
Published in Transactions on Machine Learning Research (10/2024)

Heterogeneous graph adaptive flow network

Lu Yiqi yiqi001@e.ntu.edu.sg
Department of Electrical and Electronic Engineering
Nanyang Technological University

Ji Feng jifeng@ntu.edu.sg
Department of Electrical and Electronic Engineering
Nanyang Technological University

Tay Wee Peng wptay@ntu.edu.sg
Department of Electrical and Electronic Engineering
Nanyang Technological University

Reviewed on OpenReview: https: // openreview. net/ forum? id= usvg3yhjAx

Abstract

Many graphs or networks are heterogeneous by nature, involving various vertex types and
relation types. Most graph learning models for heterogeneous graphs employ meta-paths
to guide neighbor selections and extract composite relations. However, the use of meta-
paths to generate relations between the same vertex types may result in directed edges
and failure to fully utilize the other vertex or edge types in the data. To address such
a limitation, we propose Heterogeneous graph adaptive flow network (HetaFlow), which
removes the need for meta-paths. HetaFlow decomposes the heterogeneous graph into flows
and performs convolution across heterogeneous vertex and edge types, using an adaptation
to change the vertex features based on the corresponding vertex and edge types during
aggregation. Experiments on real-world datasets for vertex clustering and vertex classification
demonstrate that HetaFlow outperforms other benchmark models and achieves state-of-
the-art performance on commonly used benchmark datasets. The codes are available at
https://github.com/AnonymizedC/HetaFlow.

1 Introduction

A significant number of real-world graphs come with a diversity of vertex types and relation types. For
example, the ACM dataset (Wang et al., 2019) (example data shown in Fig. 1) consists of four types of
vertices: paper, author, conference, and subject. Many heterogeneous graph neural network (HGNN) models
are based on the idea of meta-paths (Huang et al., 2016; Zhang et al., 2018a; Hu et al., 2018). A meta-path is
an ordered sequence of edge types, which defines a new composite relation between the source vertex type
and the destination vertex type. For example, in the ACM dataset, a relation between two papers can be
described by the meta-path Paper-Author-Paper (P-A-P), which represents an author’s co-authorship of
these two papers; or Paper-Subject-Paper (P-S-P), which implies that the two papers investigate the same
subject. Depending on the meta-path, the relation between vertices can have different semantics.

Most meta-path-based heterogeneous graph models for semi-supervised vertex classification and clustering
(Zhang et al., 2019a; Shi et al., 2018; Fan et al., 2019) follow two similar steps to create homogeneous graphs
on which traditional GNN models can then be applied: 1) Meta-paths are chosen so that the source and
destination vertex types are the same. 2) Then, one employs a set of predefined meta-paths to decompose the
original heterogeneous graph into one or several subgraphs with homogeneous vertex types. An appropriate
GNN model on each subgraph can then be applied and the results fused to obtain the final inference.

1

https://openreview.net/forum?id=usvg3yhjAx

Published in Transactions on Machine Learning Research (10/2024)

People also proposed non-meta-path-based models. These models mainly follow two approaches. They either
introduce some projection methods and attention mechanisms to aggregate representations of vertices, like
HGT Hu et al. (2020) and HetSANN Hong et al. (2020), or find suitable meta-paths by themselves, like
ie-HGCN Yang et al. (2021). These two directions have different challenges.

Methods of the first direction normally set different weights for different edge types. For example, HGT Hu
et al. (2020) assigns different aggregation weights for each edge type. However, edges in heterogeneous graphs
are very likely to be directed, and edges of one edge type may connect different vertex types. So, there is
room to improve in the projection and aggregation parts, like introducing a type-related adjustment part
during aggregation. Although the other kind of non-meta-path-based models can automatically find suitable
meta-paths, they still need to face problems caused by the usage of meta-paths. For instance, the obvious
direction of meta-path and the information loss of intermediate vertices.

• Most heterogeneous graph models fail to consider the directions of edges. In some heterogeneous
graph applications, edges have an inherent direction based on the vertex types of their end vertices.
For example, in a network connecting teachers and students, viewing an edge going from a teacher to
a student versus the opposite direction has different meanings. Therefore, the importance of a vertex
to another vertex depends on how that vertex is reached and not just on the distance or edge attention
weights between them. Meta-path-based methods are more likely to meet such challenges, like the
meta-path Subject-Paper-Conference-Subject (S-P-C-S) in Fig. 1. Thus, it may be appropriate to
assign different weights to neighboring vertices according to their positions. Allocating the same
weight to vertices at the same distance may result in suboptimal results.

• Many existing heterogeneous graph models failed to exploit the type information fully. It makes
sense that features of different vertex types should be projected to different spaces, and aggregations
along various edge types should use separate filters. Similarly, it is also appropriate to assign different
weights to the same vertex when aggregating with vertices of different types (even when the edges
are of the same type). Thus, the performance can be improved by introducing type-based adjustment
weights during aggregations.

• As shown in Fig. 1(d), all the intermediate vertices and the vertices that do not appear in the
chosen meta-paths are not represented in the homogeneous subgraphs created using the meta-path
approach. Furthermore, all subgraphs only contain a single vertex type. A substantial proportion of
the vertex features from vertex types not represented are discarded, which is apparently detrimental
(e.g., HERec (Shi et al., 2018) and HAN (Wang et al., 2019)). Embedding methods such as MAGNN
(Fu et al., 2020) employ encoders to encode the features of intermediate vertices. However, it is
unclear how one can choose an efficient encoder for different datasets. Furthermore, these embeddings
use type-based vertex feature transformations, which do not take the intermediate connections into
consideration.

• The choice of meta-paths limits the relationships the model can learn. As shown in Fig. 1(c), the
meta-path P-A-P allows a model to learn the relationship between two papers with a common author.
It does not however learn other relationships like P-S-P if this meta-path has not been explicitly
included.

• The number of possible meta-paths increases exponentially with respect to the number of vertex
types and edge types. There is a positive correlation between the number of filters that are needed
and the number of meta-paths. Most models in the literature Dong et al. (2017); Shi et al. (2018); Fu
et al. (2020); Fu & King (2024) either discard some meta-paths or require significant computational
power if all meta-paths are included. Meta-path-based approaches are thus not scalable if they want
to include all possible meta-paths.

We introduce parallel flow decomposition and type-based adjustment to address these challenges. We
decompose the graph into 1D paths which allows us to assign different weights to vertices based on their
positions instead of distances.

2

Published in Transactions on Machine Learning Research (10/2024)

P-A-P

P2

P1
Author

Conference

Paper

Subject

A1 A2 A3

P1 P2

C1
C2

S1 S2

(a)Node Type (b) Heterogeneous Graph

P3

S3
(c) Meta-path
(P-A-P)

(d) Meta-path
(P-A-P) based
neighbor

Figure 1: An example of a heterogeneous graph based on the ACM dataset.

We propose a novel Heterogeneous graph adaptive flow network (HetaFlow). HetaFlow first decomposes the
graph into several groups of paths, which we call “parallel flows”. Then, for each edge, the model encodes it
according to its edge type and its two end vertex types. HetaFlow applies type-specific linear transformations
to project heterogeneous vertex attributes for each vertex to a common vector space. Each edge thus gets its
type-based edge feature. Next, HetaFlow performs intra-path aggregation along each path in every parallel
flow, and inter-flow aggregations across multiple parallel flows with type-based feature adjustments.

The computational complexity of HetaFlow is lowered significantly compared to these other models and
its model size depends only on the number of parallel flows used. See the discussion about model size and
complexity in Appendix B and Appendix C.

In this work, we introduce the concepts of paths and parallel flows to heterogeneous graphs and design
type-based adjustments. We generalize the model to heterogeneous graphs with additional mechanisms to
handle the heterogeneity of the graphs. Extensive numerical experiments are provided to verify our module
choices.

2 Related work

2.1 Graph neural networks

GNNs extend convolution neural networks (CNNs) to general graph-structured data. There are two main
classes of GNNs, namely spectral-based and spatial-based. Spectral-based GNNs operate in the Fourier
domain. An example is ChebNet (Defferrard et al., 2016), which processes graph signals (vertex features)
using Chebyshev polynomials of the graph Laplacians. By simplifying the parameters of ChebNet, GCN
(Kipf & Welling, 2016) overcomes the overfitting problem of ChebNet. However, spectral-based GNNs require
the whole graph as an input in the worst case when the polynomial degrees are high, and are sensitive to
graph structures. They thus suffer from scalability issues.

Spatial-based GNNs imitate the convolution operation in CNNs. GNNs of this kind operate directly on
a vertex’s neighbors. An example is GraphSAGE (Hamilton et al., 2017), which learns embeddings by
aggregating features of the target vertex and its neighbor vertices. Other spatial-based GNN variants have
been proposed by improving the aggregator function. GAT (Velickovic et al., 2018) employs the attention
mechanism in the aggregator to assign different importance weights based on the neighboring vertices’ features.
GFCN (Ji et al., 2020) decomposes a graph into non-intersecting paths and performs convolutions along these
paths before aggregating them. It can be shown that GFCN recovers the GCN model. Inspired by the idea of
GGNN (Li et al., 2016) that adds gated recurrent unit (GRU) (Cho et al., 2014) into the aggregator function,
GaAN (Zhang et al., 2018b) combines GAT and GGNN for spatio-temporal graphs. To improve the accuracy,
STAR-GCN (Zhang et al., 2019c) employs various GCN encoder-decoders.

3

Published in Transactions on Machine Learning Research (10/2024)

The above-mentioned GNNs are designed for homogeneous graphs in which all vertices and edges are of the
same type. One main limitation that stops GNNs from being adapted to heterogeneous graphs is that the
vertex features for different vertex types in a heterogeneous graph are from different spaces.

Adaptive graph learning (Luo et al., 2017; Li et al., 2018; Zhou et al., 2019) has shown good generalization
ability when facing real problems, where data are on an irregular grid or in other kinds of non-Euclidean
domains. Adaptive graph learning can help models to be more general. To obtain a discriminative feature
subset, Luo et al. (2017) learns the optimal reconstruction graph and selective matrix simultaneously. The
paper Zhou et al. (2019) combines multi-feature dictionary learning and adaptive multi-feature graph learning
into a unified learning model. To parameterize the similarity between two vertices on the graph, Li et al. (2018)
employs a learnable distance metric. In this work, we design a type-based adaptive method to parameterize
the filters in some layers so that our model can better handle heterogeneous graphs.

2.2 Heterogeneous graph embedding

Various heterogeneous graph embedding methods have been proposed to embed vertex features into a low-
dimensional space. For example, metapath2vec (Dong et al., 2017) employs meta-path-based random walks
and skip-gram (Mikolov et al., 2013a) to generate vertex embeddings. With the guidance of manually-defined
meta-paths, ESim (Shang et al., 2016) learns vertex features in a user-preferred embedding space. HIN2vec
(Fu et al., 2017) learns vertex embeddings and meta-path representations simultaneously by carrying out
multiple prediction training tasks. Given a meta-path, HERec (Shi et al., 2018) proposes an algorithm that
converts a heterogeneous graph into meta-path-based neighbors and then employs the DeepWalk (Perozzi
et al., 2014) model to learn the target vertex embedding. Similar to HERec, HAN (Wang et al., 2019) also
decomposes a heterogeneous graph into multiple meta-path-based homogeneous graphs. HAN uses a graph
attention mechanism to combine results from different meta-paths.

