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ABSTRACT

Entity alignment is commonly used to link different knowl-
edge graphs and augment facts about entities. The main
objective is to identify the counterpart of a source entity
in the target knowledge graph. Although the auxiliary in-
formation such as textual, visual, and temporal features
was leveraged to improve the entity alignment performance
in the past, the entity type information is rarely consid-
ered in existing entity alignment models. In this paper,
we demonstrate that the entity type information, which is
commonly available in knowledge graphs, is very helpful
to knowledge graph alignment and propose a new method
called the Type-associated Entity Alignment (TypeEA) ac-
cordingly. TypeEA exploits the entity type information to
guide entity alignment models so that they can focus on
entities with matching types. A type embedding model
based on semantic matching is developed in TypeEA to
capture the association between types in different knowl-
edge graphs. Experimental results show that the proposed
TypeEA consistently outperforms state-of-the-art baselines
across all OpenEA entity alignment datasets with different
experimental settings.
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1 Introduction

The entity type offers an important piece of side information. It indi-
cates what class an entity belongs to. Besides, ontological structures
between types allow us to group entities together at different levels of
granularity. Intuitively, the entity type can improve the performance
of entity alignment models since we do not need to align entities of
mismatched types.

We use an example in Fig. 1 to illustrate the underlying idea. Sup-
pose “Home Alone” is the same entity to be aligned between DBpedia
(Auer et al., 2007) and Wikidata (Vrande¢i¢ and Krotzsch, 2014) KGs.
In DBpedia, the entity “Home Alone” has type labels such as “Creative
Work”, “Movie”, etc. In Wikidata KG, entities with “Film” type should
be ranked higher than entities with “Actor” type or “Film director”
type, although these type labels are closely related concepts.

After inspecting recent entity alignment models, we observe that
a large fraction of errors of the predicted entity alignment pairs have
mismatched types between entities. Since these predictions are unlikely
to be the correct ones, such errors can be avoided by taking type infor-
mation into consideration. We collect the statistics of the proportion
of HQ1 prediction errors due to mismatched types for different entity
alignment models in Table 1. Based on the statistics, we could po-
tentially reduce up to 30%-50% of the top 1 prediction errors when
considering type information.

Table 1: Proportion of HQ1 prediction errors due to mismatched types by different
entity alignment methods for the D-W 15K V1 dataset

Model | MTranskE | JAPE | BootEA | MultiKE | RDGCN

Ratio 45.240% | 42.678% | 40.884% 34.588% 57.038%

Prior to the deep learning era, type information has already been
leveraged for entity alignment. For instance, PBA (Zhuang et al., 2016)
is a partition-and-blocking-based alignment method that uses the type
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Figure 1: An Illustrative example of the idea behind the proposed TypeEA method.

information as the blocking key. However, since different KGs have
disjoint sets of type labels, solving the type resolution problem can be
challenging. To address this problem, we propose a method to train an
embedding model to capture the type association, and call it the Type-
associated Entity Alignment (TypeEA) method. Seed alignments allow
us to generate some associated type pairs. Based on them, we can train
the TypeEA model to capture more associations. Hence, given the type
information of an entity in the source KG, instead of performing rule-
based blocking, we use the TypeEA model to identify its most relevant
counterpart in the target KG automatically. In this work, we first
show that the bilinear product embedding for the proposed TypeEA
can capture the type association well. For entity alignment, we make
the alignment ranking and decisions by considering the alignment score
and the type association score jointly so that TypeEA can better focus
on entities with matched types.

The main contributions of this work can be summarized as follows.

e We present a simple and low memory cost embedding model to
capture the type association in different KGs and leverage this
information to improve the performance of the entity alignment
model. We use far fewer free parameters compared to complex
models that use large pretrained neural models such as EVA (Liu
et al., 2021) and BERT-INI (Tang et al., 2020).

e We prepare a type pair dataset for DBP v1.1 by querying the
DBpedia English (EN), the DBpedia German (DE), the DBpedia



4 Xiou Ge et al.

French (FR), the Wikidata, and the YAGO public endpoint KGs.
A subset of entity types is selected to learn high-quality type
association embedding. The dataset is released to facilitate future
research.

e We conduct extensive experiments on all entity alignment datasets
in DBP v1.1, which contains cross-lingual and cross-KG align-
ment tasks. we observe a consistent improvement when com-
bining TypeEA with different embedding-based entity alignment
models.

