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Abstract
Large Language Models (LLMs) excel at001
rewriting tasks such as text style transfer and002
grammatical error correction. Although the003
output in these tasks often significantly over-004
laps with the input, the decoding cost still in-005
creases with output length, regardless of the006
number of overlaps. By leveraging the overlap007
between the input and the output, Kaneko and008
Okazaki (2023) proposed model-agnostic edit009
span representations to compress the rewrites010
to save computation. They reported an output011
length reduction rate of nearly 80% with mini-012
mal accuracy impact in four rewriting tasks. In013
this paper, we propose alternative edit phrase014
representations inspired by phrase-based statis-015
tical machine translation. We systematically016
compare our phrasal representations with their017
span representation. We apply the LLM rewrit-018
ing model to the task of Automatic Speech019
Recognition (ASR) post editing and show that020
our target-phrase-only edit representation has021
the best efficiency-accuracy trade-off. On the022
LibriSpeech test set, our method closes 50-023
60% of the WER gap between the edit span024
model and the full rewrite model while losing025
only 10-20% of the length reduction rate of the026
edit span model.027

1 Introduction028

Large Language Models pretrained on vast amount029

of texts and then fine-tuned, instruction-tuned, or030

prompted for generation tasks have achieved great031

success in the past few years (Raffel et al., 2020;032

Brown et al., 2020; Chowdhery et al., 2022; Anil033

et al., 2023; OpenAI et al., 2024). These models034

excel at text rewriting tasks, and text style transfer035

(Reif et al., 2022) and grammatical error correction036

(Rothe et al., 2021; Fang et al., 2023) in particular.037

But the superior quality of these models comes038

along with a steep increase in the cost of computa-039

tion. To enable broad deployment for a large user040

base, it is crucial to reduce the computational cost041

while maintaining the accuracy.042

One of the common characteristics of the above- 043

mentioned rewriting tasks is that their output often 044

repeats spans of text in the input. Exploiting the 045

common sub-strings between the input and the out- 046

put can result in more compact representations for 047

the output. LLMs can be fine-tuned on examples 048

that map input to their compact rewrite representa- 049

tions instead of plain rewrites. At inference time, 050

decoding output needs to be composed with the 051

input to expand into complete rewrites. Kaneko 052

and Okazaki (2023) gave one such representation, 053

which is a numerical span indexing into the input 054

sequence followed by a target phrase that will sub- 055

stitute the source phrase in the given span. We 056

propose two new alternative representations. The 057

first one uses a source-target phrase pair to repre- 058

sent each rewrite pattern, analogous to phrase pairs 059

used by phrase-based statistical machine transla- 060

tion (Koehn et al., 2003). The second one only uses 061

a target phrase along with left and right context 062

words that appear in the input. We call the new rep- 063

resentations phrase representations to distinguish 064

them from the span representation of Kaneko and 065

Okazaki (2023). 066

The clear advantage of compact representations 067

over complete rewrite is that the number of de- 068

coding steps, and hence the computational cost of 069

inference, is reduced. Kaneko and Okazaki (2023) 070

reported an output length reduction rate of 80%. 071

The disadvantage of such representations is that 072

decoding errors can also lead to inconsistency with 073

the input sequence in the expansion stage, causing 074

an error propagation effect. For example, using the 075

numerical span representation, if the left index or 076

the right index is off by one, the source phrase to 077

be substituted will also be off by one. The concate- 078

nation of the context and the substitution can there- 079

fore become disfluent. With phrase representations, 080

context words are provided before and after sub- 081

stitution phrases, which can alleviate the problem 082

of disfluency upon substitution. However, phrase 083
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representations have their own problems too. The084

