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Abstract

Large Language Models (LLMs) excel at
rewriting tasks such as text style transfer and
grammatical error correction. Although the
output in these tasks often significantly over-
laps with the input, the decoding cost still in-
creases with output length, regardless of the
number of overlaps. By leveraging the overlap
between the input and the output, Kaneko and
Okazaki (2023) proposed model-agnostic edit
span representations to compress the rewrites
to save computation. They reported an output
length reduction rate of nearly 80% with mini-
mal accuracy impact in four rewriting tasks. In
this paper, we propose alternative edit phrase
representations inspired by phrase-based statis-
tical machine translation. We systematically
compare our phrasal representations with their
span representation. We apply the LLM rewrit-
ing model to the task of Automatic Speech
Recognition (ASR) post editing and show that
our target-phrase-only edit representation has
the best efficiency-accuracy trade-off. On the
LibriSpeech test set, our method closes 50-
60% of the WER gap between the edit span
model and the full rewrite model while losing
only 10-20% of the length reduction rate of the
edit span model.

1 Introduction

Large Language Models pretrained on vast amount
of texts and then fine-tuned, instruction-tuned, or
prompted for generation tasks have achieved great
success in the past few years (Raffel et al., 2020;
Brown et al., 2020; Chowdhery et al., 2022; Anil
et al., 2023; OpenAl et al., 2024). These models
excel at text rewriting tasks, and text style transfer
(Reif et al., 2022) and grammatical error correction
(Rothe et al., 2021; Fang et al., 2023) in particular.

But the superior quality of these models comes
along with a steep increase in the cost of computa-
tion. To enable broad deployment for a large user
base, it is crucial to reduce the computational cost
while maintaining the accuracy.

One of the common characteristics of the above-
mentioned rewriting tasks is that their output often
repeats spans of text in the input. Exploiting the
common sub-strings between the input and the out-
put can result in more compact representations for
the output. LLMs can be fine-tuned on examples
that map input to their compact rewrite representa-
tions instead of plain rewrites. At inference time,
decoding output needs to be composed with the
input to expand into complete rewrites. Kaneko
and Okazaki (2023) gave one such representation,
which is a numerical span indexing into the input
sequence followed by a target phrase that will sub-
stitute the source phrase in the given span. We
propose two new alternative representations. The
first one uses a source-target phrase pair to repre-
sent each rewrite pattern, analogous to phrase pairs
used by phrase-based statistical machine transla-
tion (Koehn et al., 2003). The second one only uses
a target phrase along with left and right context
words that appear in the input. We call the new rep-
resentations phrase representations to distinguish
them from the span representation of Kaneko and
Okazaki (2023).

The clear advantage of compact representations
over complete rewrite is that the number of de-
coding steps, and hence the computational cost of
inference, is reduced. Kaneko and Okazaki (2023)
reported an output length reduction rate of 80%.
The disadvantage of such representations is that
decoding errors can also lead to inconsistency with
the input sequence in the expansion stage, causing
an error propagation effect. For example, using the
numerical span representation, if the left index or
the right index is off by one, the source phrase to
be substituted will also be off by one. The concate-
nation of the context and the substitution can there-
fore become disfluent. With phrase representations,
context words are provided before and after sub-
stitution phrases, which can alleviate the problem
of disfluency upon substitution. However, phrase



representations have their own problems too. The
predicted context phrase may not match the input,
which makes it necessary to discard the subsequent
rewrite. The main focus of the paper is to evaluate
the efficiency-accuracy trade-off of the different
representations.

We choose Automatic Speech Recogintion
(ASR) post editing as the task for applying LLM-
based rewrite models and report word error rates
(WER) and output length reduction rates using the
span representation and the full rewrite models as
the baselines.

Our contributions include the following.

* We propose a compact edit string representa-
tion with superior efficiency-accuracy trade-
off than Kaneko and Okazaki (2023).

* We apply edit representation based rewriting
LLMs to the task of ASR output correction.
To the best of our knowledge, our work is
the first to combine compact rewriting with
generative LLMs to achieve substantial ASR
WER reduction with manageable decoding
cost.

2 Rewrite Representations

Mathematically speaking, for rewrite examples
(x,¥), where x is the input string and y is the
output string, there is a compression function C
and an expansion function E satisfying

E(x,Clx,y)) =y ()

with the constraint that |C(x,y)| has a much
smaller average value than |y|. At training time,
examples are converted to (x,y = C(x,y)). At
inference time, the final output is obtained by ap-
plying the expansion function E(x,y’) where y’ is
the decoding output for x. The edit representations
in this section differ in the choice of the function
pair C and E.

