
can be summarized as follows:

• We propose a multi-interest user representation model that minimizes the bias towards
popular categories and is applicable no matter if the item embeddings are pre-computed.
MIP is successful in various industry-scale datasets (Section 4.1, 4.2); Appendix A.1 reveals
the bias in global query vector and the error from fixed number of clusters in the split-by-
attention approaches, comparing to MIP.

• In addition to the multi-facet vector representations of a user, MIP will assign weights to
each embedding, which is automatically customized for each user interest, and improve the
recall of candidate generation by retrieving more candidates from the most representative
embedding (Section 4.3).

• Although if the cluster algorithms require, MIP still asks for a number of clusters during the
training phase, the number of clusters in MIP in the inference phase can be trivially increased
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or decreased without re-training of the model. And the experimental results (Appendix A.3)
show that re-configuring the number of clusters has an insignificant impact on the retrieval
performance, thus allowing the system to trade off the storage and computation cost for
better performance. Thus, MIP does not require prior knowledge of the number of interests
of users during the model training phase.

2 RELATED WORK

This work relates to two important aspects of existing recommendation systems: sequential models
and the multi-interest framework.

Sequential models. A basic consensus in the recommendation system is that user embeddings should
be inferred from the user’s historical behavior, and thus the sequential models have been at the heart
of recommendation models. A typical and classical sequential model is the Markov Chain (Rendle
et al., 2010; He & McAuley, 2016). While Markov Chain captures short-term patterns of engagement
sequence well, it fails to make the recommendation that requires memorizing long sequences. With
stronger representation power on long sequences, Recurrent neural networks (RNNs), have been
adopted for learning user embedding from arbitrarily long sequences, e.g. GRU4Rec (Hidasi et al.,
2015) and etc. (Xu et al., 2019; Devooght & Bersini, 2017). Besides the standard RNN models,
specialized recurrent units are proposed to meet the special need of incorporating certain information,
e.g. user demographic information (Donkers et al., 2017), global context (Xia et al., 2017), interest
drifts with time (Chen et al., 2019), and interaction session (Hidasi et al., 2015). Recently, the success
of the Transformer network (Vaswani et al., 2017) has brought evolution to sequential modeling
tasks and has been soon adapted to the recommendation models, e.g. ComiRec (Cen et al., 2020),
BERT4Rec (Sun et al., 2019), TiSASRec (Li et al., 2020), SASRec (Kang & McAuley, 2018), MIND
(Li et al., 2019), PinText2 (Zhuang et al., 2020), and also our MIP.

Multi-interest user representation. Representing users by multiple embeddings greatly improved
the recommendation quality, but not every existing recommendation model can easily extend to
a multi-interest framework. Classical collaborative filtering and matrix factorization methods do
not naturally produce multiple user embeddings, and so do RNNs and attention-based models. To
discover multiple interests from user engagement history, heuristic methods (Jiang et al., 2020; Yue
& Xiang, 2012) and unsupervised learning methods like clustering (Pal et al., 2020; Wandabwa et al.,
2020) and community mining (Wang, 2007; Yu, 2008) have been adopted. Besides, researchers
have made efforts to modify the existing neural networks to produce multiple results, for instance,
the capsule network (Li et al., 2019; Sabour et al., 2017; Cen et al., 2020) and multi-head attention
models (Li et al., 2020; Cen et al., 2020; Zhou et al., 2018). However, they require an estimation
of the number of interests of users as a hyperparameter and do not learn the weight of interests.
Therefore, unlike MIP, they produce an equal number of clusters for every user and treat each interest
with uniform importance.

Relation to previous works. The motivation of MIP is to acquire weighted multiple user embeddings
with standard self-attention but without explicit item-category labels. ComiRec and PinText2 use
global-query attention to produce multiple embeddings, which introduces a bias toward frequent
items or popular categories and the phenomenon is shown in Appendix A.1. Furthermore, they
also predefine a number of interests that is uniform for all the users. Tisas and BERT4Rec adopt
self-attention but can not learn multiple embeddings. MIND relies on the category labels to produce
multiple embeddings from self-attention and capsule networks, while the category labels are some-
times unavailable or vague in other applications, e.g. YouTube and Pinterest. PinnerSage produces
multiple embeddings without category labels, but requires pre-computed item embeddings. Lastly,
MIP learns the weights of the multiple embeddings. The comparison are summarized in Table 1.

3 METHODOLOGY

In this section, we formulate the recommendation problem and the neural architecture to model the
multiple user interests with preference weights in detail.
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Name User
Embedding

Sequential
Model

Additional
Input

Preference
Weight

GRU4Rec single RNN interaction session N/A
TiSASRec single time-aware self-attention timestamps N/A
BERT4Rec single self-attention – N/A

MIND multiple label-aware self-attention category labels ✗
ComiRec multiple global-query attention – ✗
PinText2 multiple shared global-query attention – ✗

PinnerSage multiple N/A – heuristic
MIP multiple time-aware SA timestamps learned

Table 1: Comparison of MIP to existing recommendation models.