These heterogeneous graph embedding models suffer from the limitations discussed in Section 1 due to the
reliance on meta-paths to construct homogeneous subgraphs. The use of meta-paths inevitably introduces
some limitations like discarding vertex features or loss of vertices and connections. For example, metapath2vec,
ESim, HIN2vec, and HERec omit vertex features, which lowers their performance when performing tasks
on graphs with rich vertex features. Furthermore, HERec and HAN only consider the two end vertices of
each meta-path while ignoring the vertices along the path, which results in information loss. The method
metapath2vec achieves suboptimal performance as it takes only one meta-path as the input. SeHGNN(Yang
et al., 2023) improves the performance by introducing feature projection. However, it needs a complicated
extra data pre-processing step.

Several HGNNs (Zhang et al., 2019b; Yun et al., 2019; Lv et al., 2021; Ahn et al., 2022) have been proposed
to solve the meta-path selection dilemma by generating new graph structures. For instance, HetGNN (Zhang
et al., 2019b) divides neighbors into subsets based on their types and employs an aggregator function for
each type of neighbor. However, as pointed out by Lv et al. (2021), HetGNN has “information missing in
homogeneous baselines” and “GAT with correct inputs gets clearly better performance”. Simple-HGN (Lv
et al., 2021) is based on GAT. It leverages type information by introducing learnable type embeddings and
enhanced modeling power with residual connections and l2 normalization on the output embeddings.

Many attention-based models failed to learn node-level and relation-level attention simultaneously. BA-GNN
Iyer et al. (2021) employs a novel bi-level graph attention mechanism to overcome this issue. Instead of from
the global graph context, BA-GNN attends to both types of information from local neighborhood contexts.
It achieved good performance. However, it assigns the same weights to the neighbor vertices of the same
distance, which means the directions of edges are not exploited during aggregation.

ie-HGCN Yang et al. (2021) proposed a hierarchical architecture as object-level and type-level aggregation.
ie-HGCN can learn the representations of objects and automatically discover and exploit the most useful
meta-paths. Its ’two-level aggregation structure’ shows good performance and interpretability in capturing
semantic relations. Our HetaFlow has a similar design. HetaFlow’s intra-path aggregation and inter-path
aggregation empower it to catch semantic relations efficiently. As mentioned in Section 1, ie-HGCN fails to
consider the directions of edges. It assigns the same weights to neighbor vertices in the same distance. By

4

Published in Transactions on Machine Learning Research (10/2024)

Table 1: Notations
Notations Description
Rn The n-dimensional Euclidean space.
G = (V, E) Graph with vertex set V and edge set E .
A The set of vertex types.
R The set of edge types.

Tu, Tuv
The embedding of a vertex u and edge
(u, v), respectively.

Pv
The collection of paths that contain the
vertex v.

Nv(h) The h-hop neighborhood of vertex v.
xv Feature vector of vertex v.
hv Hidden state (embedding) of vertex v.
σ(·) Activation function.
⊙ Element-wise multiplication.
| · | The cardinality of a set.
∥ Vector concatenation.

v1 v2

v5

v4v3

v6
v9v7 v8

v10 v11 v12 v13

v14 v15

v17v16

v1 v2 v8 v4

v3

v7

v11v5 v14 v12 v13

v15

v1 v2

v5

v4

v3

v9

v7v8

v10

v11 v12 v13v14

v15

v17

v16

v8

v11

v3

v8 v12

v14

v4

v15

v2v5

v7 v6
Parallel flow 2

Parallel flow 1

v1 v2

v5

v4

v3 v7v8

v11 v12 v13v14

v15

v8

v11

(a) (b) (c) (d)

Figure 2: (a) A heterogeneous graph: different colors for vertices and edges indicate different types. (b) A
subgraph with homogeneous edge type. (c) A parallel flow decomposition. (d) Two parallel flows.

decomposing the graph into 1-D flows, HetaFlow is capable of learning different weights to neighbors with
the same distance.

HGT Hu et al. (2020) and HetSANN Hong et al. (2020) are also non-meta-path-based methods. They
avoid the meta-path selection dilemma by projecting the representations to the same space and employing
attention mechanisms to help aggregations. They make use of the ’type’ information by assigning different
aggregation weights to various edge types. However, this may not be enough since the same-type edges may
connect vertices of different vertex types, which usually happens when there exists only one edge type in the
heterogeneous graph. HetaFlow mitigates this problem by introducing an adjustment component. HetaFlow
employs learnable parameters to generate adjustment weights based on the embeddings of types of vertices
and edges. When aggregating on the same edge type, the features of neighbor vertices are adjusted differently
based on their vertex types.

3 Preliminaries

In this section, we define important terminologies related to heterogeneous graphs. Graphical illustrations are
provided in Fig. 2. We summarize the commonly used notations in this paper in Table 1. Throughout this
paper, we consider a graph G = (V, E), where V is the set of vertices and E is the set of edges of the graph.

5

Published in Transactions on Machine Learning Research (10/2024)

Definition 1. (Heterogeneous graph) A heterogeneous graph G is associated with a vertex type mapping
function ϕ : V 7→ A and an edge type mapping function ψ : E 7→ R, where A and R denote the predefined sets
of vertex types and edge types, respectively, with |A|+ |R| > 2. Furthermore, if a subgraph G′ includes only a
single edge type, then we call G′ a subgraph of G with homogeneous edge type.

An example of a heterogeneous graph is shown in Fig. 2(a). This heterogeneous graph consists of four different
types of vertices and two types of edges. Fig. 2(b) illustrates a subgraph with homogeneous edge type.
Though it contains only the green edge type, there are four types of vertices in it, which means it is also a
heterogeneous graph.
Definition 2. (Path) A path P of a heterogeneous graph G is a connected subgraph such that each vertex of
P has a degree not more than 2 in P . In particular, a single vertex or a cycle is a path.
Definition 3. (Parallel flow) Two paths P1 and P2 are said to be parallel to each other if they do not share
any common vertices in G. Furthermore, a set of paths P = {P1, . . . , Pn} is a parallel flow if its elements are
pairwise parallel.

For example, in Fig. 2(a), consider the path P1 given by the vertex sequence (v10, v5, v2, v3, v4), the path
P2 = (v16, v14, v6, v7, v8, v9) and the path P3 = (v17, v15, v12, v13), we can see any two of P1, P2, and P3 are
parallel since there are no common vertices or edges between them. Furthermore, the set {P1, P2, P3} is a
parallel flow as all its elements are pairwise parallel.
Definition 4. (Parallel flow decomposition) Consider a collection of parallel flows P1, . . . ,Pm, each of which
contains paths of homogeneous edge type. If

⋃m
i=1 Pi contains all edges in the heterogeneous graph G, then

this collection of parallel flows is called a parallel flow decomposition of G.

Since each edge in Fig. 2(b) appears in Fig. 2(d) and the two parallel flows do not share common edges,
Fig. 2(d) is an example of a parallel flow decomposition of Fig. 2(b). Parallel flow decompositions are not
unique for a heterogeneous graph G. For instance, in Fig. 2(b), we can choose a parallel flow consisting of
a single path v3-v8-v7-v11-v12-v13, and a parallel flow consisting of two four-vertex paths v1-v2-v8-v4 and
v5-v14-v11-v15. This forms a parallel flow decomposition of Fig. 2(b) different from that in Fig. 2(d).

Besides accuracy, runtime speed or computational complexity of a GNN is a concern for large graphs. The
computational complexity is closely related to the model size. To quantify our model size, we require the
following definitions and upper bound on the number of parallel flows (Ji et al., 2020). We briefly recall the
following notions and results from Ji et al. (2020) for the homogeneous graphs.
Definition 5. A set of parallel flows {P1, . . . ,Pm} is a cover of G if the union of all the paths in the parallel
flows contains all the edges of G. The smallest m such that there is a cover consisting of m parallel flows is
denoted as µ(G).

4 Heterogeneous adaptive flows

In this section, we present HetaFlow. We refer the reader to Fig. 3 for an illustration of the HetaFlow
framework, which is summarized as follows:

• We first explain the motivation for introducing such decomposition methods. See Section 4.1.

• We perform a parallel flow decomposition of a given heterogeneous graph G, with each parallel flow
having a single edge type. See Section 4.2.

• We perform vertex feature transformation to map the features of all vertices to the same space. See
Section 4.3.

• Intra-path aggregation with attention weights is performed along each path in each parallel flow. See
Section 4.4.

• A vertex may appear in multiple parallel flows, each of which generates a feature vector in the
steps above. Inter-flow aggregation is performed to fuse these feature vectors for each vertex. See
Section 4.5.

6

Published in Transactions on Machine Learning Research (10/2024)

Graph

(d)Intra-path aggregation(b)Edge embedding
and node feature
transformation

(e) Inter-flow
aggregation

· · ·

(f) Passing to next
aggregation loop or
prediction layer

MLP

Updated Graph
Edge embeddings
{Zuv}

Adaptive
layer

(c)Adaptive
adjustments

Vertex-level
adjustment
weights
{Auv}

(a)Parallel flow
decomposition

Path-based
adjustment
weights
{FP }

Original
features
{xv}

{h′
v} {hP

i }
{ĥv}

· · ·
Or

Labels Y

Figure 3: The overall framework of HetaFlow. Steps (c), (d), and (e) can be repeated.

4.1 Motivation and differences

Before delving into the details of the model, we first discuss why we choose to decompose the heterogeneous
graph into parallel flows. Without relying on any prior meta-path knowledge, we want to decompose a
heterogeneous graph into subgraphs that traditional GNNs can handle. An intuitive idea is to form subgraphs
by selecting the edges that follow similar patterns, i.e., build subgraphs with homogeneous edge type. For
example, consider the heterogeneous graph shown in Fig. 2(a). It can be decomposed into two subgraphs: one
subgraph is shown in Fig. 2(b) and the other subgraph consists of the three separate blue lines in Fig. 2(a).
However, even though a subgraph has homogeneous edge types, it may still not be appropriate to apply a
homogeneous GNN on the subgraph due to the following two considerations.

Firstly, there may exist multiple vertex types in each subgraph, and thus we need to make adjustments
based on the types of the vertices when performing convolutions. We resolve this challenge by introducing
vertex feature transformation, which is discussed in detail in Section 4.3. As discussed in the comparisons in
Section 2.2, many non-meta-path-based methods, like HGT Hu et al. (2020) and HetSANN Hong et al. (2020)
employ different weights for the aggregations along each edge type. However, edges of one edge type may
connect various types of vertices. For instance, ’paper’ type vertices can be linked to both ’conference’ type
and ’journal’ type vertices by ’be submitted to’ type edge. When predicting the research area of a ’paper’
vertex, it is better to assign different weights to ’conference’ type and ’journal’ type vertices because journals
are more general in some research area. However, HGT and HetSANN shall use the same filter since the edge
type is the same. We introduce the adaptation adjustments to improve the performance against this problem.

