
Structural generalization in COGS: Supertagging is (almost) all you need

Alban Petit1 and Caio Corro2 and François Yvon2

1Université Paris-Saclay, CNRS, LISN, 91400, Orsay, France
2Sorbonne Université, CNRS, ISIR , F-75005 Paris, France

alban.petit@lisn.upsaclay.fr {caio.corro,francois.yvon}@isir.upmc.fr

Abstract
In many Natural Language Processing applica-
tions, neural networks have been found to fail
to generalize on out-of-distribution examples.
In particular, several recent semantic parsing
datasets have put forward important limitations
of neural networks in cases where composi-
tional generalization is required. In this work,
we extend a neural graph-based semantic pars-
ing framework in several ways to alleviate this
issue. Notably, we propose: (1) the introduc-
tion of a supertagging step with valency con-
straints, expressed as an integer linear program;
(2) a reduction of the graph prediction problem
to the maximum matching problem; (3) the de-
sign of an incremental early-stopping training
strategy to prevent overfitting. Experimentally,
our approach significantly improves results on
examples that require structural generalization
in the COGS dataset, a known challenging
benchmark for compositional generalization.
Overall, our results confirm that structural con-
straints are important for generalization in se-
mantic parsing.

1 Introduction

Semantic parsing aims to transform a natural lan-
guage utterance into a structured representation.
However, models based on neural networks have
been shown to struggle on out-of-distribution ut-
terances where compositional generalization is re-
quired, i.e., on sentences with novel combinations
of elements observed separately during training
(Lake and Baroni, 2018; Finegan-Dollak et al.,
2018; Keysers et al., 2020). Jambor and Bahdanau
(2022) showed that neural graph-based semantic
parsers are more robust to compositional general-
ization than sequence-to-sequence (seq2seq) mod-
els. Moreover, Herzig and Berant (2021), Weißen-
horn et al. (2022) and Petit and Corro (2023)
have shown that introducing valency and type con-
straints in a structured decoder improves composi-
tional generalization capabilities.

In this work, we explore a different method for
compositional generalization, based on supertag-
ging. We demonstrate that local predictions (with
global consistency constraints) are sufficient for
compositional generalization. Contrary to Herzig
and Berant (2021) and Petit and Corro (2023), our
approach can predict any semantic graph (including
ones with reentrancies), and contrary to Weißen-
horn et al. (2022) it does not require any intermedi-
ate representation of the semantic structure.

Moreover, our experiments highlight two funda-
mental features that are important to tackle com-
positional generalization in this setting. First, as
is well known in the syntactic parsing literature,
introducing a supertagging step in a parser may
lead to infeasible solutions. We therefore propose
an integer linear programming formulation of su-
pertagging that ensures the existence of at least one
feasible parse in the search space, via the so-called
companionship principle (Bonfante et al., 2009,
2014). Second, as the development dataset used to
control training is in-distribution (i.e., it does not
test for compositional generalization), there is a
strong risk of overfitting. To this end, we propose
an incremental early-stopping strategy that freezes
part of the neural network during training.

Our contributions can be summarized as follows:

• we propose to introduce a supertagging step
in a graph-based semantic parser;

• we show that, in this setting, argument identifi-
cation can be reduced to a matching problem;

• we propose a novel approach based on infer-
ence in a factor graph to compute the weakly-
supervised loss (i.e., without gold alignment);

• we propose an incremental early-stopping
strategy to prevent overfitting;

• we evaluate our approach on COGS and ob-
serve that it outperforms comparable baselines
on compositional generalization tasks.

Training example Generalization example

Lexical generalizations

Subj to obj (common) A hedgehog ate the cake The baby liked the hedgehog
Prim to subj (proper) Paula Paula sketched William
Active to passive The crocodile blessed William A muffin was blessed
PP dative to double dative Jane shipped the cake to John Jane shipped John the cake
Agent NP to unaccusative The cobra helped a dog The cobra froze

Structural generalizations

Obj to subj PP Noah ate the cake on the plate The cake on the table burned
PP recursion Ava saw the ball in the bottle Ava saw the ball in the bottle on the table on the floor
CP recursion Emma said that the cat danced Emma said that Noah knew that Lucas saw that the cat danced

Table 1: Examples of lexical generalization and structural generalization from COGS, adapted from (Kim and
Linzen, 2020, Table 1). For PP and CP recursions, the number of recursions observed at test time is greater than the
number of recursions observed during training.

Notations. A set is written as {·} and a mul-
tiset as J·K. We denote by [n] the set of integers
{1, ..., n}. We denote the sum of entries of the
Hadamard product as ⟨·, ·⟩ (i.e., the standard scalar
product if arguments are vectors). We assume the
input sentence contains n words. We use the term
“concept” to refer to both predicates and entities.

2 Semantic parsing

2.1 COGS

The principle of compositionality states that

“The meaning of an expression is a func-
tion of the meanings of its parts and of
the way they are syntactically combined.”
(Partee, 1984)

Linguistic competence requires compositional gen-
eralization, that is the ability to understand new
utterances made of known parts, e.g., understand-
ing the meaning of “Marie sees Pierre” should
entail the understanding of “Pierre sees Marie”.

The Compositional Generalization Challenge
based on Semantic Interpretation (COGS, Kim and
Linzen, 2020) dataset is designed to evaluate two
types of compositional generalizations. First, lex-
ical generalization tests a model on known gram-
matical structures where words are used in un-
seen roles. For example, during training the word
hedgehog is only used as a subject; the model
needs to generalize to cases where it appears as
an object. Second, structural generalization tests
a model on syntactic structures that were not ob-
served during training. Illustrations are in Table 1.