3.1 PROBLEM STATEMENT

Let I denote the collection of items (with the ID v or the feature vector p) in the data store, and the
U represents the set of users. For each of user u ∈ U , we observe the historical sequence of items
that the user has engaged with, Su = (pu

t1 ,p
u
t2 , ...,p

u
t|lu|

) or (vt1 , vt2 , ..., vtu|lu|
), and the timestamps

of the engagement T u = (tu1 , t
u
2 , ..., t

u
|lu|). The objective is to learn a set of user embedding zu

i ∈ Rd

(i = 1, ..., k) and their weights wi. Since the user representation is learned only from the history of
that user, hereinafter, we omit the superscript for u in both the input and output sides for simplicity.
Notations as summarized in Table 2.

We distinguish two cases of the I: 1) Dense feature p. In industrial recommendation systems, the
learning of item features is often decoupled from the recommendation model. For instance, the item
feature may contain semantic information extracted from natural language models and visionary
features from computer vision models. Given those feature vectors, the recommendation object
mainly focuses on learning the user embeddings from the history of user behaviors. 2) Sparse feature
v. On the contrary, in many public datasets, the items have no attainable feature except item IDs
(encoded as one-hot vectors), and the recommendation model must learn the dense representation of
items through only the user-item interactions. The proposed model is capable of handling both cases.

3.2 MULTI-INTEREST USER REPRESENTATION

Item Encoding. We distinguish two conditions of an item. In most practical systems, every item has
a pre-computed feature vector (denote as pj) defined in the space where the distance can capture the
similarity between the items. In other cases where the recommendation system knows nothing but
unique ids (denoted by an one-hot vector vj) about the item, the system needs to learn the dense item
feature through an embedding layer:

pj = Wembvj (1)

Additionally, how the engaged items reflect the user’s interest may be implied by the sequential order
and the time when they interact. Thus, we concatenate the item features with both its positional and

Notations Description Notations Description
I,U Item set and user set [; ] Vector concatenation operator
l Abbreviation of lu, length of S C Cluster assignment, C ∈ Rl.
d The item embedding dimension h Attention head superscript
p An item embedding, p ∈ Rd Wh

q , b
h
q Query projection weights and bias

pi, ti Short form of the pu
ti and tui Wh

r , b
h
r Key projection weights and bias

M Attention mask matrix dmodel Projected key/query vector size
S Abbreviation of Su, Engagement history of user u
zi, Z User embedding vector(s), zi ∈ Rd, Z ∈ Rd×k

1[cond] Indicator function, 1 if cond is true, 0 otherwise
k Maximum number of embedding vectors per user

Table 2: Notations
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Figure 2: An overview of MIP architecture. The input to the model is the user engagement history
containing item embeddings ([v1...vl] or [p1...pl]) and their timestamps ([t1...tl]). The multi-interest
user embedding module produces k embeddings, where k is decided by the clustering method or
as a hyperparameter. With clustering and multi-interest representation, the cluster weight module
will then estimate the cluster weights for each cluster. Finally, the multi-interest embeddings with
corresponding weights are combined to predict the user’s interest in an unseen item p. The processes
with dense and sparse features are shown with different arrows.

temporal information to produce the action encoding:
ej = [pj ; τ (tj);ρ(j)] (2)

and the positional (ρ) and temporal (τ ) encodings are given by Vaswani et al. (2017):
τ2j(ti) = sin

(
ti/(τmax)

2j/mt
)
, τ2j+1(ti) = cos

(
ti/(τmax)

2j/mt
)

ρ2j(i) = sin
(
i/(ρmax)

2j/mp
)
,ρ2j+1(i) = cos

(
i/(ρmax)

2j/mp
) (3)

The hyper-parameters are set as τmax = 104, mt = 1, and mp = 1. The unit of timestamps is day.
In the Section A.2, other forms of encodings are compared, and the Equation 3 has a weak advantage.

User Representation Candidates To find only a few vectors to represent the entire user-engaged
items, the model has to consider the similarity within the engaged items. The process is achieved
through the self-attention layer:

shi,j =
(
(Wh

q ej + bhq )
⊤ · (Wh

r ei + bhr )
)
/
√

dmodel; ah
i,j = softmaxi(s

h
i,j) (4)

We constrain the attention scores a with a mask matrix M . In the sparse feature case, let Mi,j = 1 for
any i, j; while in the dense feature case, M indicate the intra-cluster relationship, i.e. Mi,j = 1[Ci=Cj ],
where the C denotes the cluster-ID. Thus, M requires the attention model to only aggregate items
within the same cluster. The generation of M in the dense feature case is detailed in Section 3.6.
With M and attention scores a, each attention head aggregates the sequences as:

ϕh
j =

∑
i

ah
i,jMi,jpi (5)

To process the aggregated vector from all attention heads, the dropout layer and a feed-forward
network (FFN) are applied, and compute the output vectors as

ϕj = FFN(Dropout([ϕ1
j ; ...;ϕ

H
j ])) (6)

where j = 1, ..., l. The FFN() has two fully-connected layers with a hyperbolic tangent activation
function after the first layer, i.e. FFN(x) = W (tanh(W ′x+ b′)) + b.

Now, each ϕj summarizes the item features pj , its adjacency with other items, and neighbor item
features. The remaining question is which vectors from the {ϕj} are the most representative.

