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Abstract
In many Natural Language Processing applica-
tions, neural networks have been found to fail
to generalize on out-of-distribution examples.
In particular, several recent semantic parsing
datasets have put forward important limitations
of neural networks in cases where composi-
tional generalization is required. In this work,
we extend a neural graph-based semantic pars-
ing framework in several ways to alleviate this
issue. Notably, we propose: (1) the introduc-
tion of a supertagging step with valency con-
straints, expressed as an integer linear program;
(2) a reduction of the graph prediction problem
to the maximum matching problem; (3) the de-
sign of an incremental early-stopping training
strategy to prevent overfitting. Experimentally,
our approach significantly improves results on
examples that require structural generalization
in the COGS dataset, a known challenging
benchmark for compositional generalization.
Overall, our results confirm that structural con-
straints are important for generalization in se-
mantic parsing.

1 Introduction

Semantic parsing aims to transform a natural lan-
guage utterance into a structured representation.
However, models based on neural networks have
been shown to struggle on out-of-distribution ut-
terances where compositional generalization is re-
quired, i.e., on sentences with novel combinations
of elements observed separately during training
(Lake and Baroni, 2018; Finegan-Dollak et al.,
2018; Keysers et al., 2020). Jambor and Bahdanau
(2022) showed that neural graph-based semantic
parsers are more robust to compositional general-
ization than sequence-to-sequence (seq2seq) mod-
els. Moreover, Herzig and Berant (2021), Weißen-
horn et al. (2022) and Petit and Corro (2023)
have shown that introducing valency and type con-
straints in a structured decoder improves composi-
tional generalization capabilities.

In this work, we explore a different method for
compositional generalization, based on supertag-
ging. We demonstrate that local predictions (with
global consistency constraints) are sufficient for
compositional generalization. Contrary to Herzig
and Berant (2021) and Petit and Corro (2023), our
approach can predict any semantic graph (including
ones with reentrancies), and contrary to Weißen-
horn et al. (2022) it does not require any intermedi-
ate representation of the semantic structure.

Moreover, our experiments highlight two funda-
mental features that are important to tackle com-
positional generalization in this setting. First, as
is well known in the syntactic parsing literature,
introducing a supertagging step in a parser may
lead to infeasible solutions. We therefore propose
an integer linear programming formulation of su-
pertagging that ensures the existence of at least one
feasible parse in the search space, via the so-called
companionship principle (Bonfante et al., 2009,
2014). Second, as the development dataset used to
control training is in-distribution (i.e., it does not
test for compositional generalization), there is a
strong risk of overfitting. To this end, we propose
an incremental early-stopping strategy that freezes
part of the neural network during training.

Our contributions can be summarized as follows:

• we propose to introduce a supertagging step
in a graph-based semantic parser;

• we show that, in this setting, argument identifi-
cation can be reduced to a matching problem;

• we propose a novel approach based on infer-
ence in a factor graph to compute the weakly-
supervised loss (i.e., without gold alignment);

• we propose an incremental early-stopping
strategy to prevent overfitting;

• we evaluate our approach on COGS and ob-
serve that it outperforms comparable baselines
on compositional generalization tasks.



Training example Generalization example

Lexical generalizations

Subj to obj (common) A hedgehog ate the cake The baby liked the hedgehog
Prim to subj (proper) Paula Paula sketched William
Active to passive The crocodile blessed William A muffin was blessed
PP dative to double dative Jane shipped the cake to John Jane shipped John the cake
Agent NP to unaccusative The cobra helped a dog The cobra froze

Structural generalizations

Obj to subj PP Noah ate the cake on the plate The cake on the table burned
PP recursion Ava saw the ball in the bottle Ava saw the ball in the bottle on the table on the floor
CP recursion Emma said that the cat danced Emma said that Noah knew that Lucas saw that the cat danced

Table 1: Examples of lexical generalization and structural generalization from COGS, adapted from (Kim and
Linzen, 2020, Table 1). For PP and CP recursions, the number of recursions observed at test time is greater than the
number of recursions observed during training.

Notations. A set is written as {·} and a mul-
tiset as J·K. We denote by [n] the set of integers
{1, ..., n}. We denote the sum of entries of the
Hadamard product as ⟨·, ·⟩ (i.e., the standard scalar
product if arguments are vectors). We assume the
input sentence contains n words. We use the term
“concept” to refer to both predicates and entities.