The error analysis presented by Weißenhorn et al.
(2022) emphasizes that neural semantic parsers

achieve good accuracy for lexical generalization
but fail for structural generalization.

Semantic graph construction. A semantic
structure in the COGS dataset is represented as
a logical form. We transform this representation
into a graph as follows:

1. For each concept instance, we add a labeled
vertex.

2. For each argument p of a concept instance
p′, we create a labeled arc from the vertex
representing p′ to the vertex representing p.

3. COGS explicitly identifies definiteness of
nouns. Therefore, for each definite noun that
triggers a concept, we create a vertex p with
label definite and we create an arc with la-
bel det from p to the vertex representing the
noun’s concept.1 Indefiniteness is marked by
the absence of such structure.

This transformation is illustrated in Figure 1.

2.2 Graph-based decoding

The standard approach (Flanigan et al., 2014; Dozat
and Manning, 2018; Jambor and Bahdanau, 2022)
to graph-based semantic parsing is a two-step
pipeline:

1. concept tagging;

2. argument identification.

1Using the determiner as the head of a relation may be
surprising for readers familiar with syntactic dependency pars-
ing datasets, but there is no consensus among linguists about
the appropriate dependency direction, see e.g., Müller (2016,
Section 1.5) for a discussion.

*cat(x1)
AND like.agent(x2, x1)
AND like.ccomp(x2, x5)
AND prefer.agent(x5, Emma)
AND prefer.xcomp(x5, x7)
AND walk.agent(x7, Emma)

The cat liked that Emma preferred to walk

definite cat like preferEmma walk

det agent

ccomp

xcompagent

agent

Figure 1: (left) Semantic analysis of the sentence “The cat liked that Emma preferred to walk” in the
COGS formalism. A * denotes definiteness of the following predicate. (right) Graph-based representation of the
semantic structure. Note that we mark definiteness using an extra vertex anchored on the determiner.

The second step is a sub-graph prediction problem.
Concept tagging. We assume that each word

can trigger at most one concept. Let T be the set
of concepts, including a special tag ∅ ∈ T that
will be used to identify semantically empty words
(i.e., words that do not trigger any concept). Let
λ ∈ Rn×T be tag weights computed by the neural
network. Without loss of generality, we assume
that λi,∅ = 0, ∀i ∈ [n]. We denote a sequence
of tags as a boolean vector x ∈ {0, 1}n×T where
xi,t = 1, t ̸= ∅, indicates that word i triggers con-
cept t. This means that ∀i ∈ [n],

∑
t∈T xi,t = 1.

Given weights λ, computing the sequence of tags
of maximum linear weight is a simple problem.

Argument identification. We denote L the set
of argument labels, e.g., agent ∈ L. The second
step assigns arguments to concepts instances. For
this, we create a labeled graph G = (V,A) where:

• V = {i ∈ [n]|xi,∅ ̸= 0} is the set of vertices
representing concept instances;

• A ⊆ V × V × L is the set of labeled arcs,
where (i, j, l) ∈ A denotes an arc from vertex
i to vertex j labeled l.

In practice, we construct a complete graph, includ-
ing parallel arcs with different labels, but excluding
self-loops. Given arc weights µ ∈ RA, argument
identification reduces to the selection of the subset
of arcs of maximum weight such at most one arc
with a given direction between any two vertices is
selected. Again, this problem is simple. We denote
a set of arcs as a boolean vector z ∈ {0, 1}A where
zi,j,l = 1 indicates that there is an arc from vertex
i to vertex j labeled l in the prediction.

Multiple concepts per words. More realistic
semantic parsing scenarios require to trigger more
than one concept per word. This only impacts the
concept tagging step: one must change the model to
allow the prediction of several concepts per word,

*

V

VP

S

NP↓

*

V

VP

S

NP↓

NP↓

Figure 2: Two supertag examples from an LTAG. (left)
Supertag associated with an intransitive verb. The sub-
stitution site NP↓ indicates the position of the subject.
(right) Supertag associated with a transitive verb. The
supplementary substitution site on the right indicates
the position of the object of the verbal phrase.

for example via multi-label prediction or using sev-
eral tagging layers (Jambor and Bahdanau, 2022).
The argument identification step is left unchanged,
i.e., we create one vertex per predicted concept in
the graph.

3 Supertagging for graph-based semantic
parsing

In the syntactic parsing literature, supertagging
refers to assigning complex descriptions of the syn-
tactic structure directly at the lexical level (Ban-
galore and Joshi, 1999). For example, while an
occurrence of the verb ‘to walk’ can be described
in a coarse manner via its part-of-speech tag, a su-
pertag additionally indicates that this verb appears
in a clause with a subject on the left and a verbal
phrase on the right, the latter also potentially re-
quiring an object on its right, see Figure 2 for an
illustration in the formalism of lexicalized Tree-
Adjoining Grammars (LTAGs, Joshi et al., 1975).