predicted context phrase may not match the input,085

which makes it necessary to discard the subsequent086

rewrite. The main focus of the paper is to evaluate087

the efficiency-accuracy trade-off of the different088

representations.089

We choose Automatic Speech Recogintion090

(ASR) post editing as the task for applying LLM-091

based rewrite models and report word error rates092

(WER) and output length reduction rates using the093

span representation and the full rewrite models as094

the baselines.095

Our contributions include the following.096

• We propose a compact edit string representa-097

tion with superior efficiency-accuracy trade-098

off than Kaneko and Okazaki (2023).099

• We apply edit representation based rewriting100

LLMs to the task of ASR output correction.101

To the best of our knowledge, our work is102

the first to combine compact rewriting with103

generative LLMs to achieve substantial ASR104

WER reduction with manageable decoding105

cost.106

2 Rewrite Representations107

Mathematically speaking, for rewrite examples108

(x,y), where x is the input string and y is the109

output string, there is a compression function C110

and an expansion function E satisfying111

E(x,C(x,y)) = y (1)112

with the constraint that |C(x,y)| has a much113

smaller average value than |y|. At training time,114

examples are converted to (x, ŷ = C(x,y)). At115

inference time, the final output is obtained by ap-116

plying the expansion function E(x,y′) where y′ is117

the decoding output for x. The edit representations118

in this section differ in the choice of the function119

pair C and E.120

2.1 Edit Span Representation121

The span representation of Kaneko and Okazaki122

(2023) is derived from a word alignment graph123

a between x and y. Given a bipartite alignment124

graph between the input sequence and the output125

sequence, we can identify pairs of word spans be-126

tween the two sides. Each span pair is a local127

rewrite instance indicating that the source span is128

substituted by the target span. In practice, the align- 129

ment is derived from the Levenshtein distance al- 130

gorithm with the guarantee that the alignment links 131

are monotonically ordered. It is always feasible to 132

represent the entire rewrite as a sequence of local 133

rewrite spans. For LLMs to predict the rewrites, we 134

need a string representation of the span pairs. In 135

their paper, the span representation is is specified 136

as (i, j, ya(i...j)), where a(i...j) is the correspond- 137

ing target span of a source span i...j and ya(i...j) is 138

the target phrase in this span. Under this represen- 139

tation, C is the concatenation of the ordered span 140

representations: 141

C = ⊕(i,j)∈a(i, j, ya(i...j)). (2) 142

E is the program of applying the ordered local 143

rewrites to the input sequence. 144

2.2 Phrase Pair Representation 145

The representation in Equation 2 is concise. It uses 146

a pair of integers to represent a source span. How- 147

ever, this implies that LLMs have to count source 148

tokens and generate indexing integer tokens inter- 149

leaved with content tokens following the predefined 150

format. The structured representation introduces 151

brittleness to the model. A prediction error in the 152

integer token sub-sequence can have a cascading ef- 153

fect when the entire output rewrite string is parsed 154

and applied on the input. Instead, we resort to 155

a natural language representation, which uses the 156

source phrase xi...j for a span (i, j) directly as the 157

prefix for the target phrase ya(i...j). However, one 158

downside of our representation is that when the 159

span (i, j) is small, the subsequence xi...j can be 160

ambiguous, introducing errors into the expansion 161

step. A solution is to add more context to x(i...j) 162

as well as ya(i...j) to make it much less likely to be 163

ambiguous by extending the phrase pair to both the 164

left and the right. 165

Formally, the new function C is 166

C = ⊕(i,j)∈a(W : x(i−k...j+k), ya(i−k...j+k)), (3) 167

where k is called the dilation span, W is a natural 168

language prompt word like rewrite. The expan- 169

sion function E involves parsing the pattern and 170

prefix string matching and replacement on the in- 171

put. 172

2.3 Target Phrase Representation 173

The representation in Equation 3 using both source 174

phrases and target phrases has the disadvantage 175
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source text Since we do not to bring cash to pay for the transportation fee , enormous time have been saved

target text Since we do not need to bring cash to pay for the transportation fee , enormous time has been saved

span 4 4 need, 16 17 has

phrase pair rewrite: not to, not need to, rewrite: time have been, time has been

target only rewrite: not need to, rewrite: time has been

Table 1: Example output under various representations. We underline the numerical spans or substrings to be
matched against the source text in the expansion stage.