2 Semantic parsing

2.1 COGS

The principle of compositionality states that

“The meaning of an expression is a func-
tion of the meanings of its parts and of
the way they are syntactically combined.”
(Partee, 1984)

Linguistic competence requires compositional gen-
eralization, that is the ability to understand new
utterances made of known parts, e.g., understand-
ing the meaning of “Marie sees Pierre” should
entail the understanding of “Pierre sees Marie”.

The Compositional Generalization Challenge
based on Semantic Interpretation (COGS, Kim and
Linzen, 2020) dataset is designed to evaluate two
types of compositional generalizations. First, lex-
ical generalization tests a model on known gram-
matical structures where words are used in un-
seen roles. For example, during training the word
hedgehog is only used as a subject; the model
needs to generalize to cases where it appears as
an object. Second, structural generalization tests
a model on syntactic structures that were not ob-
served during training. Illustrations are in Table 1.

The error analysis presented by Weißenhorn et al.
(2022) emphasizes that neural semantic parsers

achieve good accuracy for lexical generalization
but fail for structural generalization.

Semantic graph construction. A semantic
structure in the COGS dataset is represented as
a logical form. We transform this representation
into a graph as follows:

1. For each concept instance, we add a labeled
vertex.

2. For each argument p of a concept instance
p′, we create a labeled arc from the vertex
representing p′ to the vertex representing p.

3. COGS explicitly identifies definiteness of
nouns. Therefore, for each definite noun that
triggers a concept, we create a vertex p with
label definite and we create an arc with la-
bel det from p to the vertex representing the
noun’s concept.1 Indefiniteness is marked by
the absence of such structure.

This transformation is illustrated in Figure 1.

2.2 Graph-based decoding

The standard approach (Flanigan et al., 2014; Dozat
and Manning, 2018; Jambor and Bahdanau, 2022)
to graph-based semantic parsing is a two-step
pipeline:

1. concept tagging;

2. argument identification.

1Using the determiner as the head of a relation may be
surprising for readers familiar with syntactic dependency pars-
ing datasets, but there is no consensus among linguists about
the appropriate dependency direction, see e.g., Müller (2016,
Section 1.5) for a discussion.



*cat(x1)
AND like.agent(x2, x1)
AND like.ccomp(x2, x5)
AND prefer.agent(x5, Emma)
AND prefer.xcomp(x5, x7)
AND walk.agent(x7, Emma)

The cat liked that Emma preferred to walk

definite cat like preferEmma walk

det agent

ccomp

xcompagent

agent

Figure 1: (left) Semantic analysis of the sentence “The cat liked that Emma preferred to walk” in the
COGS formalism. A * denotes definiteness of the following predicate. (right) Graph-based representation of the
semantic structure. Note that we mark definiteness using an extra vertex anchored on the determiner.

The second step is a sub-graph prediction problem.
Concept tagging. We assume that each word

can trigger at most one concept. Let T be the set
of concepts, including a special tag ∅ ∈ T that
will be used to identify semantically empty words
(i.e., words that do not trigger any concept). Let
λ ∈ Rn×T be tag weights computed by the neural
network. Without loss of generality, we assume
that λi,∅ = 0, ∀i ∈ [n]. We denote a sequence
of tags as a boolean vector x ∈ {0, 1}n×T where
xi,t = 1, t ̸= ∅, indicates that word i triggers con-
cept t. This means that ∀i ∈ [n],

∑
t∈T xi,t = 1.

Given weights λ, computing the sequence of tags
of maximum linear weight is a simple problem.

Argument identification. We denote L the set
of argument labels, e.g., agent ∈ L. The second
step assigns arguments to concepts instances. For
this, we create a labeled graph G = (V,A) where:

• V = {i ∈ [n]|xi,∅ ̸= 0} is the set of vertices
representing concept instances;

• A ⊆ V × V × L is the set of labeled arcs,
where (i, j, l) ∈ A denotes an arc from vertex
i to vertex j labeled l.