Cluster Representations So far, the multi-head attention module has produced l output vectors
ϕ1, ...,ϕl, and each ϕi uses pi as the (unprojected) query. To find representative vectors, the model
utilizes the clustering results. Denote the last item in each cluster as pµ1

, ...,pµk
, we take the ϕµ∗

that uses the last item as query, to represent the corresponding clusters. Then let the user embeddings
be zi = ϕµi

, and let the user representation be Z ∈ Rk×d, then
Z = [z⊤1 ; ...; z

⊤
k ] (7)
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3.3 CLUSTER WEIGHT MODULE

Besides the multi-interest assumption, it’s also likely that the user favors each interest unequally.
As mentioned in the earlier section of this paper, ranking these interests can greatly benefit the
candidate generation task given its limited budget. In general, a higher weight should be assigned
to an interest cluster if the user engages more with items that belong to it. In order to utilize both
the contextual cluster information and the user’s engagement sequence in that cluster, we build a
two-layer feed-forward network on top of the cluster representation zj and the temporal encoding of
items τ that belong to the cluster j. We will mask those items that belong to other clusters as zero to
make the input dimension consistent. The cluster weight can be written as

wj = FFN([zj ;1[C1∈Lj ] · τ1; ...;1[Cl∈Lj ] · τl]) (8)

Concretely, the FFN() consists of two fully-connected layers with a sigmoid function in between,
e.g. FFN(x) = W (sigmoid(W ′x+ b′)) + b. Physically, the clusters learned from Section 3.2 are
topics that the user likes, so the preference weights of the clusters should be positive. Therefore, the
output of the second layer are normalized to the range of [0,+∞] by softplus function2.

3.4 USER-ITEM ENGAGEMENT PREDICTION

Intuitively, a user will engage with an item as long as the item match one of his/her interests (not all).
In other words, it’s important that the item embedding is very close to one of the user embeddings,
rather than being as close as possible to all of them. Therefore, the user-item affinity should depend
on the maximum of item embedding and user embedding on each interest dimension. Furthermore,
user’s affinity to each interest cluster should be embodied in the likelihood as well: a higher weight
should be assigned to an interest cluster when the user engages more with items that belong to it.
Therefore, we propose the likelihood that a user will engage with an item as follow:

y = max{wjLinear(zj · p)}kj=1 = max{wj(Wo(zj · p) + bo)}kj=1 (9)

where Z = [z⊤
1 ; · · · ; z⊤

k ] is the aforementioned user multi-interest embedding (on k interest dimen-
sions), and p is the item embedding.

3.5 LOSS FUNCTION

Given the set of items with a positive label (I+) and a negative label (I−), the negative log-likelihood
(NLL) loss of our model can be written as:

L = −
∑
u∈U

( ∑
pi∈Iu

+

log(yu
i ) +

∑
pi∈Iu

−

log(1− yu
i )
)
/
(∑
u∈U

(
|Iu

+|+ |Iu
−|
))

(10)

3.6 CLUSTERING

We have referred to a clustering step in producing attention mask (M in Eq. 5), finding cluster
representation through last item in each cluster (µk in Eq. 7), and learning the cluster weight (C
in Eq. 8). Generically, the clustering algorithm takes the set of vectors and produces the clusters
L1, L2, ..., Lk which is a partition of S . From the partition, the following items are computed: cluster
assignment C, a list of the same length as S that Ci = r if pi ∈ Lr, i = 1, ..., l and r = 1, ..., k;
attention mask M , a symmetric binary matrix that Mi,j = 1[Ci=Cj ]; and last item index µ that µr

denotes the index of the latest item if cluster r.

The clustering is applied differently with the dense and sparse features. With dense features, the
exogenous item embeddings (pj) are clustered, and the cluster results lead to a non-constant M mask,
while with the sparse feature, the clustering is applied to the user representation candidates (Eq. 6).
When unspecified, the model uses the Ward Jr (1963)’s clustering method.3
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P@20 R@20 AUC NLL
PinnerSage 74.02 29.61 81.45 103.3
TiSASRec – – 84.96 47.8
ComiRec 86.35 34.54 87.50 40.7
MIP 88.20 35.28 89.26 37.7

Table 3: Performance on the Pinterest dataset.

Amazon MovieLens Taobao
# Items 425,582 15,243 823,971
# Interactions 51M 20M 100M
# Training 57,165 127,212 343,171
# Test 5,000 5,000 10,000
# Validation 5,000 5,000 10,000

Table 4: Dataset statistics.

4 EXPERIMENTS

We conduct an exhaustive analysis to demonstrate the effectiveness of MIP on the data from Pinterest,
one of the largest online content discovery platforms, and on public datasets.

4.1 WITH SPARSE FEATURE

We first evaluate MIP on learning from collaborative filtering datasets, where the item features are
absent and will be learned from the user-item interactions.

Dataset: Three public datasets are used: Amazon-book 4 (hereinafter, Amazon), Taobao5, and
MovieLens6. We adopted a 10-core setting as previous works (Li et al., 2020; Wang et al., 2019)
and filtered out rare items that appear less than 10 times in the whole dataset, and the inactive users
who interact with less than 100 items. We split each user’s engagement history to non-overlapping
sequences of length 100, and use the first 50 items to learn the user embedding(s) and the last 50
items as positive samples to rank. For each sequence, another 50 negative samples are uniformly
randomly selected from the items that the user does not interact with. The numbers of sequences in
the datasets are listed in Table 4.