2 Related Work

Entity alignment is a long-standing problem in KG research. Prior
to embedding-based models, traditional methods align entities using
strategies such as string similarity (Raimond et al., 2008), schema sim-
ilarity (Suchanek et al., 2011) and neighborhood similarity (Lacoste-
Julien et al., 2013). These methods are hardly applicable when the
textual and ontological information is not uniform across different KGs.

Recently, several surveys on embedding-based entity alignment have
been published with comprehensive codebases and sampled datasets
(Sun et al., 2020; Zhao et al., 2020; Zeng et al., 2021; Zhang et al.,
2022; Fanourakis et al., 2022). These codebases integrate different
entity alignment models together so that fair performance comparison
of different models on these datasets can be carried out. Based on
the entity embedding techniques, embedding-based entity alignment
models have two major categories (Zhang et al., 2022): Translation
embedding-based methods and Graph Neural Networks (GNN)-based
methods. They are reviewed below.

2.1 Translational-embedding-based Methods

MTransE (Chen et al., 2017), BootEA (Sun et al., 2018), JAPE (Sun et
al., 2017), MultiKE (Zhang et al., 2019), AttrE (Trisedya et al., 2019),
and COTSAE (Yang et al., 2020) belong to this category. They use
TransE (Bordes et al., 2013) or a variant of TransE. MTransE proposes
several score functions for alignment, including distance-based axis cali-



TypeEA: Type-Associated Embedding for Knowledge Graph Entity Alignment 5

bration, translation vectors, and linear transformations. BootEA learns
a classifier through bootstrapping using the negative log-likelihood loss.

Auxiliary features such as entity attributes have also been exten-
sively investigated. JAPE represents attribute features using the Skip-
gram word embedding. AttrE represents attribute values through dif-
ferent character embedding aggregation strategies such as LSTM. Mul-
tiKE models the association between entity embedding and attribute
embedding using CNNs. COTSAE uses a Pseudo Siamese Network to
learn attribute predicate and value embedding. Apart from attribute
features, visual features (Liu et al., 2021) generated from entity im-
ages using the ResNet is leveraged in EVA to overcome the bottleneck
of very few alignment seeds in training. In this work, we propose to
leverage the entity type features. Although a recent method, known as
JTMEA (Lu et al., 2021), also considered the entity type, it was bench-
marked with a few weaker and earlier baselines. We will demonstrate
that the proposed TypeEA model can outperform stronger baselines
with the help of type features.

2.2 GNN-based Methods

It is also possible to use graph neural networks to learn representa-
tions of entities. GCN-Align (Wang et al., 2018) uses graph convo-
lutional networks (GCN) to embed both the structural and attribute
information of two KGs in a common space with shared weight matri-
ces. RDGCN (Wu et al., 2019) extends GCNs with highway gates to
capture the neighborhood information and includes the relation infor-
mation by the attentive interaction between a primal graph and a dual
graph. Graph attention networks (GATSs) are also explored. For exam-
ple, NAEA (Zhu et al., 2019) embedded the neighborhood information
in addition to attribute relations and attribute values. A time-aware
GNN based model is proposed in TEA-GNN (Xu et al., 2021) to han-
dle the alignment of KGs with the temporal information. According to
Sun et al. (2020), BootEA and RDGCN are the top performing mod-
els on different tasks of the DBP v1.1 dataset. In this work, we add
the type information to these models and verify whether TypeEA can
outperform pervious best models.

In addition, researchers leverage the modeling capability of different
neural networks and design a hybrid framework. RoadEA (Sun et al.,
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2022) consists of an attribute encoder and a relation encoder to aggre-
gate entity attributes or relational neighbors using attention mecha-
nisms for entity representation. Adaptive embedding fusion is achieved
through a gated mechanism to unify the representation space. EMGCN
(Nguyen et al., 2020) is an unsupervised entity alignment framework
that captures the relation-based correlation between entities using a
multi-order GCN and incorporates the attribute-based correlation via
a translation machine. A late-fusion mechanism is used to combine the
information together to enhance the final alignment result.