Secondly, some types of edges may be directed, like the “teacheri-teaches-studentj” relations in a social
network. Consider a path with 3 vertices and two edges, “vi-teaches-vj-teaches-vk”, where each vertex stands
for a person. When trying to predict the academic interest of vj , we may find features of vi and vk are of
different importance. Thus, it may be appropriate to assign different weights to neighboring vertices according
to their positions instead of distances. Allocating the same weight to vertices at the same distance may result
in suboptimal results as the weights no longer capture the importance of these vertices to the target vertex at
which the convolution is applied.

We introduce parallel flow decomposition that decomposes the graph into 1D paths and allows us to assign
different weights to vertices based on their positions in a neighborhood of the target vertex on the 1D path.
Moreover, though the edges of each subgraph are likely to follow similar patterns, they may contain different
meanings and need to be processed differently. For example, consider a computer vision task. In an image,
the horizontal and vertical edges follow the same pattern (both can be detected by similar 1D convolution

7

Published in Transactions on Machine Learning Research (10/2024)

filters) but may have different meanings and contributions when performing prediction tasks. Parallel flow
decomposition helps us to capture such information by splitting the graph into different flows.

However, there’s a certain degree of randomness to this decomposition process. Parallel flow decomposition
was originally designed for homogeneous graphs, which means it failed to consider the relations between the
flows of different subgraphs. Note that ’type information’ is now available, as well as some semantic relations
between the flows of various subgraphs. HetaFlow designs a transformer-based semantic adaptation module
and employs an attention mechanism (step (c)(d)(e) in Fig. 3) to learn the mutual attention between semantic
flows (see in Section 4.3, Section 4.4, Section 4.5). The whole forward propagation process is illustrated in
Algorithm 1.

4.2 Flow decomposition

4.2.1 Implementation

Let O be an operation that takes a heterogeneous graph G0 = (V, E0) as the input and outputs a subgraph
G1 = (V1, E1) with homogeneous edge type. One intuitive example of O is to select all edges of a certain
type in G0. Starting with a given heterogeneous graph G0, we build a subgraph G1 = O(G0). Then, we repeat
this operation on the remaining part, i.e., the complement of graph G1 with respect to G0, to obtain another
homogeneous edge type subgraph G2 = O(Gc

1), where Gc
1 = (V, E0\E1). This procedure is repeated until no

edges remain.

The original heterogeneous graph is thus decomposed into several subgraphs with homogeneous edge types.
Then, we can follow Ji et al. (2020) to decompose each subgraph into parallel flows and take the union of the
decompositions. This union is a parallel flow decomposition of the original heterogeneous graph.

For completeness, we now provide a brief description of the parallel flow decomposition implementation. Note
that this approach is only one of many possible approaches. For details, we refer the reader to Ji et al. (2020).
For every subgraph Gi = (Vi, Ei) (can be possibly disconnected), a forest Gi1 = (Vi1, Ei1) consisting of trees
that span the components of Gi is found by performing a depth-first search of the graph (in this paper, we
select a vertex with the highest degree in subgraph Gi to be the root vertex for each component). Denote
the complement of the forest Gi1 with respect to Gi as Gc

i1, whose edge set is Ei\Ei1 and isolated vertices
after removing Ei1 are removed. Repeating the process, we again find a spanning forest Gi2 for Gc

i1. This
procedure is repeated until the remaining complement is empty. The procedure terminates in a finite number
of steps n because the number of edges remaining in the complement at each step decreases. We then have
Gi =

⋃n
j=1 Gij .

Next, we consider the parallel flow decomposition of a tree in each forest Gij obtained in the above procedure.
Let this tree be T and degmax be its maximal degree. We can label each edge in T with a number in the
set {1, 2, . . . , ⌊(degmax +1)/2⌋} such that every label is used at most twice for edges in T connected to each
vertex v in T . Finally, to form a parallel flow, we take edges that have the same label. The tree T is now
decomposed into multiple parallel flows.

4.3 Feature embedding

We first record the types of vertices and edges so that we can adjust the vertex features according to their
types. For most datasets, the vertex types and edge types are categorical. We use one-hot encoding for them.

For an edge (u, v) connecting vertices u and v, let Tu ∈ R|A| denote the one-hot encoding of the type of vertex
u, and Tuv ∈ R|R| be the one-hot encoding of the type of edge (u, v). Then, its edge embedding is given by:

Zuv = Tu ∥Tuv ∥Tv. (1)

Different vertex types may have feature vectors with unequal dimensions and belong to different feature
spaces. So we apply a type-based linear transformation for each type of vertices before feeding vertex feature
vectors into the intra-path aggregation module. Let xv ∈ RdA denote the original feature vector of vertex v,
and WA ∈ Rd′×dA denote the parametric weight matrix for type A vertices. Then, for a vertex v of type

8

Published in Transactions on Machine Learning Research (10/2024)

A ∈ A, the projected latent vector is given by

h′
v = WAxv ∈ Rd′

. (2)

4.4 Intra-path aggregation

Since the intra-path aggregation involves only vertices on this path, it is natural to consider 1D convolution.
For each parallel flow P, we employ the same 1D convolution filter of odd length h for all paths P ∈ P. Let
NP

v = P ∩Nv((h− 1)/2) to denote neighbors of vertex v on path P . The 1D convolution at each vertex v
along the path P is given by:

ĥP
v = σ

 ∑
u∈N P

v

wP
u h′

u

 , (3)

where the weights wP
u are the 1D convolution filter weights for the parallel flow P.

To fuse features learned from different edge types and parallel flows, we perform vertex-level and flow-based
adjustments. The weighting coefficients employed in this process are called adjustment weights.

We design an adjustment weight that modifies the edge weights based on the types of edges and their end
vertices. Let Wa and ba be learnable parameters. Then, the vertex-level adjustment weight Auv is defined as:

Auv = σ (WaZuv + ba) ∈ Rd′
. (4)

Suppose that vertex u is a neighbor of vertex v on path P . We modify (3) as:

ĥP
v =

∑
u∈N P

v

σ
(
wP

u (h′
u ⊙Auv)

)
. (5)

Next, we use attention mechanisms to learn the importance eP
vu of a neighboring vertex u to vertex v on the

path P , which is then normalized across all choices of u ∈ NP
v using the softmax function. Then, we obtain a

normalized importance weight αP
vu for each neighboring vertex on this path.

Furthermore, to reduce the variance introduced by the parallel flow decomposition, we extend the attention
mechanism to multiple heads by concatenating K independent attention mechanisms. Let hP

i ∈ Rd′ denote
the features of vertex i after intra-path aggregation,

[
eP

vu

]
k

denote the importance of u to v in the k-th head,[
αP

vu

]
k

denote the normalized importance of u to v in the k-th head, and [aP]k ∈ R2d′ the parameterized
attention vector for path P in the k-th head. Then, the k-th attention mechanism, for k = 1, . . . ,K, can be
expressed as: [

eP
vu

]
k

= LeakyReLU
([

a⊤
P

]
k
·
[
ĥP

v ∥ĥP
u

])
,

[
αP

vu

]
k

=
exp

([
eP

vu

]
k

)∑
s∈NP

v
exp ([eP

vs]k) ,

hP

i =

∣∣∣∣∣
∣∣∣∣∣
K

k=1

σ

 ∑
j∈N P

i

[
αP

ij

]
k
· ĥP

j

 .

(6)

To fuse the features hP

v in (6) of the same vertex v on different paths P , we incorporate an attention
mechanism based on paths. Each path from a parallel flow consists of only one edge type. Let TP be the edge
type encoding of path P , and Wf , bf be learnable parameters. The path-based adjustment weight FP for
path P is defined as:

FP = σ (Wf TP + bf) ∈ Rd. (7)

9

Published in Transactions on Machine Learning Research (10/2024)

We update the vertex features by doing an element-wise multiplication. The feature hP
v ∈ Rd′ of vertex v on

path P , which is processed by the inter-flow aggregation in the next step, can be expressed as:

hP
v = hP

v ⊙ FP . (8)

4.5 Inter-flow aggregation

Suppose there are M parallel flows in the parallel flow decomposition of Section 4.2. Then for each vertex v,
since it belongs to at most one path in each parallel flow, we have at most M latent vectors

{
hP

v : P ∈ Pv

}
,

where Pv is the collection of all paths that contain vertex v and |Pv| ≤M . Since paths in Pv are not equally
important to the vertex v, it is reasonable to use the attention mechanism to assign different weights to
features obtained from different paths. We use βP

v to denote the relative importance of path P to vertex
v. We perform a weighted sum of all the path-based feature vectors of v using the parameterized attention
vector q ∈ Rd′ as follows:

eP
v = q⊤hP

v ,

βP
v =

exp
(
eP

v

)∑
P ∈Pv

exp (eP
v) ,

ĥv =
∑

P ∈Pv

βP
v · hP

v .

(9)

Finally, we add a layer with a learnable weight matrix Wo ∈ Rdo×d′ to change the shape of the output vector:

hv = σ
(

Woĥv

)
. (10)

4.6 Training

To process the vertex representations, we use the following loss functions. Here we denote the set of vertices
that have labels as VL, the number of classes as C, the one-hot label vector of vertex v as yv, and the
predicted probability vector of vertex v as hv. For semi-supervised learning, we use the cross entropy loss as
follows:

L = −
∑

v∈VL

C∑
c=1

yv[c] · log hv[c], (11)

where yv[c] denotes the c-th component of the vector yv.

For unsupervised learning, let Ω be the set of positive (observed) vertex pairs, and Ω− be the set of negative
vertex pairs sampled from the complement of Ω. Then, we minimize the following loss function via negative
sampling (c.f. Mikolov et al. (2013b)) with sigmoid function σ(·):

L = −
∑

(u,v)∈Ω

log σ
(
h⊤

u hv

)
−

∑
(i,j)∈Ω−

log σ
(
−h⊤

i hj

)
. (12)

4.7 Analysis of HetaFlow

4.7.1 Generality

In this section we want to discuss about the generality of HetaFlow. It can represent more general polynomials
than most current meta-path-based heterogeneous GNNs. It is even capable of achieving aggregations that
can not be expressed by polynomials.

10

Published in Transactions on Machine Learning Research (10/2024)

Assume that a given heterogeneous graph has n types of edges and let S denote a fixed graph shift operator
(one common choice is the graph’s normalized adjacency matrix or Laplacian matrix). For edge type i, we
can pick out all corresponding elements in S and perform zero paddings to form a submatrix Si, whose shape
is the same as S. In this way, we decompose S into the sum of n submatrices S1, . . . , Sn, where Si is the
corresponding graph shift operator for edges of type i.

Many current heterogeneous GNNs perform convolutions among each subgraph and then fuse the outputs of
each subgraph (Wang et al., 2019; Fu et al., 2020; Fu & King, 2024). For a given graph signal X, assume that
a meta-path-based model fuses with the sum function. Then the final output is

σ(
n∑

i=1
pi(Si)X), (13)

where σ(·) is the activation function, and pi(·) denotes a given graph convolution filter for edge type i.