In practice, we construct a complete graph, includ-
ing parallel arcs with different labels, but excluding
self-loops. Given arc weights µ ∈ RA, argument
identification reduces to the selection of the subset
of arcs of maximum weight such at most one arc
with a given direction between any two vertices is
selected. Again, this problem is simple. We denote
a set of arcs as a boolean vector z ∈ {0, 1}A where
zi,j,l = 1 indicates that there is an arc from vertex
i to vertex j labeled l in the prediction.

Multiple concepts per words. More realistic
semantic parsing scenarios require to trigger more
than one concept per word. This only impacts the
concept tagging step: one must change the model to
allow the prediction of several concepts per word,
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Figure 2: Two supertag examples from an LTAG. (left)
Supertag associated with an intransitive verb. The sub-
stitution site NP↓ indicates the position of the subject.
(right) Supertag associated with a transitive verb. The
supplementary substitution site on the right indicates
the position of the object of the verbal phrase.

for example via multi-label prediction or using sev-
eral tagging layers (Jambor and Bahdanau, 2022).
The argument identification step is left unchanged,
i.e., we create one vertex per predicted concept in
the graph.

3 Supertagging for graph-based semantic
parsing

In the syntactic parsing literature, supertagging
refers to assigning complex descriptions of the syn-
tactic structure directly at the lexical level (Ban-
galore and Joshi, 1999). For example, while an
occurrence of the verb ‘to walk’ can be described
in a coarse manner via its part-of-speech tag, a su-
pertag additionally indicates that this verb appears
in a clause with a subject on the left and a verbal
phrase on the right, the latter also potentially re-
quiring an object on its right, see Figure 2 for an
illustration in the formalism of lexicalized Tree-
Adjoining Grammars (LTAGs, Joshi et al., 1975).

We propose to introduce an intermediary seman-
tic supertagging step in a graph-based semantic
parser. The pipeline of Section 2.2 becomes:

1. concept tagging;

2. semantic supertagging;



0. Input sentence

A cat ate the cake

1. Part-of-speech tagging
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3. Derivation tree parsing
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0. Input sentence

A cat ate the cake

1. Concept tagging

∅ cat eat def cake

2. Semantic supertagging
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Figure 3: Comparaison of a LTAG parsing pipeline and the proposed semantic parsing pipeline. (left) A standard
LTAG parsing pipeline. We start with an input sentence, then predict one part-of-speech tag per word. This
part-of-speech can be used as feature or to filter the set of possible supertags in the next step. The supertagging
step chooses one supertag per word. Finally, in the last step we merge all supertags together. This operation
can be synthesised as a derivation tree where arc labels indicate Gorn adresses of substitution and adjunction
operations. We refer readers unfamiliar with LTAG parsing to (Kallmeyer, 2010). (right) Our semantic parsing
pipeline. We start with an input sentence, then predict at most one concept per word, where ∅ indicates no concept.
The supertagging step assigns one supertag per concept instance (i.e., excluding words tagged with ∅). Finally, the
argument identification step identifies arguments of predicates using the valency constraints from the supertags.

3. argument identification.

This new pipeline is illustrated on Figure 3. Note
that the introduction of the novel step does not
impact the concept tagging step. As such, our ap-
proach is also applicable to datasets that would
require multiple concepts prediction per word (see
Section 2.2).

3.1 Semantic supertagging
In our setting, a supertag indicates the expected
arguments of a concept instance (potentially none
for an entity) and also how the concept is used.
Contrary to syntactic grammars, our supertags do
not impose a direction. In the following, we refer
to an expected argument as a substitution site and
to an expected usage as a root.

Formally, we define a (semantic) supertag
as a multiset of tuples (l, d) ∈ L × {−,+}
where l is a label and d indicates either sub-
stitution site or root, e.g., (agent,−) is a
substitution site and (agent,+) is a root. For
example, in Figure 1, the supertag associ-
ated with ’like’ is J(agent,−), (ccomp,−)K

and the one associated with ’prefer’ is
J(agent,−), (xcomp,−), (ccomp,+)K. The set of
all supertags is denoted S.

The Companionship principle (CP).2 Let us
first consider the following simple example: as-
suming we would like to parse the sentence
“Marie ate”, yet associate the transitive supertag
J(agent,−), (theme,−)K to the verb. In this case,
the argument identification step will fail: the verb
has no object in this sentence. The CP states that
each substitution site must have a potential root in
the supertag sequence. That is, in the supertagging
step, we must make sure that the number of substi-
tution sites with a given label exactly matches the
number of roots with the same label, to ensure that
there will exist at least one feasible solution for the
next step of the pipeline. As such, supertagging
here is assigning tags in context.