of being verbose. Dilation spans on both sides176

are intended to make phrases less ambiguous can177

exacerbate the problem. However, dilation spans178

on target phrases can often be sufficient for dis-179

ambiguation when the span size is three or higher.180

We can ignore source phrases and just use dilated181

target phrases as they contain both anchor text in182

the input and replacement text in the output. The183

following is the new compression function.184

C = ⊕(i,j)∈a(W : ya(i−k...j+k)) (4)185

String matching and replacement in the im-186

plementation of function E deals with dis-187

contiguous dilation spans in the form of188

ya(i−k...i−1)...ya(j+1,j+k).189

In Table 1, we show actual examples of edit rep-190

resentations. Under the target only representation,191

“not ... to” has two matches (“not to” and “not to192

bring cash to”’) in the source text. For such cases,193

we prefer the leftmost and closest pair to break ties.194

3 Experiments195

We use a decoder-only LLM for the task of correct-196

ing the output of a fast first pass Automatic Speech197

Recognition (ASR) model. The first pass model198

is a streaming model that decodes as audio comes199

in without the full context of the future. Therefore200

there is enough room for error correction using a201

pre-trained LLM with the full ASR transcription202

as the input. The task can be viewed as a variant203

of grammatical error correction (Brockett et al.,204

2006).205

The ASR model we use is the Google USM206

model (Zhang et al., 2023). The LLMs we use are207

the PaLM 2 Gecko and Otter models (Anil et al.,208

2023). We fine-tune LLMs on the LibriSpeech209

(Panayotov et al., 2015) training set using the dev210

set for hyper-parameter and checkpoint selection211

and the test sets for final comparisons. The ASR212

model is frozen in our experiments. We fine-tune213

the entire Transformer LLM model to minimize214
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Figure 1: WER versus output length on the dev set.
Top: PaLM 2 Gecko model. Bottom: PaLM 2 Otter
model. target only with dilation span size 3 (the third
4 from the left) is the best strategy.

the cross entropy loss on the transcription refer- 215

ence set given the ASR transcription generated by 216

the frozen USM model as the prefix to the LLM 217

decoder. We use two baselines. One is full rewrite 218

model that uses the reference transcription directly. 219

The other is span rewrite of Kaneko and Okazaki 220

(2023) that uses the representation in Section 2.1. 221

We are interested in two metrics. The quality met- 222

ric is word error rate (WER) after expanding edit 223

representations. The efficiency metric is decoder 224

output length reduction rate. 225

Table 2 summarizes the main results. We show 226

that the span representation indeed incurs more 227

accuracy loss than the phrase representations. On 228

the clean test set, target only is able to close 57% 229

of the accuracy gap between span and full, while 230

losing 12.5% of the length reduction rate. On the 231
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test-clean test-other
WER Avg Output Length WER Avg Output Length

USM 6.6 - 11.4
full 2.7 (-59%) 20 6.2 (-46%) 18

span 3.4 (-48%) 4 (-80%) 7.5 (-34%) 5 (-72%)
phrase pair 3.0 (-54%) 7 (-65%) 7.1 (-38%) 10 (-44%)
target only 3.0 (-54%) 6 (-70%) 6.8 (-40%) 8 (-56%)

Table 2: Results of ASR (USM) post editing models based on PaLM 2 Otter. full has the lowest WER but has a high
computational cost proportional to the average output length. span (Kaneko and Okazaki, 2023) is most efficient
with the fewest output tokens. target only closes most of the WER gap between span and full while approaching
the length reduction rate of span.

