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Abstract

Benefiting from the data-driven end-to-end001
model architecture, neural machine translation002
has obvious performance advantages over sta-003
tistical machine translation, but its demand004
for data is also significantly greater, including005
monolingual and parallel corpus. Most of the006
past studies have focused on reducing the de-007
mand for parallel corpus or making more ef-008
fective use of limited parallel corpus. In this009
work, we have studied a method of using am-010
biguity of syntactic structure to achieve more011
effective use of monolingual corpus. Experi-012
ments conducted on multiple benchmarks for013
various languages show that our method has014
a greater improvement than the method using015
back-translation only, demonstrating the effec-016
tiveness of our proposed method.017

1 Introduction018

The end-to-end neural machine translation (NMT)019

model could achieve good translation results only020

by relying on parallel corpus without other man-021

ually designed features (Bahdanau et al., 2015;022

Vaswani et al., 2017). A typical NMT model is an023

encoder-decoder architecture, where the encoder024

is responsible for encoding the source language in-025

put, and the decoder generates the target language026

translation according to the source language repre-027

sentation. Therefore, parallel corpus is needed to028

train the encoder-decoder model during the train-029

ing stage, and usually the more high-quality par-030

allel corpus, the better the translation effect of the031

trained model.032

In machine translation, monolingual corpus is033

often used to enhance the translation performance.034

In the era of statistical machine translation (SMT),035

starting from the IBM model (Brown et al., 1990),036

monolingual target sentences are used to improve037

the fluency of translations, such as using language038

models in phrase SMT systems (Koehn et al., 2003;039

Brants et al., 2007).040

NMT systems can also benefit from language 041

models trained on monolingual corpus (He et al., 042

2016; Gülçehre et al., 2017; Domhan and Hieber, 043

2017). Besides, monolingual corpus is also com- 044

monly used in unsupervised or semi-supervised 045

NMT training settings. On the one hand, the 046

NMT model can be pre-trained on monolingual cor- 047

pus (Conneau and Lample, 2019; Song et al., 2019). 048

Pre-training methods on monolingual corpus usu- 049

ally include denoising and masked language model- 050

ing. The former method adds noise to the sentence 051

as input and then requires the model to restore the 052

original sentence, and the latter method requires 053

the model to predict the masked tokens of the in- 054

put with the remaining ones. On the other hand, 055

the pseudo-parallel corpus can be synthesized for 056

translation training, i.e., back-translation (Sennrich 057

et al., 2016a; Poncelas et al., 2018; Edunov et al., 058

2018; Caswell et al., 2019). 059

In back-translation, to make the most use of the 060

monolingual text, Imamura et al. (2018) show that 061

sampling synthetic sources is more effective than 062

beam search, thus resulting multiple sources for 063

each target. Whereas Edunov et al. (2018) per- 064

form sampling or noised beam strategies on only 065

a single sample, opting to train on a larger number 066

of target sentences instead. Hoang et al. (2018); 067

Cotterell and Kreutzer (2018) propose an iterative 068

procedure which continuously produce different 069

pseudo-parallel pairs to improve the final transla- 070

tion quality. Different from these existing works, 071

our work starts from the perspective of ambiguity 072

in language structure and uses ambiguity to gener- 073

ate different sentence versions, thereby generating 074

different translations, thus forming more pseudo- 075

parallel sentence pairs, and ultimately improving 076

the performance of the NMT system. 077

We evaluated our method on five classical 078

benchmarks: WMT14 En→De, En→Fr, Fr→En, 079

WMT17 De→En and WMT20 En→Zh. Com- 080

pared our method with back-translation and 081
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sampling+back-translation baselines, we have a082