We propose to introduce an intermediary seman-
tic supertagging step in a graph-based semantic
parser. The pipeline of Section 2.2 becomes:

1. concept tagging;

2. semantic supertagging;

0. Input sentence

A cat ate the cake

1. Part-of-speech tagging

D N V D N

2. Syntactic supertagging

*

D N∗

N

*

N

NP

*

V

VP

S

NP↓

NP↓

*

D N∗

N

*

N

NP

3. Derivation tree parsing

1.1 1.1

1.1

1.2.2

0. Input sentence

A cat ate the cake

1. Concept tagging

∅ cat eat def cake

2. Semantic supertagging

*
agent

*

ag
en

t them
e

*

det

*

them
e de

t

3. Argument identification

agent theme

det

Figure 3: Comparaison of a LTAG parsing pipeline and the proposed semantic parsing pipeline. (left) A standard
LTAG parsing pipeline. We start with an input sentence, then predict one part-of-speech tag per word. This
part-of-speech can be used as feature or to filter the set of possible supertags in the next step. The supertagging
step chooses one supertag per word. Finally, in the last step we merge all supertags together. This operation
can be synthesised as a derivation tree where arc labels indicate Gorn adresses of substitution and adjunction
operations. We refer readers unfamiliar with LTAG parsing to (Kallmeyer, 2010). (right) Our semantic parsing
pipeline. We start with an input sentence, then predict at most one concept per word, where ∅ indicates no concept.
The supertagging step assigns one supertag per concept instance (i.e., excluding words tagged with ∅). Finally, the
argument identification step identifies arguments of predicates using the valency constraints from the supertags.

3. argument identification.

This new pipeline is illustrated on Figure 3. Note
that the introduction of the novel step does not
impact the concept tagging step. As such, our ap-
proach is also applicable to datasets that would
require multiple concepts prediction per word (see
Section 2.2).

3.1 Semantic supertagging
In our setting, a supertag indicates the expected
arguments of a concept instance (potentially none
for an entity) and also how the concept is used.
Contrary to syntactic grammars, our supertags do
not impose a direction. In the following, we refer
to an expected argument as a substitution site and
to an expected usage as a root.

Formally, we define a (semantic) supertag
as a multiset of tuples (l, d) ∈ L × {−,+}
where l is a label and d indicates either sub-
stitution site or root, e.g., (agent,−) is a
substitution site and (agent,+) is a root. For
example, in Figure 1, the supertag associ-
ated with ’like’ is J(agent,−), (ccomp,−)K

and the one associated with ’prefer’ is
J(agent,−), (xcomp,−), (ccomp,+)K. The set of
all supertags is denoted S.

The Companionship principle (CP).2 Let us
first consider the following simple example: as-
suming we would like to parse the sentence
“Marie ate”, yet associate the transitive supertag
J(agent,−), (theme,−)K to the verb. In this case,
the argument identification step will fail: the verb
has no object in this sentence. The CP states that
each substitution site must have a potential root in
the supertag sequence. That is, in the supertagging
step, we must make sure that the number of substi-
tution sites with a given label exactly matches the
number of roots with the same label, to ensure that
there will exist at least one feasible solution for the
next step of the pipeline. As such, supertagging
here is assigning tags in context.

Theorem 1. Given a set of supertags, a sequence of
concept instances and associated supertag weights,
the following problem is NP-complete: is there

2We borrow the name from (Bonfante et al., 2009, 2014),
although our usage is slightly different.

a sequence of supertag assignments with linear
weight ≥ m that satisfies the CP?

Proof. First, note that given a sequence of su-
pertags, it is trivial to check in linear time that
its linear weight is ≥ m and that it satisfies the CP,
therefore the problem is in NP. We now prove NP-
completeness by reducing 3-dimensional matching
to supertagging with the CP.

3-dim. matching is defined as follows: Let A =
{a(i)}ni=1, B = {b(i)}ni=1 and C = {c(i)}ni=1 be
3 sets of n elements and D ⊆ A×B×C. A subset
D′ ⊆ D is a 3-dim. matching if and only if, for any
two distinct triples (a, b, c) ∈ D′ and (a′, b′, c′) ∈
D′, the following three conditions hold: a ̸= a′,
b ̸= b′ and c ̸= c′.

The following decision problem is known to be
NP-complete (Karp, 1972): given A, B, C and D,
is there a 3-dim. matching D′ ⊆ D with |D′| ≥ n?

We reduce this problem to supertagging with
the CP as follows. We construct an in-
stance of the problem with 3n concept instances
a(1), ..., a(n), b(1), ..., b(n), c(1), ..., c(n). The
supertag set S is defined as follows, where their
associated weight is 0 except if stated otherwise:

• For each triple (a, b, c) ∈ D, we add a su-
pertag J(b,−), (c,−)K with weight 1 if and
only if it is predicted for concept a;

• For each b ∈ B, we add a supertag J(b,+)K
with weight 1 if and only if it is predicted for
concept b;

• For each c ∈ C, we add a supertag J(c,+)K
with weight 1 if and only if it is predicted for
concept c.

If there exists a sequence of supertag assignment
satisfying the CP that has a weight ≥ m = 3n,
then there exists a solution for the 3-dim. matching
problem, given by the supertags associated with
concept instances a(1), ..., a(n).

Note that an algorithm for the supertagging deci-
sion problem could rely on the maximisation vari-
ant as a subroutine. This result motivates the use
of a heuristic algorithm. We rely on the continu-
ous relaxation of an integer linear program that we
embed in a branch-and-bound procedure.We first
explain how we construct the set of supertags as it
impacts the whole program.

