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Abstract

Since reducing overfitting in deep neural networks (DNNs) increases their
test performance, many efforts have tried to mitigate it by adding regular-
ization loss terms in one or more hidden layers of the network, including the
convolutional layers. To build upon the canonical wisdom guiding these pre-
vious works, we analytically tried to understand how intra and inter-class
feature relationships affect misclassification. Our analysis begins by assum-
ing a DNN is the composition of a feature extractor and classifier, where
the classifier is the last fully connected layer of the network and the feature
layer is the input vector to the classifier. We assume that, corresponding to
each class, there exists an ideal feature vector which we designate as a class
prototype. The goal of the training method is then to reduce the probabil-
ity that an example’s features deviate significantly from its class prototype,
which increases the risk of misclassification. Formally, this probability can
be bound using a Chebyshev’s inequality comprised of within-class covari-
ance and between-class prototype distance. The terms in the inequality are
added to our loss function for optimizing the feature layer, which implicitly
optimizes the previous convolutional layers’ parameter values. We observe
from empirical results on multiple datasets and network architectures that
our training algorithm reduces overfitting and improves upon previous ap-
proaches in an efficient manner.

1 Introduction

Deep neural networks (DNNs) have shown to be effective pattern extractors and classifiers,
resulting in remarkable and increasing performance in visual classification tasks over the last
two decades. A large portion of the performance increase may be attributed to improved
architectures, increased scales, and larger quantity training sets, but these classifiers are still
at risk to the phenomenon of overfitting to a particular training set, which equates to rote
memorization of specific examples and decreased generalization.
Many strategies have been developed over the years to regularize networks during the train-
ing process such as data augmentation, weight decay, dropout, and batch normalization,
which have now become standard practices in image classifier training. In parallel to these
training strategies, several efforts have looked at augmenting the standard cross-entropy loss
function with additional terms that seek to decorrelate learned feature representations and
eliminate redundant weights.
In our paper, we analyze the mathematical basis for removing the covariance between feature
representations and in doing so, transfer the concept of the class prototype from the field
of deep metric learning (Mensink et al., 2012) into our derivations. We utilize the class
prototype, which is a comprehensive set of learned features that represent a class’ examples,
to derive Chebyshev probability bounds on the deviation of an example from it’s class
prototype and inspire a new loss function that we empirically show to perform comparatively
well to previous efforts. In this paper, we make the following contributions:

• A theoretical framework based on Chebyshev probability bounds under which reg-
ularization and related training techniques can be analyzed. The bound admits a
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new optimizable metric called Chebyshev Prototype Risk (CPR), which bounds the
deviation in similarity between the features of an example and its true prototype.

• We design a new loss function based on our probability bounds that reduces intra-
class feature covariance while keeping inter-class feature vectors separated, which
reduces the risk of overfitting.

• We provide an algorithm for reducing feature covariance that scales with the number
of categories rather than the number of training examples, thus allowing our method
to be used on very large datasets effectively.

• We show evidence that minimizing the CPR is a necessary condition to avoid over-
fitting.

1.1 Preliminary Notations

There exists a generic classifier f(x; θ) that maps an input vector x ∈ RM to a vector
y ∈ RK . We select the parameters, θ, of this classifier as an estimator using a learning al-
gorithm A(D) that takes as input a labeled training set D = {(x1,y1), (x2,y2)...(xN ,yN )}.
This classifier can be broken down into the composition of a feature extraction func-
tion g : RM → RJ and a feature classification function h : RJ → RK . Therefore,
y = f(x; θ) = h(g(x; θg); θh), where θg and θh are the disjoint parameter sets on which
g and h are dependent, respectively. Unless otherwise stated, the norm || · || will refer to
the L2-norm.
There exists for each category a learnable, class representative vector pk ∈ RJ that is learned
during training and minimizes some feature similarity based loss function between itself and
all of its constituent examples in class k. Thus, there is a defined set of class prototype
feature vectors {p1, ...,pK}.

𝒙 𝑔(𝒙;𝜃𝑔) h(𝑔(𝒙);𝜃ℎ) 𝒚

feature
extractor classifier

𝒑

class
prototypes

Figure 1: Neural network split into a feature extractor and classifier (last fully connected
layer) acting on an input x. Class prototypes are learned feature vectors that comprehen-
sively represent each class’ trained features.

2 Related Work

DeCov The authors of (Cogswell et al., 2016) discourage feature correlations at selected
layers of the deep neural network by implementing an explicit penalty loss term on intra-
batch covariance. For a given mini-batch, they define the batch feature covariance as,

Ci,j = 1
N

N∑
n

(hn
i − µi)(hn

j − µj) (1)

where N is the number of samples in the batch, h are the feature activations at the se-
lected layer, and µ is the sample mean of feature activations for the batch. Armed with
this definition, they augment the standard cross-entropy loss function with the following
regularization term:
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LDeCov = 1
2(||C||2F − ||diag(C)||2) (2)

where || · ||F is the Frobenius norm. This term reduces the magnitude of the off-diagonal
terms of the observed batch feature covariance matrix regardless of class.