significant performance improvement. Our con-083

tribution is that we used syntactic ambiguity in084

machine translation for the first time to improve085

translation performance. The proposed method is086

simple and easy to use, without the need to increase087

the amount of monolingual data, which is mean-088

ingful for some scenarios with limited parallel and089

monolingual data.090

2 Method091

2.1 Syntactic Ambiguity092

Syntactic ambiguity in natural language processing093

can be defined as a phenomenon that a sentence094

is structurally ambiguous when it can be assigned095

to more than one syntactic structure (Zavrel et al.,096

1997). The resolution of syntactic structural ambi-097

guity is one of the central problems in natural lan-098

guage analysis. Figure 1 shows two syntactic struc-099

tures of the sentence “President Bush called his100

attention with this method". Both syntactic struc-101

tures are valid, and different syntactic structures102

will bring about different syntactic meanings. In103

Figure 1(a) structure is the PP “with this method" is104

attached to the verb “called", while in Figure 1(b),105

the PP “with this method" does not attach to the106

verb but to the NP “his attention". This structural107

ambiguity shown in Figure 1 is called Prepositional108

Phrase (PP) attachment, which is the drosophila of109

structural ambiguity resolution.110

This type of ambiguity is very common in some111

languages, such as English, German, French, and112

Chinese, where there is very little overt case mark-113

ing and syntactic information alone does not suffice114

to explain the difference in attachment sites be-115

tween such sentences. For natural language under-116

standing, it is necessary to use semantic and even117

pragmatic information to re-analyze sentences in118

order to make correct decisions (Hindle and Rooth,119

1991). But we do the opposite, and use the changes120

in sentence meaning brought about by this ambigu-121

ity to construct more single sentences and more to122

dig out the role of limited corpus.123

2.2 Enhancement in Back-translation124

Back-translation has been shown to be an effective125

method for improving the performance of machine126

translation models using monolingual data. For-127

mally, for languages S and T in back-translation,128

given parallel corpus DP = 〈DP
S , D

P
T 〉, monolin-129

gual corpus DM
S , DM

T , first train the initial T → S130

S

NP VP

NNP NNP VBD NP PP

PRP$ NN IN NP

DT NN

President Bush called

his attention with

this method

S

NP VP

NNP NNP VBD

NP PP

PRP$ NN IN NP

DT NN

President Bush called

his attention with

this method

NP

(a)

(b)

Figure 1: An example of syntactic ambiguity for sen-
tence President Bush called his attention with this
method.

translation modelMT→S based on DP . Second, 131

use the translation modelMT→S to translate DM
T 132

into language S to get D̂M
S , thus forming pseudo- 133

parallel corpus pairs 〈D̂M
S , D

M
T 〉 with DM

T . Third, 134

combine the synthesized pseudo-parallel corpus 135

〈D̂M
S , D

M
T 〉 with the original parallel corpus DP 136

to obtain a new mixed parallel corpus for training 137

the translation direction S → T translation model 138

MS→T . 139

Iterative back-translation can be used to fur- 140

ther improve performance if bi-directional mono- 141

lingual data is available. Specifically, the training 142

process includes N iteration steps. For each step, 143

first use the pseudo-parallel corpus obtained in the 144

previous step 〈D̂M
S , D

M
T 〉 and 〈D̂M

T , D
M
S 〉 to com- 145

bine the parallel corpus DP to train S → T and 146

T → S translation models MS→T and MT→S 147

respectively. And then use the new obtained 148

MS→T andMT→S to translate the monolingual 149

sentences DM
S and DM

T to D̂M
T and D̂M

S , form- 150

ing a new pseudo-parallel corpus 〈D̂M
S , D

M
T 〉 and 151

〈D̂M
T , D

M
S 〉, which are used for the next training. 152

For the first step, since there is no pseudo-parallel 153

corpus, only the parallel corpus is used to train the 154

model. 155

We use syntactic ambiguity to construct differ- 156

ent meaning versions of the same sentence through 157
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explicit structural declarations. We define this con-158