3 The TypeEA Method

To perform entity alignment, the proposed TypeEA method consists of
two parts: 1) how to effectively train the type association embedding
and 2) how to select the subset of entity types to learn the represen-
tation. Then, we integrate the trained type association embedding
with the state-of-the-art entity alignment models to correct the type
mismatch problem in their models.

3.1 Problem Formulation

Let G =(E,R,L,T) denotes a knowledge graph where £, R, and £
represents a set of all entities, relations, and type labels, respectively.
T denotes a set of all relation triples {(h,r,t)|h,t € E,7r € R}.

To align entities in two KGs, denoted by

G = (&,R1,L1,7Th), (1)
g? - (52) RQ? [’27 75)’ (2)

we need to identify all pairs of equivalent entities
Y ={(e1,e2)le1 € &1, e2 € Er} (3)

from two KGs. Seed entity pairs are often given in entity alignment
datasets. Since entity type labels are available from KG queries, we
can infer label pairs

(25 = {(ll,lg)’ll € ﬁl,lg < EQ} (4)
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from the entity pair set ¥. Our goal is to design embedding models to
encode the type information and investigate whether the type embed-
ding can improve the entity alignment performance.

3.2 Type Acquisition

One contribution of this work is to add the type label information
of entities to existing datasets. The DBpedia (EN) KG has the most
abundant type labels for each entity. However, there are two challenges
in choosing an appropriate subset of type labels for modeling. First,
many of type labels are acquired from different sources and often re-
dundant. Second, a large number of type labels are too fine-grained.
With a limited amount of seed entity pairs, it is difficult to generate
enough type label pairs to train type embedding well. To solve this
problem, we obtain non-overlapping subsets of types and their associa-
tion pairs for both source and target KGs. Details on type information
acquisition are discussed in Sec. 4.1. We train and evaluate the type
association embedding using the type pairs dataset.

3.3 Type Association Embedding

The goal of training the type association embedding is to model the
relationship between type labels from two KGs. Since the type sets for
two KGs are disjoint, we essentially use the type association embedding
to align the types from two KGs before aligning the entities. Source and
target entities whose type labels can generate higher type association
scores are more likely to be aligned. To model the type association, we
adopt two scoring functions: 1) the cosine similarity and 2) the bilinear
product.

Cosine Similarity. We first experiment with the cosine similarity as
the score function to capture the association between types. This can
be written in form of

uTv

u,v) = cos(u,v) = ——— 5

ftyp6( 9 ) ( ) ) ||Ll”||V||’ ( )

where u and v denote two types associated with two different KGs.
The use of the cosine similarity score function is intuitive since the
goal is to have entity types that frequently appear in a type pair to
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Figure 2: Illustration of using the type association embedding for identifying relevant
candidates in entity alignment, where u and v denote two type embeddings in two
KGs, respectively, and W denotes their association embedding using the bilinear
product.

have higher scores while those pairs that never appear before have
lower scores. However, the cosine similarity score does not generate
satisfactory results in retrieving the most relevant types in practice. We
perform experiments on type label pairs for D-W 15K V1/V2 dataset
and show the results in Table 3.

Bilinear Product. Since the cosine similarity measure is not effec-
tive in modeling the relationship between types, we propose a more
expressive bilinear product score function to model type association.
The semantic-matching-based score is defined as

Jeype(u,v) = uTWv, (6)

where u and v denote the type of one KG1 entity and the type of
one KG2 entity, respectively. Also, u € R”™ and v € R” denote the
learnable representations of v and v in the type space, respectively.
Similar to RESCAL (Nickel et al., 2011) and DistMult (Yang et al.,
2015), we construct a learnable embedding matrix, W € R™*" which
is shared among all type pairs. Both the type embedding and the
shared weight matrix are uniformly initialized.