Models configurations: We compare the open-sourced baseline models with MIP. The configurations
follow the principles: 1) all the item and user embedding vectors have the same size (d = 32); 2) if
the models adopt a multi-head attention module, the number of attention heads is the same (H = 8);
3) the baseline models should have comparable or more parameters than MIP. We let the hidden
size in GRU4Rrec be 128, the key and query projected dimension (dmodel in Eq. 4) is labeled in
place with the results, and if the model contains a position-wise FFN (Eq 6), the FFN is two-layered
fully-connected with a hidden size of 32. The BERT4Rec model is originally proposed to predict the
item directly as a classification task, which is unrealistic in the retrieval setting, so we take its last
BERT output as the user embedding to compute the similarity between user and item, and train with
the NLL loss. We disabled the session-parallel mini-batch in GRU4Rec since the session information
is absent. We also replace the text encoder in the PinText2 with an item embedding layer since the
input in our experiments is items instead of sequences of words.

Metrics: The models are evaluated in the retrieval scenario, where the recommendation system needs
to recommend a batch of items to the user. The following metrics are used: area under the ROC curve
(AUC), negative log-likelihood (NLL), precision at top-K (P@K), and recall at top-K (R@K). The
metrics are reported in 10−2.

Training: All the models are trained for 100 epochs on Tesla T4 GPU with an early stop strategy
that ceases the training when validation AUC does not improve for 20 epochs. The MIP is trained
with two-phase. In the first phase, the parameters in the cluster weight module are frozen, and the
weights for any cluster are set as 1. After the model converges in the first phase, the parameter freeze
is removed, and then all parameters are trained until converge. Appendix A.4 compared and analyzed
this training strategy of MIP.

2y = 1
β
log(1 + exp(βx)). We set β = 1

3We adopted the scikit-learn implementation. https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.AgglomerativeClustering.html, with n_cluster=5, and other
default arguments. In Appendix A.3, other clustering methods are compared.

4https://jmcauley.ucsd.edu/data/amazon/
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
6https://www.kaggle.com/grouplens/movielens-20m-dataset
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Model Params. Config Amazon Taobao MovieLens
layers dmodel AUC R@50 AUC R@50 AUC R@50

GRU4Rec 66338 1 – 68.62 63.5 81.55 74.48 96.13 90.31
BERT4Rec 50242 1 64 68.11 63.15 81.47 74.52 95.95 90.11
BERT4Rec 55426 2 32 72.10 66.52 81.46 74.47 96.02 90.24
PinText2 69634 1 256 55.83 54.13 71.58 66.88 88.27 81.68

TiSASRec 67586 2 64 72.11 66.67 81.46 74.43 96.02 90.16
ComiRec 67586 1 256 71.72 67.36 70.92 65.61 96.25 90.65

MIP 49347 1 32 80.47 78.85 88.49 88.43 93.04 93.34

Table 5: Performance on public datasets. Params excludes the parameters in the embedding matrix.

Results: The performance is summarized in Table 5. MIP has stronger performance on Amazon and
Taobao datasets and is trivially worse than GRU4Rec and ComiRec in AUC on MovieLens. Intuitively,
the results might be because the shopping scenario fits more to our multi-interest assumption, users
purchase only items from their interested categories, like a type of sports or habits, while the majority
of people would watch all types of movies, and if they like the movie largely depends on the movie
quality, instead of movie category. In addition, since all models have very close performance, MIP is
still a competitive approach in applications that do not support the strong multi-interest assumption.

4.2 WITH DENSE FEATURE

Dataset: The dataset contains user engagement history collected from Pinterest, an image-sharing
and social media service that allows users to share and discover visual content (images and videos).
The interactions between a user and an item (also referred to as a pin) are categorized into impression
(pin is shown to the user), clickthrough (user clicks the pin), re-pin (user saves the pin into their board
collection), and hide (user manually hides the pin). In total, there are 38 million interactions from
510 thousand users during three weeks period of time. Each pin is represented as a 256-dimension
feature extracted by the PinSage model (Ying et al., 2018).

Active users could have very long engagement sequences in a day. Let the engagement sequence of a
user be {j1, j2, · · · , jn}, then for each training sample, we use the first l engagements to predict the l
future engagements. We also enforce a one-day gap between these two segments, because nearby
user engagements are usually very consistent with each other (falling into the same category) and
thus make the prediction task easy. l is set to 50, which is the same as the setting in Cen et al. (2020).
We treat click-through and re-pin as the positive label and hide (which is less often), and impression
(without click or re-pin) as the negative label. Since these negative data have also been recommended
to the user at some point, they are likely to be still relevant to the user, and thus correlate with the
positive data. In order to alleviate the bias, we introduce the random negative data where pins are
sampled from the whole set of pins. The entire negative dataset will consist of 50% observed negative
data (impression and hide), and 50% random negative data.

Baselines and Model Configuration: We compare the multi-interest models PinnerSage and
ComiRec, and the single-embedding model Tisas with the same setting as in Section 4.1.

Results and Analysis. As shown in Table 3, MIP outperforms all the state-of-the-art models that are
published very recently. The detailed comparison of the model and explanation of the improvement
are as follows:

• PinnerSage shares the clustering algorithm with MIP, but differs in 1) the cluster is rep-
resented by the medoid, 2) and the cluster weight uses the heuristic model. Instead, MIP
learns the cluster representations and weights from data end-to-end from data, which aligns
with our intuition.

