
Under review as a conference paper at ICLR 2024

COINS: MODEL-BASED ACCELERATED INFERENCE
FOR KNOWLEDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce COmmunity INformed graph embeddings (COINs), for accelerating
link prediction and query answering models for knowledge graphs. COINs em-
ploy a community-detection-based graph data augmentation procedure, followed
by a two-step prediction pipeline: node localization via community prediction
and then localization within the predicted community. We describe theoretically
justified criteria for gauging the applicability of our approach in our setting with
a direct formulation of the reduction in time complexity. Additionally, we pro-
vide numerical evidence of superior scalability in model evaluation cost (average
reduction factor of 6.413± 3.3587 on a single-CPU-GPU machine) with admissi-
ble effects on prediction performance (relative error to baseline 0.2657 ± 0.3279
on average).

1 INTRODUCTION

Knowledge graphs are a type of database where the general structure is a network of entities, their
semantic types, properties, and relationships; relations are flexible through the use of abstract classes
to represent real-world data from potentially multiple topical domains (Ehrlinger & Wöß, 2016;
Hogan et al., 2020). Organizations often use knowledge graphs to organize and analyze relational
data. However, scalability becomes a challenge as the graphs can become very large and require
significant computational resources. This is particularly challenging for smaller organizations.

Previous research has already proposed several potential solutions. PyTorch-BigGraph (Lerer et al.,
2019), and DistDGL (Zheng et al., 2020) are distributed-algorithm-system frameworks that can scale
the implementation of graph neural networks with distributed execution over billion-scale graphs.
Both approaches involve splitting the enormous graph into disjoint subsets, to employ distributed
training by directing data from different subsets to different machines. SMORE (Ren et al., 2021)
on the other hand, focuses on model parameter distribution over a cluster, while also employing a
more efficient algorithm for sampling training data. tf-GNN (Ferludin et al., 2022) mainly focuses
on accelerating the sampling of k-hop neighborhoods of nodes during training by distributing it over
multiple machines.

However, all methods for achieving better scalability are inapplicable to all application scenarios.
It is assumed that nevertheless, a minimal cluster size of machines is always available, and any
graph partitioning rarely accounts for preserving graph properties. In a low resource availability
scenario, even the model’s evaluation is a hurdle with big data, which has not been considered in
the literature. The evaluation procedure for top-performing knowledge graph representation models
was either also sped up with data parallelization over a large cluster of machines (Cen et al. (2019))
or the evaluation metrics are only approximated with a subset of the graph (Ren et al. (2021)).

As such, in this work, we will present COINs (COmmunity INformed graph embeddings), our
approach for achieving scalable knowledge graph model optimization, inference, and evaluation in
the low-resource setting. Before explicitly stating our contributions below, we will first establish the
background and introduce the preliminaries.

1

Under review as a conference paper at ICLR 2024

2 BACKGROUND

2.1 PROBLEM AND CHALLENGES

Performing knowledge graph inference requires solving link prediction and query answering.

Definition 1. Given a dataset D = {(hi, ri, ti)}Ni=1 of entity-relation-entity triplets and labels
{yi}Ni=1 indicating whether each triplet was extracted from the knowledge graph or randomly
formed, a link predictor ℓ : V × R × V → R is a model that aims to predict the label y of
each triplet (h, r, t) by scoring it according to how likely it is to have originated from the knowledge
graph.

Link predictors commonly are composed of entity embedding models, in order to obtain high-quality
feature vectors to pass onto a classifier.

Definition 2. Given a dataset D = {(hi, ri)}Ni=1 of entity-relation queries and answer entities
{ti}Ni=1 extracted from the knowledge graph, single-hop query answering entails predicting the
answer entity t given the query information (h, r) as input. Classically, this is operationalized by
forming the set D̂i = {(hi, ri, t̂j)}|V |

j=1 by combining the query with every possible answer, then the
predicted answer is the one that maximizes the link predictor’s score: t̂i = argmaxt̂j∈V ℓ(hi, ri, t̂j).

Binary classification evaluation metrics are utilized for the link prediction task. On the other hand,
after obtaining the predicted ranks {ρi}Ni=1 of the evaluation triplet scores (index of the score of the
true triplet in an ordered list of scores), one can compute query answering aggregate metrics:

• Hits@k = 1
N

∑N
i=1 I(ρi ≤ k);

• MRR = 1
N

∑N
i=1

1
ρi

.

The query answering task requires evaluating the link prediction model multiple times for each of
the N data samples. This task is computationally intensive and the time complexity is determined by
the number of node embeddings that need to be computed during evaluation. The largest contributor
to the complexity is thus the size of the graph, |V |. Our work aims to significantly reduce this factor.

2.2 PRELIMINARIES

Mathematically we can represent knowledge graphs with attributed heterogeneous networks:

Definition 3. An Attributed HEterogeneous Network (AHEN) (Liu et al., 2019) is a graph where
each entity (node) in a set V has numerical attributes and each relation (edge) in a set E has an
associated type label. Formally, first a finite set of relation types is defined R = {r1, . . . , rQ}, and
the relation labeling is represented through the mapping tR : E → R. Given this mapping we define
the set of relation triplets: ER = {(h, r, t)|h, t ∈ V, (h, t) ∈ E, r = tR((h, t)) ∈ R}. Entity/node
attributes can be collected e.g. in a matrix X ∈ R|V |×T , with T as the feature dimension. Usually,
the nodes h and t in the triplets are referred to as the head and tail of the relations, respectively.
The attributed heterogeneous network is the new collection (V,ER, R, tR, X).

Graphs are discrete structures, while the majority of machine learning models work exclusively with
real-valued continuous inputs. Therefore, we have to construct a mapping from the graph elements
to a numeric vector space, such that the output vectors encode the graph structure in the form of
algebraic constraints.

Definition 4. Given a knowledge graph G = (V,ER, R, tR, X), in general one defines a knowledge
graph embedding model as the collection of an entity embedding model fV : V → E , relation
embedding model fR : R → R and a scoring function S : E × R × E → R, where D is the
embedding dimension and E ,R ⊆ RD or CD. fV and fR are parametrized, with their parameters
set to values such that ∀(v, r, u) ∈ ER,S(fV (v), fR(r), fV (u)) is optimal.

The outputs ev = fV (v) and er = fR(r) are referred to as entity and relation embeddings.

Most graph embeddings are optimized using a contrastive modification of the scoring function:

2

Under review as a conference paper at ICLR 2024

Definition 5. Given a single positive triplet (h, r, t) and a set of negative triplets {(h′
i, r, t

′
i)}mi=1

(relations not present in the knowledge graph), the contrastive embedding loss takes the common
form (with σ denoting the sigmoid function):

L(eh, er, et) = − log σ(S(eh, er, et))−
1

m

m∑
i=1

log σ(−S(eh′
i
, er, et′i)) (1)

2.3 CONTRIBUTIONS

Previous work on knowledge graph inference acceleration (Lerer et al., 2019; Zheng et al., 2020;
Ren et al., 2021) focuses on model-free solutions relying on hardware and software for distribution
and parallelization. On the other hand:

I. COINs are a model-based approach that performs a novel integration of community structure
information into optimization and inference, to achieve significant acceleration even with lim-
ited resources;

II. The acceleration potential is exactly derived, with theoretical and empirical arguments for
which community structures are optimal.

