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ABSTRACT

The ability to learn from large batches of autonomously collected data for pol-
icy improvement—a paradigm we refer to as batch online reinforcement learn-
ing—holds the promise of enabling truly scalable robot learning by significantly
reducing the need for human effort of data collection while getting benefits from
self-improvement. Yet, despite the promise of this paradigm, it remains challenging
to achieve due to algorithms not being able to learn effectively from the autonomous
data. For example, prior works have applied imitation learning and filtered im-
itation learning methods to the batch online RL problem, but these algorithms
often fail to efficiently improve from the autonomously collected data or converge
quickly to a suboptimal point. This raises the question of what matters for effective
batch online reinforcement learning in robotics. Motivated by this question, we
perform a systematic empirical study of three axes—(i) algorithm class, (ii) policy
extraction methods, and (iii) policy expressivity—and analyze how these axes
affect performance and scaling with the amount of autonomously collected data.
Through our analysis, we make several observations. First, we observe that the use
of Q-functions to guide batch online RL significantly improves performance over
imitation-based methods. Building on this, we show that an implicit method of pol-
icy extraction—via choosing the best action in the distribution of the policy—is nec-
essary over traditional explicit policy extraction methods from offline RL. Next, we
show that an expressive policy class is preferred over less expressive policy classes.
Based on this analysis, we propose a general recipe for effective batch online RL.
We then show a simple addition to the recipe, namely using temporally-correlated
noise to obtain more diversity, results in further performance gains. Our recipe
obtains significantly better performance and scaling compared to prior methods.!

1 INTRODUCTION

The success of modern deep learning has hinged on the ability of learning methods to leverage vast
amounts of data. In robotics, although recent works have focused on mitigating this gap by proposing
large robotic datasets (Open X-Embodiment Collaboration, 2024; Khazatsky et al., 2024), robot
learning continues to operate under a substantially smaller data regime than other fields due to the
amount of human supervision required for data acquisition. Even in relatively large data regimes,
policies based on imitation learning often struggle to achieve reliable performance. Instead of or
in addition to manually collecting robotic data, a desirable alternative is to learn policies that can
self-improve. Evidence in both robotics and language modeling have suggested that self-improvement
via reinforcement learning (RL) can yield substantial performance gains. However, online RL settings
as they have been traditionally studied in robotics can be impractical to scale up to deployment
scenarios, as they typically involve updating the policy frequently during policy execution to make
use of deployment data. Scaling up this paradigm would involve updating large models in the loop
of execution and handling potentially unstable or unsafe behaviors as the policy is learning, both of
which are challenging practical constraints. Instead, another setting we can consider is to iteratively
perform offline improvement with batches of online deployment data. We refer to this as batch online
RL, a training paradigm in which policies generate large batches of rollouts that are then used to
iteratively refine those same policies. This paradigm has the potential to enable truly scalable robot
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learning by significantly reducing the need for human effort of data collection due to benefits from
self-improvement.

Learning from autonomously collected data for policy improvement, however, remains a significant
challenge in robot learning as current algorithms struggle to fully leverage this autonomous data
(Mirchandani et al., 2024). Prior methods have focused on tackling this through either imitation
learning (IL) or filtered-IL methods (Liu et al., 2023; Ahn et al., 2024; Bousmalis et al., 2023).
Despite their intuitive appeal, these approaches have yielded suboptimal results. IL methods have
inherent limitations in their ability to leverage suboptimal demonstrations within autonomously
collected datasets, while methods based on weighted or filtered IL often have diminishing returns and
do not scale well with increasing amounts of autonomous data (Mirchandani et al., 2024). This raises
the question: what are the necessary components to enable batch online RL? We posit that effective
use of autonomously collected data requires policies that not only can collect diverse trajectories but
also can learn from this diversity.

In this work, we perform a systematic empirical study to investigate what enables effective batch
online RL in robotics with the goal of providing a general recipe to tackle this problem. We break
down the key components of batch online RL approaches into several axes—i(i) algorithm class,
(i) policy extraction methods, and (iii) policy expressivity—and analyze how each of them affects
performance. The first axis we analyze is the algorithm class. Prior approaches to the batch online RL
problem in robotics often focus on IL or filtered-IL methods as approaches that are easy to carry out.
We compare these to an algorithm class that can more effectively benefit from diverse suboptimal
data—value-based RL. We observe that utilizing a Q-function—trained on the cumulatively collected
data—to guide the policy enables it to leverage the diversity in the autonomous data to learn new
behaviors, thereby overcoming barriers to using autonomous data for self-improvement and scaling
significantly better. Among the different methods of using a Q-function, we find that the expressivity
of the policy class and policy extraction method are vital choices. Specifically, an expressive policy is
necessary to both generate and consume diverse data, and an implicit method of policy extraction,
where we choose the best action in the distribution of the policy, significantly outperforms traditional
explicit policy extraction methods.