struction process as G(·). Through the amplifi-159

cation of monolingual sentences with G(·), more160

pseudo-parallel corpus will be generated during the161

back-translation training process, thereby enhanc-162

ing back-translation.163

For the sentence amplification process G(·),164

since we need to be able to explicitly control the165

meaning of the sentence to remove the ambiguity166

and get its definite meaning version, we refer to167

the rules in mathematical operations and use paren-168

theses to control the priority of PP attachment, so169

as to obtain different deterministic grammar struc-170

ture. Specifically, we use a simple and effective171

search algorithm (as shown in Algorithm 1) on the172

constituent syntax parse tree, insert parentheses to173

different positions for obtaining the final sentence174

sequences with different meanings. It is worth not-175

ing that the Chinese PP constituent is preceded, so176

the algorithm is to find the next sibling, rather than177

looking for the previous one as in English.178

Algorithm 1: Amplification Process G(·)
1 Input: Constituent parse tree T of sentence s;
2 U = {s};
3 for t ∈ T do
4 if t.label == PP then
5 for st ∈ t.parent do
6 if st is the previous sibling of t then
7 b = st.start;
8 e = t.end;
9 sc = InsertParentheses(s, b, e);

10 U = U ∪ {sc};
11 b = st.start;
12 e = st.end;
13 sc = InsertParentheses(s, b, e);
14 U = U ∪ {sc};

15 InsertParentheses(s, b, e)
16 return s[: b]� “(”� s[b : e]� “)”� s[e :];

17 Output: U .

Take “President Bush called his attention with179

this method" as an example, after the amplified pro-180

cess, the sentence becomes a set {President Bush181

called his attention with this method, President182

Bush called (his attention) with this method, Presi-183

dent Bush called (his attention with this method)}",184

Using the backward translation model to translate185

into Chinese: “{布什总统用这种方法引起了186

他的注意, 布什总统用这种方法引起了（他187

的注意）, 布什总统呼吁（他用这种方法注188

意）}". Then we remove the added parentheses189

and duplicated sentences to get the final pseudo-190

parallel sentence pairs: {〈布什总统用这种方法191

引起了他的注意, President Bush called his at- 192

tention with this method 〉, 〈布什总统呼吁他用 193

这种方法注意, President Bush called his atten- 194

tion with this method 〉}. Our enhancement method 195

can be used for normal back-translation with only 196

monolingual data in the target language, or itera- 197

tive back-translation with monolingual data in both 198

languages. 199

3 Experiments 200

3.1 Setup 201

We conducted a series of experiments on the 202

classic machine translation benchmarks to verify 203

the effectiveness of our proposed method, includ- 204

ing WMT14 En→De, En→Fr, Fr→En, WMT17 205

De→En and WMT20 En→Zh. Among them, 206

De→En, Fr→En are to verify the effectiveness of 207

the proposed method in English, while En→De, 208

En→Fr, En→Zh are to verify the universality of 209

the method in more languages. We train our model 210

on all available bitext using the official settings, ex- 211

cluding sentences longer than 250 words and sen- 212

tence pairs with a source/target length ratio greater 213

than 1.5. We sampled 10M sentences for each lan- 214

guage from newscrawl monolingual data. 215

Following the common practice, we tokenize all 216

sentences with the Moses tokenizer (Koehn et al., 217

2007) except Chinese and learn a joint source and 218

target Byte-Pair-Encoding (BPE) (Sennrich et al., 219

2016b) with 40K types. For Chinese sentences, we 220

employed the Jieba1 morphological analyzer to seg- 221

ment the sentences into words. With the exception 222

of En→Zh, we report the majority of our results 223

in terms of case-sensitive tokenized BLEU (Pap- 224

ineni et al., 2002), but we also report de-tokenized 225

BLEU scores using sacreBLEU (Post, 2018). We 226

provide a character-level BLEU score for En→Zh 227

evaluation. For model configuration, follow the 228

practice of (Vaswani et al., 2017), we use the 229

transformer.big setting with embedding dimension 230

/ FFN layer dimension / number of layers 1024 / 231

4096 / 6 respectively. Label smoothing (Szegedy 232

et al., 2016; Pereyra et al., 2017) with a uniform 233

prior distribution over the vocabulary ε = 0.1 is 234

employed for all models. 235

3.2 Results and Analysis 236

We show the evaluation results of WMT14 En→De, 237

En→Fr, Fr→En, WMT17 De→En in Table 1. 238

From the results in the table, back-translation has a 239

1https://github.com/fxsjy/jieba
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Model WMT14 En→De WMT14 En→Fr WMT14 Fr→En WMT17 De→En