2.3.1 SCALABLE QUERY ANSWERING EVALUATION

Assume that we possess a mapping c : V → C, assigning knowledge graph entities into one of
|C| = K ≤ |V | groups, similar to previous work (Lerer et al., 2019; Zheng et al., 2020). With c we
construct an alternative two-step query answering procedure:

1. Map the input (h, r) to (c(h), r) and predict c(t) by scoring all K possible answer groups;

2. Search for the correct t only among the entities t̂ with c(t̂) = c(t).

2.3.2 OPTIMAL PARTITION STRUCTURE

First note that the mapping c induces a disjoint partition of the entity set V . Namely, if we construct
the sets Ck = {v ∈ V |c(v) = k}, k ∈ C, then

⋃K
k=1 Ck = V and ∀i, j ∈ C, i ̸= j, Ci ∩ Cj = ∅.

We will now demonstrate that by analyzing in detail the computational complexity of our new eval-
uation method, one can easily assess the quality of any such disjoint partition.
Proposition 1. Let |Ck| denote the size of node group k and |Etest

k | = |{(h, r, t) ∈ Dtest|, c(t) = k}|
denote the number of evaluation relations with tail nodes in node group k. The number of embedding
vectors computed in total during evaluation has the following form and bounds:

2N
√
|V | ≤

K∑
k=1

(K + |Ck|)|Etest
k | ≤ N(|V |+ 1) (2)

Proof. The time complexity of the first node group prediction step of the new evaluation procedure,
is proportional to the number of groups K, as this is the number of embeddings required. On the
other hand, the second step requires as many model evaluations as the number of nodes in the group,
|Ck|. Each node group is represented by |Etest

k | edges in the test data, and for each edge the total is
thus K + |Ck|. By summing over all groups k one obtains the provided exact complexity.

Regarding bounding the expression
∑K

k=1 (K + |Ck|)|Etest
k |, let’s first assume that we have fixed

the number of groups K to some value in {1, . . . , |V |} and we’re aiming to optimize the distribution
of nodes and evaluation edges across groups for this fixed K. Using the KKT theorem, one can
prove that extremal configurations only occur when all groups are of equal size and/or all groups are
represented with an equal amount of edges in the evaluation set. Proposition 3 gives the details.

It is easier to strive towards |Ck| ≈ |V |
K , however, in any case, the number of node embedding

computations will then equal N
(
K + |V |

K

)
. To conclude, we prove that the value of K is what

decides whether the lower or upper bound stated above is achieved. Proposition 4 gives the details.

3

Under review as a conference paper at ICLR 2024

2.3.3 EDGE LOCALITY

The possibility of quadratically reducing the overall computation time is grounds for sufficient moti-
vation to obtain a partitioning that splits the node set into K = O(

√
|V |) equally sized pieces, as its

first important property. However, to promise to minimally affect the baseline performance, we must
consider the partitioning quality from the perspective of preserving the relational structure. What
previous works often fail to consider is that an arbitrary assignment might be arbitrarily non-local.

Formally, if we construct the set

V ∗ = {v ∈ V |∃(v, r, u) ∈ ER ∨ ∃(u, r, v) ∈ ER, c(u) ̸= c(v)}
of entities that participate in between-group relations, then we must have |V ∗| ≤ |V | be minimal. In
this case, the search for the true answer to a query will be most often localized to a small neighbor-
hood in the knowledge graph, a significantly easier problem. Equivalently, one prefers a mapping c
such that more relations are present within the entity sets Ck than between the sets.

Unfortunately, achieving good localization is an NP-hard problem, but nevertheless, research in the
fields of community detection and minimal cuts for graphs have yielded extremely efficient heuristic
algorithms. Such is the Leiden algorithm for community detection by Traag et al. (2019), the current
state-of-the-art, based on heuristic maximization of the Constant Potts Model (CPM) (Traag et al.,
2011) version of the modularity score (Blondel et al., 2008), with further manual refinement to
guarantee well-connected communities. The single “resolution” hyperparameter of the algorithm
is the only degree of freedom controlling the community assignment quality. Our work represents
a novel application of Leiden communities to knowledge graph inference. On the other hand, the
METIS algorithm for graph partitioning (Karypis & Kumar, 1998), employed also by Zheng et al.
(2020), strives towards minimal graph cuts. For some experiments, we considered it as an alternative
to Leiden in order to estimate the effect of the choice of graph-splitting method.

3 METHODOLOGY

3.1 COMMUNITY DETECTION

Given a knowledge graph (V,ER, R, tR, X), the first step we employ is to execute the Leiden com-
munity detection algorithm to obtain a good node-to-community mapping c : V → C. We observed
that, in practice, if the graph is sufficiently sparse, i.e. |ER| << |R| · |V |2, with the resolution
parameter of the algorithm simply set to 1

|V | one achieves decent performance without the need
for further validation. Obtaining quality community assignments for dense graphs, however, is very
challenging, and validation of the resolution hyperparameter is recommended. Additionally, one can
merge very small weakly connected components into larger communities to achieve a better balance
of community sizes.

For our COINs technique, based on the obtained community assignment map c we extract further
discrete information of great utility for efficient training and evaluation. Using c, one can coarsen
(V,ER) into a community-level interaction graph:

V C = C, EC
R = {(c(u), r, c(v))|(u, r, v) ∈ ER}

In addition, one can compute the inter-community mapping z∗ : V → V ∗
ω , V

∗
ω = V ∗ ∪ {ω}:

z∗(v) =

{
v, if v ∈ V ∗

ω, otherwise

Figure 1 provides a visualization of our community-based graph preprocessing on a small example.

3.2 COINS TRAINING & EVALUATION

LetF denote the class of knowledge graph embedding models whose scalability we wish to improve,
and L : E ×R×E ×{0, 1} → R be the loss function required to train such models. COINs require
the optimization of the following parameterized embedders sampled from F :

• Community embedder fC : C ×R× C → E ×R× E ;

4

Under review as a conference paper at ICLR 2024

Figure 1: a) Example knowledge graph with |V | = 6, |T | = 2, |R| = 2,K = 2. b) Ob-
tained community-level graph. c) Intra-community re-indexed nodes and relevant edges. d) Inter-
community mapped nodes and relevant edges.

• Intra-community embedders fk : Ck ×R× Ck → E ×R× E ,∀k ∈ C;

• Inter-community embedder f∗ : V ∗
ω ×R× V ∗

ω → E ×R× E .

Additional parameters are: a node feature embedding matrix W ∈ RD×T and final node/relation
embedding weights w ∈ R3, wR ∈ R2. Algorithm 1 details the knowledge graph triplet represen-
tation steps for COINs, utilizing these constructed sub-models.

Algorithm 1 COINs knowledge graph representation
1: input triplet (h, r, t) ∈ ER, triplet label y ∈ {0, 1}, community assignment c : V → C,

inter-community map z∗ : V → V ∗
ω , loss weight hyperparameter α ∈ (0, 1)

2: e
(c)
h , e

(c)
r , e

(c)
t = fC(c(h), r, c(t))

3: if c(h) = c(t) then
4: e∗h, e

∗
r , e

∗
t = fc(h)(h, r, t)

5: else
6: e∗h, e

∗
r , e

∗
t = f∗(z

∗(h), r, z∗(t))
7: end if
8: eh = ⟨Softmax(w), [Wxh, e

(c)
h , e∗h]⟩

9: er = ⟨Softmax(wR), [e
(c)
r , e∗r]⟩

10: et = ⟨Softmax(w), [Wxt, e
(c)
t , e∗t]⟩

11: return (1− α)L(e(c)h , e
(c)
r , e

(c)
t ; y) + αL(eh, er, et; y)

This construction has several desirable properties:

1. Between-community relations are learned separately, allowing greater generalization;

2. During the forward and backward pass always embedding matrix parts of size much less
than O(|V |D) are updated, yielding much lower per iteration time and memory complexity;

3. The community representation learning will be performed jointly with the node-level, due
to the final embedding refinement linking them both, allowing for greater adaptivity;

4. The convexity of the final embedding refinement will preserve training stability.

Observe that the total number of COINs node embeddings required in memory in total for a graph
is K +

∑K
k=1 |Ck|+ |V ∗|+1 = K + |V |+ |V ∗|+1, compared to just |V | node embeddings in the

baseline. Thus, using a partitioning that keeps |V ∗| << |V | has scalability-related benefits as well.