Supertag extraction. To improve generaliza-
tion capabilities, we define the set of supertags as

containing (1) the set of all observed supertags
in the training set, augmented with (2) the cross-
product of all root combinations and substitution
site combinations. For example, if the training
data contains supertags J(ccomp,+), (agent,−)K
and J(agent,−), (theme,−)K, we also in-
clude J(ccomp,+), (agent,−), (theme,−)K and
J(agent,−)K in the set of supertags.

Formally, let S+ (resp. S−) be the set of root
combinations (resp. substitution site combinations)
observed in the data. The set of supertags is:

S =

{
s+ ∪ s−

∣∣∣∣ s+ ∈ S+ ∧ s− ∈ S−

∧ s+ ∪ s− ̸= JK

}
.

Note that the empty multiset can not be a supertag.
Supertag prediction. Let y− ∈ {0, 1}n×S−

and y+ ∈ {0, 1}n×S+
be indicator variables of the

substitution sites and roots, respectively, associated
with each word, e.g. y−i,s = 1 indicates that concept
instance at position i ∈ [n] has substitution sites
s ∈ S−. We now describe the constraints that
y− and y+ must satisfy. First, each position in the
sentence should have exactly one set of substitution
sites and one set of roots if and only if they have
an associated concept:∑

s∈S−

y−i,s = 1− xi,∅ ∀i ∈ [n] (1)

∑
s∈S+

y+i,s = 1− xi,∅ ∀i ∈ [n] (2)

Next, we forbid the empty supertag:

y−i,JK + y+i,JK ≤ 1 ∀i ∈ [n] (3)

Finally, we need to enforce the companionship prin-
ciple. We count in v−s,l the number of substitution
sites with label l ∈ L in s ∈ S−, and similarly in
v+s,l for roots. We can then enforce the number of
roots with a given label to be equal to the number
of substitution sites with the same label as follows:∑

i∈[n],
s∈S−

y−i,sv
−
s,l =

∑
i∈[n],
s∈S+

y+i,jv
+
s,l ∀l ∈ L . (4)

All in all, supertagging with the companionship
principle reduces to the following integer linear
program:

max
y−,y+

⟨y−,ϕ−⟩+ ⟨y+,ϕ+⟩,

s.t. (1–4),

y− ∈ {0, 1}n×S−
,y+ ∈ {0, 1}n×S+

.

In practice, we use the CPLEX solver.3

Timing. We initially implemented this ILP us-
ing the CPLEX Python API. The resulting imple-
mentation could predict supertags for only ≈ 10
sentences per second. We reimplemented the ILP
using the CPLEX C++ API (via Cython) with a few
extra optimizations, leading to an implementation
that could solve ≈ 1000 instances per second.

3.2 Argument identification
The last step of the pipeline is argument identifica-
tion. Note that in many cases, there is no ambiguity,
see the example in Figure 3: as there is at most one
root and substitution site per label, we can infer
that the theme of concept instance eat is cake, etc.
However, in the general case, there may be several
roots and substitution sites with the same label. In
the example of Figure 1, we would have 3 agent
roots after the supertagging step.

For ambiguous labels after the supertagging step,
we can rely on a bipartite matching (or assignment)
algorithm. Let l ∈ L be an ambiguous label. We
construct a bipartite undirected graph as follows:

• The first node set C contains one node per
substitution site with label l;

• The second node set C ′ contains one node per
root with label l;

• we add an edge for each pair (c, c′) ∈ C ×C ′

with weight µi,j,l, where i ∈ [n] and j ∈ [n]
are sentence positions of the substitution site
represented by c and the root represented by
c′, respectively.

We then use the Jonker-Volgenant algorithm
(Jonker and Volgenant, 1988; Crouse, 2016) to com-
pute the matching of maximum linear weight with
complexity cubic w.r.t. the number of nodes. Note
that thanks to the companionship principle, there is
always at least one feasible solution to this problem,
i.e., our approach will never lead to a “dead-end”
and will always predict a (potentially wrong) se-
mantic parse for any given input.

4 Training objective

Supervised loss. Let (x̂, ŷ−, ŷ+, ẑ) be a gold an-
notation from the training dataset. We use separa-
ble negative log-likelihood losses (NLL) for each
step as they are fast to compute and work well in

3https://www.ibm.com/products/
ilog-cplex-optimization-studio

practice (Zhang et al., 2017; Corro, 2023). The
concept loss is a sum of one NLL loss per word:

ℓconcept(λ; x̂) =− ⟨λ, x̂⟩+
∑
i∈[n]

log
∑
t∈T

expλi,t .

For supertagging, we use the following losses:

ℓsub.(ϕ
−; ŷ−) =− ⟨ϕ−, ŷ−⟩

+
∑
i∈[n]

log
∑
s∈S−

expϕ−
i,s ,

ℓroot(ϕ
+; ŷ+) =− ⟨ϕ+, ŷ+⟩

+
∑
i∈[n]

log
∑
s∈S+

expϕ+
i,s .

Finally, for argument identification we have one
loss per couple of positions in the sentence:

ℓarg.(µ; z) =− ⟨µ, z⟩

+
∑

(i,j)∈[n]×[n]

log
∑
l∈L

expµi,j,l .

Note that for the concept loss, we have a special
empty tag with null score for the case where there
is no concept associated with a word in the gold
output (and similarly for argument identification).

Weakly-supervised loss. In practice, it is often
the case that we do not observe the alignment be-
tween concept instances and words in the training
dataset, which must therefore be learned jointly
with the parameters. To this end, we follow an
“hard” EM-like procedure (Neal and Hinton, 1998):

• E step: compute the best possible alignment
between concept instances and words;

• M step: apply one gradient descent step using
the “gold” tuple (x̂, ŷ−, ŷ+, ẑ) induced by
the alignment from the E step.