noisier other test set, target only is able to close232

54% of the accuracy gap, while losing 22.2% of233

the length reduction rate.234

3.1 Efficiency and Accuracy Trade-offs235

In Figure 1, we plot WER versus output length for236

two model sizes: Gecko and Otter, and varying237

values of the phrase dilation hyper-parameter k in238

Equation 3 and Equation 4. Both the phrase pair239

and the target phrase only strategies yield lower240

WER with slightly longer outputs than the span241

strategy. Overall, when k is 3, the target phrase242

only strategy has the best trade-off. The trend stays243

across the two PaLM 2 model sizes.244

3.2 Recovery Rate245

In Section 2, we formulated the problem as select-246

ing a pair of compression function C and expansion247

function E to satisfy Equation 1. The span repre-248

sentation is exact and unambiguous. So when E is249

applied, the equality is satisfied for all training ex-250

amples. The phrase representations can be ambigu-251

ous and depend on the dilation spans to minimize252

the chance of multiple matches when the expan-253

sion function is applied. Table 3 summarizes the254

recovery rates, which is the percentage of examples255

in the dev set that satisify Equation 1. The phrase256

pair representation has sufficient source context in257

the source phrase so that its recovery rate is very258

close to 100%. For the target only representation,259

word bigrams (k = 2) or trigrams (k = 3) sur-260

rounding target phrases are sufficient for uniquely261

identifying their source side counterparts in most262

cases.263

4 Related Work264

Orthogonal efforts to speed up decoding include265

speculative decoding (Leviathan et al., 2023; Chen266

et al., 2023). They leverage the overlap in output267

representation recovery rate
phrase pair (k = 1) 99.98%
target only (k = 1) 96.80%
target only (k = 2) 99.50%
target only (k = 3) 99.80%
target only (k = 4) 99.80%

Table 3: Recovery rate of phrase representations.

distributions between a less accurate faster model 268

and a more accurate slower model as well as hard- 269

ware accelerators for parallel computing. They 270

do not incur accuracy loss and are not limited to 271

rewriting tasks. Combining compact representa- 272

tions with speculative decoding has the potential 273

for even more speedups. 274

LLMs have been used for ASR correction in 275

ranking and generation (Pu et al., 2023). Leng 276

et al. (2021) model edit operations for efficient non- 277

autoregressive decoding. It is possible to do hybrid 278

decoding with LLMs: predicting which spans need 279

to be rewritten followed by auto-regressive decod- 280

ing of output rewrites. 281

5 Conclusions 282

We propose two edit phrase representations for 283

rewriting tasks that compactly represent the dif- 284

ferences between input and output strings. We use 285

LLMs to predict such edits and expand the edits 286

into complete rewrites with a deterministic string 287

matching and replacement algorithm. Our work is 288

a further development of the span representation 289

by Kaneko and Okazaki (2023). For the task of 290

ASR post editing, we close 50-60% of the WER 291

gap between the most efficient model and the most 292

accurate model, while only slowing down decoding 293

by 10-20% relative to the efficient representation. 294
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Limitations295

Concise edit representations presented in the paper296

are derived from the Levenshtein distance algo-297

rithm. The phrases are not linguistically mean-298

ingful or optimal from machine learning point of299

view. They are only minimal according to the edit300

distance. Going beyond edit distance to use differ-301

entiable functions for compression and expansion302

is an interesting open area for research.303

The dilation spans we use to anchor phrases in304

the input are applied uniformly and equally on the305

left and right of each span of interest. It is likely306

that longer left context is more useful than right307

context since the decoder progresses from left to308

right.309

We have not explored different formats for the310

rewrite phrases.311

The expansion stage of the target only represen-312

tation is more involved than the other two compact313

representations. Efficient data structures and string314

matching algorithms are necessary to take account315

of two discontiguous word spans.316

Finally, we have not experimented with the latest317

and largest LLMs. It is possible that prompt engi-318

neering is sufficient to let these models generate319

concise rewrites. It is to be seen if the gap between320

full rewrite and edit representations can be reduced321

further with very large LLMs.322
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