Based on these observations, we propose a general recipe for effective batch online RL: train
an expressive IL policy as the actor, train a Q-function on the autonomous data, and perform
implicit policy extraction using the Q-function to obtain a policy for autonomous rollouts. On top
of the recipe, we propose a simple practical addition to induce even more diversity and achieve
better sample efficiency: applying a small amount of temporally correlated noise modeled by the
Ornstein—Uhlenbeck process during autonomous rollouts. Overall, our recipe results in up to 2x
performance improvement over previous methods on a set of six complex robotic manipulation
tasks from Robomimic (Mandlekar et al., 2021), Adroit (Rajeswaran et al., 2018), and MimicGen
(Mandlekar et al., 2023). Finally, we validate the practicality of the recipe on a challenging real-world
robotics task, improving over the initial policy by 30% in success rate in three iterations of batch
online RL.

2 RELATED WORK

Autonomous Improvement. There has been growing interest in the robotics community in au-
tonomous improvement—where an initial set of demonstrations is used to collect autonomous data
which can be leveraged for learning better policies. Several works (Liu et al., 2023; Ahn et al., 2024;
Bousmalis et al., 2023; Mirchandani et al., 2024; Zhou et al., 2024) have attempted to use IL or
filtered-IL. methods as the algorithm for improvement. However, policy improvement can saturate
quickly (Mirchandani et al., 2024). This is likely due to the fact that the methods do not effectively
leverage suboptimal or failure data, and can lack diversity in the autonomous data that they collect.
Nevertheless, these methods can be appealing because of their simplicity and because they avoid
some of the practical challenges of running real-world online RL. Zhou et al. (2024) provides a
system for autonomous improving policies. However, they operate in a goal-conditioned multi-task
setting. Nakamoto et al. (2024) explores improving robot foundation models without training the
models themselves, but training a value function for guidance; our recipe outperforms this approach
in our real robot experiments.
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Figure 1: Overview. We consider the batch online RL problem setting, in which a policy is trained on
an initial dataset, used to collect batches of autonomous data during deployment, and then re-trained
on the accumulated dataset. We analyze three critical axes in a spectrum of approaches to the batch
online RL problem: policy expressivity, algorithm class, and policy extraction method. We propose a
general effective recipe of training an expressive IL policy as the actor, value-based RL to learn a
Q-function, and performing implicit policy extraction with the Q-function to get a policy for rollouts.

Finetuning Offline RL. While running online RL methods from scratch can be prohibitively
expensive, it is possible to accelerate the process by using prior demonstrations. There are several
techniques for doing so, such as including the offline data in the replay buffer (Vecerik et al., 2017;
Hester et al., 2018; Song et al., 2023; Ball et al., 2023) and regularizing the policy with a behavior
cloning loss (Rajeswaran et al., 2018). Additionally, it is possible to use offline RL (Peng et al., 2019;
Kumar et al., 2020) to initialize a policy and value function, and then improve these policies with an
online fine-tuning procedure (Nakamoto et al., 2023; Nair et al., 2021; Kostrikov et al., 2022; Lyu
et al., 2022). However, online fine-tuning can be challenging (Nakamoto et al., 2023; Lee et al., 2021)
due to distribution shifts and catastrophic forgetting of the initialization. We operate in a different
setting, where large batches of deployment data are collected autonomously using a fixed policy,
and then that policy is iteratively refined offline based on the deployment data. This setting has the
advantage of decoupling training from data collection during policy deployment.

3 PRELIMINARIES

In this section, we describe the batch online RL problem setting, as well as ingredients from prior
approaches that are relevant to our empirical study in Section 4.