• TiSASRec has a similar attention model structure as MIP, except only using the last output
of the attention model as the user embedding. The comparison confirms the necessity of
multi-interest representation, as in ComiRec and MIP.

• Compared to ComiRec, MIP interestingly shows that self-attention has stronger represen-
tation power than attention with global-query. In Appendix A.1, we use synthetic data to
illustrate the internal difference between the two types of models.
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Figure 3: Cluster weight variants performance (difference to the best baseline models)

4.3 ABLATION STUDY

This section focus on the claim that the user’s preference should be dynamically learned from the
temporal pattern by demonstrating the effectiveness of the learned personalized cluster weights
module of MIP. We refer the reader to Appendix for a comprehensive ablation study on attention
mechanism (A.1), positional and temporal encoding (A.2), re-configuration and comparison of the
clustering method post-training (A.3).

Configurations. To validate the assumption that the preference trends (weights of multiple interests)
change from user to user, we compare the MIP with two variants that disable the cluster weight module.
The first one (referred to as MIP (Equal Weight)) constantly assigns 1 as cluster weight, thus leading
to an equally weighted multi-interest user representation. Another one (referred as MIP (Exp Decay))
uses the heuristic formula, an exponential decay weights given by wj =

∑
Ci∈j exp(−λ(tnow −

ti))(Pal et al., 2020). We let the tnow be the last user engagement time tl, since in practice it’s
unrealistic to update the weights in real-time according to the current timestamp. According to Pal
et al. (2020), we also set λ = 0.01, which balances well between emphasizing recently engaged items
and accentuating frequently engaged categories. We let the number of clusters k = 5.

The variants on the cluster weights are evaluated on Pinterest and the public dataset.

Results and Analysis The performances are shown in Figure 3. In most experiments, the AUC and
recall can benefit from learned cluster weights (our proposal). From Fig. 3, the equal weights and
exponential decay have an advantage on AUC and recall respectively, but learned weights are overall
superior to other options. Note that the exponential decay rate is global to any user and any cluster,
therefore, the results demonstrated that personalized and context-aware cluster weight estimation is a
more reasonable solution to the recommendation.

5 CONCLUSIONS

In this paper, we study the problem of multi-interest user embedding for recommendation systems.
We follow the recent findings on representing users with multiple embeddings, which has been proven
helpful over the single user representation. However, we find that in industrial recommendation
systems, it is important to have a set of weights for these multiple embeddings for a more efficient
candidate generation process due to its budget on the number of items returned. More specifically, we
define the likelihood of an engagement based on the closest user embedding to the item embedding
and update the weight for the corresponding cluster. We also illustrate the different numbers of
interests (embeddings) that users could have, which is fundamentally different from the assumption
of similar works. In addition, an attention mechanism is applied in the model architecture, and we
have done extensive studies on different model design choices. Finally, case studies on multiple
real-world datasets have demonstrated our advantage over state-of-the-art approaches.
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A APPENDIX

A.1 VARIANTS OF ATTENTION MECHANISM

To interpret the performance improvement of our models against other attention models that have
been applied in the recommendation system. We further construct a synthetic dataset and visualize
the internal attentions and the user representations aggregated from different attentions.

Synthetic dataset. Without loss of generality, we assume there’s G global clusters in the corpus,
representing different global categories, each of which is a d-dimensional Gaussian distribution. Each
user is interested in up to k (< G) categories, referred as user clusters. We generate the oracle user
interest model by sampling no more than k clusters from G global clusters following a multinomial
distribution. Then each of the item in the user engagement history is sampled by two steps: uniformly
sample one cluster from user clusters, then sample from the d-dimensional Gaussian distribution.
Note that in the synthetic model, the item-to-cluster affinity is measured in Euclidean distance,
while in the recommendation model, the affinity is decided by cosine distance. To eliminate this
discrepancy, we force the Gaussian distributions to center on the unit sphere, so that the rankings by
cosine distance and Euclidean distance are consistent.

We use a 2D dataset (d = 2) for visualization purpose and another high-dimensional dataset for
quantitative evaluation. For 2D dataset, we set a relatively small G = 8 and k = 4 in order to have a
clear boundary between clusters. Since there are only 162 distinct subsets7 with G = 8, k = 4, we
use 100 of them for training, 31 for validation and the remaining 31 for testing. For high-dimensional
dataset, we set G = 1024 and k = 8, and let d = 16, 32, 64, 128. We generate 10000 users for
training, 1000 for validation and another 1000 for testing.

Attention models. We focus on comparing our attention model (i.e. self-attention), the attention
model utilized in ComiRec (i.e. Non-shared query), and the one used in PinText2 (i.e. Shared query).
The comparison of the attentions are in Table 6.

For simplicity, we remove the temporal and positional encoding from the computation of attentions,
skip the Ward clustering step from MIP, and directly represent user as Equation 7. Also, the dropout
layer is removed in order to eliminate randomness in visualization.

Metrics. We visualize the intermediate results and user representations learned from the 2D dataset
for qualitative evaluation. For high-dimensional data, we evaluate the performance by AUC and
normalized discounted cumulative gain (nDCG).