OrthoReg In (Rodŕıguez et al., 2017), the authors design a weight update technique that
directly controls the cosine similarity between weight vectors throughout the neural network.
The regularization cost function introduced is,

C(θ) = 1
2

n∑
i=1

n∑
j=1,j ̸=i

(
⟨θi, θj⟩
||θi||||θj ||

)2

(3)

where θi is the weight vector connecting to neuron i of the next layer, which has n hidden
units. Two different weight update rules are derived from this cost function: one that
regularizes both positive and negatively correlated weights and another that penalizes only
positive correlations. The authors hypothesize that negative correlations should not be
penalized as they aide in generalization.

3 Theoretical Framework

3.1 Chebyshev’s Prototype Risk (CPR)

The concept we want to grasp is, if a class prototype feature vector is an ideal representation
for it’s class examples and if an example is classified correctly if it is similar in angular feature
space to a prototype, then how can we compute or bound the probabilistic risk that an
example is dissimilar to its class prototype, thus potentially resulting in a misclassification?
We first rename the cosine similarity function for two generic vectors:

CS(v,u) def= v · u
||v||||u|| (4)

We now define a similarity based measure that captures the average dissimilarity in feature
space of all K prototype feature vectors:
Definition 1. Given a sufficiently trained classifier with low empirical risk, f(x, θ), and set of
K prototype feature vectors of dimension J , {p1, ...,pK}, each being an ideal representation
of a corresponding class k, the prototype dissimilarity value DS ∈ [0, 1] is:

DS
def= 1− 1

K(K − 1)

K∑
i ̸=j

CS(pi,pj) (5)

Our lemma uses Chebyshev’s inequality to bound the probability that an example deviates
more than the prototype dissimilarity value from its prototype.
Lemma 3.1. Given a sufficiently trained classifier with low empirical risk, f(x, θ), a prototype
feature vector p of dimension J , which is an ideal representation of a corresponding class
k, a prototype dissimilarity value DS, a feature vector v for a class k input example, and a
covariance function cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] for random variables X and Y ,
the following inequality holds:

Pr
[∣∣CS(v,p)− E

[
CS(v,p)

]∣∣ ≥ DS
]
≤

J∑
cov(v̂ip̂i, v̂j p̂j)

DS2
(6)

where v̂j and p̂j are the components of the unit feature vectors v̂ and p̂.
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The inequality in the above lemma is the two-tailed Chebyshev’s inequality (Ross, 2007). If
we assume that the expected cosine similarity between v and p is close to one, we can make
use of Chebyshev-Cantelli’s one-tailed version of the inequality (Boucheron et al., 2013):
Corollary 3.1.1. If Lemma 3.1 holds and E

[
CS(v,p)

]
= 1.0, then the following inequality

holds:

Pr
[
CS(v,p)− E

[
CS(v,p)

]
≤ −DS

]
≤

J∑
cov(v̂ip̂i, v̂j p̂j)

J∑
cov(v̂ip̂i, v̂j p̂j) + DS2

(7)

where v̂j and p̂j are the components of the unit feature vectors v̂ and p̂.

For a full proof of lemma 3.1 and corollary 3.1.1, see Appendix A.1.
Although the above lemma and corollary only bound the probability that an example de-
viates from its prototype, they inform us on what quantities are important for minimizing
the bounds on an example deviating from its prototype and risk being misclassified.
Quantitatively, the significance of the value DS on the left-hand side is that once the
example feature vector has deviated this amount in similarity from a source prototype, it
is, on average, just as similar to all other prototypes than it was to the original - a situation
that is precarious for classification.
The right hand side reinforces the canonical idea also held in Cogswell et al. (2016) that
minimizing the covariance of learned features benefits the quality of the trained model in
reducing overfitting. Additionally, the global prototype dissimilarity appears as the square
of the mean dissimilarity, implying that prototypes that are very similar to each other likely
pose the highest risk for misclassification.
There also exist numerical differences between the two-tailed and one-tailed versions of
the inequality. Since DS ∈ [0, 1], the two-tailed version of the inequality is in theory not
finite for DS = 0, which is not the case in the single-tailed version if we assume very little
(
∑J cov(v̂ip̂i, v̂j p̂j) is non-zero)). Even though E

[
CS(v,p)