Batch Online RL. Robotics operates under a substantially smaller data regime than other fields
due to the difficulty in obtaining data. Instead of or in addition to manually collecting robotic data,
a desirable alternative is to enable robots to self-improve. While online RL methods can address
this problem in theory, running online RL in the real-world is practically challenging because of
the need to train during deployment. The challenges arise from the need to update the policy in the
loop of execution, which can be challenging as models scale, and also from the fact that the policy
may undergo unstable or unsafe behaviors as the policy is learning. A middle ground is instead to
iteratively perform offline self-improvement with batches of online collected data. Various forms of
this have appeared in prior works (Matsushima et al., 2020; Riedmiller et al., 2022). We refer to this
setting as batch online RL.

We formulate batch online RL in the context of a Markov Decision Process (MDP) M =
(S, A,~,p,r, o) (Bellman, 1957). S denotes the state space and .A denotes the action space. (s, a)
is the reward function mapping from state and action pairs to rewards, pi is a initial state distribution,
and p(s’|s, a) denotes the transition dynamics. As in traditional RL, the objective is to find a policy 7
that maximizes the expected sum of discounted rewards E,..,~ -y [>_, 7'7(s¢, a;)] where p™ (7) gives
the likelihood of a trajectory 7 under 7.

Unlike traditional RL, the policy 7 is frozen during a given deployment. It may, however, be updated
offline after each iteration of collecting a batch of data. We provide a general framework for the batch
online RL setting in Algorithm 1. An initial policy 7 is trained from an offline dataset Dy. Then, for
each iteration ¢, the policy 7r;_1 is used to collect rollouts D;, which is appended to the original dataset
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and trained on to obtain 7;. Depending on the specific approach, a Q-function may also be trained
at each iteration and used to guide rollouts. This is repeated for N iterations to obtain the final policy.

Having introduced the problem setting, we now discuss key D, « Collect offline dataset
ingredients of existing works and problem settings that are (o < UpdateValue(Dy)

relevant to our empirical analysis of batch online RL. mo < UpdatePolicy(Do)
foriinl...N do

N . . . D; < Collect M rollouts
Imitation Learning. Several works (Liu et al., 2023; Ahn with Rollout(ms—1, Q1)

et al., 2024; Bousmalis et al., 2023; Mirchandani et al., 2024) Q; « UpdateValue(U;D;)

have attempted to use imitation learning-based methods as an 7; < UpdatePolicy(U;D;)
approach to the batch online RL problem. Imitation learning end

is often formulated as behavior cloning, which uses supervised Algorithm 1: Framework of
learning to learn a policy 7y parameterized by 6 to maximize the Batch Online RL

log-likelihood of actions in a dataset D, E(, 4)~p[log mg(a | s)].

In the batch online RL setting, 7; is updated by training on a combination of the base dataset Dy and
its own online rollouts. In the case of filtered imitation learning, transition samples are reweighted—
with a weighting of 1 assigned to transitions sampled from successful trajectories and a weighting of
0 assigned to failures.

Value-based RL. A large body of work in offline RL (Kumar et al., 2020; Kostrikov et al., 2022;
Nair et al., 2021; Wu et al., 2019) has studied the problem of learning a policy from a static offline
dataset D. As we discuss in Section 4, we consider applying techniques from offline RL within
the UpdateValue and UpdatePolicy step at each iteration of batch online RL. We emphasize the
distinction from pure offline RL, where no online transitions are collected, and pure online RL, where
training occurs during the rollout procedure.

In this work, we primarily consider the Implicit Q-Learning (IQL) (Kostrikov et al., 2022) value
objectives given its effectiveness on a range of tasks. IQL aims to fit a value function by estimating
expectiles 7 with respect to actions within the support of the data, and then uses the value function
to update the Q-function. To do so, it aims to minimize the following objectives for learning a
parameterized Q-function (04 (with target Q-function () ) and value function V;:

LQ(¢) = E(S,a,r,s’)wD (T + WVQ(SI) - Q¢(Sa a))z] (1)
Ly () = Esa)~p [L3 Qg (s,a) = Vi(s))], ()

where L} (z) = |t — 1(z < 0)|22. Intuitively, 7 is a hyperparameter that controls how much the
value function approaches the maximum of the Q-function, with greater 7 making the value function
closer to the maximum. The policy can then be recovered from the Q-function and value function via
a policy extraction step. As in IQL, we consider Advantage-Weighted Regression (AWR) (Peng et al.,
2019) as a canonical example of a policy extraction method. AWR aims to maximize

Jﬁ(e) = E(s,a)ND[eﬁ(Q(s’“)_V(s)) log 7r9(a|8)],

where (3 is a hyperparameter to interpolate between behavior cloning and recovering the maximum
of the Q-function. In the following section, we consider a spectrum of batch online RL approaches,
examining algorithms leveraging IL or value-based RL, different policy extraction methods, and
policy expressivity.