We find that the self-adversarial negative sampling strategies intro-
duced in RotatE (Sun et al., 2019) are particularly useful in learning
the type association embedding parameters. The objective function in
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learning these parameters is set to
Ot = — log o( frype(u,v) ZP log o (frype(u, Ui) -), (7)

where 7 is a fixed margin hyper-parameter, (u,v}) is the i-th negative
type pair, and p(u,v}) is the probability of drawing negative type pair
(u,v]). Given a corrupted type pair (u,v}), the sampling distribution

can be written as

p(u, vjl{(u, vi)}) =

exp & frype (U, U;)

225 exp afuype(u, vj)

This self-adversarial negative sampling scheme has two advantages.
First, hard negative samples are more likely to be chosen for training.
The embedding model can be fine-tuned more effectively by hard nega-
tive examples than easy negative samples. Second, since hard negative
samples carry a higher weight in the objective function, their loss is
given more attention in optimization. The performance on predicting
the associated type pairs for various datasets is given in Table 3.

(8)

3.4 Entity Representation and Alignment

We experiment on three model types with different feature representa-
tions below.
Translation Embedding. Translation-based EA techniques mainly
use the translation embedding model to extract structural features for
entities and relations. The well known TransE scoring function is de-
fined as

ftriple(h7rat) = [[h+r—t, 9)

where h, r, t are the low dimensional space representation for the head
entity, the relation, and the tail entity of a triple, respectively. To pull
entity vectors from KG1 and KG2 into a unified space, we generate new
triples by swapping aligned entities in the corresponding triples. For
example, given an aligned entity pair (e, e2), where e; and ey comes
from KG1 and KG2 respectively, we can generate the following set of
triples:

TGen = {(e2,r,t)|(e1,7,t) € i} U{(h,r,e2)|(h,r,e1) € T1}

U{(e2,r t)|(e1,7,t) € Ta} U{(h,r,e2)|(h,r,e1) € Ta}. (10)
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Moreover, instead of using the max-margin loss function adopted by
the original TransE model, we use the limit-based loss function (Zhou
et al., 2017) to optimize the embedding. The loss function can be
expressed as:

Oe = Z maX(07 [ftriple(ha T, t) - 71])_}—
(h,rt)ET,

/81 Z maX(O, [72 - ftriple(h/7 rla t/)])7

(R ' tET]!

(11)

where 7, = T1 U T2 U Tgen, and T, contains all corrupted triples gen-
erated by uniform negative sampling. Based on the learned entity rep-
resentation, an alignment module is further proposed and trained to
identify the counterpart of a target entity in the other KG. Among
different alignment modules, Bootstrapping (Sun et al., 2018) is one of
the best performing strategy. In our experiment, we also include the
Bootstrapping strategy to facilitate the alignment. In particular, we
minimize the following cross-entropy objective:

O, = — Z Z 1., (e2) log w(ezler; ©), (12)

e1€€1 e2€s

where 1., (e2) is a indicator function that denotes the labeling prob-
ability of entity e; and m(ezle; ©) is the function that computes the
likelihood of labeling the counterpart of entity e; as es, given embed-
ding parameters © obtained from TransE. In our experiment, the cosine
similarity is used as the similarity function. The alignment decision is
made using the following function

falign(€i, €5) o< m(ezle1; ©) = cos(e;, €;). (13)

Attribute Auxiliary Features. In this line of work, auxiliary fea-
tures such as textual information from entity names and numeric at-
tributes from entity property laterals such as ‘date’, ‘age’ are lever-
aged to improve entity alignment performance. These auxiliary fea-
tures were not considered in learning the structural embedding. Yet,
they provide important information for identifying matching entities.
In our experiments, we choose MultiKE (Zhang et al., 2019), which
uses auxiliary features, as one of our baselines and verify if our type
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association method can improve the performance of MultiKE. In the
baseline, pre-trained word and character embeddings are used to en-
code entity names. To model the attribute-value information, separate
embedding matrices are trained for attribute labels and values, respec-
tively. To learn the attribute label and value embedding, we use the
following scoring function

f(e,a,v) = |le = CNN([a][v])]l, (14)

where e, a, v represent entity, attribute label, and attribute value, re-
spectively, in a attribute lateral triple. [a||v] denotes the concatenation
of attribute label and attribute value vectors. The concatenated feature
vector is passed into a Convolutional Neural Network (CNN) and the
error between the resulting vector and the entity vector e is minimized.
We use the logistic based objective function to optimize the model

Ov= 3 log(1+oxp(f(e,a,0)). (15)

(e,a,0)€Ty

where 7, is a set of all attribute triples. The obtained structural,
textual, and attribute embeddings are combined to form the represen-
tation of entities. Alignment inferences are performed through nearest
neighbor search.