Let now ℓC : C × R × C → R denote a learned scoring model for relations between communities,
obtained after extending fC into a classifier, while ℓV : V × R × V → R denoting the classical
scoring model for node relations, now a classifier utilizing the final node embeddings (eh, er, et)

5

Under review as a conference paper at ICLR 2024

from COINs as features. Then, one can implement the proposed novel scalable query answering
procedure via Algorithm 2.

Algorithm 2 COINs query answering evaluation
1: input test set D = {(hi, ri, ti)}Ni=1, link scorers ℓC , ℓV
2: for i← 1 to N do
3: sC = {ℓC(c(hi), ri, k)}Kk=1

4: ρ
(i)
C = Rank(c(ti), sC)

5: Fi =
∑

1≤k<ρ
(i)
C

|{v|v ∈ V,Rank(c(v), sC) = k}|
6: sV = {ℓV (hi, ri, vj)}vj∈Cc(ti)

7: ρ
(i)
c(ti)

= Rank(ti, sV)

8: ρ(i) = Fi + ρ
(i)
c(ti)

9: end for
10: return {ρ(i)}Ni=1

3.3 TRADEOFF ANALYSIS

The primary limitation of the COINs evaluation procedure is that incorrect community prediction
can result in many nodes being returned as false positives. This conditional nature of the prediction
is the main reason for which to expect the original embedder’s performance to be the maximum
achievable. However, as community ranks approach 1, for large graphs we can much more quickly
obtain model predictions with lesser and lesser drawbacks. Thus, the following Proposition 2 quan-
tifies under which conditions the application of COINs can be justified, by theoretically analyzing
the tradeoff between the possible scalability benefits and performance losses.
Proposition 2. Let Hk ∈ {0, 1, . . . } be the r.v. counting how many edges need to be evaluated
before a correct hit in the top k results is achieved, and let ε ∈ R denote the relative error in Hits@k
to the baseline incurred after training and evaluating the model with COINs. Then, when assuming
that Hk ∼ Geom(Hits@k(1− ε)), the application of COINs is justified if:

ε < 1−
∑K

k=1 (K + |Ck|)|Etest
k |

N |V |
⇔ N |V |∑K

k=1 (K + |Ck|)|Etest
k |

>
1

1− ε
(3)

Proof. Let T = |V | denote the baseline evaluation complexity per edge, while T ′ the COINs com-
putation cost per edge, given in Proposition 1 (up to dividing by N). The better model is deemed to
be the one with lower overall expected cost up until a correct hit:

E[T ′H ′
k] < E[THk]⇔

T ′

Hits@k(1− ε)
<

|V |
Hits@k

⇔ ε < 1− NT ′

N |V |

3.4 EXPERIMENT SETUP

3.4.1 INTEGRATION WITH KNOWLEDGE GRAPH REPRESENTATION MODELS

Due to the universality of our COINs technique for scaling up knowledge graph model evaluation,
we can integrate it with many established knowledge graph embedding models, described in Table
1 below. Each performs contrastive learning, i.e., minimization of equation 1.

3.4.2 DATA

Our approach was tested on three knowledge graph datasets used classically for knowledge graph
representation research:

• FB15k-237 (Toutanova & Chen, 2015): sample of the Freebase knowledge base;
• WN18RR (Dettmers et al., 2018): a subset of the WordNet ontology;
• NELL-995 (Xiong et al., 2017): 995th iteration of the NELL knowledge reasoning system.

6

Under review as a conference paper at ICLR 2024

Table 1: Knowledge graph embedders summary. Left to right: node embedding space, relation
embedding space, embedding parameter constraints, score function.

Model E R Constraints S(eh, er, et)
TransE (Bordes et al., 2013) RD RD ||eh|| = ||et|| = 1 γ − ||eh + er − et||
DistMult (Yang et al., 2014) RD RD ||eh|| = ||et|| = 1 ⟨eh ⊙ er, et⟩
ComplEx (Trouillon et al., 2016) CD CD None Re(⟨eh · er, ēt⟩)
RotatE (Sun et al., 2019) CD CD ∀d,

∣∣∣e(d)r

∣∣∣ = 1 γ − ||eh · er − et||

3.4.3 TRAINING SETUP

We ran the COINs training and evaluation procedures on all combinations of knowledge graph
datasets and embedding algorithms, each started from one of 5 random seeds. Positive and nega-
tive sample triplets are obtained online during training to form mini-batches, while fixed validation
and testing datasets are built by sampling 5 negative samples for every given evaluation edge. In
both cases, the efficient bi-directional rejection sampling algorithm of SMORE (Ren et al., 2021) is
applied. The parameter optimization is performed via the Adam optimization algorithm (Kingma
& Ba, 2015), with ℓ2 parameter regularization. Training loss absolute difference threshold plus pa-
tience counter incremented on validation loss non-decrease are employed as early stopping criteria.

4 RESULTS & DISCUSSION

4.1 COMMUNITIES & SCALABILITY

Table 2 summarizes the three knowledge graphs via their basic statistics, as well as those of the
community partitioning that we managed to obtain. We present the time complexity improvements
via the acceleration factor: ratio of node embeddings computed during evaluation between COINs
and the baseline (ratio influencing the Proposition 2 bound as well). On the other hand, the effects
on memory complexity can be analyzed via the ratio of total composing node embeddings between
COINs and baseline models, referenced as the overparametrization factor.

Table 2: Knowledge graph datasets summary. Left to right: number of nodes, edges, node fea-
tures, edge types, communities; acceleration factor (decrease in evaluation time complexity, higher
is better), overparametrization factor (increase in memory complexity, lower is better).

Dataset |V | |ER| T |R| K Acceleration Overparametrization
FB15k-237 14541 310116 1 237 1025 x 4.3664 x 1.9926
WN18RR 41105 93003 5 11 88 x 4.5833 x 1.156
NELL-995 75492 154213 269 200 275 x 10.2892 x 1.0687

We note the inability to bring down K and |V ∗| for the FB15k-237 graph due to its high edge density,
yielding the worst scalability effects. Nevertheless, we provide evidence that through elementary
validation of the resolution hyperparameter one can optimize the scalability according to desired
preferences, due to a surprisingly strong correlation of the factors with the resolution value. Figure
2 illustrates this through a joint plot of both factors, and one can notice the common pattern across the
datasets: there’s a critical point for optimal acceleration, while overparametrization simply increases
with the resolution.

4.2 PERFORMANCE & FEASIBILITY

Table 3 contains our query answering results and the comparison with the baselines, obtained from
running the implementation by Sun et al. (2019)1. One can observe that on average, our novel
method for knowledge graph embedding training and evaluation does not reduce greatly the predic-
tion performance promised by the baselines. In fact, in a few cases, we seem to improve upon the
results and the RotatE algorithm seems to be the most compatible with COINs.