4 EMPIRICAL ANALYSIS OF BATCH ONLINE RL

We now introduce our analysis setup. Given the general framework of batch online RL as presented
in Algorithm 1, we perform a systematic empirical study on a spectrum of approaches to understand
key axes that affect performance. Specifically, we analyze the following:

1. Algorithm class. We perform experiments with imitation learning and filtered-IL objectives as
well as value-based RL objectives for updating the policy (Section 4.1).

2. Policy extraction method. We consider two methods of extracting policies from a value-based
RL method, which we refer to as explicit and implicit policy extraction (Section 4.2).
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Figure 2: Simulation environments. Robomimic tasks: Lift, Can, Square; MimicGen tasks:
Threading, Stack; Adroit tasks: Pen.

60

Normalized Return
o
S
\ \
\
|
|
|
o
3

30 30 3
0 2 4 6 8 10 0 3 6 9 12 02 4 6 8 10 02 4 6 81012 0 4 8 12 16 0 2 4 6 8 10
Iteration Iteration Iteration Iteration Iteration Iteration
—— Value-based RL L Filtered IL

Figure 3: Normalized returns of different algorithm classes over multiple iterations of improvement.
Value-based RL significantly outperforms IL and filtered-IL. Runs are 3 seeds, 100 evaluations with
error bars showing standard error.

3. Policy expressivity. We analyze the effects of policy expressivity, focusing on two policy classes:
a Gaussian policy and an expressive diffusion-based policy (Section 4.3).

Experimental Setup. We perform our study in simulation and validate our findings on a real-
robot manipulation task. We choose six challenging continuous control environments in simulation:
Lift, Can, and Square from Robomimic (Mandlekar et al., 2021); Stack and Threading from
Mimicgen (Mandlekar et al., 2023); and Pen from Adroit (Rajeswaran et al., 2018). We illustrate
these environments in Figure 2. The size of Dy varies from 5 to 100 demonstrations depending on the
task difficulty; we choose this size such that the base policy 7y performs at a success rate between
30-65%, putting it in a realistic scenario that leaves room for improvement. We run N=10 to 20
iterations of batch online RL with A/=200 rollouts per iteration.

Based on our results, in Section 5 we present a recipe for batch online RL, and demonstrate the
practicality of the recipe on a challenging real-world robotic task of hanging tape on a hook.

4.1 WHICH ALGORITHM CLASS WORKS BEST?

We first perform a controlled set of experiments to identify the extent to which algorithm class
affects performance in batch online RL. Three classes of algorithms are commonly used in prior
works; (@) IL, which is the most straightforward approach for learning from autonomous rollouts,
(b) filtered-IL, which filters low-quality rollout trajectories prior to re-training to ensure that
the policy only taps into successful demonstrations, and (c) value-based RL which attempts to
additionally learn from negative data via learning a value function and performing a Bellman update.

For all of the algorithm classes, we use a diffusion-based policy as the default. For value-based RL,
the default extraction method we consider is only using the Q-function for guidance; specifically,
during rollouts, multiple actions {ai}i:1727m, ~ are sampled from the policy and the best action
arg max,, Q(s, a;) is selected. Since we use a diffusion policy as the base policy, this can be instan-
tiated as Implicit Diffusion Q-Learning (IDQL) (Hansen-Estruch et al., 2023). We examine policy
extraction choices individually in more detail in Section 4.2 and policy expressivity in Section 4.3.

Value-based RL is necessary for overcoming suboptimal convergence of Filtered-IL. In Figure 3,
we present the average normalized returns over iterations of batch online RL for each algorithm class
on our six tasks. We observe that value-based RL methods tend to significantly outperform IL-based
methods. Vanilla IL performs the worst on all tasks, which is perhaps not surprising as vanilla IL
will fit the failure trajectories of the autonomous rollouts. Filtered-IL, while exhibiting an initial
improvement, often converges quickly to suboptimal performance compared to value-based RL.
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Figure 4: Heatmap of the state visitations of successful trajectories after batch online RL for
value-based RL and filtered-IL on Lift and Square. A 3D plot of end-effector positions as well as a
2D cross-section are shown for each task. Darker colors correspond to higher density of visitation.
Note that value-based RL methods achieve more state diversity in successful rollouts.