Theorem 1. Given a set of supertags, a sequence of
concept instances and associated supertag weights,
the following problem is NP-complete: is there

2We borrow the name from (Bonfante et al., 2009, 2014),
although our usage is slightly different.



a sequence of supertag assignments with linear
weight ≥ m that satisfies the CP?

Proof. First, note that given a sequence of su-
pertags, it is trivial to check in linear time that
its linear weight is ≥ m and that it satisfies the CP,
therefore the problem is in NP. We now prove NP-
completeness by reducing 3-dimensional matching
to supertagging with the CP.

3-dim. matching is defined as follows: Let A =
{a(i)}ni=1, B = {b(i)}ni=1 and C = {c(i)}ni=1 be
3 sets of n elements and D ⊆ A×B×C. A subset
D′ ⊆ D is a 3-dim. matching if and only if, for any
two distinct triples (a, b, c) ∈ D′ and (a′, b′, c′) ∈
D′, the following three conditions hold: a ̸= a′,
b ̸= b′ and c ̸= c′.

The following decision problem is known to be
NP-complete (Karp, 1972): given A, B, C and D,
is there a 3-dim. matching D′ ⊆ D with |D′| ≥ n?

We reduce this problem to supertagging with
the CP as follows. We construct an in-
stance of the problem with 3n concept instances
a(1), ..., a(n), b(1), ..., b(n), c(1), ..., c(n). The
supertag set S is defined as follows, where their
associated weight is 0 except if stated otherwise:

• For each triple (a, b, c) ∈ D, we add a su-
pertag J(b,−), (c,−)K with weight 1 if and
only if it is predicted for concept a;

• For each b ∈ B, we add a supertag J(b,+)K
with weight 1 if and only if it is predicted for
concept b;

• For each c ∈ C, we add a supertag J(c,+)K
with weight 1 if and only if it is predicted for
concept c.

If there exists a sequence of supertag assignment
satisfying the CP that has a weight ≥ m = 3n,
then there exists a solution for the 3-dim. matching
problem, given by the supertags associated with
concept instances a(1), ..., a(n).

Note that an algorithm for the supertagging deci-
sion problem could rely on the maximisation vari-
ant as a subroutine. This result motivates the use
of a heuristic algorithm. We rely on the continu-
ous relaxation of an integer linear program that we
embed in a branch-and-bound procedure.We first
explain how we construct the set of supertags as it
impacts the whole program.

Supertag extraction. To improve generaliza-
tion capabilities, we define the set of supertags as

containing (1) the set of all observed supertags
in the training set, augmented with (2) the cross-
product of all root combinations and substitution
site combinations. For example, if the training
data contains supertags J(ccomp,+), (agent,−)K
and J(agent,−), (theme,−)K, we also in-
clude J(ccomp,+), (agent,−), (theme,−)K and
J(agent,−)K in the set of supertags.

Formally, let S+ (resp. S−) be the set of root
combinations (resp. substitution site combinations)
observed in the data. The set of supertags is:

S =

{
s+ ∪ s−

∣∣∣∣ s+ ∈ S+ ∧ s− ∈ S−

∧ s+ ∪ s− ̸= JK

}
.

Note that the empty multiset can not be a supertag.
Supertag prediction. Let y− ∈ {0, 1}n×S−

and y+ ∈ {0, 1}n×S+
be indicator variables of the

substitution sites and roots, respectively, associated
with each word, e.g. y−i,s = 1 indicates that concept
instance at position i ∈ [n] has substitution sites
s ∈ S−. We now describe the constraints that
y− and y+ must satisfy. First, each position in the
sentence should have exactly one set of substitution
sites and one set of roots if and only if they have
an associated concept:∑

s∈S−

y−i,s = 1− xi,∅ ∀i ∈ [n] (1)

∑
s∈S+

y+i,s = 1− xi,∅ ∀i ∈ [n] (2)

Next, we forbid the empty supertag:

y−i,JK + y+i,JK ≤ 1 ∀i ∈ [n] (3)