2.1 Edit Span Representation

The span representation of Kaneko and Okazaki
(2023) is derived from a word alignment graph
a between x and y. Given a bipartite alignment
graph between the input sequence and the output
sequence, we can identify pairs of word spans be-
tween the two sides. Each span pair is a local
rewrite instance indicating that the source span is

substituted by the target span. In practice, the align-
ment is derived from the Levenshtein distance al-
gorithm with the guarantee that the alignment links
are monotonically ordered. It is always feasible to
represent the entire rewrite as a sequence of local
rewrite spans. For LLMs to predict the rewrites, we
need a string representation of the span pairs. In
their paper, the span representation is is specified
as (4, J, Ya(i..j))» Where a(i...j) is the correspond-
ing target span of a source span ¢...j and y(;.. ;) 18
the target phrase in this span. Under this represen-
tation, C is the concatenation of the ordered span
representations:

C =i j)ealis ], Ya(i..j))- (2

E is the program of applying the ordered local
rewrites to the input sequence.

2.2 Phrase Pair Representation

The representation in Equation 2 is concise. It uses
a pair of integers to represent a source span. How-
ever, this implies that LLMs have to count source
tokens and generate indexing integer tokens inter-
leaved with content tokens following the predefined
format. The structured representation introduces
brittleness to the model. A prediction error in the
integer token sub-sequence can have a cascading ef-
fect when the entire output rewrite string is parsed
and applied on the input. Instead, we resort to
a natural language representation, which uses the
source phrase x;_ j for a span (4, j) directly as the
prefix for the target phrase y, ;.. ;). However, one
downside of our representation is that when the
span (7, j) is small, the subsequence x;_; can be
ambiguous, introducing errors into the expansion
step. A solution is to add more context to X(;. . j
as well as y, ;.. j) to make it much less likely to be
ambiguous by extending the phrase pair to both the
left and the right.
Formally, the new function C is

C=®(jjcaW: X(imk.jt+h) Ya(izk..j+k))s (3)

where k is called the dilation span, W is a natural
language prompt word like rewrite. The expan-
sion function E involves parsing the pattern and
prefix string matching and replacement on the in-
put.

2.3 Target Phrase Representation

The representation in Equation 3 using both source
phrases and target phrases has the disadvantage



source text
target text

Since we do not to bring cash to pay for the transportation fee , enormous time have been saved

Since we do not need to bring cash to pay for the transportation fee , enormous time has been saved

span 4 4 need, 16 17 has
phrase pair rewrite: not to, not need to, rewrite: time have been, time has been
target only rewrite: not need to, rewrite: time has been

Table 1: Example output under various representations. We underline the numerical spans or substrings to be

matched against the source text in the expansion stage.

of being verbose. Dilation spans on both sides
are intended to make phrases less ambiguous can
exacerbate the problem. However, dilation spans
on target phrases can often be sufficient for dis-
ambiguation when the span size is three or higher.
We can ignore source phrases and just use dilated
target phrases as they contain both anchor text in
the input and replacement text in the output. The
following is the new compression function.

C =g jHeaM: Ya(—k..jrk)) 4)

String matching and replacement in the im-
plementation of function E deals with dis-
contiguous dilation spans in the form of
Ya(i—k...i-1)---Ya(j+1,j4+k)

In Table 1, we show actual examples of edit rep-
resentations. Under the target only representation,
“not ... to”” has two matches (“not to”” and “not to
bring cash to”’”) in the source text. For such cases,
we prefer the leftmost and closest pair to break ties.

3 Experiments

We use a decoder-only LLLM for the task of correct-
ing the output of a fast first pass Automatic Speech
Recognition (ASR) model. The first pass model
is a streaming model that decodes as audio comes
in without the full context of the future. Therefore
there is enough room for error correction using a
pre-trained LLM with the full ASR transcription
as the input. The task can be viewed as a variant
of grammatical error correction (Brockett et al.,
2006).

The ASR model we use is the Google USM
model (Zhang et al., 2023). The LLMs we use are
the PaLM 2 Gecko and Otter models (Anil et al.,
2023). We fine-tune LLMs on the LibriSpeech
(Panayotov et al., 2015) training set using the dev
set for hyper-parameter and checkpoint selection
and the test sets for final comparisons. The ASR
model is frozen in our experiments. We fine-tune
the entire Transformer LLM model to minimize
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Figure 1: WER versus output length on the dev set.
Top: PaLM 2 Gecko model. Bottom: PaLM 2 Otter
model. farget only with dilation span size 3 (the third
A from the left) is the best strategy.

the cross entropy loss on the transcription refer-
ence set given the ASR transcription generated by
the frozen USM model as the prefix to the LLM
decoder. We use two baselines. One is full rewrite
model that uses the reference transcription directly.
The other is span rewrite of Kaneko and Okazaki
(2023) that uses the representation in Section 2.1.
We are interested in two metrics. The quality met-
ric is word error rate (WER) after expanding edit
representations. The efficiency metric is decoder
output length reduction rate.