Value-based RL generates and consumes more diverse data than imitation-based methods. We
hypothesize that the better performance of value-based RL methods is a result of a better ability
to leverage diversity in autonomously collected data. We examine heatmaps for state visitation of
trajectories during batch online RL in Figure 4. We see that value-based RL methods result in much
more diverse trajectories after batch online RL. Intuitively, this makes sense because value-based RL
methods can use the Q-function to determine which states and actions are desirable even in failure
trajectories, thus allowing the policy to learn from a more diverse set of trajectories including failures.

Value-based RL scales better with larger batches of -
autonomous data. An important desiderata for choosing 5 ,
an algorithm class for the batch online RL problem setting
is the ability to scale performance with the amount of
collected at each iteration. For each environment, we set
M to a small, medium, and large value: 50, 100, and 200
trajectories for Robomimic and Mimicgen, and 100, 200, and
300 for Adroit Pen. We present the results of data scaling .
in Figure 5. We see that value-based RL achieves the best Small Medium Large
scaling across the board. In all but one task, value-based RL I we Filered IL WS Value-based RL
performs significantly better as the amount data increases,

suggesting stronger ability to leverage large batches of data  Figure 5: Normalized returns of dif-
for improvement. This is in contrast to IL or filtered-IL which  ferent algorithm classes at various
tend to saturate with more data collected at each iteration. data scales averaged across all tasks.
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Value-based RL is necessary but not sufficient for batch online RL. One takeaway from this
section is that for batch online RL, we cannot get away with just doing IL or filtered-IL as many
prior works suggest. But if this is the case, why have prior works seen limited benefits of value-based
RL in practice (Mirchandani et al., 2024; Mandlekar et al., 2021)? We posit that value-based RL as
the algorithm class for updating the policy is necessary but not sufficient. There are other choices that
are critical for value-based RL methods to work for batch online RL—specifically, policy extraction
method (Section 4.2) and policy class (Section 4.3).

4.2 HOW TO EXTRACT THE POLICY?

Given the advantages of value-based RL compared to IL and filtered-IL. methods in the batch online
RL setting from Section 4.1, the second axis we consider is how to extract the policy from the value
function. We separate policy extraction into two distinct categories, explicit policy extraction and
implicit policy extraction, to analyze the effect of extraction method on performance.

(a) Explicit policy extraction. Prior works in offline RL typically carry out policy extraction
following the idea of maximizing the Q-value while staying close to the behavior policy. This is done
through maximizing a RL objective and an IL objective offline to learn the policy. This approach has
the advantage of explicitly learning on signals from the Q-function, while still making the policy stay
close to the behavior dataset. For our experiments, we select Advantage-Weighted Regression (AWR)
(Peng et al., 2019) as a canonical example of explicit policy extraction that follows this principle,
as described in Section 3.

(b) Implicit policy extraction. In contrast to a separate policy extraction step that explicitly extracts
a policy to maximize Q-values, an alternative for policy extraction is to optimize for the best actions
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Figure 6: Normalized returns of explicit versus implicit policy extraction. Pre refers to the initial
base policy g trained on Dy and Post refers to the policy after completing iterations of batch online
RL. Returns are averaged over 3 seeds and 100 evaluation trials at each iteration with error bars
showing standard error.

in the distribution of the policy, which we refer to as implicit policy extraction. One simple approach
for carrying this out is to select actions online by querying the Q-function, where multiple actions
are sampled from the policy and the highest Q-value action is selected. While implicit policy
extraction loses potentially useful signals from the Q-function for the policy, it has the advantage
of disentangling the value function and policy training, which provides more stable learning.

Implicit policy extraction significantly outperforms explicit policy extraction in batch online RL.
Figure 6 shows the average normalized returns before (Pre) and after (Post) running batch online RL
with explicit versus implicit policy extraction. The number of iterations varies for each task; refer to
Figure 3 for details on iterations. Interestingly, we find that although explicit policy extraction achieves
a stronger initial performance in nearly every benchmark task, implicit policy extraction performs
significantly better after running batch online RL. In fact, explicit policy extraction does not improve
the policy performance on any of the tasks. This result indicates that the policy extraction approach is
critical in batch online RL, likely due to implicit policy extraction leveraging diverse autonomous data
more effectively: while explicit policy extraction approaches provide more signals from the value func-
tion for policy learning, this signal becomes detrimental when new, diverse data is added during batch
online RL and causes a shift in action distribution. The policy extracted from explicit policy extraction
cannot adjust to this shift as well as implicit policy extraction, resulting in subpar performance.