Graph Neural Networks. Another approach is to use graph convo-
lutional networks (GCNS) to represent the entity. The message passing
process in GCNs can be formulated as

HH) = o(D 2 AD 2HOWD), (16)

where A = A+ is the adjacency matrix of the graph, I is the identity
matrix that denotes the self connection, D is a diagonal matrix of
node degrees where f)l-l- = Zj Aij, WO is the weight matrix at the
I-th layer to be optimized, and H® is the node embedding at the i-th
layer. The particular variant of the GCN-based approach adopted as a
baseline in our experiment is the RDGCN (Wu et al., 2019). RDGCN
uses a coupled GCN to incorporate the relation information through
attentive interactions between the original graph and its dual relation
graph. A max-margin loss is used to optimize the model. We can
obtain the vector representation of each node from the output layer of
the RDGCN and compute the alignment score as

fatign(€i,€5) o< 1 — |le; — ey (17)
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3.5 Inference

During inference, we take both the type score and the alignment score
into account. Suppose e; is the source entity. To infer the matching
target entity, e;, we choose the entity that maximizes the linear combi-
nation of the type score and the alignment score. Mathematically, we
have
éj =argmax A\ - ftype(L(ei)v L(ej))
e;€EE (18)
+ (1 - )\) : falign(eiv ej)a

where A € [0,1] is the balancing parameter, and L(-) is a type label
lookup function for the entity.

4 Experiments

4.1 Datasets

We perform experiments on the DBP v1.1 entity alignment datasets
from Sun et al. (2020) that includes both cross-KB and cross-lingual
settings. To be specific, under the cross-KB setting, there are D-
W and D-Y which denote DBpedia-Wikidata and DBpedia-YAGO,
respecively. Under the cross-lingual settings, there are EN-FR and
EN-DE which denote DBpedia English-DBpedia French and DBpedia
English-DBepdia German, respectively. For each of the above tasks,
there are also variants with different size: 15k and 100k, and variants
of sparse (V1) and dense (V2) subgraphs. These datasets were gener-
ated using a method called iterative degree-based sampling (IDS). The
detailed statistics of the DBP v1.1 dataset can be found in the original
paper Sun et al. (2020).

We obtain the type data by querying the DBpedia' (Auer et al.,
2007), Wikidata® (Vrande¢i¢ and Krétzsch, 2014), and YAGO? (Suchanek
et al., 2007) public endpoint using SPARQL queries. From all the type
labels obtained from queries, we select a subset of type labels in or-
der to get reliable type embedding. For example, to make the align-
ment between DBpedia and Wikidata, we only use type labels that

"https://dbpedia.org/sparql
https://query.wikidata.org/
3https:/ /yago-knowledge.org/sparql
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Figure 3: Comparison of the HQ1 entity alignment performance with or without
the type information for different datasets and models as a function of the fraction
of seed alignment.

have ‘http://www.wikidata.org/’ prefix and filter out other type la-
bels. For DBpedia to YAGO alignment, we use only type labels with
‘http://dbpedia.org/’ prefix. For DBpedia EN to DE and EN to FR, we

use labels with prefixes ‘http://schema.org/’, ‘http://dbpedia.org/ontology’,
‘http://de.dbpedia.org/’, and ‘http://fr.dbpedia.org/’. Statistics of the
type pair datasets are shown in Table 2. Specifically, the Train, Valid,

and Test columns indicate the number of type pairs in training, val-
idation, and testing sets, respectively. The KG1 and KG2 columns
indicate the number of distinct type in KG1 and KG2 respectively.
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Figure 4: Comparison of the HQ1 entity alignment performance with or without
the type information for different datasets and models as a function of the fraction
of seed alignment.