Qualitative results and interpretations. Figure 4 shows the learned user representations given the
engagement history. There are three observations. 1) When H = 1, global query attention fails to
capture all the user interests, while the self attention model is free from the limitation. 2) Viewing
from the third row, self-attention model is more accurate in learning cluster representations than
global query models. The later is systematically bias due to the global query as shown in global query
models Figure 6. 3) All the models learn super-clusters, depending on the bias in the dataset. For
the example show in Figure 4, the two adjacent clusters on the top side of the unit circle is often
represented to be a super-cluster.

We also visualize the internal attention scores and self attention models (Figure 5). Some attention
heads show highly similar attention patterns because their queries are close to each other, which

Model Global query Self-attentionNon-shared Shared
Key vector kj (Wh

r pj + bh)
Query vector qh q qh

i = Wh
q pi + bhq

q shared between sequences Yes No
q shared between att. heads No Yes No
Dot-product ehj = qh⊤ · kh

j ehj = q⊤ · kh
j ehi,j = qh⊤

i · kh
j

Table 6: Variations of multi-head attention.

7Number of ways to select no more than 4 clusters from a pool of 8 clusters: 162 =
(
8
1

)
+

(
8
2

)
+

(
8
3

)
+

(
8
4

)
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can be verified from Figure 6. Figure 5 compares the ground truth attention model with the learned
attention. The learned attention shows clear boundaries between clusters in the heatmap. Note
that the ground truth ignores the adjacency of clusters but the self attention model considers the
similarity between clusters, so Figure 5(a) is block diagonal while Figure 5(b-d) has dark blocks off
the diagonal.

Quantitative results. Previous results show intuitive comparison between global query models and
the self attention model, and the quantitative results further confirm the consistency of performance
gain of self attention. Experiments are repeated on dataset for feature dimension d = 16, 32, 64, 128
and number of attention heads H = 4, 8. Figure 7 shows that the MIP model constantly and
significantly outperforms global query models. As illustrated in the 2D dataset, the performance
gain benefits from the personalized user representation, rather than matching to the globally popular
clusters. Another observation from the result is that for global query models, H = 4 under-performs
H = 8 models, as the number of attention head decides the number of global clusters the model can
learn; however for self attention model, H = 4 performs even better than H = 8. The explanation
is that self-attention model does not require growing number of attention heads with respect to the
number of global clusters, and H = 4 could be already enough for capturing user interest but easier
than H = 8 to train.
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Dataset Configuration AUC Recall

Amazon

item embedding 76.34 73.75
+positional 76.19 74.28
+temporal 78.59 76.94

+both 79.31 78.22

Taobao

item embedding 82.06 81.75
+positional 86.54 86.22
+temporal 86.72 86.56

+both 86.59 85.83

MovieLens

item embedding 95.26 94.45
+positional 95.01 94.31
+temporal 94.96 94.19

+ both 94.61 94.12

Table 7: Ablation study on the positional and temporal
encoding on public datasets. (in 10−2)

Configuration AUC NLL
item embedding 0.8923 0.377
+ positional 0.8846 0.386
+ temporal (one-hot) 0.8850 0.388
+ temporal (two-hot) 0.8846 0.385
+ temporal (sinusoid) 0.8921 0.377
+ both (one-hot) 0.8861 0.382
+ both (two-hot) 0.8852 0.387
+ both (sinusoid) 0.8926 0.377

Table 8: Influence of temporal and positional
encoding in attention on the performance in
MIP

A.2 POSITIONAL AND TEMPORAL ENCODING

In Eq. 2, the sequential (positional) and temporal information are encoded and included in the
self-attention module to produce the multi-interest representations. The motivation is that given items
from the same category, the recent ones might better represent the user’s current interest than the
obsolete items. We verify 1) if the incorporation of positional and temporal encoding is critical to the
performance; 2) how the encoding (Eq. 3) method affects the performance.

Configuration. The MIP are configured on the two set of choices: the Eq. 2 can be configured
alternatively:

• item embedding only: ej = pj .
• + positional: ej = [pj ;ρ(j)], where ρ(j) is given by Eq. 3.
• + temporal: ej = [pj ; τ (tj)], where τ (tj) is given by Eq. 3.
• + positional and temporal: Eq. 2 and Eq. 3

and there are several other choices of temporal encodings other than the sinusoidal form in the Eq. 3:

• One-hot (Zhou et al., 2018): Create exponential buckets [0, b), [b, b2), · · · , [bk−1,∞) with
base b, and encode the timestamp as an one-hot vector, i.e. τi = lookup(buckets(t)).

• Two-hot (Shi et al., 2021): Similarly create exponential boundaries {0, b, b2, · · · , bk−1,
∞}, and encode the timestamp as τi = logb(t) − i and τi+1 = i + 1 − logb(t), where
bi ≤ t < bi+1.

Dataset and Results. The options to include positional and temporal information are evaluated on
all the dataset (Tab. 7), and the encodings methods are compared exhaustively on Pinterest dataset
(Tab. 8).

Analysis. Two conclusions can be made from Tab. 7 and Tab. 8: 1) including both temporal and
positional information is a safe option, which has the best performance on Amazon and Pinterest and
marginally (< 0.01) worse performance on Taobao and MovieLens; and 2) the model is insensitive
to encoding methods.