1Available at https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

7

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

Under review as a conference paper at ICLR 2024

10
8

10
5

10
2

10
1

Leiden resolution

10
0

10
1

Fa
ct

or
 v

al
ue

FB15k-237

10
8

10
5

10
2

10
1

Leiden resolution

WN18RR

10
8

10
5

10
2

10
1

Leiden resolution

NELL-995

Factor
Acceleration
Overparametrization

Figure 2: Dependence of time and memory scalability (acceleration and overparametrization factors)
on the value of the resolution hyperparameter of the Leiden community detection algorithm. Left
to right: different datasets. Chosen hyperparameter values that yielded optimal balance between
scalability and performance for each dataset annotated via vertical lines.

Table 3: All computed query answering metrics (higher is better): comparison of our results with
COINs training and evaluation to baselines with equal hyperparameters. Highlighted values indicate
the superiority of COINs or a relative error lower than 10%.

Dataset Model Value C-H@1 H@1 H@3 H@10 MRR

FB15k-237

TransE
Baseline - 0.142 0.240 0.369 0.218

COINs 0.676 0.078 0.136 0.245 0.132
± 0.000 ± 0.003 ± 0.005 ± 0.007 ± 0.004

DistMult
Baseline - 0.254 0.377 0.527 0.344

COINs 0.291 0.038 0.074 0.132 0.068
± 0.045 ± 0.007 ± 0.012 ± 0.012 ± 0.009

ComplEx
Baseline - 0.278 0.404 0.552 0.369

COINs 0.975 0.333 0.477 0.626 0.431
± 0.007 ± 0.007 ± 0.007 ± 0.007 ± 0.006

x4.4 speed-up RotatE
Baseline - 0.282 0.430 0.584 0.383

COINs 0.944 0.295 0.416 0.552 0.381
± 0.001 ± 0.003 ± 0.004 ± 0.004 ± 0.003

WN18RR

TransE
Baseline - 0.019 0.241 0.416 0.160

COINs 0.941 0.199 0.311 0.436 0.278
± 0.007 ± 0.006 ± 0.008 ± 0.012 ± 0.008

DistMult
Baseline - 0.399 0.452 0.489 0.433

COINs 0.997 0.176 0.305 0.423 0.261
± 0.001 ± 0.063 ± 0.086 ± 0.077 ± 0.071

ComplEx
Baseline - 0.426 0.479 0.526 0.462

COINs 0.999 0.297 0.394 0.466 0.358
± 0.000 ± 0.020 ± 0.017 ± 0.010 ± 0.018

x4.6 speed-up RotatE
Baseline - 0.442 0.491 0.538 0.476

COINs 0.998 0.436 0.510 0.586 0.487
± 0.000 ± 0.001 ± 0.003 ± 0.004 ± 0.001

NELL-995

TransE
Baseline - 0.230 0.368 0.448 0.312

COINs 0.971 0.150 0.244 0.356 0.218
± 0.000 ± 0.011 ± 0.012 ± 0.019 ± 0.009

DistMult
Baseline - 0.315 0.434 0.555 0.395

COINs 0.906 0.062 0.129 0.333 0.127
± 0.033 ± 0.018 ± 0.025 ± 0.013 ± 0.022

ComplEx
Baseline - 0.362 0.538 0.635 0.466

COINs 0.996 0.097 0.193 0.296 0.161
± 0.001 ± 0.037 ± 0.070 ± 0.066 ± 0.045

x10.3 speed-up RotatE
Baseline - 0.433 0.520 0.562 0.482

COINs 0.996 0.304 0.491 0.604 0.412
± 0.000 ± 0.015 ± 0.023 ± 0.016 ± 0.018

8

Under review as a conference paper at ICLR 2024

The community-graph Hits@1 metric provides further insight into our query answering perfor-
mance, obtained after analysing separately the metrics for each of the two prediction steps. Query
answering over the community interaction graphs yielded near-perfect responses, except for the case
of the FB15k-237 knowledge graph, whose community-interaction graph proved difficult to model
for the simpler TransE and DistMult methods. In these cases where the performance on community
prediction is not close to ideal, the overall performance will also be directly negatively impacted as
expected, due to the conditional nature of the prediction procedure.

However, a relevant comparison of the exact numbers showcased in Table 3 is difficult to perform
without the aid of an additional scalability-dependent investigation of the applicability of our pro-
posed approach. Thus, Figure 3 proposes a manner for visually verifying the satisfaction of the
relative error condition from Proposition 2. In the upper row, we observe the relative error in overall
Hits@k metrics against the acceleration factor. We observe that most points lie in the feasibility
region, except for the weak performance of TransE and DistMult on the FB15k-237 graph, which
we commented on previously. However, as shown in the bottom row, where we remove the im-
pact of the community prediction performance and only focus on node Hits@k, we observe that the
inequality is now satisfied even for these hardest scenarios.

0

5

10

15

A
cc

el
er

at
io

n

Overall Hits@1 Overall Hits@3 Overall Hits@10

1.0 0.5 0.0 0.5 1.0
Relative error

0

5

10

15

A
cc

el
er

at
io

n

Node Hits@1

1.0 0.5 0.0 0.5 1.0
Relative error

Node Hits@3

1.0 0.5 0.0 0.5 1.0
Relative error

Node Hits@10

Dataset
FB15k-237
WN18RR
NELL-995

Algorithm
TransE
DistMult
ComplEx
RotatE

Figure 3: Plot of relative error in Hits@k metrics against acceleration factor. The feasible region
(Proposition 2) is the one shaded. Top vs. bottom: COINs metric values after both steps vs. just the
second step. We observe one case where ≈10.3 speed-up is paired with ≈75% loss in performance,
while also≈10% improvement in another. The choice of embedding algorithm thus remains crucial.

5 CONCLUSION

We introduced COINs, a method for accelerating link prediction and query answering models for
knowledge graphs, to be applicable even in low computational resource settings. COINs featured a
two-step prediction procedure: node localization via community prediction and within-community
node prediction.

This first node localization step was found to be very impactful on overall model performance. We
theoretically and empirically elaborated that the quality of the community structure of the knowledge
graph has a broad-reaching influence on the possible scalability improvements provided by our
method, as well as its prediction performance compared to baselines. As such, one can conclude
that before selecting COINs to accelerate the embedding of a knowledge graph, it is important to
study and evaluate its community structure.

As relevant future work, we propose a continuation of the investigation into the applicability of
COINs when integrated into knowledge graph representation models of greater parameter complex-
ity and prediction power, employing graph convolution or graph attention (Cen et al., 2019; Shang
et al., 2019; Nathani et al., 2019). In addition, one can focus on attempting the integration of COINs
with algorithms for multi-hop knowledge graph reasoning (Ren et al., 2020; Ren & Leskovec, 2020),
as experiments so far focused only on the single-hop query answering problem.

9

Under review as a conference paper at ICLR 2024

Reproducibility Statement Appendix D provides helpful details on how to reproduce our results,
by listing the hardware and software utilized, as well as providing a link to a repository with the
full code. Therein, one can find the instructions on how to rerun our experiments and regenerate the
paper’s tables and figures.

REFERENCES

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, October 2008. doi: 10.1088/1742-5468/2008/10/p10008. URL https://
iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008. Pub-
lisher: IOP Publishing.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang. Representa-
tion Learning for Attributed Multiplex Heterogeneous Network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19,
pp. 1358–1368, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 978-
1-4503-6201-6. doi: 10.1145/3292500.3330964. URL https://dl.acm.org/doi/10.
1145/3292500.3330964.

Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 2006. URL https://igraph.org.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1), Apr. 2018. doi: 10.1609/aaai.v32i1.11573. URL https://ojs.aaai.org/index.
php/AAAI/article/view/11573.

Lisa Ehrlinger and Wolfram Wöß. Towards a definition of knowledge graphs. In Michael Martin,
Martı́ Cuquet, and Erwin Folmer (eds.), Joint Proceedings of the Posters and Demos Track of the
12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st International
Workshop on Semantic Change & Evolving Semantics (SuCCESS’16) co-located with the 12th
International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, Septem-
ber 12-15, 2016, volume 1695 of CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL
https://ceur-ws.org/Vol-1695/paper4.pdf.

Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro Sanchez-
Gonzalez, Wai Lok Sibon Li, Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, Jonathan Hal-
crow, Filipe Miguel Gonçalves de Almeida, Pedro Gonnet, Liangze Jiang, Parth Kothari, Sil-
vio Lattanzi, André Linhares, Brandon Mayer, Vahab Mirrokni, John Palowitch, Mihir Parad-
kar, Jennifer She, Anton Tsitsulin, Kevin Villela, Lisa Wang, David Wong, and Bryan Perozzi.
TF-GNN: Graph Neural Networks in TensorFlow, July 2022. URL https://ui.adsabs.
harvard.edu/abs/2022arXiv220703522F. Publication Title: arXiv e-prints ADS Bib-
code: 2022arXiv220703522F.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
CoRR, abs/1903.02428, 2019. URL http://arxiv.org/abs/1903.02428.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutiérrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier, Axel Polleres,
Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid, Anisa Rula, Lukas
Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs.
CoRR, abs/2003.02320, 2020. URL https://arxiv.org/abs/2003.02320. eprint:
2003.02320.

10

https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008
https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://dl.acm.org/doi/10.1145/3292500.3330964
https://dl.acm.org/doi/10.1145/3292500.3330964
https://igraph.org
https://ojs.aaai.org/index.php/AAAI/article/view/11573
https://ojs.aaai.org/index.php/AAAI/article/view/11573
https://ceur-ws.org/Vol-1695/paper4.pdf
https://ui.adsabs.harvard.edu/abs/2022arXiv220703522F
https://ui.adsabs.harvard.edu/abs/2022arXiv220703522F
http://arxiv.org/abs/1903.02428
https://arxiv.org/abs/2003.02320

Under review as a conference paper at ICLR 2024

George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices. Re-
port, 1997. URL http://conservancy.umn.edu/handle/11299/215346. Ac-
cepted: 2020-09-02T15:04:02Z.

George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, January 1998. ISSN
1064-8275. doi: 10.1137/S1064827595287997. URL https://epubs.siam.org/doi/
10.1137/S1064827595287997. Publisher: Society for Industrial and Applied Mathemat-
ics.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex
Peysakhovich. Pytorch-BigGraph: A Large Scale Graph Embedding System. Proceedings of
Machine Learning and Systems, 1:120–131, April 2019. URL https://proceedings.
mlsys.org/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-
Abstract.html.

Mengyue Liu, Jun Liu, Yihe Chen, Meng Wang, Hao Chen, and Qinghua Zheng. AHNG: Rep-
resentation learning on attributed heterogeneous network. Information Fusion, 50:221–230,
October 2019. ISSN 1566-2535. doi: 10.1016/j.inffus.2019.01.005. URL https://www.
sciencedirect.com/science/article/pii/S156625351830647X.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt
and Jarrod Millman (eds.), Proceedings of the 9th Python in Science Conference, pp. 56 – 61,
2010. doi: 10.25080/Majora-92bf1922-00a. URL https://conference.scipy.org/
proceedings/scipy2010/mckinney.html.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and Manohar Kaul. Learning attention-based
embeddings for relation prediction in knowledge graphs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 4710–4723, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1466. URL https:
//aclanthology.org/P19-1466.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Asso-
ciates, Inc., 2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

Hongyu Ren and Jure Leskovec. Beta Embeddings for Multi-Hop Logical Reasoning in Knowl-
edge Graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 19716–19726. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/e43739bba7cdb577e9e3e4e42447f5a5-Paper.pdf.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over Knowledge Graphs in
Vector Space Using Box Embeddings. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BJgr4kSFDS.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schuur-
mans. SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowl-
edge Graphs, November 2021. URL http://arxiv.org/abs/2110.14890. Number:
arXiv:2110.14890 arXiv:2110.14890 [cs].

11

http://conservancy.umn.edu/handle/11299/215346
https://epubs.siam.org/doi/10.1137/S1064827595287997
https://epubs.siam.org/doi/10.1137/S1064827595287997
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.mlsys.org/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://proceedings.mlsys.org/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://proceedings.mlsys.org/paper/2019/hash/e2c420d928d4bf8ce0ff2ec19b371514-Abstract.html
https://www.sciencedirect.com/science/article/pii/S156625351830647X
https://www.sciencedirect.com/science/article/pii/S156625351830647X
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://aclanthology.org/P19-1466
https://aclanthology.org/P19-1466
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e43739bba7cdb577e9e3e4e42447f5a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e43739bba7cdb577e9e3e4e42447f5a5-Paper.pdf
https://openreview.net/forum?id=BJgr4kSFDS
http://arxiv.org/abs/2110.14890

Under review as a conference paper at ICLR 2024

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-End
Structure-Aware Convolutional Networks for Knowledge Base Completion. Proceedings of
the AAAI Conference on Artificial Intelligence, 33(01):3060–3067, July 2019. doi: 10.1609/
aaai.v33i01.33013060. URL https://ojs.aaai.org/index.php/AAAI/article/
view/4164.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge Graph Embed-
ding by Relational Rotation in Complex Space. CoRR, abs/1902.10197, 2019. URL http:
//arxiv.org/abs/1902.10197. eprint: 1902.10197.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models and their
Compositionality, pp. 57–66, Beijing, China, July 2015. Association for Computational Linguis-
tics. doi: 10.18653/v1/W15-4007. URL https://aclanthology.org/W15-4007.

V. A. Traag, P. Van Dooren, and Y. Nesterov. Narrow scope for resolution-limit-free community de-
tection. Physical Review E, 84(1):016114, July 2011. doi: 10.1103/PhysRevE.84.016114. URL
https://link.aps.org/doi/10.1103/PhysRevE.84.016114. Publisher: Ameri-
can Physical Society.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From Louvain to Leiden: guarantee-
ing well-connected communities. Scientific reports, 9(1):1–12, 2019. doi: 10.1038/s41598-019-
41695-z. URL https://www.nature.com/articles/s41598-019-41695-z. Pub-
lisher: Nature Publishing Group.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. Com-
plex Embeddings for Simple Link Prediction. In Maria Florina Balcan and Kilian Q. Weinberger
(eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pp. 2071–2080, New York, New York, USA, June
2016. PMLR. URL https://proceedings.mlr.press/v48/trouillon16.html.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A reinforcement learning
method for knowledge graph reasoning. In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 564–573, Copenhagen, Denmark, Septem-
ber 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1060. URL
https://aclanthology.org/D17-1060.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding Entities and
Relations for Learning and Inference in Knowledge Bases. CoRR, abs/1412.6575, 2014. URL
https://api.semanticscholar.org/CorpusID:2768038.

Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan Gan, Zheng
Zhang, and George Karypis. DistDGL: Distributed Graph Neural Network Training for Billion-
Scale Graphs. In 2020 IEEE/ACM 10th Workshop on Irregular Applications: Architectures
and Algorithms (IA3), pp. 36–44, 2020. doi: 10.1109/IA351965.2020.00011. URL https:
//ieeexplore.ieee.org/document/9407264.