4.2 Implementation Details

Model Configuration We set the type embedding dimension m = 200
and n = 200 for the source and target KGs respectively, and the type
pair batch size is set to 4096. To train type embedding, we use the
Adam optimizer with the learning rate n = le — 4. We set the batch
size to 1024, the number of negative sample to 256, the sampling tem-
perature a = 1, the margin parameter v = 24. The parameter of entity
alignment baseline models are kept the same as provided in OpenEA
(Sun et al., 2020). We use a server with Intel(R) Xeon(R) E5-2620
CPU and Nvidia Quadro M6000 GPU to run all of our experiments.

Evaluation Metrics Following the convention, we use Hits@Qk and
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Table 5: Comparison of entity alignment performance of TypeEA with baselines for
cross-KG (DBpedia to Wikidata) alignment with 15k entities.

D-W 15K V1 D-W 15K V2

MRR H@l H@5  MRR H@l1 HQ5
MTransE 0.352 25.45 46.03 | 0.365 25.84 48.03
JAPE 0.339 2432 4442 | 0.364 25.71 48.06
GCNAlign | 0.467 37.33 5826 | 0.618 51.27 74.95
AttrE 0.383 30.18 4691 | 0.586  48.99 69.32
BootEA 0.655 57.8  75.01 0.87  82.22 92.45
RDGCN 0.587 51.83 67.26 | 0.678 61.71 75.36
MultiKE 0.483 4227 54.30 | 0.574 50.08 64.86
TypeEA-B | 0.681 60.79 77.05 | 0.889 83.04 94.01
TypeEA-R | 0.656 59.04 73.80 | 0.729 66.75 80.91
TypeEA-M | 0.522 4553 58.85 | 0.612 53.41 70.26

Models

Table 6: Comparison of entity alignment performance of TypeEA with baselines for
cross-lingual (English to French) alignment with 15k entities.

EN-FR 15K V1 EN-FR 15K V2
MRR H@l H@5 | MRR H@l1 H@5
MTransE 0.35 24.6  46.67 0.34 2447  44.04
JAPE 0.374 26.66 49.96 | 0.404 29.44 52.65
GCNAlign | 0.446 33.45 5791 | 0.545 41.89 70.17
AttrE 0.558 46.90 66.05 | 0.651 55.61 76.71
BootEA 0.597 50.31 71.02 | 0.747 66.13 85.41
RDGCN 0.799 75.45 8525 | 0.881 84.84 91.87
MultiKE 0.776 742 81.26 | 0.884 86.13 90.85
TypeEA-B | 0.643 54.28 76.91 | 0.909 88.21 93.93
TypeEA-R | 0.832 79.44 87.91 | 0.930 90.57 95.91
TypeEA-M | 0.827 79.61 86.08 | 0.908 89.07 92.91

Models

Mean Reciprocal Rank (MRR) as our evaluation metrics to evaluate
the performance of both type association embedding and the entity
alignment models. Hits@Qk is the proportion of ground truth entity
appears in the top-k candidate list. Higher Hits@k and MRR imply
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Table 7: Comparison of entity alignment performance of TypeEA with baselines for
cross-lingual (English to French) alignment with 100k entities.

EN-FR 100K V1 EN-FR 100K V2
MRR H@l H@5 | MRR H@l H@5
MTransE | 0.203 13.74 26.46 | 0.131 860 16.95
JAPE 0.243 16.92 31.20 | 0.183 12.35 23.94
GCNAlign | 0.321 23.14 41.33 | 0.351 25.76 45.21
AttrE 0.509 4296 59.73 | 0.541 45.70  63.59
BootEA | 0.475 39.03 56.30 | 0.715 63.97 80.52
RDGCN | 0.682 63.81 7296 | 0.751 71.77 79.03
MultiKE | 0.654 62.85 67.94 | 0.669 64.21 69.52
TypeEA-B | 0.483 40.65 58.21 | 0.722 65.56 82.42
TypeEA-R | 0.689 65.65 74.51 | 0.758 73.62 80.57
TypeEA-M | 0.701 67.52 72.84 | 0.701 67.38 72.85

Models

better performance of the model. To evaluate the performance of type
association embedding, we also include the Mean Rank (MR) metric.
Baselines To evaluate the performance improvement contributed by
TypeEA, we compare it with 7 highly-cited strong baseline models.
According to the results in (Sun et al., 2020), BootEA (Sun et al.,
2018), MultiKE (Zhang et al., 2019) and RDGCN (Wu et al., 2019)
are the top performers across different datasets settings in DBP v1.1.