Finally, we need to enforce the companionship prin-
ciple. We count in v−s,l the number of substitution
sites with label l ∈ L in s ∈ S−, and similarly in
v+s,l for roots. We can then enforce the number of
roots with a given label to be equal to the number
of substitution sites with the same label as follows:∑

i∈[n],
s∈S−

y−i,sv
−
s,l =

∑
i∈[n],
s∈S+

y+i,jv
+
s,l ∀l ∈ L . (4)

All in all, supertagging with the companionship
principle reduces to the following integer linear
program:

max
y−,y+

⟨y−,ϕ−⟩+ ⟨y+,ϕ+⟩,

s.t. (1–4),

y− ∈ {0, 1}n×S−
,y+ ∈ {0, 1}n×S+

.



In practice, we use the CPLEX solver.3

Timing. We initially implemented this ILP us-
ing the CPLEX Python API. The resulting imple-
mentation could predict supertags for only ≈ 10
sentences per second. We reimplemented the ILP
using the CPLEX C++ API (via Cython) with a few
extra optimizations, leading to an implementation
that could solve ≈ 1000 instances per second.

3.2 Argument identification
The last step of the pipeline is argument identifica-
tion. Note that in many cases, there is no ambiguity,
see the example in Figure 3: as there is at most one
root and substitution site per label, we can infer
that the theme of concept instance eat is cake, etc.
However, in the general case, there may be several
roots and substitution sites with the same label. In
the example of Figure 1, we would have 3 agent
roots after the supertagging step.

For ambiguous labels after the supertagging step,
we can rely on a bipartite matching (or assignment)
algorithm. Let l ∈ L be an ambiguous label. We
construct a bipartite undirected graph as follows:

• The first node set C contains one node per
substitution site with label l;

• The second node set C ′ contains one node per
root with label l;

• we add an edge for each pair (c, c′) ∈ C ×C ′

with weight µi,j,l, where i ∈ [n] and j ∈ [n]
are sentence positions of the substitution site
represented by c and the root represented by
c′, respectively.

We then use the Jonker-Volgenant algorithm
(Jonker and Volgenant, 1988; Crouse, 2016) to com-
pute the matching of maximum linear weight with
complexity cubic w.r.t. the number of nodes. Note
that thanks to the companionship principle, there is
always at least one feasible solution to this problem,
i.e., our approach will never lead to a “dead-end”
and will always predict a (potentially wrong) se-
mantic parse for any given input.

4 Training objective

Supervised loss. Let (x̂, ŷ−, ŷ+, ẑ) be a gold an-
notation from the training dataset. We use separa-
ble negative log-likelihood losses (NLL) for each
step as they are fast to compute and work well in

3https://www.ibm.com/products/
ilog-cplex-optimization-studio

practice (Zhang et al., 2017; Corro, 2023). The
concept loss is a sum of one NLL loss per word:

ℓconcept(λ; x̂) =− ⟨λ, x̂⟩+
∑
i∈[n]

log
∑
t∈T

expλi,t .

For supertagging, we use the following losses:

ℓsub.(ϕ
−; ŷ−) =− ⟨ϕ−, ŷ−⟩

+
∑
i∈[n]

log
∑
s∈S−

expϕ−
i,s ,

ℓroot(ϕ
+; ŷ+) =− ⟨ϕ+, ŷ+⟩

+
∑
i∈[n]

log
∑
s∈S+

expϕ+
i,s .

Finally, for argument identification we have one
loss per couple of positions in the sentence:

ℓarg.(µ; z) =− ⟨µ, z⟩

+
∑

(i,j)∈[n]×[n]

log
∑
l∈L

expµi,j,l .

Note that for the concept loss, we have a special
empty tag with null score for the case where there
is no concept associated with a word in the gold
output (and similarly for argument identification).

Weakly-supervised loss. In practice, it is often
the case that we do not observe the alignment be-
tween concept instances and words in the training
dataset, which must therefore be learned jointly
with the parameters. To this end, we follow an
“hard” EM-like procedure (Neal and Hinton, 1998):

• E step: compute the best possible alignment
between concept instances and words;

• M step: apply one gradient descent step using
the “gold” tuple (x̂, ŷ−, ŷ+, ẑ) induced by
the alignment from the E step.