BLEU sacreBLEU BLEU sacreBLEU BLEU sacreBLEU BLEU sacreBLEU

Baseline 28.45 27.3 41.20 39.3 28.75 27.1 32.35 31.5

+back-translation
greedy 29.70 28.4 42.35 40.2 29.88 28.9 33.91 32.7
beam 29.55 28.1 42.02 40.0 29.54 28.3 33.84 32.5
noise beam 30.86 29.1 42.94 41.0 31.07 30.3 34.35 33.2
sampling 31.65 29.8 43.26 41.3 31.52 30.6 34.52 33.5
ambiguity 31.68 29.8 43.19 41.1 31.68 30.6 34.60 33.6
sampling+ambiguity 32.16 30.1 43.89 41.6 32.05 30.9 35.05 33.9

+iterative back-translation
greedy 30.31 28.7 42.89 40.9 31.67 30.3 34.34 33.3
sampling 32.08 30.0 43.76 41.4 32.60 31.2 34.92 34.0
ambiguity 32.20 30.0 43.69 41.4 32.59 31.3 34.95 34.0
sampling+ambiguity 32.97 30.5 44.23 41.9 33.56 32.6 35.60 34.7

Table 1: Results on WMT14 En→De, En→Fr, Fr→En and WMT17 De→En test sets. Results shown in bold are
better than the corresponding baselines at significance level p < 0.01 (Collins et al., 2005).

Model BLEU ∆

Baseline 38.75 −

+back-translation
greedy 39.54 0.79 ↑
sampling 40.32 1.57 ↑
ambiguity 40.41 1.66 ↑
sampling+ambiguity 41.06 2.31 ↑

+iterative back-translation
greedy 40.15 1.40 ↑
sampling 41.08 2.33 ↑
ambiguity 40.95 2.20 ↑
sampling+ambiguity 41.54 2.79 ↑

Table 2: Results on WMT20 En→Zh test set.

large performance improvement compared to the240

baseline, and iterative back-translation is improved241

more significantly, which shows that the target242

monolingual can effectively improve the model per-243

formance through back-translation and the mono-244

lingual at both ends can further improves by si-245

multaneously helping the forward and backward246

translation model to get better at the same time.247

sampling and noise beam strategies are better than248

greedy and beam in back-translation, which shows249

that increasing the diversity of generation can ef-250

fectively improve the effect of back-translation.251

Our back-translation based on the ambiguity252

strategy achieves a similar enhancing effect as253

the sampling strategy, but the contribution of our254

method is orthogonal to the sampling method, and255

we have obtained better translation effects by fur-256

ther superimposing these two strategies. The trans-257

lation effect of WMT20 En→Zh shown in Table 2258

also shows a similar phenomenon. And the results259

on En→De, En→Fr, En→Zh show that syntax am-260

0 1 2 3 5 7 8 9 10
32.0

32.5

33.0

33.5

34.0

34.5

35.0

Corpus size(M)

B
L

E
U

sampling
ambiguity

Figure 2: The impact of synthetic pseudo-parallel cor-
pus size on WMT17 De→En translation performance.

biguity can not only be used in English, but also 261

adaptable in other languages. 262

We further explored the effect of ambiguity and 263

sampling strategies under different monolingual 264

scales in Figure 2. As shown in the figure, our am- 265

biguity strategy is more effective when the mono- 266

lingual scale is relatively small. 267

4 Conclusion 268

In this work, we change the back-translation in- 269

put from the perspective of the ambiguity of the 270

syntactic structure rather than sampling the model 271

prediction probability distribution for synthesizing 272

more pseudo-parallel pairs to achieve the purpose 273

of enhancement. We have conducted experiments 274

on multiple machine translation benchmarks, and 275

the results show that our method can improve both 276

back-translation and iterative back-translation base- 277

line. And our method can also cooperate with sam- 278

pling, which utilize the uncertainty of prediction 279

for enhancement, to play a stronger effect. 280
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