A ADDITIONAL PROOFS

Proposition 3. Let {ak}Kk=1 = {|Ck|}Kk=1 and {bk}Kk=1 = {|Etest
k |}Kk=1 denote the learnable

parameters. Then with the constraints
∑K

k=1 ak = |V |,
∑K

k=1 bk = N, ∀k, ak > 0, bk ≥ 0, the only
extremal points of g({ak}, {bk}) =

∑K
k=1 (K + ak)bk are when ∀k, a∗k = |V |

K and/or ∀k, b∗k = N
K ,

with the extreme value of g({a∗k}, {b∗k}) = N
(
K + |V |

K

)
.

Proof. The Lagrangian of the optimization problem is the following:

L({ak}, {bk}) =
K∑

k=1

(K + ak)bk+λ1

(
K∑

k=1

ak − |V |

)
+λ2

(
K∑

k=1

bk −N

)
−

K∑
k=1

µkak−
K∑

k=1

νkbk

12

https://ojs.aaai.org/index.php/AAAI/article/view/4164
https://ojs.aaai.org/index.php/AAAI/article/view/4164
http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/1902.10197
https://aclanthology.org/W15-4007
https://link.aps.org/doi/10.1103/PhysRevE.84.016114
https://www.nature.com/articles/s41598-019-41695-z
https://proceedings.mlr.press/v48/trouillon16.html
https://aclanthology.org/D17-1060
https://api.semanticscholar.org/CorpusID:2768038
https://ieeexplore.ieee.org/document/9407264
https://ieeexplore.ieee.org/document/9407264

Under review as a conference paper at ICLR 2024

From the stationarity KKT conditions:

∀k, ∂L
∂ak

= 0⇔ ∀k, bk + λ1 − µk = 0⇔ ∀k, bk = µk − λ1

∀k, ∂L
∂bk

= 0⇔ ∀k, ak +K + λ2 − νk = 0,⇔ ∀k, ak = νk − λ2 −K

Now, by the primal equality constraints:

K∑
k=1

ak = |V | ⇔
K∑

k=1

(νk − λ2 −K) = |V | ⇔ λ2 =
1

K

K∑
k=1

νk −
|V |
K
−K

⇒ ∀k, ak = νk −
1

K

K∑
j=1

νj +
|V |
K

K∑
k=1

bk = N ⇔
K∑

k=1

(µk − λ1) = N ⇔ λ1 =
1

K

K∑
k=1

µk −
N

K

⇒ ∀k, bk = µk −
1

K

K∑
j=1

µj +
N

K

Finally, by the complementary slackness KKT conditions, primal inequality constraints, and dual
feasibility KKT conditions:

K∑
k=1

µkak = 0⇔ ∀k, µk = 0⇒ ∀k, b∗k =
N

K
as ∀k, ak > 0, µk ≥ 0

K∑
k=1

νkbk = 0⇐ ∀k, νk = 0⇒ ∀k, a∗k =
|V |
K

as ∀k, bk ≥ 0, νk ≥ 0

Proposition 4. With K =
√
|V |, one achieves the minimal evaluation cost of 2N

√
|V |, while with

K ∈ {1, |V |} one achieves the maximum of N(|V |+ 1).

Proof. Let f(K) = N(K + |V |
K). Then note that f ′(K) = N − N |V |

K2 . From this, we find the only
critical point of f in (1, |V |): N − N |V |

K2 = 0⇔ K2 = N |V |
N ⇔ K =

√
|V |.

Now f ′′(K) = 2N |V |
K3 . As ∀K ∈ [1, |V |], f ′′(K) > 0, f is a convex function for all values of

K. Thus,
√
|V | will be both a local and global minimum, while the endpoints of the interval will

be global maxima, as ∀K ̸=
√
|V |, f ′(K) > 0, i.e., f increases away from the minimum in both

directions.

B HYPERPARAMETERS

Table 4 lists the chosen values of the main hyperparameters influencing community detection, model
architecture and optimization.

C ADDITIONAL RESULTS

C.1 COMMUNITIES & SCALABILITY

Figure 4 illustrates an alternative method to optimize the scalability factors, through optimization of
the cut size (number of inter-community edges) heuristic utilized by the METIS algorithm. For Lei-
den, one observes smooth curves with similar properties as in Figure 2, where we had the resolution
parameter as the independent variable. For optimal acceleration, there seems to be a critical cut size,

13

Under review as a conference paper at ICLR 2024

Table 4: Hyperparameter configurations. Left to right: Leiden resolution, embedding dimension,
contrastive loss margin, COINs loss weight, mini-batch size, number of negative samples per posi-
tive, total number of training samples, learning rate, and regularization weight.

Dataset Model resolution D γ α B m n l.r. λ

FB15k-237

TransE 5 · 10−3 100 1.0 0.5 256 128 2 · 108 10−3 10−6

DistMult 5 · 10−3 100 n/a 0.5 256 128 2 · 109 10−3 10−6

ComplEx 5 · 10−3 100 n/a 0.5 256 128 2 · 109 10−3 10−6

RotatE 5 · 10−3 100 9.0 0.5 256 128 2 · 108 10−3 10−6

WN18RR

TransE 2.4 · 10−5 100 1.0 0.5 256 128 2 · 108 10−3 10−6

DistMult 2.4 · 10−5 100 n/a 0.5 256 128 2 · 109 10−3 10−6

ComplEx 2.4 · 10−5 100 n/a 0.5 256 128 2 · 109 10−3 10−6

RotatE 2.4 · 10−5 100 6.0 0.5 256 128 2 · 108 10−3 10−6

NELL-995

TransE 2 · 10−5 100 1.0 0.5 256 128 2 · 108 10−3 10−6

DistMult 2 · 10−5 100 n/a 0.5 256 128 2 · 109 10−3 10−6

ComplEx 2 · 10−5 100 n/a 0.5 256 128 2 · 109 10−3 10−6

RotatE 2 · 10−5 100 6.0 0.5 256 128 2 · 108 10−3 10−6

0 100000 200000 300000
Cut size

10
0

10
1

10
2

Fa
ct

or
 v

al
ue

FB15k-237

0 25000 50000 75000
Cut size

WN18RR

0 50000 100000 150000
Cut size

NELL-995

Factor
Acceleration
Overparametrization

Figure 4: Dependence of time and memory scalability (acceleration and overparametrization factors)
on the cut size (number of inter-community edges) of community partitions obtained by varying the
resolution hyperparameter of the Leiden community detection algorithm. Left to right: different
datasets. Cut values that yielded optimal balance between scalability and performance for each
dataset annotated via black vertical lines. Gray vertical lines denote the cut size values obtained by
the METIS algorithm, while the boxes with error bars denote the results from a batch of 100 random
uniform community assignments.

while having more inter-community edges implied more parameters for f∗. Curiously, we observed
the METIS algorithm to yield a non-minimal cut size and there are a lot of Leiden resolution values
that achieve lower cut sizes. METIS clearly favors too large of an increase in parameter number.
The distribution of the metrics over a batch of 100 random uniform community assignments yielded
extremal values: the best acceleration, however the largest cut size and most parameters.