A.3 CLUSTERING OPTIONS

The Ward’s algorithm is applied to MIP considering its success in PinnerSage(Pal et al., 2020),
it’s beneficial to explore the selection of clustering algorithm and the number of clusters on the
collaborative filtering dataset. To illustrate the impact, we evaluate MIP with a wide range of
clustering algorithms.

Model Configuration and training: MIP models are configured with an attention module that takes
both positional and temporal encoding. For unweighted MIP, no clustering method is applied to the
encoded user engagement history {z∗} (computed from Eq. 6) in the training stage. For weighted
MIP, Ward’s algorithm is applied to {z∗} and the number of clusters is set to 5. To keep the MIP
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Clustering
Method

Inference
Clusters

Unweighted MIP Weighted MIP
Amazon Taobao MovieLens Amazon Taobao MovieLens

None - 73.11 82.09 95.97 - - -

Ward
5 71.56 80.58 95.53 79.31 86.49 94.61
8 71.99 80.99 95.72 80.47 87.85 95.25

10 72.16 81.20 95.78 80.84 88.42 95.25

K-Means
5 71.58 80.62 95.53 79.26 86.18 94.86
8 71.95 81.03 95.71 80.66 88.02 95.17

10 72.14 81.22 95.77 80.62 88.61 95.10

Spectral
5 72.28 80.72 95.54 78.99 85.84 94.46
8 72.37 81.08 95.73 80.79 87.61 94.81

10 72.64 81.26 95.78 81.19 88.40 95.07

BIRCH
5 71.98 80.63 95.52 79.39 86.29 94.61
8 72.03 81.02 95.71 80.65 88.03 95.25

10 72.44 81.21 95.78 80.91 88.53 95.25
DBSCAN - 71.98 80.63 95.52 70.05 75.58 89.63

Table 9: Comparison of clustering options in AUC (in 10−2). Note that the number of inference
clusters is independent of training, i.e. changing the number of inference clusters does not require the
re-train of the model.

fully differentiable, the cluster embedding is the encoding of the last item in each cluster, instead of
the medoid.

Inference: The choice of the clustering in the inference phase is independent of its configuration
during the training. We explore the inference options on the pre-trained models. Different types of
clustering methods are compared:

• Ward: hierarchical clustering method that minimizes the sum of squared distances within all
clusters.

• K-Means: an iterative method also minimized the sum of in-cluster summed squared
distances.

• Spectral(Shi & Malik, 2000): performs clustering on the projection of the normalized
Laplacian computed from the affinity matrix.

• BIRCH(Zhang et al., 1996): another hierarchical method that clusters the points by building
the Clustering Feature Tree.

• DBSCAN(Ester et al., 1996): a density-based clustering method that does not require
specifying the number of clusters.

The number of clusters is set to 5, 8, and 10 when required. Note that during training, the number
of clusters is fixed to 5, however, after training, MIP can produce other numbers of embeddings
per user, which gives the system huge flexibility to trade-off between storage/computation cost and
recommendation performance.

Result and analysis: There are two observations from Table 9. 1) the different clustering algorithm
has a marginal impact on the performance. While PinnerSage reported that Ward’s algorithm
outperforms the K-Means, their result does not conflict with our observation here. Recall that for
PinnerSage and our experiment on the Pinterest dataset, the clustering method is applied to the
exogenous item embeddings, thus the clustering methods can be influenced by the non-flat geometry
and outliers. However, with the collaborative filtering dataset, the clustering method is applied to the
encodings produced by multi-head self-attention layers which average the embedding of the items
and all other items (Eq. 4). The encodings after the multi-head self-attention should be smoothly
distributed, and as a result, any clustering methods work almost equally well on that. 2) Selecting the
number of clusters is a non-trivial trade-off. The motivation to decrease the number of clusters is the
storage and computation cost which grow linearly as the number of clusters increases. For unweighted
MIP, though the non-clustering (each item is a cluster) settings have the best AUC, decreasing the
number of user embedding from 50 (non-clustering) to 10 is still acceptable. For weighted MIP, since
it’s impossible to learn the clustering weights without applying a clustering method, the trade-off
can be more complicated: besides the storage concern, when the number of clusters increases the
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MIP
Model

Amazon Taobao MovieLens
Epoch AUC R@50 Epoch AUC R@50 Epoch AUC R@50

equal weight 22 73.11 66.67 4 82.09 74.86 34 95.97 90.06
two-phase 6 80.47 78.85 4 88.49 88.43 6 93.04 93.34
direct-train 18 57.61 57.47 28 80.33 80.23 14 92.43 93.68

Table 10: Comparison of training strategy and the performance of weighted MIP. The columns Epoch
shows the training epochs when the best validation AUC is achieved.

Latency/
Recall GRU4Rec BERT4Rec

(L = 1)
BERT4Rec

(l = 2) PinText2 TiSASRec ComiRec MIP
(total)

MIP
(clustering)

Train 218.57 925.36 1058.34 555.79 452.94 479.59 998.62 5.86
(std) (0.81) (108.96) (733.33) (76.96) (67.07) (67.50) (56.31) (0.76)

Inference 1.15 38.34 57.53 14.46 14.54 14.61 40.05 5.93
(std) (0.20) (56.60) (56.23) (54.99) (56.34) (55.70) (27.08) (0.72)

R@50 63.50 63.15 66.52 54.13 66.67 67.36 78.85 -

Table 11: Latency and performance comparison of the models. Training and inference latencies are
measured in ms, and brackets show the standard deviations.

average information to learn the weights of each cluster decreases and consequently may hurt the
overall performance; on the other hand, 10-cluster settings are better than the 5-cluster settings for all
the dataset.