]
̸= 1, it may be reasonable to

assume that it is and empirically evaluate if the inequality correlates well with model quality,
implying that the bound is useful.
Together, we consider these quantities to constitute a Chebyshev Prototype Risk (CPR)
metric that is in the interest of the classifier to minimize during training and is defined as:
Definition 2. Given an example feature vector v with true label y = k and a prototypical
(ideal) class k feature vector pk, let the Chebyshev Prototype Risk (CPR) be defined by:

Chebyshev Prototype Risk (CPR) def=
J∑

cov(v̂ip̂i, v̂j p̂j)
DS2 (8)

Our probabilistic model for CPR has parallels to Neural Collapse property (NC1), which is
the collapse of within-class feature covariance when a neural network has been trained for
a sufficient number of epochs beyond 100% training accuracy (see (Papyan et al., 2020) for
details). Through this lens, our work shares two connections to Neural Collapse. First, our
results show that our algorithm significantly reduces intra-class feature covariance compared
to baseline models within a typical duration (100 epochs) of training, which is not in the
terminal phase of training – in this way our loss components accelerate the covariance effects
of neural collapse, which has been shown to improve generalization in many settings and
lends credence to our Chebyshev model that reducing CPR reduces overfitting (Papyan
et al., 2020). The second connection is that we introduce a new probabilistic modeling
of the similarity between an example’s features to its class mean feature vector (Lemma
3.2), which to our knowledge has not been mathematically derived in the existing Neural
Collapse discussion. Future work could look to integrate theoretical arguments like ours
into modeling Neural Collapse phenomena.
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3.2 Properties of Prototypes

We have thus far referred to the prototype feature vectors as “ideal” representations of their
categories, one prototype for one class. In practice, we will employ a traditional idea in
machine learning that a category’s examples should be close together in feature space and
each category would then have a representational centroid. In an online training setting
where the prototypes, “centers”, of each category can be updated while training, we define
the feature space loss function for an example (xn, yn):

Lproto,n =
K∑
k

1(k = yn) ||g(xn)− pk||2 (9)

If we assume convergence of the above loss component (Bottou et al., 2016), we can derive
two important results regarding a prototype and its category’s examples.
Lemma 3.2. For a sufficiently trained network with low empirical risk on Lproto, the features
of each resulting prototype feature vector, pk for class k of dimension J , converge to pk,j =

1
Nk

∑Nk

n=1 g(xn,k)j, where Nk is the number of training examples from class k.

In no uncertain terms, lemma 3.2 states that if we optimize the loss component Lproto and
reach convergence, the resulting values of the prototype vectors in feature space will be the
arithmetic means of the activations of each prototype’s respective training examples’ feature
vector values.
Optimizing the Lproto also equates to minimizing the squared residuals of each feature
component between class examples and class prototypes. But if the prototypes converge
to the class feature means, then we can show an additional important aspect of prototype
convergence:
Corollary 3.2.1. If Lemma 3.2 holds, then minimizing Lproto is equivalent to minimizing the
individual feature variances over the training examples,

∑J
j=1 V(g(xn,k)j) for each class k.

Corollary 3.2.1 formally states that if the prototypes represent the sample mean feature
values of categories and we minimize the squared residuals between examples and prototypes,
then we are trying to minimize the sample variance of each class’ features. For a full proof
of lemma 3.2 and corollary 3.2.1, see Appendix A.2.

4 Approach and Algorithm

We contribute a training algorithm that explicitly and efficiently minimizes CPR. Our train-
ing algorithm is exemplified by a multi-component loss function that is optimized during
training. For each drawn mini-batch of examples during training, our computed loss function
is:

L = LCE︸︷︷︸
cross-entropy

+ βLproto︸ ︷︷ ︸
Eqn. 9

+ γLcov︸ ︷︷ ︸
vp-covariance

+ ζLCS︸ ︷︷ ︸
p-similarity

(10)

where LCE is the cross entropy loss, Lproto is the example-prototype loss in Eq. 9, Lcov is a
covariance loss, and LCS is a loss on global prototype cosine similarity. The hyperparameters
β, γ, and ζ are the relative weights of the appropriate loss components.

Computation of LCS Per the derived inequalities in lemma 3.1 and corollary 3.1.1, we
would need to maximize the global prototype dissimilarity in order decrease the probability
bound. In practice, we prefer the training dynamics of minimizing the prototype similarities
such that the loss has a lower bound of zero. Further, the prototype similarity dependency
is quadratic, implying that our loss should also have a quadratic form. Given the current
state of the prototype set {p1, ...,pK}, we calculate LCS as:
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LCS = 1
K(K − 1)

K∑
i̸=j

(CS(pi,pj))2 (11)

In words, we compute the squared cosine similarity between all-pairs of prototype vectors,
excluding the diagonal, at every minibatch and attempt to minimize the mean. By squaring
the loss term, the gradients tend to focus on the most similar pairings of prototypes.