4.3 DOES THE EXPRESSIVITY OF THE POLICY MATTER?

From the preceding analysis, we observe that value-based RL outperforms IL and filtered-IL in batch
online RL settings. One natural question is whether value-based RL with implicit policy extraction is
sufficient, or whether the choice of policy class also matters for performance. The third axis we ana-
lyze is expressivity of the policy class. We focus on two classes: a Gaussian policy and an expressive
diffusion-based policy. Both use supervised IL objectives and the value function objectives from IQL.

(a) Gaussian policy. Gaussian policies model the mean and variance of 7(a|s) and sample actions
from the learned mean during rollouts. Though they are a less expressive class of policies, Gaussian
policy are still worth examining because they are fast for inference, which is especially desirable in
real-world tasks. On top of that, offline RL methods such as ReBRAC (Tarasov et al., 2023) based on
Gaussian policies have shown performance on par to diffusion based methods, and current online RL
methods based on Gaussian policies have been successful even in challenging real-world tasks (He
et al., 2025; Lin et al., 2024; Yin et al., 2024; Lin et al., 2025), suggesting perhaps less expressive
policies can be just as effective for value-based RL.

(b) Expressive diffusion policy. Diffusion-based policies are a highly expressive policy class which
use a Markovian noising and denoising process to model the behavior distribution of the data. This
allows them to better model multimodal action distributions. A further advantage of diffusion-based
policies is that they lend themselves well to implicit policy extraction approaches as expressive policy
classes can capture a more diverse distribution more effectively.

Expressive diffusion policies with implicit policy extraction outperform Gaussian policies with
explicit policy extraction. In Figure 7, we compare the performance of expressive policies with
Gaussian policies before and after running multiple iterations of batch online RL. For the expressive
policy class, we use implicit policy extraction as analyzed in Section 4.2. For Gaussian policies, since
the action distribution is less expressive, we use explicit policy extraction. We find that across all
tasks and environments, the former significantly outperforms the latter.
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Figure 7: Normalized returns of value-based RL with diffusion versus Gaussian policy before
and after improvement. To address confounding of policy extraction methods, we show both explicit
and implicit policy extraction approaches for Gaussian policies. Returns are averaged over 3 seeds
and 100 evaluation trials at each iteration with error bars showing standard error.

Expressive policies enable better implicit policy extraction. To control for the advantages of the
implicit policy extraction method in batch online RL that we observed in Section 4.2, we additionally
run a version of the Gaussian policy with implicit policy extraction by sampling actions from the
learned mean and variance and using the Q-function for guidance during rollout. Although there
is a significant improvement over Gaussian policies with explicit policy extraction, the overall
performance is considerably worse than that of an expressive policy. With the expressive policy, the
initial policy can better capture the action distribution which ultimately leads to stronger improvement
during batch online RL. Why might less expressive Gaussian policies be sufficient for online RL but
not batch online RL? In online RL, the action distribution 7(a|s) modeled by the policy is always
changing as the policy is updated each step. This means there will always be new actions taken, so
the policy does not need to have a good model of the action distribution from the initial dataset to
enable improvement. This is in contrast to batch online RL, where to leverage diversity of the online
data, the initial model needs to have captured enough of an expert action distribution to collect useful
trajectories that can then be used to improve the policy.

5 RECIPE FOR BATCH ONLINE RL

Based on our analysis from Section 4, we propose the following recipe for batch online RL: train
an expressive IL policy as the actor, train a Q-function on the autonomous data, and perform implicit
policy extraction using the Q-function to obtain a policy to do rollouts. We illustrate the full recipe in
Figure 1. In our experiments, we instantiate the recipe with a diffusion-based policy network trained
with IL, a Q-function trained via the IQL objective, and implicit policy extraction through sampling
actions and choosing the one with the highest Q-value during rollouts. This instantiation recovers
the IDQL algorithm (Hansen-Estruch et al., 2023) for one iteration of batch online RL, though the
recipe defines a category of methods and can be instantiated with other expressive policy classes,
implicit policy extraction methods, and Q-function objectives.