A.4 TRAINING WEIGHTED MIP WITH SPARSE FEATURE DATASET

As mentioned in Section 4.1, when training MIP on a collaborative filtering dataset, we first train the
equally weighted MIP until converging, then lift the parameter freezing to train the cluster weight
module together. We detailed the reason and explanation of the strategy here.

Configurations. The model is trained twice with the same configuration in Section 4.1. The first
training adopts a two-phase strategy. The first phase model is denoted as MIP (Equal Weight), and
the final model is denoted as MIP (two-phase). In the second round, the model is directly trained
from random initialization and is denoted as MIP (direct-train).

Results: Table 10 shows the performance and number of training epochs to achieve the best perfor-
mance. The difference between the two-phase and direct-train is significant. Two-phase training not
only shortens the training process but also achieves remarkably better results.

Analysis: It’s unsurprising that two-phase can accelerate the training, but we need to understand why
random-initialized MIP under-performs equally weighted MIP, while the MIP is a generalization to
equally weighted MIP. The clue is lying in the experiment on the Pinterest dataset. On the Pinterest
dataset, the weighted model is randomly initialized and outperforms the equally weighted one. The
difference between the two experiments is two-fold: 1) the Pinterest dataset contains dense item
features thus no item embedding matrix needs to be learned; 2) the clustering algorithm is applied to
the item embedding in the Pinterest dataset but to the output of multi-head self-attention (MHA) in
the collaborative filter dataset. As a result, in the Pinterest experiments, the clustering assignment is
reasonably reliable throughout the training, since the item embeddings are always meaningful. On
the contrary, on the collaborative filtering dataset, with the random initialization, the item encodings
after MHA are much noisier at the beginning of the training, and thus the cluster assignment can be
fairly random. Then the input and output of the cluster weight module may be meaningless, which
causes hardship in learning the weighted MIP.

A.5 MODEL LATENCY COMPARISON

Seeing the performance gain, another prominent question will be what is the time cost of the
performance increase. In this section, we profiled the model latency on a desktop computer with a
12-core Intel i7-8700k CPU, and a single Nvidia GeForce RTX 2080 Ti GPU. The neural network
training and inference is on the GPU with vanilla PyTorch framework (version 1.12) without any
further optimization on the computation. The clustering algorithm in MIP is performed by CPU with
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NLL Triplet (α =0.2) Triplet (α =0.5) Triplet (α =0.8)
AUC R@50 AUC R@50 AUC R@50 AUC R@50
92.32 92.97 88.46 88.20 90.33 90.08 90.60 90.61

Table 12: MIP Performance on MovieLens with difference loss functions.

Python’s scikit-learn package. We set the batch size to 1 and the dataset to Amazon, then measure
and summarize the training and inference latency in Table 11.

There are a few observations from Table 11. First, comparing to the neural network inference latency,
the clustering step time cost is trivial. PinText2, ComiRec, and TiSASRec has similar training
and inference latency, while the performance of them are worse than MIP. BERT4Rec has similar
latency as MIP since our sequential model architecture are similar, while the BERT4Rec has worse
performance. GRU4Rec has the least inference time. Notice that the standard deviations of the
inference latency of PinText2, TiSASRec, and ComiRec are large. It indicates, though on average the
three models are faster in inference, MIP inference latency is less possible to be very large while the
other latency might be several times longer than average.

Conclusively, MIP, as well as other baselines compared, can all satisfy the latency requirement when
applying online, even without further optimization on the computation and serving. MIP has higher
time cost compared to some of the baselines, but the performance increase is also appealing.

A.6 LOSS FUNCTION

Beside the NLL loss function in Equation 10, triplet loss is also widely used in contrastive learning
and recommendation system. Let the anchor vector to be pa, the positive vector is p+ and the
negative one is p−, the triplet loss is given by:

Lα =
∑
µ∈U

(
sim(pa,p+)− sim(pa,p−) + α

)
(11)

In the single user embedding models, the pa is the single user embedding, and p+,p− are positive
and negative vectors. While in our multiple embedding assumption, to train with the triplet loss,
we have to modify the form. Similarly to Equation 9, we introduce the maximum operator in the
similarity measure. Define the triplet loss for multiple embedding {zj}kj=1 as:

Lα =
∑
µ∈U

(
max{sim(zj ,p

+)}kj=1 −max{sim(zj ,p
−)}kj=1 + α

)
=

∑
µ∈U

(y+ − y− + α) (12)

where α is a hyperparameter of the positive-negative margin. We let the MIP to train on MovieLens
dataset to investigate the impact to the performance of loss function choice. From the observation in
Appendix A.4, the MovieLens dataset can be learnt well without two phase training, so we directly
train from scratch.

The results in Table 12 illustrates that the triplet loss marginally performs worse than the NLL loss
we used. A possible reason might be the migration from single-anchor to muli-anchor, but the further
investigation is left as future work.
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