Note that the alignment procedure in the E step is
NP-hard (Petit and Corro, 2023, Theorem 2), as the
scoring function is not linear. For example, assume
two concept instances p and p′ such that p′ is an
argument of p. If p and p′ are aligned with i and j,
respectively, the alignment score includes the token
tagging weights induced by this alignment plus the
weight of the labeled dependency from i to j.

We propose to reduce the E step to maximum a
posteriori (MAP) inference in a factor graph, see
Figure 4. We define one random variable (RV) tak-
ing values in [n] per concept instance. The assign-
ment of these RVs indicate the alignment between

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
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Figure 4: (left) The factor graph used to compute the best alignment of the semantic graph in E steps for the sentence
‘A cat ate the cake’. Each variable corresponds to a concept instance in the semantic graph and has an associated
unary factor. For each argument of a concept instance, we add a binary factor between between the concept instance
and its argument’s instance. (center) Weights of an unary factor given the value of its corresponding variable. We
denote t the concept corresponding to that factor (displayed above unary factors). (right) Weights of a binary factor
bij , where the concept instance represented by Aj is an argument of the concept instance represented by Ai in the
semantic graph. We denote l the label of the argument (displayed above binary factors).

concept instances and words. Unary factors corre-
spond to tagging weights, e.g. aligning a concept
t ∈ T with word i ∈ [n] induces weight λi,t. Bi-
nary factors correspond to argument identification:
for each arc the semantic graph, we add a binary
factor between the two concept instances RVs that
will induce the dependency weight given the RVs
assignment. Finally, there is a global factor acting
as an indicator function, that forbids RVs assign-
ments where different concept instances are aligned
with the same word. We use AD3 (Martins et al.,
2011) for MAP inference in this factor graph.

5 Related work

Compositional generalization. Compositional
generalization has been a recent topic of interest
in semantic parsing. This is because failure to
generalize is an important source of error, espe-
cially in seq2seq models (Lake and Baroni, 2018;
Finegan-Dollak et al., 2018; Herzig and Berant,
2021; Keysers et al., 2020). Several directions
have been explored in response. Zheng and La-
pata (2021) rely on latent concept tagging in the
encoder of a seq2seq model, while Lindemann et al.
(2023) introduce latent fertility and re-ordering lay-
ers in their model. Another research direction uses
data augmentation methods to improve generaliza-
tion (Jia and Liang, 2016; Andreas, 2020; Akyürek
et al., 2021; Qiu et al., 2022; Yang et al., 2022).

Span-based methods have also been shown to im-
prove compositional generalization (Pasupat et al.,
2019; Herzig and Berant, 2021; Liu et al., 2021).
Particularly, Liu et al. (2021) explicitly represent
input sentences as trees and use a Tree-LSTM
(Tai et al., 2015) in their encoder. While this

parser exhibits strong performance, this approach
requires work from domain experts to define the
set of operations needed to construct trees for each
dataset. Other line of work that seek to tackle com-
positional generalization issues include using pre-
trained models (Herzig et al., 2021; Furrer et al.,
2021), specialized architectures (Korrel et al., 2019;
Russin et al., 2020; Gordon et al., 2020; Csordás
et al., 2021) and regularization (Yin et al., 2023).

Graph-based semantic parsing. Graph-based
methods have been popularized by syntactic depen-
dency parsing (McDonald et al., 2005). To reduce
computational complexity, Dozat and Manning
(2018) proposed a neural graph-based parser that
handles each dependency as an independent classi-
fication problem. Similar approaches were applied
in semantic parsing, first for AMR parsing (Lyu and
Titov, 2018; Groschwitz et al., 2018). Graph-based
approaches have only recently been evaluated for
compositional generalization. The approach pro-
posed by Petit and Corro (2023) showed significant
improvements compared to existing work on com-
positional splits of the GeoQuery dataset. However,
their parser can only generate trees. Weißenhorn
et al. (2022) and Jambor and Bahdanau (2022)
introduced approaches that can handle arbitrary
graphs, a requirement to successfully parse COGS.