HetaFlow is capable of representing a more general polynomial, where each monomial consists of several
variates. This observation is expressed in the following result.
Proposition 1. Suppose no edge is contained in different paths inside a given set of parallel flows. If M is
the number of monomials and N denotes the largest number of variates contained in one monomial, then there
is a HetaFlow model with M + 2

∑M
i=1

∑N
j=1 kij hidden layers producing the same output as the convolution

filter

p(S1, . . . , Sn) =
M∑

i=1
bi

N∏
j=1

Skij
aij

(14)

for any input graph signal, where aij denotes the index of the j-th variate in the i-th monomial, and kij and
bi denote the corresponding power and coefficient, respectively.

Proof. See Appendix A.

Proposition 1 shows that there is no loss in generality in adopting HetaFlow with parallel flow decomposition
when compared to traditional heterogeneous GNNs like HAN Wang et al. (2019), MAGNNFu et al. (2020),
and Simple-HGN(Lv et al., 2021). It is clear from (14) that the representations we can learn using HetaFlow
are strictly richer than that achievable by the heterogeneous GNNs in (13). This motivates us to consider the
use of parallel flow decompositions in HetaFlow.

In contrast, (14) is a multi-variate polynomial and involves interactions between different edge types with the
same weights assigned to the same kind of interaction. It is also clear that HetaFlow is not restricted to that
particular form. By utilizing 1D convolutions along paths, HetaFlow can assign different weights to vertices
at the same distance in the path (i.e., the 1D filter is non-symmetric). And under this case, it is obvious that
we can not use any polynomial to represent it.

In Section 5.4, we perform ablation studies on the effect of introducing parallel flow decompositions to obtain
insights into the impact of different decomposition approaches.

4.7.2 Time complexity

We provide a detailed general analysis of the model size and computational complexity of HetaFlow in
Appendix B and Appendix C. Here we follow the assumptions of SeHGNN(Yang et al., 2023) to make clearer
comparisons with other models. The theoretical results are summarized as Table 2

We assume a one-layer structure with M meta-paths for SeHGNN and HAN. Let l be the maximum hop
of meta-paths. To ensure the same receptive field size, we assume a l-layer structure for Simple-HGN and
HetaFlow. The dimension of input and hidden vectors is d. Instead of considering all vertices, here we discuss
the case when doing tasks on vertices of one vertex type. The number of target-type vertices is n. For HAN,
let e1 be the average number of neighbors in meta-path neighbor graphs. Let e2 be involved neighbors during

11

Published in Transactions on Machine Learning Research (10/2024)

multi-layer aggregation on Simple-HGN. Both e1 and e2 grow exponentially with the length of metapaths
and layer number l. (19) shows that the computational complexity of HetaFlow is closely related to ’the
number of edge types’ and ’the max degree of vertices’. Let |R′| denotes the total number of edge types of
the involved subgraphs, and |P ′| denotes the total number of parallel flows to be aggregated.

Then from (19), the time complexity of HetaFlow is:

O(|R′||P ′|nd2 + nld2) = O((|R′||P ′|+ l)nd2). (15)

For complicated graphs whose number of types of vertices and edges are large, |R′| is normally much smaller
than the total number of edge types |R|. There are |A|2 possible edge types and edges of at most 2|A|−1 edge
types connecting target-type vertices (for the generality of discussion, we consider the directed graph here. If
it is undirected, then |R′| is at most |A|). So, HetaFlow only needs to decompose at most 2|A| − 1 subgraphs.
Moreover, HetaFlow can discard parallel flows that do not contain target-type vertices. For instance, consider
the example claimed in Fig. 2, HetaFlow can discard parallel flow 2 in Fig. 2(d) if the target vertex type is
the blue vertex type. So |P ′| is normally smaller than the total number of parallel flows |P|. And the number
of possible meta-paths is large for complicated graphs. Take length 5 meta-paths as an example (we assume
the endpoints of meta-paths are of the target node type), each intermediate position on the meta-path has
|A| possibilities. There are |A|3 possible meta-paths that contain target vertices as the endpoints. Thus,
M ≫ |R′||P ′| when trying to consider all possible meta-paths for complicated graphs.

For the four datasets we tested in experiments, if want to consider all possible meta-path, then we have
M ≫ |R′||P ′|. so the theoretical complexity of HetaFlow is much lower than that of SeHGNN, and much
lower than that of HAN and Simple-HGN according to (Yang et al., 2023).

Feature
projection

Neighbor
aggregation

Semantic
fusion Total

SeHGNN O(nMd2) – O(n(Md2+M2d)) O(nd(M2+Md))
HAN O(nd2) O(nMe1d) O(nMd2) O(nd(Me1+Md))

Simple-HGN O(nld2) O(ne2d) O(nd(e2+ld))
HetaFlow O(nld2) O(|R′||P ′|nd2) O((|R′||P ′| + l)nd2)

Table 2: Time complexity of HetaFlow, SeHGNN, HAN, and Simple-HGN.

5 Experiments

In this section, we conduct experiments on the clustering and classification tasks using benchmark datasets.
We compare the performance of HetaFlow to other state-of-the-art baseline models. The implementation
details are claimed in Appendix D. After testing with benchmarks, we further conduct experiments on several
variants of HetaFlow to validate the effectiveness of each component of our model. We test the validity of
vertex feature adjustment, the importance of introducing parallel flow decomposition, and the influence of
different decomposition methods separately. These ablation studies are illustrated in Appendix E.

5.1 Datasets

We test the performance of HetaFlow on the Heterogeneous Graph Benchmark (HGB) (Lv et al., 2021), using
the following vertex classification datasets:

• ACM. We choose the papers published in SIGMOD, KDD, MobiCOMM, SIGCOMM, and VLDB.
The papers belong to three categories: Data Mining, Wireless Communication, and Database. Then
we construct a subset that comprises 5835 authors (A), 3025 papers (P), and 56 subjects (S). Paper
features are the bag-of-words embedding of keywords. The papers are labeled based on their classes.

• DBLP. We construct a subset of DBLP by selecting 14328 papers (P) and 8789 terms (T). We further
include the related 4057 authors (A) and 20 venues (V) in this subset. According to research areas,

12

Published in Transactions on Machine Learning Research (10/2024)

Algorithm 1 HetaFlow forward propagation.
Require: The node feature {xi,∀ i ∈ V} ,

The number of layers L,
The number of attention heads K,

Ensure: The final node embedding ZV .

for edge type R ∈ R do
Perform BFS based flow decomposition and get a set of parallel flows SR = {P1,P2, . . . ,PnR

};

end for
Get the parallel decomposition S by combine all the sets of several parallel flows S ←

⋃|R|
i=1 SRi

;

Calculate Tee, Tni, ∀ e ∈ E , i ∈ V by one hot encoding according to their types Tee, Tni;

Do edge encoding ZE e ← Tni ∥ Tee ∥ Tnj , ∀ e ∈ E , whereas i, j are the end nodes of e;

for node type A ∈ A do
Node content transformation h′

i ←WA · xi, ∀ i ∈ VA;

end for
for l = 1 . . . L do

for parallel flow P ∈ parallel decomposition S do
for path P ∈ parallel flow P do

Calculate the two adaptive factors: [A1
P
eij

]l ← σ
(
Wl

a1
· ZE eij

+ bl
a1

)
, A2

l
P ←

σ
(
Wl

a2
· TeP + bl

a2

)
;

for node i ∈ VP = P ∩ V do
for node j ∈ N p

i = P ∩Ni do

Calculate path-based representation
[
ĥP

i

]l

using the edge-level instance encoder:

[ĥP
v]l ←

∑
u∈N P

v

σ[wu(h′l
u ⊙A1

P
euv

)];

Calculate weight coefficient αP
ij according to (6);

end for
Combine the learned embeddings from all heads

[
h̄P

i

]l ← ∥K
k=1σ

(∑
j∈N p

i

[
αP

ij

]
k
·
[
ĥP

j

]l
)

;

end for
Perform flow-based adjustments

[
hP

v

]l ←
[
h̄P

v

]l ⊙A2
l
P ;

Calculate the importance weight βP for each path-flow;

end for
Fuse the embeddings of the same node on different paths: ĥl

v ← ΣP ∈P vβP ·
[
hP

v

]l
, ∀ v ∈ V;

end for
Update node features for the next layer with Layer output projection [h′

v]l+1 ← σ
(

Wl
o · ĥl

v

)
, ∀ v ∈ V ;

end for
ZV ← hl

v, ∀ v ∈ V;
return ZV ∀ v ∈ V;

13

Published in Transactions on Machine Learning Research (10/2024)

Table 3: Dataset statistics.
Datasets Nodes Node Types Edges Edge Types Classes Features
ACM 10,942 4 547,872 8 3 1830
DBLP 26,128 4 239,566 6 4 334
Freebase 180,098 8 1,057,688 36 7 1
IMDB 21,420 4 86,642 6 5 1232

we place the authors into four categories: information retrieval, data mining, database, and machine
learning. The research area of each author is labeled based on the conferences they participate in.
We take the bag-of-words representation of keywords as the author features.

• IMDB. We construct a heterogeneous graph that consists of 4278 movies, 5257 actors, and 2081
directors after data preprocessing. We label the movies (Action, Comedy, and Drama) according to
their genre information. Movie features are the bag-of-words representation of its plot keywords.

• Freebase. Freebase is a huge knowledge graph of the world’s information. It involves many aspects
like music, movies, people, and so on. Following the procedure of a previous survey Yang et al. (2020),
we sample a subgraph of 8 categories of vertex types with about 1,000,000 edges.

Simple statistics of the datasets are summarized in Table 3, and network schema is illustrated in Appendix 8.
For vertices with no attributes, we use the average of the features of their neighbors as their input features.

5.2 Baselines

To evaluate the performance of HetaFlow, we compare it with widely-used baselines: RGCN (Schlichtkrull
et al., 2018), HAN (Wang et al., 2019), GTN (Yun et al., 2019), RSHN (Zhu et al., 2019), HetGNN (Zhang
et al., 2019b), MAGNN (Fu et al., 2020), HetSANN (Hong et al., 2020), HGT (Hu et al., 2020), GCN (Kipf
& Welling, 2016), GAT (Velickovic et al., 2018), MECCH (Fu & King, 2024), SeHGNN Yang et al. (2023)
and Simple-HGN (Lv et al., 2021).

For comparison purposes, when testing on the homogeneous and the random-walk-based models, we first
build a homogeneous subgraph, which is homogeneous in both edge and vertex types, for each meta-path. We
then test the model on each subgraph. After obtaining the performance of the model for every meta-path, we
take the best one as the performance of the model. For those models based on random walks, the window
size is set to be 5, walk length to be 100, walks per vertex to be 40, and the number of negative samples to
be 5. For a fair comparison, the embedding dimension is decided according to the best results reported in the
paper Shi et al. (2018) for all models.

5.3 Numerical results

In all the tables, the best and second-best results for each setting are highlighted by red and blue, respectively.
We consider the results to be tied for the best/second-best results if they are close (within 0.1%).

5.3.1 Classification results

From Table 4, we see that HetaFlow has the best performance for most cases, although it does not utilize
meta-paths. In general, HetaFlow has comparable performance on the IMDB dataset and outperforms the
other baselines by 0.5− 0.8% on DBLP and ACM datasets. This verifies our conjecture that parallel flow
decomposition suffers less information loss than meta-path-based reconstruction methods and can make use
of edge directions.