Note that the alignment procedure in the E step is
NP-hard (Petit and Corro, 2023, Theorem 2), as the
scoring function is not linear. For example, assume
two concept instances p and p′ such that p′ is an
argument of p. If p and p′ are aligned with i and j,
respectively, the alignment score includes the token
tagging weights induced by this alignment plus the
weight of the labeled dependency from i to j.

We propose to reduce the E step to maximum a
posteriori (MAP) inference in a factor graph, see
Figure 4. We define one random variable (RV) tak-
ing values in [n] per concept instance. The assign-
ment of these RVs indicate the alignment between

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

A1 A2 A3 A4u1

CAT

u2

EAT

u3

THE

u4

CAKE

b12

AGENT

b24

THEME

b34

DET

ATMOSTONE

Ai ui

1 λ1,t

2 λ2,t

3 λ3,t

4 λ4,t

5 λ5,t

Ai \ Aj 1 2 3 4 5

1 −∞ µ1,2,l µ1,3,l µ1,4,l µ1,5,l

2 µ2,1,l −∞ µ2,3,l µ2,4,l µ2,5,l

3 µ3,1,l µ3,2,l −∞ µ3,4,l µ3,5,l

4 µ4,1,l µ4,2,l µ4,3,l −∞ µ4,5,l

5 µ5,1,l µ5,2,l µ5,3,l µ,,l −∞

Figure 4: (left) The factor graph used to compute the best alignment of the semantic graph in E steps for the sentence
‘A cat ate the cake’. Each variable corresponds to a concept instance in the semantic graph and has an associated
unary factor. For each argument of a concept instance, we add a binary factor between between the concept instance
and its argument’s instance. (center) Weights of an unary factor given the value of its corresponding variable. We
denote t the concept corresponding to that factor (displayed above unary factors). (right) Weights of a binary factor
bij , where the concept instance represented by Aj is an argument of the concept instance represented by Ai in the
semantic graph. We denote l the label of the argument (displayed above binary factors).

concept instances and words. Unary factors corre-
spond to tagging weights, e.g. aligning a concept
t ∈ T with word i ∈ [n] induces weight λi,t. Bi-
nary factors correspond to argument identification:
for each arc the semantic graph, we add a binary
factor between the two concept instances RVs that
will induce the dependency weight given the RVs
assignment. Finally, there is a global factor acting
as an indicator function, that forbids RVs assign-
ments where different concept instances are aligned
with the same word. We use AD3 (Martins et al.,
2011) for MAP inference in this factor graph.

5 Related work

Compositional generalization. Compositional
generalization has been a recent topic of interest
in semantic parsing. This is because failure to
generalize is an important source of error, espe-
cially in seq2seq models (Lake and Baroni, 2018;
Finegan-Dollak et al., 2018; Herzig and Berant,
2021; Keysers et al., 2020). Several directions
have been explored in response. Zheng and La-
pata (2021) rely on latent concept tagging in the
encoder of a seq2seq model, while Lindemann et al.
(2023) introduce latent fertility and re-ordering lay-
ers in their model. Another research direction uses
data augmentation methods to improve generaliza-
tion (Jia and Liang, 2016; Andreas, 2020; Akyürek
et al., 2021; Qiu et al., 2022; Yang et al., 2022).

Span-based methods have also been shown to im-
prove compositional generalization (Pasupat et al.,
2019; Herzig and Berant, 2021; Liu et al., 2021).
Particularly, Liu et al. (2021) explicitly represent
input sentences as trees and use a Tree-LSTM
(Tai et al., 2015) in their encoder. While this

parser exhibits strong performance, this approach
requires work from domain experts to define the
set of operations needed to construct trees for each
dataset. Other line of work that seek to tackle com-
positional generalization issues include using pre-
trained models (Herzig et al., 2021; Furrer et al.,
2021), specialized architectures (Korrel et al., 2019;
Russin et al., 2020; Gordon et al., 2020; Csordás
et al., 2021) and regularization (Yin et al., 2023).

Graph-based semantic parsing. Graph-based
methods have been popularized by syntactic depen-
dency parsing (McDonald et al., 2005). To reduce
computational complexity, Dozat and Manning
(2018) proposed a neural graph-based parser that
handles each dependency as an independent classi-
fication problem. Similar approaches were applied
in semantic parsing, first for AMR parsing (Lyu and
Titov, 2018; Groschwitz et al., 2018). Graph-based
approaches have only recently been evaluated for
compositional generalization. The approach pro-
posed by Petit and Corro (2023) showed significant
improvements compared to existing work on com-
positional splits of the GeoQuery dataset. However,
their parser can only generate trees. Weißenhorn
et al. (2022) and Jambor and Bahdanau (2022)
introduced approaches that can handle arbitrary
graphs, a requirement to successfully parse COGS.