Computation of Lcov The computation of the covariance function for class k,
cov(v̂ip̂i, v̂j p̂j)k = E[(v̂ip̂i − E[v̂ip̂i])(v̂j p̂j − E[v̂j p̂j ])]k, is simplified by freezing the state
of the prototype for the computation of this loss component such that it acts as a vector of
constants for Lcov only. We drop the subscript k for brevity, but emphasize that this loss
component is computed only between an example’s features and the prototype features of
its true class. When we draw an input example during training, p̂ is selected according to
the example’s label. The simplified form is,

cov(v̂ip̂i, v̂j p̂j) = E[(v̂ip̂i − p̂iE[v̂i])(v̂j p̂j − p̂jE[v̂j)]
= E[p̂i(v̂i − E[v̂i])p̂j(v̂j − E[v̂j ])]
= E[p̂i(v̂i − p̂i)p̂j(v̂j − p̂j)]

(12)

Algorithm 1 (see Appendix Sec. A.6 for pseudocode) provides an efficient implementation
to minimize the intra-class feature covariance terms in Eqn. 12. Utilizing lemma 3.2, we
treat the learned class prototypes as the running arithmetic means of each class’ examples
and therefore as we optimize Lproto, the prototypes constantly adjust the mean of their class
examples. In mathematical terms, we can replace the term E[v̂i] with the current value of
the appropriate prototype.
Instead of calculating the all-pairs feature covariance matrix in O(J2) time, we compute an
effective approximation in O(J + JlogJ). We first identify the correct prototype feature
vector for each example based on its label, sort the features of the selected prototypes,
reindex the examples’ features by the sorted indices of their prototype, compute their ac-
tivation differences, randomly re-align (shift) these differences by padding with zeros, and
then compute their padded element-wise product.
By shifting the example and prototype features relative to each other, we ensure that i ̸= j
in Eqn. 12 and by sorting per the prototype values, we allow the highest (most important)
features of the class to be compared. The user-parameter ν allows the loss term to regularize
positive, negative, or both possible signs of covariance terms.

Loss Summary The total loss function in Eq. 10 works as a symbiotic system, each con-
tributing the following:

• LCE fits the classifier decision boundary to the training examples.
• Lproto maintains the class prototypes as the mean feature vectors of their respective

classes by lemma 3.2 and thus makes the prototypes useful in the covariance cal-
culations of Lcov. By corollary 3.2.1, this loss function also minimizes the diagonal
terms of the intra-class covariance matrices.

• Lcov regularizes the off-diagonal terms of the intra-class feature covariance matrices.
• LCS reduces the global similarity between class prototypes.

5 Empirical Evaluation

Many previous efforts evaluate new techniques by training on the full available training
set with different model initializations and report a test accuracy containing variation over
model initialization. We suggest that a robust way to assess overfitting tendency is to

6



Under review as a conference paper at ICLR 2024

randomly draw many different training subsets from the full available training set because
we need to test whether the learning algorithm resists overfitting regardless of the seen
examples. For our assessments, we randomly draw 12 training subsets from the available
training data, each being 50% of the size of the source set. We draw these training subsets in
a stratified manner such that each category has the same number of samples. We note that
this evaluation method is the root idea behind bias-variance decomposition (Yang et al.,
2020).

Datasets, Architectures, Training We applied our algorithm and previous works to the
well-known image classification data sets CIFAR100 (Krizhevsky et al.) and STL10 (Coates
et al., 2011). Both datasets make available 500 examples per class category (from which we
randomly draw 250 every time we instantiate a training subset) and consist of 3-channel
color images of natural objects. The main differences are in number of categories, 100
for CIFAR100 and 10 for STL10, and input image size, 32x32 for CIFAR100 and 96x96
for STL10. We trained Residual Network (He et al., 2016) based architectures for both
datasets, using a ResNet18 at 50% width for CIFAR100 and ResNet34 at 50% width for
STL10. We maintained the default depths for both networks, but reduced the width to
expedite computations. We trained all models for 100 epochs using stochastic gradient
descent (momentum=0.9) on a cosine annealed learning schedule beginning at a learning
rate of 0.1, used a batch size of 128, and varied the weight decay depending on the case
being studied (see result tables). All runs were computed on a single GPU. We provided a
warmup period to all trainings of 10 epochs before any regularizers were applied. Standard
flipping and cropping were employed for data augmentation in all runs.
We used the default settings for OrthoReg in both datasets. For DeCov, we used the
suggested loss hyperparameter of 0.1 for CIFAR100, but had trouble fitting the STL10 data
at that value. We reduced the DeCov loss hyperparameter to 0.01 for STL10 in order to
fit the data. For our algorithm, we could not conduct a large hyperparameter study on
(β,γ,ζ) for computational reasons, so we instead performed cross-entropy loss training on
the first training subset for 10 epochs and adjusted the values of (β,γ,ζ) until the other 3
loss components Lcov, LCS , and Lproto had similar magnitude to LCE at epoch 10. Our
goal was to ensure that after the 10 epoch warmup period the relative scales of the different
losses were similar and that the full training could optimize the Chebyshev Prototype Risk
(CPR) while still fitting the data. Our results indicate that our hyperparameter choices
indeed allowed the model to fit the data to 100% training accuracy while still reducing the
CPR.