Compared to the models that simply average over vertex neighbors, GAT and Simple-HGN perform well
since they train weights to weigh the information properly. Compared to HAN and MAGNN, HetaFlow,
which requires no manually defined meta-paths, captures even richer semantics successfully.

14

Published in Transactions on Machine Learning Research (10/2024)

Table 4: Quantitative results (%) on HGB for vertex classification task. Performances of benchmark models
are cited from Yang et al. (2023), Fu & King (2024) and Lv et al. (2021).

ACM DBLP IMDB
Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

RGCN 91.55 ± 0.74 91.41 ± 0.75 91.52 ± 0.50 92.07 ± 0.50 58.85 ± 0.26 62.05 ± 0.15
HAN 90.89 ± 0.43 90.79 ± 0.43 91.67 ± 0.49 92.05 ± 0.62 57.74 ± 0.96 64.63 ± 0.58
GTN 91.31 ± 0.70 91.20 ± 0.71 93.52 ± 0.55 93.97 ± 0.54 60.47 ± 0.98 65.14 ± 0.45
RSHN 90.50 ± 1.51 90.32 ± 1.54 93.34 ± 0.58 93.81 ± 0.55 59.85 ± 3.21 64.22 ± 1.03
HetGNN 85.91 ± 0.25 86.05 ± 0.25 91.76 ± 0.43 92.33 ± 0.41 48.25 ± 0.67 51.16 ± 0.65
MAGNN 90.88 ± 0.64 90.77 ± 0.65 93.28 ± 0.51 93.76 ± 0.45 56.49 ± 3.20 64.67 ± 1.67
HetSANN 90.02 ± 0.35 89.91 ± 0.37 78.55 ± 2.42 80.56 ± 1.50 49.47 ± 1.21 57.68 ± 0.44
HGT 91.12 ± 0.76 91.00 ± 0.76 93.01 ± 0.23 93.49 ± 0.25 63.00 ± 1.19 67.20 ± 0.57
GCN 92.17 ± 0.24 92.12 ± 0.23 90.84 ± 0.32 91.47 ± 0.34 57.88 ± 1.18 64.82 ± 0.64
GAT 92.26 ± 0.94 92.19 ± 0.93 93.83 ± 0.27 93.39 ± 0.30 58.94 ± 1.35 64.86 ± 0.43
Simple-HGN 93.42 ± 0.44 93.35 ± 0.45 94.01 ± 0.24 94.46 ± 0.22 63.53 ± 1.36 67.36 ± 0.57
MECCH 92.74 ± 0.40 92.67 ± 0.36 94.34 ± 0.29 95.08 ± 0.25 62.59 ± 1.96 64.62 ± 2.38
SeHGNN 94.05 ± 0.35 93.98 ± 0.36 95.06 ± 0.17 95.42 ± 0.17 67.11 ± 0.25 69.17 ± 0.38
HetaFlow 94.42 ± 0.33 94.31 ± 0.34 95.17 ± 0.30 95.04 ± 0.35 66.79 ± 0.28 69.40 ± 0.33

Table 5: Quantitative results (%) and training time (per epoch/s) on vertex classification task with low-
dimensional vertex feature. Performances of benchmark models are cited from Yang et al. (2023).
Datasets Metrics RGCN HGT GCN GAT Simple-HGN SeHGNN HetaFlow

Freebase
Macro-F1 46.78±0.77 29.28±2.52 27.84±3.13 40.74±2.58 47.72±1.48 51.87 ±0.86 52.13±1.05
Micro-F1 58.33±1.57 60.51±1.16 60.23±0.92 65.26±0.80 66.29±0.45 65.08±0.45 67.10±0.57

Training time 0.85 6.29 - - 0.77 0.31 0.48

All models suffer poor performance on IMDB. This may be due to the labels of vertices: though each movie
vertex may be assigned multiple labels, we merely select the most related one as its label. HetaFlow achieves
a smaller performance gain on DBLP than on the other two datasets. This is mainly because it turns out
that one of the manually defined meta-paths (A-P-C-P-A) contains most of the information necessary for
correct classification. Thus, the performance gain is not as much as on the other two datasets ACM and
IMDB. Another reason is that some vertices are discarded since they are not on the meta-paths. Therefore,
GCN test only a part of the dataset and may avoid vertices that are hard to classify.

Comparing the results in Table 5 and Table 4, we observe that although SeHGNN is the best performer on
IMDB, it has poor performance on Freebase. This may be due to Freebase having insufficient vertex features.
We see that the performance of HetaFlow is more stable across different datasets, which suggests that the
adaptive adjustments in HetaFlow are useful. The training time of GAT and GCN is not recorded since the
performance is of one meta-path. HetaFlow has a fast training speed with the help of data pre-processing
(the parallel flow decomposition) and lower complexity.

5.3.2 Clustering

We conduct the clustering task to evaluate the embeddings learned from the above algorithms. We utilize the
K-Means algorithm to perform vertex clustering and the number of clusters K is set to the number of classes
for every dataset, i.e. 4 for DBLP and 3 for both IMDB and ACM. We use the same ground truth as in vertex
classification. Moreover, we use the Normalized Mutual Information (NMI)(Strehl & Ghosh, 2002) and the
Adjusted Rand Index (ARI)(Yeung & Ruzzo, 2001) to measure the quality of the clustering results. Since the
performance of K-Means is highly affected by the initial centroids chosen, we repeat K-Means ten times for
each run of the model. Furthermore, we run each model 10 times and report the averaged results in Table 6.

As seen in Table 6, on DBLP and ACM, GCN performs better than metapath2vec for the vertex classification
task while metapath2vec is better for the clustering task. Random-walk-based methods (i.e., metapath2vec)

15

Published in Transactions on Machine Learning Research (10/2024)

Table 6: Quantitative results (%) on vertex clustering task.
Datasets Metrics metapath2vec GCN MAGNN HAN GTN Simple-HGN HetaFlow

ACM NMI 21.22±0.51 51.49±0.83 61.96±0.73 61.40±0.14 61.83±0.24 61.94±0.26 62.26±0.25
ARI 21.00±0.41 53.24±0.56 64.79±0.27 64.82±0.24 65.40±0.34 65.34±0.25 66.05±0.24

DBLP NMI 74.22±0.52 75.44±0.52 81.11±0.37 79.09±0.12 81.02±0.36 81.08±0.35 81.81±0.34
ARI 78.50±0.61 80.91±0.97 84.79±0.31 84.56±0.28 85.20±0.24 85.08±0.35 85.40±0.32

IMDB NMI 1.20±0.63 5.79±0.89 10.07±0.55 10.82±0.50 10.45±0.68 11.27±0.86 11.72±0.60
ARI 1.70±0.46 3.78±1.00 9.78±0.55 10.08±0.55 11.53±0.53 11.79±0.89 12.40±0.62

Table 7: Quantitative results (%) of ablation study on parallel flow decomposition. Percentages in the header
denote the sizes of training sets. ’M’ means million.

Model Parameter Size Score 20% 40% 60% 80%

HetaFlowpf 4.78M Macro-F1 90.72±0.29 91.51±0.26 91.97±0.23 92.72±0.16
Micro-F1 90.76±0.30 91.64±0.30 92.28±0.19 92.73±0.19

HetaFlowwo 6.32M Macro-F1 90.84±0.26 91.34±0.20 91.53±0.15 92.01±0.13
Micro-F1 90.92±0.30 91.43±0.28 91.68±0.26 91.97±0.19

HetaFlowlimit 4.98M Macro-F1 89.43±0.19 89.97±0.14 90.32±0.11 91.26±0.11
Micro-F1 89.20±0.24 89.61±0.18 90.54±0.14 90.92±0.08

have advantages in vertex clustering because the use of random walks makes vertices that have small distances
in the graph to be close in the embedding space (You et al., 2019). Thus, the positional information is concerned,
which facilitates the K-Means algorithm as it clusters vertices based on the Euclidean distances between
embeddings. Despite this, HetaFlow performs consistently better than all baselines, which demonstrates that
through the use of parallel flow decompositions, HetaFlow can learn a powerful vertex embedding without
any meta-paths.

5.4 Parallel flow decomposition methods

We study two aspects of the parallel flow decomposition: the influence of introducing such decomposition and
the efficiency of various decomposition methods. We test different approaches on the ACM dataset.

The main motivations for introducing parallel flow decomposition are discussed in Section 4.2. HetaFlow
allows us to assign different weights to the neighboring vertices, i.e., weights are assigned based on positions
instead of distances. With the same number of layers, HetaFlow models can represent a richer class of
polynomials than traditional GNN approaches.

Firstly, we test the models without parallel flow decomposition nor limits on the model sizes. Secondly, we
test models that employ parallel flow decomposition but with a limit on the model size. Then, we test models
without parallel flow decomposition but with similar constraints on model sizes. The results are shown in
Table 7

In Table 7, HetaFlowpf denotes our base HetaFlow model (model size is measured by the number of parameters,
which is limited to 5M in this experiment), i.e., the one we used to compare with other baselines Table 6.
HetaFlowwo is the equivalent model without utilizing parallel flow decomposition and has no limits on its
model size. It decomposes the heterogeneous graph into subgraphs with homogeneous edge types instead.
During convolutions, HetaFlowwo shall assign weights according to the distance as normal GNNs and
HetaFlowwo also keeps the adjustment layers. HetaFlowlimit denotes the model that does not employ parallel
flow decomposition and whose model size is no larger than 5M. From Table 7, we observe that HetaFlowpf
generally has on-par performance as HetaFlowwo even though the model size is much smaller. HetaFlowlimit
has the worst performance.

16

Published in Transactions on Machine Learning Research (10/2024)

Parallel flow 2

v1 v2 v7

v11v12 v15

v8 v14v11 v5

Parallel flow 1

v3v8v4

v12v13

Parallel flow 1

Parallel flow 2

v1 v2 v4

v3v7 v8

v11v12v13 v15

v14

v8

v11v5

(a) HetaFloworder (b) HetaFlowposition

Figure 4: Examples of different parallel flow decomposition methods.

Next, we test different methods to select paths in the parallel flow decomposition using the ACM dataset,
and the results are reported in Table 8. For the decomposition method mentioned in Section 4.2.1, there exist
multiple ways to allocate labels to the edges of the spanning subtree.

We consider the following methods to allocate edge labels during the parallel flow decomposition procedure
(all methods start from the root vertex and then target at the neighbor vertices following the descending
order of their degrees in the tree):

(i) For each vertex under consideration, label adjacent edges according to the descending order of their
end vertices’ degrees in the original heterogeneous graph G. For instance, consider the spanning tree
whose root vertex is v8 as shown in Fig. 2(a). The vertex v8 has four neighbors in the tree: v2 with
degree 4 in the original graph, v3 with degree 3, v4 with degree 2, and v7 with degree 3. We assign
label 1 to the two edges that connect vertices with the first two highest degrees, i.e., the edge (v8, v2)
and the edge (v8, v7). Then we remove v2 and v7 from the neighbor set Nv(8). Repeat the procedure.
After all edges that connect v8 are labeled, we then move to v2, the neighbor vertex of v8. Since one
or several edges that connect our target vertex may have already been assigned with labels, we skip
the corresponding labels so that no label is used more than twice. Here, we obtain the two parallel
flows of Fig. 2(b) as shown in Fig. 4(a). We call this variant HetaFloworder.