6 Experiments

We use a neural network based on a BiLSTM
(Hochreiter and Schmidhuber, 1997) and a biaffine
layer for arc weights (Dozat and Manning, 2017).
More detail are given in Appendix A. As usual
in the compositional generalization literature, we

Structural gen. Lexical gen. Overall

Obj to Subj PP PP recursion CP recursion

Seq2seq models

Kim and Linzen (2020) 0 0 0 42 35
Conklin et al. (2021)† - - - - 67
Akyürek et al. (2021) 0 1 0 96 83
Zheng and Lapata (2021) 0 39 12 99 89

Structured models

LEAR (Liu et al., 2021) - - - - 97.7
w/o Tree-LSTM - - - - 80.7
reproduction by Weißenhorn et al. (2022) 93 99 100 99 99

Jambor and Bahdanau (2022)† - - - - 82.3
Weißenhorn et al. (2022) 59 36 100 82 79.6

Our baselines: Standard graph-based parser

Full model 11.6 0 0 97.4 84.1
w/o early stopping 12.7 0 0 97.3 84.1
w/o early stopping & w/o supertagging loss 9.8 0 0 97.5 84.1

Proposed method: graph-based parser with supertagging

Full model 75.0 100 100 99.1 98.1
w/o early stopping 51.1 100 100 98.9 96.7

Table 2: Exact match accuray on COGS. We report results for each subset of the test set (structural generalization
and lexical generalization) and the overall accuracy. For our results, we report the mean over 3 runs. Entries marked
with † use a subset of 1k sentences from the generalization set as their development set.

evaluate our approach in a fully supervised setting,
i.e., we do not use a pre-trained neural network like
BERT (Devlin et al., 2019). Code to reproduce the
experiments is available online.4

6.1 Early stopping

COGS only possesses an in-distribution develop-
ment set and the accuracy of most parsers on this
set usually reaches 100%. Previous work by Con-
klin et al. (2021) emphasized that the lack of a
development set representative of the generaliza-
tion set makes model selection difficult and hard
to reproduce. They proposed to sample a small
subset of the generalization set that is used for de-
velopment. Both their work and LaGR (Jambor
and Bahdanau, 2022) use this approach and sample
a subset of 1000 sentences from the generalization
set to use as their development set. However, we
argue that this development set leaks compositional
generalization information during training.

We propose a variant of early stopping to pre-
vent overfitting on the in-distribution data without
requiring a compositional generalization develop-
ment set. We incrementally freeze layers in the
neural network as follows: each subtask (predic-

4https://github.com/alban-petit/
semantic-supertag-parser

tion of tags, supertags, dependencies) is monitored
independently on the in-distribution development
set. As soon as one of these tasks achieves 100%
accuracy, we freeze the shared part of the neural
architecture (word embeddings and the BiLSTM).
We also freeze the layers that produce the scores of
the perfectly predicted task. For each subsequent
task that achieves perfect accuracy, the correspond-
ing layers are also frozen. This early stopping
approach prevents overfitting.

We also experimented using the hinge loss in-
stead of the NLL loss as it shares similar properties
to our early stopping strategy: once a prediction is
correct (including a margin between the gold output
and other outputs), the gradient of the loss becomes
null. We however found that this loss yields very
low experimental results (null exact match score
on the test set).

6.2 Results
All results are exact match accuracy, i.e., the ratio
of semantic structures that are correctly predicted.
We report the overall accuracy,5 the accuracy over
all lexical generalization cases as well as the indi-
vidual accuracy for each structural generalization

5As COGS contains 1,000 sentences for each generaliza-
tion, case, this number mostly reflects the accuracy for lexical
generalization, which account for 85.7% of the test set.

https://github.com/alban-petit/semantic-supertag-parser
https://github.com/alban-petit/semantic-supertag-parser

Obj to Subj PP PP rec. CP rec.

Word level accuracy

ILP 90.2 100 100
No ILP 71.6 99.9 100

Sentence level accuracy

ILP 75.0 100 100
No ILP 9.0 99.6 100

Table 3: Supertagging accuracy using our integer linear
program (ILP) and without (i.e. simply predicting the
best supertag for each word, without enforcing the com-
panionship principle).

case. We report mean accuracy over 3 runs.
External baselines. We compare our method

to several baselines: (1) the seq2seq models of
Kim and Linzen (2020), Akyürek et al. (2021) and
Zheng and Lapata (2021); (2) two graph-based
models, LAGR (Jambor and Bahdanau, 2022) and
the AM parser of Weißenhorn et al. (2022); (3)
LeAR (Liu et al., 2021), a semantic parser that re-
lies on a more complex Tree-LSTM encoder (Tai
et al., 2015). We also report the performance of
LeAR when a BiLSTM is used in the encoder in-
stead of the Tree-LSTM.

Our baselines. We also report results for our
model using the standard graph-based semantic
parsing pipeline (Section 2.2), that is without the
intermediary supertagging step. Note that, in this
case, the supertagging loss becomes an auxiliary
loss, as proposed by Candito (2022).

Result comparison. We observe that our ap-
proach outperforms every baseline except LEAR.
Importantly, our method achieves high exact match
accuracy on the structural generalization examples,
although the Obj to subj PP generalization remains
difficult (our approach only reaches an accuracy of
75.0% for this case).

We now consider the effect of our novel infer-
ence procedure compared to our standard graph-
based pipeline. It predicts PP recursion and CP
recursion generalizations perfectly, where the base-
line accuracy for these cases is 0. For Obj to subj
PP generalization, our best configuration reaches
an accuracy of 75.0%, 5 times more than the base-
lines. All in all, the proposed inference strategy
improves results in the three structural general-
izations subsets, and brings lexical generalization
cases closer to 100% accuracy.

Impact of training procedure. The early stop-
ping approach introduced above has a clear impact

A donkey in the room sold Ella a donut

donkey def. room sell Ella donut

det recip.

theme
agent

nmod.in

*

them
e

nm
od.in

*
det

*
nm

od.in de
t

*

ag
en

t them
e

recip.