4.3 Results

Type Association Embedding As shown in Table 3, our proposed
bilinear product type embedding model consistently achieves good re-
sults of predicting the associated types in the target KG across all the
datasets and settings. The Hits@Qk scores are all above 90 and the
MRR scores are all above 0.9. This means that our proposed model
can predict most relevant associated types accurately and reliably. The
bilinear product score is more effective than the cosine similarity score.
One possible reason behind it is that the shared embedding matrix
W € R™*" has more modeling power and improves the expressiveness
of the model.

Entity Alignment Tables 5, 6, and 7 present a comprehensive perfor-
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mance comparison of our proposed TypeEA with previous best base-
line models for both cross-KG (D-W) and cross-lingual (EN-FR) EA
datasets, for both small (15k) and large (100k) subgraphs, and un-
der both sparse (V1) and dense (V2) sampling settings. In particular,
TypeEA-B, TypeEA-R, and TypeEA-M denote the results generated
from applying type association embedding to baseline model BootEA,
RDGCN, and MultiKE respectively. We use the given split where the
train, valid, and test set have 20%, 10%, and 70% of entity pairs respec-
tively. We observe consistent performance improvement as compared
to previous results. Among all, the most performance improvement is
observed for EN-FR 15K V1 and EN-FR 15K V2 datasets where the
Hit@1 scores are improved by 4.16 and 4.44 respectively.

Table 4 shows an entity alignment example from D-Y 15K V1
dataset comparing the ranking of candidate entities. In this example,
the source entity in DBpedia is “Ed. Weinberger” and we are trying to
find its counterpart in YAGO. Without using the type information, the
baseline model BootEA makes a few erroneous predictions in the top
candidate list. Among the incorrect predictions, many has mismatched
types such as “T'V Series”, “Movie” and they are not the matching can-
didate that we are looking for. The ground-truth target has relatively
low ranks. After applying the type information, entities with wrong
type labels are ranked lower in the predictions. This confirms our intu-
ition that predicting entities with mismatched type is indeed a problem
of the baseline models. With the help of type association embedding,
the ground-truth target can be ranked higher in the final alignment
predictions.

In Fig. 3, we show plots of entity alignment accuracy as a func-
tion of alignment seed fraction. We conduct experiments when the
fraction of seed is {0.1,0.2,0.3,0.4} respectively and observe consistent
improvement even if only 10% of alignment seeds are provided. When
we have more alignment seeds, the advantage of adding the type infor-
mation seems to diminish perhaps because the entity alignment models
are making fewer mistakes that can be corrected using type information
when predicting the counterpart of a target entity.

In Fig. 4, we compare the fraction of HQ1 prediction errors due to
mismatched type labels for three baseline models: BootEA, MultiKE,
RDGCN. In particular, we run experiments on D-W 15K V1 (Fig.4
(a)(b)) and EN-FR 15K V1 (Fig.4 (c)(d)) dataset. We show the error
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reduction for alignment for both directions: from KG1 to KG2 and
from KG2 to KG1. We observe that our TypeEA approach is effective
in reducing the error for all three baseline models. Largest reduction
is observed for the RDGCN baseline, perhaps because RDGCN makes
the highest percentage of type mismatch errors.

5 Conclusion and Future Work

In this paper, we present a new approach called Type-Associated Entity
Alignment (TypeEA) for helping entity alignment model decisions. We
experiment with different scoring functions for modeling TypeEA and
find that the bilinear product is the best for capturing the type associ-
ation. We also employ the self-adversarial negative sampling strategy
which is very effective in learning the embedding. We integrate type
associated embedding with entity alignment models and demonstrate
better alignment performance on DBP v1.1 dataset. Moreover, we col-
lect and prepare entity type label pairs datasets complementary to all
sub-datasets of DBP v1.1 so that the type association embedding can
be learned. One limitation of our work is that the subset of types is
still heuristically selected for training reliable type association embed-
ding. In the future, we will further investigate how to use embedding
to model more diverse entity types and more complex relationship in
entity type pairs.
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