Results We ran all regularization algorithms for two choices of weight decay (0.0,5e-4) on
CIFAR100 and (5e-4) on STL10 based on the previous experiences of (Cogswell et al., 2016)
and (Rodŕıguez et al., 2017) that weight-decay achieves good regularization on its own,
thus washing out some of the effect of additional regularization terms. For both weight
decay settings, we ran a baseline consisting of only the cross-entropy loss component for
comparison. Tables 1 and 2 show that our algorithm is effective in boosting generalization
performance on CIFAR100 regardless of the training set selected when compared to either
the baseline, OrthoReg, or DeCov. Our algorithm’s effect is more noticeable in the 0.0
weight decay setting as expected, but still maintains an improvement in performance in the
5e-4 weight decay environment.
Additionally, we ran our algorithm for the three possible selections of ν. The results were
very similar for whether we controlled only positive covariance ν = 1 or both positive and
negative (ν = 0) so we report only the ν = 0 case. In the 0.0 weight decay setting, there is
no significant difference in changing ν, but for 5e-4 weight decay, regularizing the negative
covariance terms provides a marginal reduction in overfitting. We saw similar trends for
training a ResNet34 on the STL10 - for details refer to Appendix A.4.
Figure 2 shows the average Chebyshev Risk metric of lemma 3.1 across all CIFAR100 classes.
Clearly, reducing the risk metric can lead to models that generalize better on unseen ex-
amples, but we also note that there are models with low risk that have only moderate
generalization compared to the baseline. The trends suggest that minimizing CPR is nec-
essary to maximize the generalization of a selected architecture on a given dataset, but it is
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Table 1: CIFAR100, ResNet18 Test Accuracy for Weight Decay = 0.0

Test Accuracy
Baseline Decov OrthoReg Ours Ours

Train Set w=0.1 ν = 0 ν = −1
1 0.591 0.602 0.585 0.628 0.616
2 0.589 0.614 0.598 0.629 0.626
3 0.601 0.598 0.593 0.617 0.621
4 0.596 0.590 0.608 0.622 0.622
5 0.595 0.605 0.598 0.624 0.615
6 0.596 0.612 0.598 0.624 0.615
7 0.592 0.612 0.582 0.618 0.628
8 0.596 0.618 0.595 0.617 0.624
9 0.595 0.609 0.592 0.613 0.619
10 0.581 0.597 0.596 0.621 0.626
11 0.600 0.612 0.606 0.621 0.630
12 0.597 0.619 0.594 0.635 0.621
Mean 0.594 0.607 0.595 0.622 0.622
σ 0.005 0.009 0.008 0.006 0.005
Min 0.581 0.590 0.582 0.613 0.615

Table 2: CIFAR100, ResNet18 Test Accuracy for Weight Decay = 0.0005

Test Accuracy
Baseline Decov OrthoReg Ours Ours

Train Set w=0.1 ν = 0 ν = −1
1 0.662 0.669 0.663 0.667 0.673
2 0.659 0.672 0.664 0.669 0.672
3 0.664 0.665 0.657 0.663 0.671
4 0.662 0.660 0.665 0.671 0.673
5 0.666 0.664 0.662 0.660 0.676
6 0.665 0.668 0.670 0.670 0.677
7 0.662 0.667 0.664 0.670 0.672
8 0.660 0.669 0.660 0.668 0.670
9 0.660 0.667 0.664 0.662 0.673
10 0.660 0.666 0.660 0.664 0.670
11 0.660 0.673 0.659 0.675 0.673
12 0.658 0.668 0.655 0.668 0.668
Mean 0.661 0.667 0.662 0.667 0.672
σ 0.002 0.003 0.004 0.004 0.003
Min 0.658 0.660 0.655 0.660 0.668

not sufficient to guarantee it. To see the equivalent chart for the Chebyshev-Cantelli CPR,
see Appendix A.5.