Improving diversity with temporally-correlated noise. The components in each axis share a
common theme of better leveraging diverse data in autonomous collection. We apply a simple addition
to our recipe to induce more diversity. The idea is to add a small amount of temporally correlated
noise, modeled as an Ornstein-Uhlenbeck process, to the policy actions during the autonomous
rollouts. This idea has been successful in online RL previously (Lillicrap et al., 2016) and extends
to the batch online RL setting as well. We present the results of returns averaged over all tasks in
Figure 8 and refer to Section 4.1 for a detailed setup of scaling experiments. We find that the addition
of temporally-correlated noise enables higher performance at each data level. However, it does not
improve data scaling because the correlated noise has the effect of increasing the distribution the
policy learns, but this increase in distribution can be naturally achieved with more data. This suggests
that temporally-correlated noise can be a valuable addition, though our recipe does not hinge on it.

Real-world robotic manipulation task. To validate the practicality of our proposed recipe, we
conduct an experiment with running batch online RL on a challenging real-world vision-based
robotic manipulation task. The task involves controlling a 7-DoF Franka Research 3 robot to grasp
a roll of tape and hang it onto a hook. We visualize the initial and final states of the task in Figure 9.
We use RGB images and robot proprioceptive state (joint and end-effector positions) as input, and
use a ResNet-18 (He et al., 2015) as the vision backbone. We use one wrist camera and one camera
mounted on as an external view to stream the RGB images.
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Figure 9: Real-world task of
hanging tape on a hook. The
shaded blue area (left) depicts
the tape’s initial distribution.
The right side shows success-
ful task completion.
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Figure 10: Results for real-
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and steering with a Q-function.

We collect 5 initial demonstrations in Dy and run N = 3 iterations of batch online RL, each
with M = 30 rollouts. We compare our recipe with filtered-IL and a steering baseline adapted
from (Nakamoto et al., 2024), where we train the Q-function on M = 90 rollouts (as well as D)
corresponding to the same amount of data our recipe trains on for the last iteration, and use a policy
trained on Dy to sample actions. Our recipe obtains 30% improvement over the initial policy in just
3 iterations (Figure 10). Filtered-IL does not improve upon the initial performance, likely because
the policy was able to capture the action distribution of the Dy fully in pre-training. The steering
baseline performs the worst, indicating that it is necessary to train the policy on the new rollouts.

6 DISCUSSION

As robotic models become ever more capable, it becomes increasingly important to find ways to
improve models beyond simply collecting more data. Batch online RL provides a paradigm for just
that—enabling policies to leverage their own rollouts for self-improvement without the complications
of online RL. For practitioners, our analysis offers a clear, practical recipe for executing batch online
RL. For researchers, we bring to attention open questions for future work to optimize each component
of the recipe further. For example, are techniques from offline RL the most optimal for learning a
Q-function, or do we need something beyond pessimism specific to batch online RL? In the same
vein, can we improve implicit policy extraction beyond choosing the actions with the best Q-value?
We believe solving these questions will result in significantly better and more capable self-improving
robotic models. We will open source the code for the final recipe.

7 LIMITATIONS

In this work, we empirically analyze the key axes that affect performance in batch online RL,
demonstrating that the general recipe of value-based RL, implicit policy extraction, and an expressive
policy class enables effective self-improvement of policies in this setting. Our work presents a general
recipe on batch online RL, though it does have a number of limitations. First, we focus on robotic
tasks with a continuous action space for the study. In problems that have a discrete action space
or if we apply a discretization scheme to the actions, the results might not directly transfer as the
Q-function can exhibit different properties, policy extraction is different as the Q-function can be
used as a policy, and the notion of an expressive and non-expressive policy class is not well defined.
We propose adding temporally-correlated noise in the rollouts for better sample efficiency. However,
directly adding noise may not be applicable in some deployment settings, though we find empirically
that adding a small amount of noise only changes the success rate of the policy marginally. Lastly,
in our experiments the initial policy achieves some level of success. How to better start from a
completely non-successful policy for batch online RL is an interesting direction for future work.

REPRODUCIBILITY STATEMENT

For reproducibility, we include additional implementation details including hyperparameters and
dataset details in Appendix B and Appendix C. We will also open-source the code.
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