Figure 5 illustrates yet another alternative method to optimize the scalability factors, through opti-
mization of the modularity heuristic utilized by the Leiden algorithm. In general, for Leiden, one
observes both more acceleration and less overparametrization as modularity increases, however, as
the plots display, we found this method to be more unstable than simply traversing the resolution hy-
perparameter space as before in Figure 2. We also note that the METIS algorithm produced slightly
higher modularity only for the WN18RR dataset. Random community assignments again, naturally,
yield extremal values.

C.2 PERFORMANCE & FEASIBILITY

Table 5 provides further insight into our query answering performance, after analysing separately the
metrics for each of the two prediction steps. We can observe how well the community Hits@1 score
captures the influence of the accuracy in the community prediction on the overall performance.
Namely, with some quick calculations, one can interestingly note that the overall COINs metric
values can be closely approximated as the product of the community Hits@1 and respective scores
for the within-community node prediction.

14

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8
Modularity

10
0

10
1

10
2

Fa
ct

or
 v

al
ue

FB15k-237

0.0 0.2 0.4 0.6 0.8
Modularity

WN18RR

0.0 0.2 0.4 0.6 0.8
Modularity

NELL-995

Factor
Acceleration
Overparametrization

Figure 5: Dependence of time and memory scalability (acceleration and overparametrization fac-
tors) on the value of the modularity heuristic of the Leiden community detection algorithm. Left
to right: different datasets. Modularity values that yielded optimal balance between scalability and
performance for each dataset annotated via black vertical lines. Gray vertical lines denote the mod-
ularity values obtained by the METIS algorithm, while the boxes with error bars denote the results
from a batch of 100 random uniform community assignments.

Table 6 contains all of our results on the link prediction task. We do not possess baselines for these
results due to the limited scope of the related work, which focuses only on an evaluation of the query
answering task. Thus, we cannot perform a similar comparison as before. Regardless, the relative
ordering of the metric values across settings is consistent with the query answering performance
discussed previously.

Figure 6 is our most detailed experiment, with the goal of merging together the validation of commu-
nity assignments with the analysis of model feasibility, to investigate the tradeoff between achieved
community quality, relative error in performance and acceleration/overparametrization. To facili-
tate this, for each dataset we end-to-end trained and evaluated the COINs-RotatE combination (as
our most successful) with different sources of community assignments. Namely, we searched the
region around the optimal value for the Leiden resolution hyperparameter to obtain worse commu-
nities, replaced Leiden with METIS for another case, and for a final run picked one random uniform
community assignment.

As in Figures 2 and 4, we observe that the Leiden trajectories for all datasets have a critical point
with an optimal trade-off between relative error and acceleration. We note that overall relative error,
although unstable w.r.t. Leiden resolution, does not vary greatly and the main differences seem to
lie in the acceleration values (although for FB15k-237 we manage to enter and exit the feasibility
region by changing resolution). On the other hand, when considering only the performance in
the second prediction step, relative error improves with Leiden resolution much faster. Note that,
however, this is to be expected, as greater Leiden resolution implies smaller communities and thus,
fewer possible answers to queries. We confirm again that overparametrization simply increases
with greater resolution values and dominates the trajectory direction in the overall performance
case. Thus, we confirm again that although the METIS and random communities might yield higher
speed-ups, there are a lot of Leiden community assignments resulting in similar performance, and
equally significant speed-ups but with significantly fewer parameters.

15

Under review as a conference paper at ICLR 2024

Table 5: Decomposition of COINs metrics into the overall values shown before and metrics for the
second prediction step separately. Highlighted values indicate the superiority of COINs compared
to the baseline or a relative error lower than 10%.

Dataset Model Value C-H@1 H@1 H@3 H@10 MRR

FB15k-237

TransE
Overall 0.676 0.078 0.136 0.245 0.132

± 0.000 ± 0.003 ± 0.005 ± 0.007 ± 0.004

Node 0.202 0.321 0.490 0.296
± 0.002 ± 0.003 ± 0.005 ± 0.002

DistMult
Overall 0.291 0.038 0.074 0.132 0.068

± 0.045 ± 0.007 ± 0.012 ± 0.012 ± 0.009

Node 0.162 0.301 0.518 0.272
± 0.009 ± 0.011 ± 0.011 ± 0.009

ComplEx
Overall 0.975 0.333 0.477 0.626 0.431

± 0.007 ± 0.007 ± 0.007 ± 0.007 ± 0.006

Node 0.344 0.493 0.645 0.445
± 0.008 ± 0.009 ± 0.010 ± 0.008

x4.4 speed-up RotatE
Overall 0.944 0.295 0.416 0.552 0.381

± 0.001 ± 0.003 ± 0.004 ± 0.004 ± 0.003

Node 0.323 0.453 0.593 0.414
± 0.001 ± 0.003 ± 0.004 ± 0.002

WN18RR

TransE
Overall 0.941 0.199 0.311 0.436 0.278

± 0.007 ± 0.006 ± 0.008 ± 0.012 ± 0.008

Node 0.212 0.336 0.477 0.299
± 0.004 ± 0.003 ± 0.003 ± 0.002

DistMult
Overall 0.997 0.176 0.305 0.423 0.261

± 0.001 ± 0.063 ± 0.086 ± 0.077 ± 0.071

Node 0.176 0.305 0.424 0.261
± 0.063 ± 0.086 ± 0.076 ± 0.071

ComplEx
Overall 0.999 0.297 0.394 0.466 0.358

± 0.000 ± 0.020 ± 0.017 ± 0.010 ± 0.018

Node 0.297 0.394 0.467 0.358
± 0.020 ± 0.017 ± 0.010 ± 0.018

x4.6 speed-up RotatE
Overall 0.998 0.436 0.510 0.586 0.487

± 0.000 ± 0.001 ± 0.003 ± 0.004 ± 0.001

Node 0.436 0.510 0.586 0.487
± 0.001 ± 0.003 ± 0.004 ± 0.001

NELL-995

TransE
Overall 0.971 0.150 0.244 0.356 0.218

± 0.000 ± 0.011 ± 0.012 ± 0.019 ± 0.009

Node 0.151 0.247 0.364 0.221
± 0.011 ± 0.011 ± 0.018 ± 0.009

DistMult
Overall 0.906 0.062 0.129 0.333 0.127

± 0.033 ± 0.018 ± 0.025 ± 0.013 ± 0.022

Node 0.077 0.169 0.387 0.159
± 0.023 ± 0.029 ± 0.008 ± 0.021

ComplEx
Overall 0.996 0.097 0.193 0.296 0.161

± 0.001 ± 0.037 ± 0.070 ± 0.066 ± 0.045

Node 0.098 0.195 0.298 0.163
± 0.037 ± 0.070 ± 0.065 ± 0.044

x10.3 speed-up RotatE
Overall 0.996 0.304 0.491 0.604 0.412

± 0.000 ± 0.015 ± 0.023 ± 0.016 ± 0.018

Node 0.305 0.493 0.607 0.414
± 0.015 ± 0.023 ± 0.016 ± 0.018

16

Under review as a conference paper at ICLR 2024

Table 6: All computed link prediction metrics (higher is better), with community prediction metrics
also given separately.