(ii) For each vertex v under consideration, select the neighboring vertex with the highest degree in G as
the left neighbor and the neighboring vertex with the lowest degree in G as the right neighbor to
construct a path. Remove these from the neighbor set Nv(1) and repeat the procedure to obtain
another path and so on. Consider the example of v8 in Fig. 2(b) again. We obtain the parallel flows
shown in Fig. 4(b). This variant is denoted as HetaFlowposition.

(iii) For each vertex under consideration, assign random labels to the edges connecting it (from 1 to
⌊(degmax +1)/2⌋) under the constraints that no label is used more than twice. This is our base model
HetaFlowpf.

In addition, we also include a comparison with a clustering approach to create subcomponents as follows.

(iv) We follow Carranza et al. (2018) to construct parallel-flow-like subcomponents. This is denoted as
HetaFlowcluster.

From Table 8, we observe that the different parallel flow decomposition approaches yield similar performance.
This suggests that HetaFlow is insensitive to the choice of parallel flow decomposition method.

5.5 Visualization

To visualize the results more intuitively, we project the embeddings learned by the above models into a
2-dimensional space. We visualize the author embeddings in DBLP with t-SNE (Van der Maaten & Hinton,
2008). Various colors denote the different research areas of the authors.

17

Published in Transactions on Machine Learning Research (10/2024)

Table 8: Quantitative results (%) of ablation study for parallel flow decomposition method. The best and
second-best results for each setting are boldfaced and underlined, respectively. Percentages in the header
denote the sizes of training sets.

Model Score 20% 40% 60% 80%

HetaFloworder
Macro-F1 90.86±0.31 91.22±0.27 91.83±0.13 92.81±0.11
Micro-F1 90.94±0.21 91.46±0.15 92.31±0.15 92.87±0.11

HetaFlowposition
Macro-F1 90.43±0.28 91.67±0.27 91.82±0.19 92.56±0.14
Micro-F1 90.50±0.27 91.54±0.24 92.32±0.25 91.78±0.11

HetaFlowpf
Macro-F1 90.85±0.34 91.43±0.31 92.11±0.30 92.78±0.28
Micro-F1 90.88±0.17 91.57±0.16 92.28±0.13 92.67±0.11

HetaFlowcluster
Macro-F1 90.43±0.28 90.64±0.24 91.30±0.27 91.99±0.34
Micro-F1 90.31±0.21 91.04±0.18 91.71±0.28 91.58±0.20

(a) GCN (b) metapath2vec (c) HAN (dd) HetaFlow

Figure 5: Visualization of other embedding methods on DBLP. Each point indicates one author and its color
indicates the research area.

From Fig. 5, we see that the homogeneous GNN, namely GCN, give more separate islands and the boundaries
between different colors are not clear. Furthermore, we observe an area where all four types of vertices are
mixed. One possible reason is that these two models only take information from one meta-path. For some
vertices, their labels may be hard to tell apart under certain meta-paths.

This phenomenon also appears in the results of other models, but HAN and HetaFlow perform better as they
take information from more meta-paths or the whole heterogeneous graph, respectively. For HAN, we observe
that there are at most three kinds of vertices that are mixed together. Meanwhile, there exist places where
all four types of vertices are mixed in the results of GCN and metapath2vec. When it comes to the result of
HetaFlow, there are fewer places where more than two types of vertices are mixed. Moreover, fewer vertices,
which are of different colors, are mixed when compared with the visualization of HAN.

6 Limitations and Future Work

In graph classification tasks that involve a multitude of graphs in both the training and test sets, HetaFlow
may not perform well. This is because the parallel flow decomposition is not unique. We may get different
subgraphs when performing parallel flow decomposition using different methods on the same graph. As a
result, the filters and attention weights learned on one training graph may not perform well on another graph
unless more restrictions are imposed to make the parallel flow decomposition unique.

In HetaFlow, the graph is decomposed into multiple parallel flows, with each vertex now appearing ⌊(deg +1)/2⌋
times. Moreover, unlike meta-path-based methods, HetaFlow retains all vertices in the graph. The memory
usage of HetaFlow is thus higher during runtime. A future research direction is to investigate the use of
sparse matrix representations and ideas like “drop token” (Hou et al., 2022) to reduce memory storage. An
optimization example is illustrated in Appendix F. Possible future research directions include the investigation
of techniques like sparse matrix representations and dropping of tokens and graph edges to reduce the model

18

Published in Transactions on Machine Learning Research (10/2024)

memory usage of HetaFlow. Due to its similarity to CNNs, there is also room to improve HetaFlow further
by applying the wealth of methods developed for CNN models.

7 Conclusion

In this paper, we have proposed a new HGNN framework called HetaFlow to perform semi-supervised vertex
classification and clustering tasks on heterogeneous graphs. HetaFlow addresses three limitations of existing
HGNNs: loss of vertex content features due to vertex selection, the dependence on meta-path, and allocation
of the same weights to neighboring vertices at the same distances. HetaFlow introduces the notion of parallel
decomposition for heterogeneous graphs, which is used to enable the model to assign different weights to
neighboring vertices at the same distance. This property benefits detailed vertex-level adaptive adjustments.
HetaFlow applies four building block components: vertex content transformation, intra-path aggregation,
adaptive adjustments, and inter-flow aggregation. In experiments, HetaFlow achieves state-of-the-art results
on benchmark datasets in the vertex classification and clustering tasks.

References
Hongjoon Ahn, Yongyi Yang, Quan Gan, Taesup Moon, and David Wipf. Descent steps of a relation-aware

energy produce heterogeneous graph neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Inf. Process. Syst., 2022. URL https://openreview.net/
forum?id=hgNxCMKARgt.

Aldo G Carranza, Ryan A Rossi, Anup Rao, and Eunyee Koh. Higher-order spectral clustering for heteroge-
neous graphs. arXiv preprint arXiv:1810.02959, 2018.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proc. Empirical Methods Natural Language Process., pp. 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. CoRR, abs/1606.09375, 2016.

Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. metapath2vec: Scalable representation learning for
heterogeneous networks. In Proc. Int. Conf. Knowl. Discovery Data Mining, pp. 135–144, Halifax, NS,
Canada, August 2017. ACM. doi: 10.1145/3097983.3098036.

Shaohua Fan, Junxiong Zhu, Xiaotian Han, Chuan Shi, Linmei Hu, Biyu Ma, and Yongliang Li. Metapath-
guided heterogeneous graph neural network for intent recommendation. In Proc. Int. Conf. Knowl. Discovery
Data Mining, pp. 2478–2486, Anchorage, AK, USA, August 2019. ACM.

Tao-Yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in heterogeneous information
networks for representation learning. In Proc. Conf. Inf. Knowl. Manage., pp. 1797–1806, Singapore, SG,
Singapore, November 2017. ACM. doi: 10.1145/3132847.3132953.

Xinyu Fu and Irwin King. Mecch: metapath context convolution-based heterogeneous graph neural networks.
Neural Networks, 170:266–275, 2024.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. MAGNN: metapath aggregated graph neural network
for heterogeneous graph embedding. In The Web Conf. 2020, pp. 2331–2341, Taipei, Taiwan, April 2020.
ACM / IW3C2. doi: 10.1145/3366423.3380297.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proc. Conf. Neural Inf. Process. Syst., pp. 1024–1034, Long Beach, CA, USA, December 2017. NIPS.

Huiting Hong, Hantao Guo, Yucheng Lin, Xiaoqing Yang, Zang Li, and Jieping Ye. An attention-based graph
neural network for heterogeneous structural learning. In Proc. AAAI, volume 34, pp. 4132–4139, 2020.

19

https://openreview.net/forum?id=hgNxCMKARgt
https://openreview.net/forum?id=hgNxCMKARgt

Published in Transactions on Machine Learning Research (10/2024)

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny Zhou.
Token dropping for efficient bert pretraining. In Proc. 60th ACL, volume 32, pp. 3774–3784, Dublin, Ireland,
2022.

Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. Leveraging meta-path based context for top-n
recommendation with a neural co-attention model. In Proc. 24th ACM Int. Conf. Knowl. Discovery Data
Mining, pp. 1531–1540, 2018.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In Proc. Web
Conf. 2020, pp. 2704–2710, 2020.

Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis, and Xiang Li. Meta structure:
Computing relevance in large heterogeneous information networks. In Proc. 22nd ACM Int. Conf. Knowl.
Discovery Data Mining, pp. 1595–1604, 2016.

Roshni G Iyer, Wei Wang, and Yizhou Sun. Bi-level attention graph neural networks. In 2021 IEEE
International Conference on Data Mining (ICDM), pp. 1126–1131. IEEE, 2021.

Feng Ji, Jielong Yang, Qiang Zhang, and Wee Peng Tay. GFCN: A new graph convolutional network based on
parallel flows. In Proc. Int. Conf. Acoustics, Speech, Signal Process., pp. 3332–3336, Barcelona, Spain, May
2020. IEEE. doi: 10.1109/ICASSP40776.2020.9054104. URL https://arxiv.org/pdf/1902.09173.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Int. Conf. Learn.
Representations, San Diego, CA, USA, May 2015. Conf. Track Proc.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutiona networks. CoRR,
abs/1609.02907, 2016.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural networks. In
Proc. AAAI, volume 32, 2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural networks.
In Proc. Int. Conf. Learn. Representations, San Juan, Puerto Rico, May 2016. Conf. Track Proc.

Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander G Hauptmann, and Qinghua Zheng. Adaptive
unsupervised feature selection with structure regularization. IEEE Trans. Neural Networks Learn. Syst.,
29(4):944–956, 2017.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo Jiang,
Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting, benchmarking and refining
heterogeneous graph neural networks. In Proc. 27th ACM SIGKDD, pp. 1150–1160, 2021.

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. In Proc. Int. Conf. Learn. Representations, Scottsdale, Arizona, USA, May 2013a. Workshop
Track Proc.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed representations
of words and phrases and their compositionality. In Proc. Conf. Neural Inf. Process. Syst., pp. 3111–3119,
Lake Tahoe, Nevada, USA, December 2013b. NIPS.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations. In
Proc. Int. Conf. Knowl. Discovery Data Mining, pp. 701–710, New York, NY, USA, August 2014. ACM.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional networks. In Proc. 15th ESWC, pp. 593–607, Heraklion,
Crete, Greece, 2018. Springer.

Jingbo Shang, Meng Qu, Jialu Liu, Lance M. Kaplan, Jiawei Han, and Jian Peng. Meta-path guided
embedding for similarity search in large-scale heterogeneous information networks. CoRR, abs/1610.09769,
2016.

20

https://arxiv.org/pdf/1902.09173.pdf

Published in Transactions on Machine Learning Research (10/2024)

Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. Heterogeneous information network embedding for
recommendation. IEEE Trans. Knowl. Data Eng., 31(2):357–370, 2018. doi: 10.1109/TKDE.2018.2833443.

Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse framework for combining
multiple partitions. J. Mach. Learn. Res., 3(Dec):583–617, 2002. doi: 10.1162/153244303321897735.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. J. Mach. Learn. Res., 9(11):
2579–2605, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In Proc. Int. Conf. Learn. Representations, Vancouver, BC, Canada, 2018.
OpenReview.net.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. Heterogeneous graph
attention network. In Proc. World Wide Web Conf., pp. 2022–2032, San Francisco, CA, USA, May 2019.
ACM. doi: 10.1145/3308558.3313562.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heterogeneous network representation
learning: A unified framework with survey and benchmark. IEEE Transactions on Knowledge and Data
Engineering, 34(10):4854–4873, 2020.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. Simple and efficient heterogeneous
graph neural network. In Proc. AAAI, volume 37, pp. 10816–10824, 2023.

Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, and Quan Wang. Interpretable and efficient
heterogeneous graph convolutional network. IEEE Transactions on Knowledge and Data Engineering, 35
(2):1637–1650, 2021.

Ka Yee Yeung and Walter L Ruzzo. Details of the adjusted rand index and clustering algorithms, supplement
to the paper an empirical study on principal component analysis for clustering gene expression data.
Bioinformatics, 17:763–774, 2001.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. CoRR, abs/1906.04817,
2019.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in Neural Inf. Process. Syst., 32, 2019.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. Heterogeneous graph
neural network. In Proc. Int. Conf. Knowl. Discovery Data Mining, pp. 793–803, Anchorage, AK, USA,
August 2019a. ACM.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Heterogeneous graph
neural network. In Proc. 25th ACM SIGKDD, pp. 793–803, 2019b.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Metagraph2vec: Complex semantic path
augmented heterogeneous network embedding. In Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining,
pp. 196–208. Springer, 2018a.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated attention
networks for learning on large and spatiotemporal graphs. In Proc. Conf. Uncertainty Artif. Intell., pp.
339–349, Monterey, California, USA, August 2018b. AUAI Press.

Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. STAR-GCN: stacked and reconstructed graph
convolutional networks for recommender systems. In Proc. Int. Joint Conf. Artif. Intell., pp. 4264–4270,
Macao, China, August 2019c. IJCAI. doi: 10.24963/ijcai.2019/592.

Runwu Zhou, Xiaojun Chang, Lei Shi, Yi-Dong Shen, Yi Yang, and Feiping Nie. Person reidentification
via multi-feature fusion with adaptive graph learning. IEEE Trans. Neural Networks Learn. Syst., 31(5):
1592–1601, 2019.

21

Published in Transactions on Machine Learning Research (10/2024)

Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. Relation structure-aware heterogeneous
graph neural network. In ICDM, pp. 1534–1539. IEEE, 2019.

22

Published in Transactions on Machine Learning Research (10/2024)

A Proof of Proposition 1

Conv. layer on subgraph S3:

Fusion by sum

(1, 0, 1)

Repeat 2 times:

Conv. layer on subgraph S1:

Fusion by sum

(1, 0, 1)

Conv. layer on subgraph S3:
(1, 0, 1)

Repeat 4 times:

Fusion by sum

×3

Input layer

Output layer

Figure 6: An example HetaFlow network to model a given monomial 3S4
3S1S

2
3 .

Given a target polynomial
∑M

i=1 bi

∏N
j=1 S

kij
aij , we can construct the corresponding HetaFlow model by

generating the equivalent output of each item in this polynomial and finally fuse them. The output of
one monomial can be achieved by concatenating several convolution layers and fusion layers, where every
convolution layer uses a 3×1 filter and fusion layers take different fusion functions with respect to the graph
shift operator to be used. Here we assume that S = A, the adjacency matrix, so fusion layers take sum as the
fusion function (same fusion function if S is the Laplacian matrix; if use normalized adjacency matrix or
normalized Laplacian matrix, then fusion functions should be changed to average).

Recall that Sn denotes the graph shift operator of the subgraph Gn, where Gn is the subgraph consisting of
all parallel flows with the edge type Tn ∈ R|R|. The proposition hypothesis assumes that there is no common
edge between the parallel flows of the same subgraph. After convolutions with the filter (1, 0, 1) alone each
parallel flow of the subgraph Gn, we can achieve the monomial Sn with a fusion layer to sum the output
of each parallel flow. For example, we can achieve the monomial 3S4

3S1S
2
3 with the model shown in Fig. 6,

where assume the graph shift to be the adjacency matrix.

For the general expression bi

∏N
j=1 S

kij
aij , the i-th monomial of our target polynomial, we can choose the filter

(1, 0, 1) and perform convolutions on the subgraph Sai1 by ki1 times, followed by convolutions on the subgraph
Sai2 by ki2 times and so on. HetaFlow repeats similar operations until finally obtaining

∏N
j=1 S

kij
aij . Then by

multiplication with an appropriate coefficient, HetaFlow generates this monomial. The target polynomial is
achieved by summing all the monomials. An explicit example of the whole model is shown in Fig. 7.

HetaFlow needs 1 + 2
∑N

j=1 kij hidden layers to generate the output of one monomial. There are thus
M + 2

∑M
i=1

∑N
j=1 kij hidden layers in total in the HetaFlow model to achieve the polynomial (14).

23

Published in Transactions on Machine Learning Research (10/2024)

Input layer

Conv. layer on subgraph Sa1N :

Fusion by sum

Decomposition based on edge types
Convolution on subgraphs

Output layer

+ +

(1, 0, 1)

Repeat k1N times:

Conv. layer on subgraph Sa1J :

Fusion by sum

(1, 0, 1)

Repeat k1J times:

Conv. layer on subgraph Sa11 :(1, 0, 1)

Repeat k11 times:

Fusion by sum

Conv. layer on subgraph SaMN :

Fusion by sum

(1, 0, 1)

Repeat kMN times:

Conv. layer on subgraph SaMJ :

Fusion by sum

(1, 0, 1)

Repeat kMJ times:

Conv. layer on subgraph SaM1 :(1, 0, 1)

Repeat kM1 times:

Fusion by sum

×bM×b1
×b0

Figure 7: An example HetaFlow network to model a given polynomial.

B Model size

According to Ji et al. (2020),
Theorem 1. For any homogeneous graph G, let degmax be the maximal degree of G. Then

µ(G) ≤ (⌊degmax +1
2 ⌋+ 1)⌊degmax +1

2 ⌋. (16)

The above result is proved as Corollary 1 of Ji et al. (2020). We discuss the upper bound for the heterogeneous
graph case in Section 4.7.

We now present an upper bound of the number of parallel flows in a parallel flow decomposition, which is a
heterogeneous graph version of Theorem 1, after the following lemma.
Lemma 1. Suppose G = G1 ∪ G2. Then µ(G) ≤ µ(G1) + µ(G2).

Proof. Assume that covers of G1 and G2 are given by two sets P = {P1, . . . ,Pm} and Q = {Q1, . . . ,Qn}
respectively, where µ(G1) = |P| and µ(G2) = |Q|. Remove all common edges of the two sets from P to
obtain R, where R = P if there does not exist any common edge. Then, the union R ∪Q is a parallel flow
decomposition of G. Thus, µ(G) ≤ |R|+ |Q| ≤ |P|+ |Q| = µ(G1) + µ(G2) and the proof is complete.

Theorem 2. For any heterogeneous graph G with |R| different edge types, for i = 1, . . . , |R|, let Gi be the
subgraph of G with homogeneous edge type i and degi

m be the maximal degree of Gi. Then,

µ(G) ≤
|R|∑
i=1

(
⌊degi

m +1
2 ⌋+ 1

)
⌊degi

m +1
2 ⌋. (17)

24

Published in Transactions on Machine Learning Research (10/2024)

Proof. By Theorem 1, for each homogeneous subgraph Gi, i = 1, . . . , |R|, we have

µ(Gi) ≤
(
⌊
(
degi

m +1
)
/2⌋+ 1

)
⌊
(
degi

m +1
)
/2⌋. (18)

Since G =
⋃|R|

i=1 Gi, the result follows from Lemma 1.

For a heterogeneous graph G = (V, E) with |A| vertex types and |R| edge types, the transformation layer t has
|A|dt

ind
t
out learnable parameters, where dt

in and dt
out are the dimensions of the input and output embeddings,

respectively.

Suppose the graph G is decomposed into µ(G) parallel flows. Suppose that there are N convolution layers. For
convolution layer n ∈ {1, 2, . . . , N}, assume that the length of the filter used is kn, and the dimensions of the
input and output embeddings are dn

in and dn
out, respectively. Since each convolution layer employs one filter

for each flow, a convolution layer n contains µ(G)kndn
ind

n
out learnable parameters. For each convolution layer,

there exists one corresponding adaptive layer and two attention parts. According to our encoding method, the
dimension of edge embeddings is 2|A|+ |R|. To calculate the corresponding adaptive weights, the adaptive
layer employs four weight matrices whose shapes are dn

in × (2|A|+ |R|), dn
in × 1, dn

out × |A| and dn
out × 1. The

attention mechanism introduces 2(dn
in + dn

out) parameters for each convolution layer n.

Let kmax = maxn k
n, dmax

in = maxn d
n
in, dmax

out = maxn d
n
out, and degmax = maxi degi

m. From Theorem 2,
µ(G) = O(|R|(degmax)2). Then, the HetaFlow model has∑

n≤N

[
µ(G)kndn

ind
n
out + dn

in(2|A|+ |R|+ 3) + dn
out(|A|+ 3)

]
+ |A|dt

ind
t
out

≤ O
(
N |R|(degmax)2|Vmax|kmaxdmax

in dmax
out

+N(|A|+ |R|)(dmax
in + dmax

out)
)

+ |A|dt
ind

t
out

trainable parameters in total.

C Computational complexity

We adopt the same notations as in the previous subsection. Consider the convolution process in a parallel flow
P in the convolution layer n. HetaFlow applies the convolution filter at most |VP | times, once at each vertex of
the flow, where |VP | is the number of vertices contained in the parallel flow P . For each vertex, kn dot products
are computed. Thus, the computational complexity for flow P in the convolution layer n is O(|VP |kndn

ind
n
out).

Let |Vmax| = maxP |VP |. The complexity for all parallel flows is bounded by O(µ(G)|Vmax|kmaxdmax
in dmax

out).

Compared with the convolution process, the vertex-level adjustment process requires one extra step to
calculate the weights. However, this can be omitted since the dimensions of edge-type embeddings are much
smaller than the dimensions of vertex features. Following similar steps in the above discussion, the final
complexity of vertex-level adjustments is O(µ(G)|Vmax|kmaxdmax

in dmax
out).

As for other tasks, the complexities are O(|V|dt
ind

t
out) and O(|V|dp

ind
p
out) for transformation and prediction

part respectively, where layer t is the transformation layer and layer p is the prediction layer. Similarly, for
path-based adjustments, the complexity is O(|V|do

outd
o
out) after ignoring the extra step of weight calculation,

where layer o is the layer that outputs features with the highest dimension.