*

recip.

*

them
e

Figure 5: (top) Gold semantic graph. (bottom) Su-
pertags predicted without enforcing the companionship
principle. A mistake occurs for ‘donkey’ as the theme
root is predicted, instead of agent. This is probably due
to the introduction of a PP before the verb, which con-
fuses the network: PP only occur with objects during
training. Using ILP fixes this mistake.

for Obj to subj PP, resulting in a 23.9 points in-
crease (from 51.1 to 75.0). Such improvements
are not observed for the baselines. From this, we
conclude that our neural architecture tends to over-
fit the COGS training set and that some measures
must be taken to mitigate this behaviour.

Suppertagging accuracy. We report in Table 3
the supertagging accuracy with and without en-
forcing the companionship principle. We observe
a sharp drop in accuracy for the Obj to Subj PP
generalization when the companionship principle
is not enforced. This highlights the importance
of structural constraints to improve compositional
generalization. We observe that the many error
are due to the presence of the prepositional phrase
just after the subject: this configuration causes the
supertagger to wrongly assign a theme root to the
subject, instead of agent. When the companion-
ship principle is enforced, this mistake is corrected.
An illustration is in Figure 5.

7 Conclusion

We proposed to introduce a supertagging step in
a graph-based semantic parser. We analysed com-
plexities and proposed algorithms for each step of
our novel pipeline. Experimentally, our method
significantly improves results for cases where com-
positional generalization is needed.

Limitations

One limitation of our method is that we cannot
predict supertags unseen during training (e.g., com-
binaison of roots unseen at training time). Note
however that this problem is well-known in the
syntactic parsing literature, and meta-grammars
could be used to overcome this limitation. Another
downside of our parser is the use of an ILP solver.
Although it is fast when using the COGS dataset,
this may be an issue in a more realistic setting. Fi-
nally, note that our method uses a pipeline, local
predictions in the first steps cannot benefit from ar-
gument identification scores to fix potential errors.

Acknowledgments

We thank the anonymous reviewers and meta-
reviewer for their comments and suggestions. This
work was funded by the UDOPIA doctoral program
in Artifial Intelligence from Université Paris-Saclay
(ANR-20-THIA-0013) and benefited from compu-
tations done on the Saclay-IA platform.

References

Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas.
2021. Learning to recombine and resample data for
compositional generalization. In International Con-
ference on Learning Representations.

Jacob Andreas. 2020. Good-enough compositional data
augmentation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7556–7566, Online. Association for
Computational Linguistics.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2):237–265.

Guillaume Bonfante, Bruno Guillaume, and Math-
ieu Morey. 2009. Dependency constraints for lex-
ical disambiguation. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09), pages 242–253, Paris, France. Associa-
tion for Computational Linguistics.

Guillaume Bonfante, Bruno Guillaume, Mathieu Morey,
and Guy Perrier. 2014. Supertagging with Con-
straints, chapter 12.

Marie Candito. 2022. Auxiliary tasks to boost biaffine
semantic dependency parsing. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 2422–2429, Dublin, Ireland. Association for
Computational Linguistics.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3322–3335, Online. Association for Computa-
tional Linguistics.

Caio Corro. 2023. On the inconsistency of separable
losses for structured prediction. In Proceedings of
the 17th Conference of the European Chapter of the
Association for Computational Linguistics: Main Vol-
ume. Association for Computational Linguistics.

David F Crouse. 2016. On implementing 2d rectan-
gular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.
2021. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 619–
634, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Repre-
sentations.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency pars-
ing. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 484–490, Melbourne,
Australia. Association for Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351–360, Melbourne, Australia. Association
for Computational Linguistics.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://aclanthology.org/J99-2004
https://aclanthology.org/J99-2004
https://aclanthology.org/W09-3840
https://aclanthology.org/W09-3840
https://doi.org/10.18653/v1/2022.findings-acl.190
https://doi.org/10.18653/v1/2022.findings-acl.190
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-2077
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2021. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures.

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and
Diane Bouchacourt. 2020. Permutation equivariant
models for compositional generalization in language.
In International Conference on Learning Representa-
tions.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841, Melbourne,
Australia. Association for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2021. Span-
based semantic parsing for compositional general-
ization. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 908–921, Online. Association for Computa-
tional Linguistics.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin
Guu, Panupong Pasupat, and Yuan Zhang. 2021. Un-
locking compositional generalization in pre-trained
models using intermediate representations. arXiv
preprint arXiv:2104.07478.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Dora Jambor and Dzmitry Bahdanau. 2022. LAGr:
Label aligned graphs for better systematic general-
ization in semantic parsing. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3295–3308, Dublin, Ireland. Association for Compu-
tational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Roy Jonker and Ton Volgenant. 1988. A shortest aug-
menting path algorithm for dense and sparse linear
assignment problems. In DGOR/NSOR: Papers of
the 16th Annual Meeting of DGOR in Cooperation
with NSOR/Vorträge der 16. Jahrestagung der DGOR
zusammen mit der NSOR, pages 622–622. Springer.

Aravind K Joshi, Leon S Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of computer
and system sciences, 10(1):136–163.

Laura Kallmeyer. 2010. Parsing Beyond Context-Free
Grammars. Springer Science & Business Media.