Discussion There is a rich literature on regularization algorithms that optimize feature
decorrelation or separation in one or more layers of a model such as (Hui et al., 2023;
Deng et al., 2022; Ayinde et al., 2019; Huang et al., 2018; Pereyra et al., 2017; Liu et al.,
2016; Wan et al., 2013; Hinton et al., 2012). Almost all of these methods work off the
notion that feature decorrelation and separability are beneficial to the test performance of a
network. Our objective is to unify these approaches under a common mathematical model
that details why these behaviors are desired. By doing this, our CPR metric provides the
relative numerical importance between intra-class feature covariance (weighted by prototype
activations) and inter-class separation (quadratic in prototype dissimilarity). While we
wanted to show that explicitly reducing CPR in our algorithm improves overfitting over
an unregularized baseline, we critically wanted to show that other non-CPR regularization
techniques still implicitly improved CPR and resulted in better test performance, which
would confirm our probabilistic model’s relationship to misclassification (reducing the CPR
for each class reduces misclassification risk). We chose OrthoReg and DeCov because they
are simple, effective, and address feature decorrelation differently by either the weights
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Figure 2: Assessment of CPR all training subsets and algorithms.

(OrthoReg) or the activations (DeCov). It would be worthwhile to evaluate all the methods
in a similar training regime and compare their CPR metric.
We highlight some important differences and advantages of our method. First, our prob-
ability model informs us on the specific mathematical forms of intra-class covariance vs.
class separation. Our feature covariance is uniquely prototype-weighted since we use
E[pi(vi − pi)pj(vj − pj)]. All categories have differently shaped prototype feature vectors
and thus our weighted covariance will scale each feature gradient differently in backpropa-
gation depending on its relative importance to each class. We further wanted to design a
covariance algorithm that reduces the computational complexity. Using our feature sorting
and padding algorithm, our method computes the covariance contributions for a sample in
O(J + JlogJ) time, in comparison to previous approaches in O(J2) time. Our results show
that over the course of training, this method still reduces model feature covariance even
though we do not explicitly compute the full covariance matrix. This gives our algorithm a
distinct scaling advantage.

5.1 Conclusion

Many efforts for overfitting reduction to improve test performance have been shown effective.
It has been shown that overfitting can be reduced by amending the standard cross-entropy
loss with terms in one or more hidden layers of the network, including the convolutional
layers. To build upon the wisdom guiding these previous works, we analytically tried to
understand how class feature relationships affect misclassification.
Our analysis began by assuming a DNN is the composition of a feature extractor and
classifier, where the classifier is the last fully connected layer of the network and the feature
layer is the input vector to the classifier. Assuming that, corresponding to each class, there
exists an ideal feature vector which we designate as a class prototype.
Formally, we derived Chebyshev and Chebyshev-Cantelli probability bounds on the devi-
ation of cosine similarity between the features of an example and its class prototype. We
added the terms in the inequality to define our novel loss function for optimizing the feature
layer, but the new loss function backpropagates errors to the previous convolutional layers’
and optimizes their parameter values as well. The new loss function based on our probability
bounds effectively reduces intra-class feature covariance while keeping class examples sepa-
rated in feature space, which reduces the risk of overfitting. Empirical results on multiple
datasets and network architectures validates that the our loss function reduces overfitting
and improves upon previous approaches in an efficient manner.
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A Appendix

You may include other additional sections here.

A.1 Proofs for Section 3.1

The following is a proof of lemma 3.1 and corollary 3.1.1:

Proof. Given some non-negative random variable X, we begin by analyzing the continuous
definition of expectation and derivation of Markov’s inequality (Ross, 2007),

E[X] =
∫ ∞

−∞
xf(x)dx (13)

In addition to X being non-negative, in our application, we will being using cosine similarity,
so are random variable is also bound above by 1:
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E[X] =
∫ 1

0
xf(x)dx (14)

We can further split the integral by some value a,

E[X] =
∫ a

0
xf(x)dx +

∫ 1

a

xf(x)dx (15)

We can then chain together several inequalities,

E[X] =
∫ a

0
xf(x)dx +

∫ 1

a

xf(x)dx

≥
∫ 1

a

xf(x)dx

≥
∫ 1

a

af(x)dx

= a

∫ 1

a

f(x)dx

= aPr[X ≥ a]

(16)

This results in the final form for Markov’s inequality,

Pr[X ≥ a] ≤ E[X]
a

(17)

Let the non-negative random variable X be (X −E[X])2 and consider some value for a on
the interval [0, 1], then Markov’s inequality becomes,

Pr[(X − E[X])2 ≥ a2] ≤ V[X]
a2

Pr[|X − E[X]| ≥ a] ≤ V[X]
a2

(18)

Given a prototype feature vector p for class k and the feature vector of an example from
class k, v = g(x), we consider the random variable X to be the cosine similarity between
the example’s feature vector and it’s class prototype:

X = v · p
||v||||p||

def= CS(v,p) (19)

We note that the cosine similarity in this case is a summation of dependent random variables,

X =
∑J

j vjpj

||v||||p||
(20)