Supposing that dt
ind

t
out ≥ d

p
ind

p
out and do

outd
o
out, the total computational complexity of HetaFlow is given by

O(µ(G)|Vmax|kmaxdmax
in dmax

out + |V|dt
ind

t
out) ≤

O(|R|(degmax)2|Vmax|kmaxdmax
in dmax

out + |V|dt
ind

t
out).

(19)

25

Published in Transactions on Machine Learning Research (10/2024)

Author Paper Subject Actor Movie Director

Author Paper

Term

Venue

LocationBookFilm

Person Sport

Organi-
zation

Business Music

(a) ACM (b) IMDB (c) DBLP (d) Freebase

Figure 8: Network schema of the four datasets.

D Implementation details

We employ the Adam optimizer (Kingma & Ba, 2015) to optimize the model. To find a suitable initial
parameter setting, we test multiple initial hyperparameter settings, including: different dimensions of the
semantic-level features h from 26 to 21; several numbers of the attention head K including {8, 4, 3, 2, 1};
different numbers of convolution layers from 1 to 4; and various dropout rates from 0.4 to 0.85 with a step
size of 0.15; two learning rates including {0.01, 0.05}; two regularization parameters {0.001, 0.00005}. We
compare with baselines from Lv et al. (2021) and Ahn et al. (2022). For ablation studies, we follow the
settings in Wang et al. (2019). During the robust test, only part of the training set is available, namely
20%, 40%, 60%, 80%, while the random split of training, validation, and testing sets is fixed. Furthermore, we
apply early stopping with a patience of 100.

E More ablation studies

To validate the effectiveness of each component of our model, we further conduct experiments on several
variants of HetaFlow. We test the validity of vertex feature adjustment, the importance of introducing parallel
flow decomposition, and the influence of different decomposition methods separately.

E.1 Robustness test

We test the robustness of HetaFlow by limiting the size of the training set and following the settings in Wang
et al. (2019). The results are shown in Appendix 9. In general, HetaFlow outperforms the other baselines by
1−3% and has comparable performance when it does not. We believe this is due to parallel flow decomposition
suffers less information loss than meta-path-based reconstruction methods.

E.2 Vertex feature adjustment

We consider additive adjustments and multiplicative adjustments for comparison. For additive adjustments,
we perform the following. Equation (5) for our base model uses multiplicative adjustment. For additive
adjustment, we generate the type-based weight matrix Auv in the same way as our base model (4). However,
equation (5) is then changed as follows:

ĥP
v =

∑
u∈N P

v

σ
[
(wP

u + Auv)h′
u

]
. (20)

Furthermore, variants of multiplicative adjustment are possible. In our base model, we adjust features based
on the vertex types of the target vertex and its neighboring vertex during convolution, and the edge types of
their connection. See (1), (4) and (5). This method provides detailed adjustments but has high computational
costs. One vertex feature may be assigned with different adjustment weights in two different convolutions on
the same subgraph.

26

Published in Transactions on Machine Learning Research (10/2024)

Table 9: Quantitative results (%) on vertex classification task with different training splits.
Datasets Metrics Train metapath2vec GCN MAGNN HAN GTN Simple-HGN HetaFlow

ACM Macro-F1

20%
40%
60%
80%

64.53±0.82
69.08±0.77
70.80±0.78
73.97±0.73

87.20±1.04
87.76±0.93
88.14±0.97
90.34±0.77

87.83±0.76
88.48±0.62
90.03±0.16
91.87±0.76

89.92±0.23
90.06±0.29
89.15±0.26
90.16±0.16

90.43±0.56
91.12±0.49
92.24±0.50
92.81±0.67

90.59±0.75
91.24±0.62
92.08±0.54
92.93±0.58

91.83±0.31
92.18±0.37
92.84±0.38
94.10±0.31

Micro-F1

20%
40%
60%
80%

64.68±1.14
69.23±0.93
71.59±0.92
73.88±0.83

86.78±1.13
87.43±1.01
88.39±1.01
89.76±0.85

86.89±0.90
87.43±0.89
88.31±0.85
90.25±0.67

89.03±0.21
89.67±0.18
89.39±0.17
90.28±0.14

90.67±0.42
91.35±0.39
92.13±0.41
92.71±0.27

91.13±0.46
91.65±0.66
92.30±0.50
93.09±0.55

91.79±0.37
92.43±0.32
93.24±0.29
94.04±0.31

DBLP Macro-F1

20%
40%
60%
80%

89.91±0.88
89.71±0.74
90.46±0.78
90.43±0.71

89.31±0.64
90.81±0.68
90.87±0.71
91.25±0.66

90.56±0.97
92.22±0.91
92.79±0.76
93.31±0.71

90.04±0.29
90.92±0.28
91.57±0.22
92.16±0.22

91.13±0.42
92.47±0.56
93.73±0.61
93.71±0.47

91.04±0.23
92.53±0.28
93.71±0.39
93.91±0.20

91.48±0.34
92.90±0.45
93.43±0.42
94.37±0.34

Micro-F1

20%
40%
60%
80%

88.62±1.12
89.89±1.04
90.35±1.03
90.61±0.61

88.44±0.81
89.21±0.76
90.80±0.56
91.06±0.66

90.90±1.05
91.84±0.95
93.03±0.81
93.88±0.76

90.58±0.25
91.27±0.18
91.94±0.13
92.13±0.12

91.42±0.45
92.18±0.37
93.42±0.58
93.81±0.64

90.40±0.24
91.96±0.28
93.03±0.26
93.82±0.28

91.52±0.29
92.15±0.30
94.43±0.27
94.27±0.33

IMDB Macro-F1

20%
40%
60%
80%

40.74±1.09
44.47±0.76
44.24±0.67
45.56±0.70

44.85±1.15
47.86±1.03
49.07±0.71
51.93±0.64

49.68±1.14
52.11±1.01
53.96±0.87
55.29±0.74

51.10±1.19
52.08±1.21
54.08±1.18
55.57±1.17

51.13±1.13
52.43±1.21
54.61±1.18
55.40±1.16

51.59±0.98
53.17±1.05
55.44±1.26
56.85±1.22

52.28±1.22
53.89±1.20
56.38±1.16
59.42±1.08

Micro-F1

20%
40%
60%
80%

45.47±0.94
48.05±0.89
48.86±0.78
48.86±0.78

50.26±0.88
51.88±0.84
51.76±0.83
55.08±0.68

54.68±0.86
56.25±0.71
55.94±0.68
56.46±0.66

55.91±1.29
57.49±1.29
58.37±1.28
58.94±1.24

57.41±1.19
58.18±1.22
58.86±1.22
59.11±1.24

55.63±1.38
58.81±1.16
59.60±1.21
60.85±1.22

56.42±1.26
59.12±1.19
61.11±1.26
62.39±1.18

Another variant of multiplicative adjustment is to conduct adjustments according to the type of vertex to
be adjusted and the edge types in the subgraph to be worked on, which means one vertex shares the same
adjustment weights on one subgraph. For this method, the equation (1) is changed as follows:

ZuP = Tu ∥TP , (21)

where TP is the one-hot encoding of the edge type of parallel flow P. This adjustment method can be
performed before the convolution operation. The equations (4) and (5) are replaced by:

AuP = σ (WaZu + ba) ,
h′

uP = h′
u ⊙AuP ,

ĥP
v =

∑
u∈N P

v

σ
(
wP

u h′
uP

)
.

(22)

This method results in notable computational cost reduction. For instance, consider the example shown in
Fig. 2. Vertex v11 needs four adjustment weights for the base model but requires only one adjustment weight
for this second approach. However, the second approach provides less detailed adjustments than our base
model.

We report the results obtained from the three datasets on vertex classification in Table 10. Each score (i.e.,
either Macro-F1 or Micro-F1) is an average of the scores in different training proportions. Here HetaFlowbase is
our base model, i.e., the one used to compete with other baselines in Appendix 9 and Table 6. Let HetaFlowwo
be the variant model without utilizing vertex feature adjustments; HetaFlowflow be the variant that follows
(21) and (22), which performs flow-based multiplicative adjustments; and HetaFlowadd be the model that
uses the additive adjustment in (20). All other settings are the same for these variants of HetaFlow.

From Table 10, we observe that in most cases, adjustments used in our base model yield the best outputs,
whereas flow-based multiplicative adjustment has the second-best performance. The gap between these two

27

Published in Transactions on Machine Learning Research (10/2024)

Table 10: Quantitative results (%) for different adjustment methods in HetaFlow.

Datasets Score wo add flow base

ACM Macro-F1 90.10 88.14 91.23 91.79
Micro-F1 90.31 88.27 91.44 91.85

DBLP Macro-F1 92.86 91.64 93.81 94.41
Micro-F1 93.65 91.99 94.12 94.72

IMDB Macro-F1 52.80 50.22 53.76 53.85
Micro-F1 57.69 55.91 58.39 58.17

methods is however small. The additive adjustment approach is inferior to the multiplicative adjustments.
Together with the variant without vertex feature adjustment, these produce the worst performances.

F Drop Token Examples

Though the number of filters in HetaFlow does not scale with the size of the graph, the heterogeneity of a
graph affects the number of parallel flows required. Since each parallel flow requires a separate filter, we may
need to discard some edges to decrease the parallel flow number. We may need to make a trade-off between
the number of parallel flows and the number of omitted edges.

v1 v2

v5

v4v3

v6

v9

v7 v8

v10 v11 v12

Figure 9: An example molecule graph. Different colors for edges indicate different types.

For example, consider the heterogeneous molecule graph shown in Fig. 9, which has one type of vertices
and two types of edges. Assume that twelve black edges in this graph belong to edge type 1 while the red
edge connecting v6 and v7 belong to edge type 2. To contain all edges in the parallel flow decomposition, we
will need two parallel flows. One parallel flow contains the path P1 = (v6, v7) while the other consists of two
paths P2 = (v1, v2, v6, v10, v9, v5, v1) and P3 = (v3, v4, v8, v12, v11, v7, v3). However, if we discard the type 2
edge, then we only need one parallel flow. This means that by discarding the edge (v6, v7), we reduce the size
of our model almost by half while only losing 7.7% of the edges. Research on methods that choose the edges
to be discarded is part of our future work.

HetaFlow’s convolution filter assigns various weights to the neighbor vertices based on the position relationships
between them and the central vertex. On the other hand, if one chooses the graph adjacency or Laplacian
matrix as the graph shift operator for a GCN, then a common weight is shared by the neighbors with the
same distance to the central vertex. In this regard, HetaFlow is much closer to CNN, which means it may
benefit from techniques developed for CNNs. Our future work includes investigations into this observation.

28

	Introduction
	Related work
	Graph neural networks
	Heterogeneous graph embedding

	Preliminaries
	Heterogeneous adaptive flows
	Motivation and differences
	Flow decomposition
	Implementation

	Feature embedding
	Intra-path aggregation
	Inter-flow aggregation
	Training
	Analysis of HetaFlow
	Generality
	Time complexity

	Experiments
	Datasets
	Baselines
	Numerical results
	Classification results
	Clustering

	Parallel flow decomposition methods
	Visualization

	Limitations and Future Work
	Conclusion
	Proof of Proposition 1
	Model size
	Computational complexity
	Implementation details
	More ablation studies
	Robustness test
	Vertex feature adjustment

	Drop Token Examples