Dataset Model Value Accuracy F1 ROC-AUC AP

FB15k-237

TransE
Community 0.946 0.941 0.964 0.812

± 0.000 ± 0.000 ± 0.000 ± 0.005

Overall 0.895 0.896 0.940 0.727
± 0.001 ± 0.001 ± 0.000 ± 0.003

DistMult
Community 0.864 0.877 0.970 0.861

± 0.007 ± 0.006 ± 0.004 ± 0.016

Overall 0.908 0.912 0.950 0.841
± 0.002 ± 0.001 ± 0.001 ± 0.005

ComplEx
Community 0.997 0.997 0.998 0.996

± 0.000 ± 0.000 ± 0.000 ± 0.000

Overall 0.938 0.938 0.968 0.900
± 0.004 ± 0.003 ± 0.000 ± 0.002

x4.4 speed-up RotatE
Community 0.988 0.989 0.998 0.995

± 0.001 ± 0.001 ± 0.000 ± 0.000

Overall 0.925 0.922 0.960 0.853
± 0.001 ± 0.001 ± 0.001 ± 0.003

WN18RR

TransE
Community 0.989 0.989 0.986 0.963

± 0.000 ± 0.000 ± 0.000 ± 0.006

Overall 0.905 0.904 0.923 0.798
± 0.002 ± 0.001 ± 0.001 ± 0.005

DistMult
Community 0.882 0.893 0.999 0.998

± 0.003 ± 0.002 ± 0.000 ± 0.000

Overall 0.920 0.913 0.860 0.752
± 0.002 ± 0.002 ± 0.003 ± 0.005

ComplEx
Community 1.000 1.000 1.000 1.000

± 0.000 ± 0.000 ± 0.000 ± 0.000

Overall 0.925 0.917 0.912 0.814
± 0.001 ± 0.001 ± 0.001 ± 0.001

x4.6 speed-up RotatE
Community 0.997 0.997 0.999 0.999

± 0.000 ± 0.000 ± 0.000 ± 0.000

Overall 0.912 0.900 0.949 0.871
± 0.000 ± 0.000 ± 0.001 ± 0.001

NELL-995

TransE
Community 0.995 0.995 0.992 0.982

± 0.000 ± 0.000 ± 0.002 ± 0.002

Overall 0.932 0.933 0.963 0.818
± 0.001b ± 0.001 ± 0.001 ± 0.009

DistMult
Community 0.950 0.952 0.996 0.978

± 0.003 ± 0.003 ± 0.001 ± 0.007

Overall 0.943 0.943 0.931 0.836
± 0.002 ± 0.002 ± 0.002 ± 0.006

ComplEx
Community 0.999 0.999 0.999 0.999

± 0.000 ± 0.000 ± 0.000 ± 0.000

Overall 0.965 0.965 0.992 0.963
± 0.001 ± 0.001 ± 0.000 ± 0.001

x10.3 speed-up RotatE
Community 0.993 0.993 1.000 0.999

± 0.001 ± 0.001 ± 0.000 ± 0.000

Overall 0.947 0.945 0.977 0.885
± 0.004 ± 0.004 ± 0.001 ± 0.009

17

Under review as a conference paper at ICLR 2024

2 1 0 1
Relative error

10
0

10
1

10
2

Ac
ce

le
ra

tio
n

Overall Hits@1

2 1 0 1
Relative error

Overall Hits@3

2 1 0 1
Relative error

Overall Hits@10

2 1 0 1
Relative error

10
0

10
1

10
2

Ac
ce

le
ra

tio
n

Node Hits@1

2 1 0 1
Relative error

Node Hits@3

2 1 0 1
Relative error

Node Hits@10

Dataset
FB15k-237
WN18RR
NELL-995

Algorithm
Leiden
METIS
Random

0.0 0.5
Relative error

1

2

3

O
ve

rp
ar

am
et

riz
at

io
n Overall Hits@1

0.0 0.5
Relative error

Overall Hits@3

0.0 0.5
Relative error

Overall Hits@10

1.5 1.0 0.5 0.0
Relative error

1

2

3

O
ve

rp
ar

am
et

riz
at

io
n Node Hits@1

1.0 0.5 0.0
Relative error

Node Hits@3

0.75 0.50 0.25 0.00 0.25
Relative error

Node Hits@10

Dataset
FB15k-237
WN18RR
NELL-995

Algorithm
Leiden
METIS
Random

Figure 6: Plot of trajectories in the performance-scalability space, for the RotatE algorithm trained
and evaluated with different community assignments. The Leiden paths are obtained by varying
the resolution hyperparameter, the direction of the arrows indicates an increase of resolution. The
feasible region for acceleration (Proposition 2) is the one shaded. Odd vs. even rows: COINs metric
values after both steps vs. just the second step. Top two vs. bottom two rows: acceleration vs.
overparametrization space.

18

Under review as a conference paper at ICLR 2024

C.3 STABILITY & CONVERGENCE

The convergence plots in Figure 7 support our decision to model the final aggregate COINs loss
value as the linear combination of the community and node terms. From the convergence lines, one
can observe that the community and node iterates seem to converge at equal rates in both training
and validation data. As such, the aggregate COINs loss function can be a simple average of the two
terms without affecting convergence.

10
5

10
6

10
7

10
8

Number of training samples

0.4

0.6

0.8

Lo
ss

TransE Training

10
6

10
7

10
8

10
9

Number of training samples

0.00

0.25

0.50

0.75 DistMult Training

10
6

10
7

10
8

10
9

Number of training samples

0.0

0.5

ComplEx Training

10
5

10
6

10
7

10
8

Number of training samples

0

1

2 RotatE Training

10
5

10
6

10
7

10
8

Number of training samples

0.4

0.5

0.6

0.7

Lo
ss

TransE Validation

10
6

10
7

10
8

10
9

Number of training samples

0.5

1.0

DistMult Validation

10
6

10
7

10
8

10
9

Number of training samples

0.00

0.25

0.50

0.75

ComplEx Validation

10
5

10
6

10
7

10
8

Number of training samples

0.0

0.5

1.0

1.5
RotatE Validation

Value
Community
Node
Overall

Figure 7: Plots of contrastive loss convergence over time, with the decomposition of the final COINs
loss into the two constituent community and node loss terms. Top vs. bottom: training vs. validation
loss. Left to right: the different COINs-integrated algorithms. Error bands show standard deviation
across datasets.

D IMPLEMENTATION DETAILS

The entire implementation was performed in the Python 3.6 programming language. The Pandas
library by McKinney (2010) was helpful with its efficient preprocessing operations on tabular data.
The iGraph library by Csardi & Nepusz (2006) was utilized for the implementation of most of the
graph analysis and preprocessing steps, including executing the Leiden algorithm. For METIS, the
official software implementation (Karypis & Kumar, 1997) was invoked through a Python wrapper.
The entire model architecture (along with integration code for the publicly available implementa-
tions of the external embedders), training, and evaluation, were implemented using the PyTorch deep
learning framework by Paszke et al. (2019) and the extension framework for graph neural network
learning PyTorch Geometric by Fey & Lenssen (2019).

All code was executed on a single machine with the following specifications:

• Intel® Xeon® Gold 5118 12-core CPU @ 2.30GHz;
• NVIDIA Tesla P100-PCIE-16GB GPU;
• 64 GB RAM.

To facilitate reproducibility, our full code implementation is available at:
https://github.com/ResearchWeasel/coins-iclr-2024.

19

https://github.com/ResearchWeasel/coins-iclr-2024

	Introduction
	Background
	Problem and Challenges
	Preliminaries
	Contributions
	Scalable query answering evaluation
	Optimal partition structure
	Edge locality

	Methodology
	Community detection
	COINs training & evaluation
	Tradeoff analysis
	Experiment setup
	Integration with knowledge graph representation models
	Data
	Training setup

	Results & discussion
	Communities & Scalability
	Performance & Feasibility

	Conclusion
	Additional proofs
	Hyperparameters
	Additional results
	Communities & Scalability
	Performance & Feasibility
	Stability & Convergence

	Implementation details