Furthermore, we can think of the summation as the sampling of two unit vectors v̂ and
p̂ from the unit circle so that X becomes the summation of unit vector components, each
component being a random variable:
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X =
J∑
j

v̂j p̂j (21)

Substituting into Eq. 18, we convert the inequality to bound the probability that the
similarity between a class sample’s unit feature vector deviates more than a value a from
its expectation:

Pr
[∣∣CS(v,p)− E

[
CS(v,p)

]∣∣ ≥ a
]
≤

J∑
cov(v̂ip̂i, v̂j p̂j)

a2
(22)

Intuitively, as the similarity between an examples unit feature vector and a prototype unit
vector from class k decreases, the chance of that example being classified into k decreases.
For a given prototype p, there also exist (k − 1) dissimilar prototypes towards which an
example could become more similar as it deviates from the original prototype.
We define the mean dissimilarity between prototypes as follows and select it as a meaningful
value for a to represent the mean spacing between prototypes in feature space:

DS
def= 1− 1

K(K − 1)

K∑
i ̸=j

CS(pi,pj) (23)

Substituting into Eq. 22, we reach our final form for Chebyshev’s two-side inequality:

Pr
[∣∣CS(v,p)− E

[
CS(v,p)

]∣∣ ≥ DS
]
≤

J∑
cov(v̂ip̂i, v̂j p̂j)

DS2
(24)

We then deduce a one-sided version of Eq. 24 known as Chebyshev-Cantelli’s inequality. If
we assume that E

[
CS(v,p)

]
≈ 1, then the one-sided inequality is applicable. We refer to

(Ross, 2007; Boucheron et al., 2013) for the steps required to make the deduction after we
make this assumption. The final one-sided form is,

Pr
[
CS(v,p)− E

[
CS(v,p)

]
≤ −DS

]
≤

J∑
cov(v̂ip̂i, v̂j p̂j)

J∑
cov(v̂ip̂i, v̂j p̂j) + DS2

(25)

Thus completes our proof.

A.2 Proofs for Section 3.2

The following is a proof of lemma 3.2 and corollary 3.2.1:

Proof. We start by restating a theorem and corollary from (Bottou et al., 2016):
Theorem A.1. (Bottou et al., 2016)(Nonconvex Objective, Diminishing Stepsizes). Under
Assumptions 4.1 and 4.3, suppose that the SG method (Algorithm 4.1) is run with a stepsize
sequence satisfying (4.19). Then with AZ

def=
∑Z

z=1 αz,

lim
Z→∞

E
[ Z∑

z=1
αz||∇F (wz)||2

]
<∞

and therefore E
[ 1
AZ

Z∑
z=1

αz||∇F (wz)||2
] Z→∞−−−−→ 0

(26)

13
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In this theorem, z is the iteration number of the stochastic gradient descent method (”SG”),
F is the objective function, and w are the model parameters. For full details, see (Bottou
et al., 2016).
As a corollary to Theorem A.1,
Corollary A.1.1. (Bottou et al., 2016) Under the conditions of Theorem A.1, if we further
assume that the objective function F is twice differentiable, and that the mapping w 7→
||∇F (wz)||2 has Lipschitz-continuous derivatives, then

lim
Z→∞

E
[
||∇F (wz)||2

]
= 0 (27)

We assume that corollary A.1.1 is true for our prototype objective function, which we restate
here for a single example (xn, yn) and pk ∈ RJ :

Lproto,n =
K∑
k

1(k = yn) ||g(xn)− pk)||2 (28)

At each iteration z, we randomly select a sample from the training set and compute the losses
and gradients produced from the sample for the current update. The stochastic gradient
descent update rule is:

pk,z+1 ← pk,z − αz∇pk
Lproto,n (29)

We can expect the gradient update rule on p to converge such that:

|| 1
N

N∑
n=1
∇pk
Lproto,n|| = 0 (30)

We can expand Eqn. 30 using Eqn. 28 and then re-write ||g(xn) − pk)||2 as a summation
over its J elements:

||∇pk

1
N

N∑
n=1

J∑
j=1

1(k = yn) (g(xn)j − pk,j)2|| = 0 (31)

The outer norm, ||·||, can represent a summation over each individual gradient term produced
by ∇pk

. We replace the indicator function by subscripting x with k to indicate it has true
label k. Knowing this, we can introduce a summation over the J elements of ∇pk

, which
we represent by its individual partial derivatives, ∂

∂pj
and take the square of both sides to

produce,

J∑
j=1

 ∂

∂pk,j

1
Nk

Nk∑
n=1

J∑
j=1

(g(xn,k)j − pk,j)2

2

= 0 (32)

Applying each partial derivative, we get,

J∑
j=1

 1
Nk

Nk∑
n=1

J∑
j=1

2(g(xn,k)j − pk,j)