Richard M. Karp. 1972. Reducibility among Combina-
torial Problems, pages 85–103. Springer US, Boston,
MA.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Conference
on Learning Representations.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Kris Korrel, Dieuwke Hupkes, Verna Dankers, and Elia
Bruni. 2019. Transcoding compositionally: Using
attention to find more generalizable solutions. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 1–11, Florence, Italy. Association for Compu-
tational Linguistics.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873–2882. PMLR.

Matthias Lindemann, Alexander Koller, and Ivan Titov.
2023. Compositional generalisation with structured
reordering and fertility layers.

Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei
Chen, Jian-Guang Lou, Lijie Wen, Nanning Zheng,
and Dongmei Zhang. 2021. Learning algebraic re-
combination for compositional generalization. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1129–1144, On-
line. Association for Computational Linguistics.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

André F. T. Martins, Mário A. T. Figueiredo, Pedro
M. Q. Aguiar, Noah A. Smith, and Eric P. Xing.
2011. An augmented lagrangian approach to con-
strained map inference. In International Conference
on Machine Learning.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural

http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.18653/v1/2021.acl-long.74
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/2022.acl-long.233
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/W19-4801
https://doi.org/10.18653/v1/W19-4801
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
http://arxiv.org/abs/2210.03183
http://arxiv.org/abs/2210.03183
https://doi.org/10.18653/v1/2021.findings-acl.97
https://doi.org/10.18653/v1/2021.findings-acl.97
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://aclanthology.org/H05-1066
https://aclanthology.org/H05-1066

Language Processing, pages 523–530, Vancouver,
British Columbia, Canada. Association for Computa-
tional Linguistics.

Stefan Müller. 2016. Grammatical theory: From
transformational grammar to constraint-based ap-
proaches. Language Science Press.

Radford M. Neal and Geoffrey E. Hinton. 1998. A view
of the EM algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models,
pages 355–368. Springer.

Barbara Partee. 1984. Compositionality. Varieties of
formal semantics.

Panupong Pasupat, Sonal Gupta, Karishma Mandyam,
Rushin Shah, Mike Lewis, and Luke Zettlemoyer.
2019. Span-based hierarchical semantic parsing for
task-oriented dialog. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1520–1526, Hong Kong, China. As-
sociation for Computational Linguistics.

Alban Petit and Caio Corro. 2023. On graph-based
reentrancy-free semantic parsing.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Pawel
Nowak, Tal Linzen, Fei Sha, and Kristina Toutanova.
2022. Improving compositional generalization with
latent structure and data augmentation. In Proceed-
ings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4341–4362, Seattle, United States. Association for
Computational Linguistics.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua
Bengio. 2020. Compositional generalization by fac-
torizing alignment and translation. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 313–327, Online. Association for Computa-
tional Linguistics.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556–
1566, Beijing, China. Association for Computational
Linguistics.

Pia Weißenhorn, Lucia Donatelli, and Alexander Koller.
2022. Compositional generalization with a broad-
coverage semantic parser. In Proceedings of the 11th
Joint Conference on Lexical and Computational Se-
mantics, pages 44–54, Seattle, Washington. Associa-
tion for Computational Linguistics.

Jingfeng Yang, Le Zhang, and Diyi Yang. 2022. SUBS:
Subtree substitution for compositional semantic pars-
ing. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 169–174, Seattle, United States. Associa-
tion for Computational Linguistics.

Yongjing Yin, Jiali Zeng, Yafu Li, Fandong Meng, Jie
Zhou, and Yue Zhang. 2023. Consistency regular-
ization training for compositional generalization. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1294–1308, Toronto, Canada.
Association for Computational Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 665–676,
Valencia, Spain. Association for Computational Lin-
guistics.

Hao Zheng and Mirella Lapata. 2021. Compositional
generalization via semantic tagging. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 1022–1032, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/D19-1163
https://doi.org/10.18653/v1/D19-1163
http://arxiv.org/abs/2302.07679
http://arxiv.org/abs/2302.07679
https://aclanthology.org/2022.naacl-main.323
https://aclanthology.org/2022.naacl-main.323
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.18653/v1/2022.starsem-1.4
https://doi.org/10.18653/v1/2022.starsem-1.4
https://aclanthology.org/2022.naacl-main.12
https://aclanthology.org/2022.naacl-main.12
https://aclanthology.org/2022.naacl-main.12
https://doi.org/10.18653/v1/2023.acl-long.72
https://doi.org/10.18653/v1/2023.acl-long.72
https://aclanthology.org/E17-1063
https://doi.org/10.18653/v1/2021.findings-emnlp.88
https://doi.org/10.18653/v1/2021.findings-emnlp.88

A Neural architecture

The neural architecture used in our experiments to
produce the weights λ, ϕ+, ϕ− and µ is composed
of:

• An embedding layer of dimension 200 fol-
lowed by a bi-LSTM (Hochreiter and Schmid-
huber, 1997) with a hidden size of 400.

• A linear projection of dimension 300 followed
by a RELU activation and another linear pro-
jection of dimension |T | to produce λ.

• A linear projection of dimension 200 followed
by a RELU activation and another linear pro-
jection of dimension |S+| to produce ϕ+.

• A linear projection of dimension 200 followed
by a RELU activation and another linear pro-
jection of dimension |S−| to produce ϕ−.

• A linear projection of dimension 200 followed
by a RELU activation and a bi-affine layer to
produce µ.

We apply dropout with a probability of 0.3 over
the outputs of each layer except the final layer for
each weight matrix. The learning rate is 5× 10−4

and there are 30 sentences per mini-batch.