6 Experiments

We use a neural network based on a BiLSTM
(Hochreiter and Schmidhuber, 1997) and a biaffine
layer for arc weights (Dozat and Manning, 2017).
More detail are given in Appendix A. As usual
in the compositional generalization literature, we



Structural gen. Lexical gen. Overall

Obj to Subj PP PP recursion CP recursion

Seq2seq models

Kim and Linzen (2020) 0 0 0 42 35
Conklin et al. (2021)† - - - - 67
Akyürek et al. (2021) 0 1 0 96 83
Zheng and Lapata (2021) 0 39 12 99 89

Structured models

LEAR (Liu et al., 2021) - - - - 97.7
w/o Tree-LSTM - - - - 80.7
reproduction by Weißenhorn et al. (2022) 93 99 100 99 99

Jambor and Bahdanau (2022)† - - - - 82.3
Weißenhorn et al. (2022) 59 36 100 82 79.6

Our baselines: Standard graph-based parser

Full model 11.6 0 0 97.4 84.1
w/o early stopping 12.7 0 0 97.3 84.1
w/o early stopping & w/o supertagging loss 9.8 0 0 97.5 84.1

Proposed method: graph-based parser with supertagging

Full model 75.0 100 100 99.1 98.1
w/o early stopping 51.1 100 100 98.9 96.7

Table 2: Exact match accuray on COGS. We report results for each subset of the test set (structural generalization
and lexical generalization) and the overall accuracy. For our results, we report the mean over 3 runs. Entries marked
with † use a subset of 1k sentences from the generalization set as their development set.

evaluate our approach in a fully supervised setting,
i.e., we do not use a pre-trained neural network like
BERT (Devlin et al., 2019). Code to reproduce the
experiments is available online.4

6.1 Early stopping

COGS only possesses an in-distribution develop-
ment set and the accuracy of most parsers on this
set usually reaches 100%. Previous work by Con-
klin et al. (2021) emphasized that the lack of a
development set representative of the generaliza-
tion set makes model selection difficult and hard
to reproduce. They proposed to sample a small
subset of the generalization set that is used for de-
velopment. Both their work and LaGR (Jambor
and Bahdanau, 2022) use this approach and sample
a subset of 1000 sentences from the generalization
set to use as their development set. However, we
argue that this development set leaks compositional
generalization information during training.

We propose a variant of early stopping to pre-
vent overfitting on the in-distribution data without
requiring a compositional generalization develop-
ment set. We incrementally freeze layers in the
neural network as follows: each subtask (predic-

4https://github.com/alban-petit/
semantic-supertag-parser

tion of tags, supertags, dependencies) is monitored
independently on the in-distribution development
set. As soon as one of these tasks achieves 100%
accuracy, we freeze the shared part of the neural
architecture (word embeddings and the BiLSTM).
We also freeze the layers that produce the scores of
the perfectly predicted task. For each subsequent
task that achieves perfect accuracy, the correspond-
ing layers are also frozen. This early stopping
approach prevents overfitting.

We also experimented using the hinge loss in-
stead of the NLL loss as it shares similar properties
to our early stopping strategy: once a prediction is
correct (including a margin between the gold output
and other outputs), the gradient of the loss becomes
null. We however found that this loss yields very
low experimental results (null exact match score
on the test set).

6.2 Results
All results are exact match accuracy, i.e., the ratio
of semantic structures that are correctly predicted.
We report the overall accuracy,5 the accuracy over
all lexical generalization cases as well as the indi-
vidual accuracy for each structural generalization

5As COGS contains 1,000 sentences for each generaliza-
tion, case, this number mostly reflects the accuracy for lexical
generalization, which account for 85.7% of the test set.

https://github.com/alban-petit/semantic-supertag-parser
https://github.com/alban-petit/semantic-supertag-parser


Obj to Subj PP PP rec. CP rec.

Word level accuracy

ILP 90.2 100 100
No ILP 71.6 99.9 100

Sentence level accuracy

ILP 75.0 100 100
No ILP 9.0 99.6 100

Table 3: Supertagging accuracy using our integer linear
program (ILP) and without (i.e. simply predicting the
best supertag for each word, without enforcing the com-
panionship principle).

case. We report mean accuracy over 3 runs.
External baselines. We compare our method

to several baselines: (1) the seq2seq models of
Kim and Linzen (2020), Akyürek et al. (2021) and
Zheng and Lapata (2021); (2) two graph-based
models, LAGR (Jambor and Bahdanau, 2022) and
the AM parser of Weißenhorn et al. (2022); (3)
LeAR (Liu et al., 2021), a semantic parser that re-
lies on a more complex Tree-LSTM encoder (Tai
et al., 2015). We also report the performance of
LeAR when a BiLSTM is used in the encoder in-
stead of the Tree-LSTM.