Table 2 summarizes the main results. We show
that the span representation indeed incurs more
accuracy loss than the phrase representations. On
the clean test set, target only is able to close 57%
of the accuracy gap between span and full, while
losing 12.5% of the length reduction rate. On the



test-clean test-other
WER | Avg Output Length WER | Avg Output Length

USM 6.6 - 11.4
Sull 2.7 (-59%) 20 | 6.2 (-46%) 18
span 3.4 (-48%) 4 (-80%) | 7.5 (-34%) 5 (-72%)
phrase pair | 3.0 (-54%) 7 (-65%) | 7.1 (-38%) 10 (-44%)
target only | 3.0 (-54%) 6 (-70%) | 6.8 (-40%) 8 (-56%)

Table 2: Results of ASR (USM) post editing models based on PaLLM 2 Otter. full has the lowest WER but has a high
computational cost proportional to the average output length. span (Kaneko and Okazaki, 2023) is most efficient
with the fewest output tokens. farget only closes most of the WER gap between span and full while approaching

the length reduction rate of span.

noisier other test set, target only is able to close
54% of the accuracy gap, while losing 22.2% of
the length reduction rate.

3.1 Efficiency and Accuracy Trade-offs

In Figure 1, we plot WER versus output length for
two model sizes: Gecko and Otter, and varying
values of the phrase dilation hyper-parameter & in
Equation 3 and Equation 4. Both the phrase pair
and the target phrase only strategies yield lower
WER with slightly longer outputs than the span
strategy. Overall, when k is 3, the target phrase
only strategy has the best trade-off. The trend stays
across the two PaLM 2 model sizes.

3.2 Recovery Rate

In Section 2, we formulated the problem as select-
ing a pair of compression function C and expansion
function E to satisfy Equation 1. The span repre-
sentation is exact and unambiguous. So when E is
applied, the equality is satisfied for all training ex-
amples. The phrase representations can be ambigu-
ous and depend on the dilation spans to minimize
the chance of multiple matches when the expan-
sion function is applied. Table 3 summarizes the
recovery rates, which is the percentage of examples
in the dev set that satisify Equation 1. The phrase
pair representation has sufficient source context in
the source phrase so that its recovery rate is very
close to 100%. For the target only representation,
word bigrams (kK = 2) or trigrams (k = 3) sur-
rounding target phrases are sufficient for uniquely
identifying their source side counterparts in most
cases.

4 Related Work

Orthogonal efforts to speed up decoding include
speculative decoding (Leviathan et al., 2023; Chen
et al., 2023). They leverage the overlap in output

representation recovery rate
phrase pair (k = 1) 99.98%
target only (k = 1) 96.80%
target only (k = 2) 99.50%
target only (k = 3) 99.80%
target only (k = 4) 99.80%

Table 3: Recovery rate of phrase representations.

distributions between a less accurate faster model
and a more accurate slower model as well as hard-
ware accelerators for parallel computing. They
do not incur accuracy loss and are not limited to
rewriting tasks. Combining compact representa-
tions with speculative decoding has the potential
for even more speedups.

LLMs have been used for ASR correction in
ranking and generation (Pu et al., 2023). Leng
et al. (2021) model edit operations for efficient non-
autoregressive decoding. It is possible to do hybrid
decoding with LLMs: predicting which spans need
to be rewritten followed by auto-regressive decod-
ing of output rewrites.

5 Conclusions

We propose two edit phrase representations for
rewriting tasks that compactly represent the dif-
ferences between input and output strings. We use
LLMs to predict such edits and expand the edits
into complete rewrites with a deterministic string
matching and replacement algorithm. Our work is
a further development of the span representation
by Kaneko and Okazaki (2023). For the task of
ASR post editing, we close 50-60% of the WER
gap between the most efficient model and the most
accurate model, while only slowing down decoding
by 10-20% relative to the efficient representation.



Limitations

Concise edit representations presented in the paper
are derived from the Levenshtein distance algo-
rithm. The phrases are not linguistically mean-
ingful or optimal from machine learning point of
view. They are only minimal according to the edit
distance. Going beyond edit distance to use differ-
entiable functions for compression and expansion
is an interesting open area for research.

The dilation spans we use to anchor phrases in
the input are applied uniformly and equally on the
left and right of each span of interest. It is likely
that longer left context is more useful than right
context since the decoder progresses from left to
right.

We have not explored different formats for the
rewrite phrases.

The expansion stage of the target only represen-
tation is more involved than the other two compact
representations. Efficient data structures and string
matching algorithms are necessary to take account
of two discontiguous word spans.

Finally, we have not experimented with the latest
and largest LLMs. It is possible that prompt engi-
neering is sufficient to let these models generate
concise rewrites. It is to be seen if the gap between
full rewrite and edit representations can be reduced
further with very large LLMs.
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