2

= 0 (33)
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We observe that equations 1(k = yn) 1
Nk

∑Nk

n=1 2(g(xn,k)j − pk,j) = 0, j = 1...J are a
solution to Eqn. 33 and then find an expression for g(xn,k)j :

−pk,j+ 1
Nk

Nk∑
i=1

g(xn,k)j = 0 j = 1...J

pk,j = 1
Nk

Nk∑
i=1

g(xn,k)j j = 1...J

p∗
k,j = 1

Nk

Nk∑
i=1

g(xn,k)j

(34)

We assume that we apply minimize the empirical risk of Lproto,n,k such that Eqn. 34 applies
and then we restate Lproto,n,k:

1
Nk

Nk∑
n=1
Lproto,n,k = 1

Nk

Nk∑
n=1
||g(xn,k)− pk||2 (35)

We write ||g(xn,k)−pk||2 as a summation over its J elements and substitute in Eqn. 34 for
pk to find a concise expression for the empirical risk of Lproto.

1
Nk

Nk∑
n=1
Lproto,n,k =

J∑
j=1

1
Nk

Nk∑
n=1

(g(xn,k)j − pk,j)2

=
J∑

j=1

1
Nk

Nk∑
n=1

(
g(xn,k)j −

1
Nk

Nk∑
n=1

g(xn,k)j

)2

=
J∑

j=1
V(g(xn,k)j) k = 1...K

(36)

where V(g(xn,k)j) are the individual feature vector variances over the training examples.

A.3 Hyperparameters

• (CIFAR100, ResNet18, ν = 0, β = 70, γ = 25e3, ζ = 1)
• (CIFAR100, ResNet18, ν = −1, β = 70, γ = 50e3, ζ = 1)
• (STL10, ResNet34, ν = 0, β = 8, γ = 50e3, ζ = 0.2 )
• (STL10, ResNet34, ν = −1, β = 8, γ = 200e3, ζ = 0.2 )

A.4 STL10 Results

Results for STL10 indicate that DeCov, OrthoReg, and our algorithm have very similar
overfitting mitigation in the weight-decayed setting. All algorithms show improved perfor-
mance over the weight-decay only baseline case. Overall we see much more variation in the
STL10 data, which could originate from being more sensitive to model initialization or the
size of the selected training sets was too small to provide consistent generalization.
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Table 3: STL10, ResNet34 Test Accuracy for Weight Decay = 0.0005

Test Accuracy
Baseline Decov Decov OrthoReg Ours Ours

Train Set w=0.01 w=0.1 ν = 0 ν = −1
1 0.571 0.685 0.578 0.624 0.635 0.677
2 0.692 0.687 0.563 0.645 0.677 0.660
3 0.579 0.621 0.444 0.630 0.650 0.670
4 0.626 0.658 0.620 0.679 0.631 0.661
5 0.664 0.665 0.638 0.614 0.644 0.654
6 0.653 0.673 0.584 0.694 0.684 0.660
7 0.629 0.656 0.629 0.661 0.644 0.647
8 0.670 0.685 0.665 0.628 0.663 0.632
9 0.625 0.675 0.584 0.555 0.680 0.684
10 0.608 0.644 0.657 0.649 0.583 0.657
11 0.685 0.665 0.585 0.654 0.669 0.666
12 0.680 0.651 0.629 0.670 0.659 0.684
Mean 0.640 0.664 0.598 0.642 0.652 0.662
σ 0.040 0.019 0.059 0.036 0.028 0.015
Min 0.571 0.621 0.444 0.555 0.583 0.632

A.5 Chebyshev-Cantelli Prototype Risk, CIFAR100

Figure 3: Assessment of Chebyshev-Cantelli Prototype Risk on right hand side of corollary
3.1.1 for all training subsets and algorithms.

A.6 Pseudocode for Algorithm 1
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Algorithm 1: Computation of Lcov,n for single example, class k

Input: vk = g(xn,k; θg) ∈ RJ , pk ∈ RJ , ν
Output: Lcov,n

v̂k ← normalize(vk)
p̂k ← normalize(pk)
p̂k ← sort(p̂k)
v̂k ← reindex(v̂k)
// rearrange v̂k by the sorted indices of p̂k

δ = p̂k ⊙ (v̂k − p̂k) // same as p̂i(v̂i − p̂i)
r ← randint(1, 10) // random integer from 1-10
δpad,L ← PadLeftZeros(δ, r) // Pad r zeros on left
δpad,R ← PadRightZeros(δ, r) // Pad r zeros on right
if ν == 0 then

Z ← |δpad,L ⊙ δpad,R|
else

Z ← ReLU(sign(ν)(δpad,L ⊙ δpad,R))
end
return Lcov,n = 1

J+r

∑J+r
j=1 Z
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