Our baselines. We also report results for our
model using the standard graph-based semantic
parsing pipeline (Section 2.2), that is without the
intermediary supertagging step. Note that, in this
case, the supertagging loss becomes an auxiliary
loss, as proposed by Candito (2022).

Result comparison. We observe that our ap-
proach outperforms every baseline except LEAR.
Importantly, our method achieves high exact match
accuracy on the structural generalization examples,
although the Obj to subj PP generalization remains
difficult (our approach only reaches an accuracy of
75.0% for this case).

We now consider the effect of our novel infer-
ence procedure compared to our standard graph-
based pipeline. It predicts PP recursion and CP
recursion generalizations perfectly, where the base-
line accuracy for these cases is 0. For Obj to subj
PP generalization, our best configuration reaches
an accuracy of 75.0%, 5 times more than the base-
lines. All in all, the proposed inference strategy
improves results in the three structural general-
izations subsets, and brings lexical generalization
cases closer to 100% accuracy.

Impact of training procedure. The early stop-
ping approach introduced above has a clear impact

A donkey in the room sold Ella a donut
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Figure 5: (top) Gold semantic graph. (bottom) Su-
pertags predicted without enforcing the companionship
principle. A mistake occurs for ‘donkey’ as the theme
root is predicted, instead of agent. This is probably due
to the introduction of a PP before the verb, which con-
fuses the network: PP only occur with objects during
training. Using ILP fixes this mistake.

for Obj to subj PP, resulting in a 23.9 points in-
crease (from 51.1 to 75.0). Such improvements
are not observed for the baselines. From this, we
conclude that our neural architecture tends to over-
fit the COGS training set and that some measures
must be taken to mitigate this behaviour.

Suppertagging accuracy. We report in Table 3
the supertagging accuracy with and without en-
forcing the companionship principle. We observe
a sharp drop in accuracy for the Obj to Subj PP
generalization when the companionship principle
is not enforced. This highlights the importance
of structural constraints to improve compositional
generalization. We observe that the many error
are due to the presence of the prepositional phrase
just after the subject: this configuration causes the
supertagger to wrongly assign a theme root to the
subject, instead of agent. When the companion-
ship principle is enforced, this mistake is corrected.
An illustration is in Figure 5.

7 Conclusion

We proposed to introduce a supertagging step in
a graph-based semantic parser. We analysed com-
plexities and proposed algorithms for each step of
our novel pipeline. Experimentally, our method
significantly improves results for cases where com-
positional generalization is needed.



Limitations

One limitation of our method is that we cannot
predict supertags unseen during training (e.g., com-
binaison of roots unseen at training time). Note
however that this problem is well-known in the
syntactic parsing literature, and meta-grammars
could be used to overcome this limitation. Another
downside of our parser is the use of an ILP solver.
Although it is fast when using the COGS dataset,
this may be an issue in a more realistic setting. Fi-
nally, note that our method uses a pipeline, local
predictions in the first steps cannot benefit from ar-
gument identification scores to fix potential errors.
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A Neural architecture

The neural architecture used in our experiments to
produce the weights λ, ϕ+, ϕ− and µ is composed
of:

• An embedding layer of dimension 200 fol-
lowed by a bi-LSTM (Hochreiter and Schmid-
huber, 1997) with a hidden size of 400.

• A linear projection of dimension 300 followed
by a RELU activation and another linear pro-
jection of dimension |T | to produce λ.

• A linear projection of dimension 200 followed
by a RELU activation and another linear pro-
jection of dimension |S+| to produce ϕ+.

• A linear projection of dimension 200 followed
by a RELU activation and another linear pro-
jection of dimension |S−| to produce ϕ−.

• A linear projection of dimension 200 followed
by a RELU activation and a bi-affine layer to
produce µ.

We apply dropout with a probability of 0.3 over
the outputs of each layer except the final layer for
each weight matrix. The learning rate is 5× 10−4

and there are 30 sentences per mini-batch.


