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Abstract

Despite the significant progress in diffusion prior-based image restoration for real-
world scenarios, most existing methods apply uniform processing to the entire
image, lacking the capability to perform region-customized image restoration ac-
cording to user preferences. In this work, we propose a new framework, namely
InstructRestore, to perform region-adjustable image restoration following human
instructions. To achieve this, we first develop a data generation engine to pro-
duce training triplets, each consisting of a high-quality image, the target region
description, and the corresponding region mask. With this engine and careful data
screening, we construct a comprehensive dataset comprising 536,945 triplets to sup-
port the training and evaluation of this task. We then examine how to integrate the
low-quality image features under the ControlNet architecture to adjust the degree
of image details enhancement. Consequently, we develop a ControlNet-like model
to identify the target region and allocate different integration scales to the target
and surrounding regions, enabling region-customized image restoration that aligns
with user instructions. Experimental results demonstrate that our proposed Instruc-
tRestore approach enables effective human-instructed image restoration, including
restoration with controllable bokeh blur effects and region-specific restoration with
continuous intensity control. Our work advances the investigation of interactive im-
age restoration and enhancement techniques. Data, code, and models are publicly
available at https://github.com/shuaizhengliu/InstructRestore.git.

1 Introduction

Image restoration (IR) is a fundamental problem in computer vision to recover high-quality images
from degraded inputs. Early works have achieved significant progress on individual IR tasks based
on specific simulated degradation assumptions, including denoising [59, 60], deblurring [28, 36], and
super-resolution [9, 24]. While demonstrating strong performance within their target domains, these
approaches exhibit inherent limitations when generalizing to real-world scenarios characterized by
unknown and composite degradations. This has motivated the emerging paradigm of real-world image
restoration, which aims to handle complex degradation in practical imaging scenarios, particularly for
challenging cases like real-world super-resolution [5, 43]. To address this challenge, recent advances
have developed sophisticated degradation models to better approximate real-world conditions [57, 39].
Building upon these advanced degradation models, and with the advent of pretrained text-to-image
(T2I) generation models such as Stable Diffusion (SD) [33], which can more effectively model the
complex distribution of natural images, researchers have started to explore the use of powerful SD
priors to produce realistic IR outcomes [38, 25, 50, 46, 52, 45, 35, 41, 2, 8, 51].
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Figure 1: Our proposed InstructionRestore framework enables region-customized restoration
following human instruction. As shown in (a), current methods [46, 52] tend to restore the bokeh
blurry region incorrectly, while our approach allows for adjustable control over the degree of blur
based on user instructions. In (b), existing methods fail to achieve region-specific enhancement
intensities, while our approach can simultaneously suppress the over-enhancement in areas of building
and improve the visual quality in areas of leaves.

By generating details semantically consistent with the underlying content of the image, SD-based
methods achieve significantly better perceptual quality than previous approaches [23, 26, 6, 9, 34,
29, 40, 39, 22]. However, image restoration is an ill-posed problem that admits multiple plausible
solutions. Existing methods are limited to a single restoration outcome applied uniformly across the
image, lacking the ability to accommodate varied user preferences across different image regions. For
example, in the photography of targeted objects (e.g., portrait), the background is intentionally blurred
for aesthetic focus. During restoration, users typically want to preserve or even adjust bokeh effects,
yet existing generative prior-based IR methods may produce unnecessary textures that disrupt the
intended bokeh effects on the background regions, as shown in Fig. 1(a). In addition, user preferences
for content fidelity and perceptual quality vary across image semantic regions. For irregular texture
regions (e.g., trees), it’s challenging to accurately recover pixel-wise details due to signal aliasing in
the degradation process [22]. In these cases, strictly enforcing fidelity often leads to over-smoothed
results. Therefore, users generally prioritize perceptual quality for irregular texture regions, favoring
more aggressive detail generation. Conversely, for structural regions (e.g., architecture) or flat areas
(e.g., skies), large pixel-wise differences are more perceptually sensitive and easily detected as
artifacts [47]. Therefore, user preference may shift towards content fidelity to preserve accuracy, as
illustrated in Fig. 1(b). Unfortunately, existing methods cannot achieve such customized restoration
of different regions.

To address the limitation mentioned above, we propose InstructRestore, a novel framework that
enables users to realize region-specific restoration through natural language instruction for real-world
scenarios, including bokeh adjustment and region-aware tuning of content fidelity and perceptual
quality. Our InstructRestore approach can precisely adjust restoration effects in target semantic
regions while keeping other areas unaffected, showing the ability of instruction following. To begin
with this novel task, we need a dataset for training and evaluation, which should offer descriptions of
target regions to construct human instruction, along with corresponding region masks. To the best of
our knowledge, there is not a publicly available dataset that provides such triplets of high-quality
images, referring descriptions, and the corresponding region masks. The most relevant datasets to
our task can be the referential segmentation datasets such as RefCOCO [53]. However, its image
quality and resolution are insufficient to support IR tasks. To bridge this gap, we develop a data
generation engine. Utilizing Semantic-Sam [18] and Osprey [55] models, we obtain masks and
initial descriptions from a set of selected high-quality images. We then use large language models
(LLMs), more specifically Qwen [48], to iteratively parse and refine these descriptions, formatting
them to meet the instructional requirements of IR tasks. Finally, we build a dataset of 536,945 triplets,
covering diverse scenes such as plants, buildings, animals, etc.

Building upon this dataset, we train the InstructRestore model for region-customized IR with user
instructions. To ensure that the model can accurately identify the human-specified region and properly
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enhance the designated area, we propose integrating the conditional features of low-quality input
images into a ControlNet-like architecture. Instructions are used as text prompts to the control-branch
of ControlNet [61]. Trained on our curated dataset, the control-branch could simultaneously generate
region masks and conditional features. By applying distinct integration scales to the conditional
features of user-customized regions and their surroundings, our InstructRestore model achieves
locally controlled restoration that aligns with user intentions.

Our key contributions are summarized as follows. (1) First, we introduce the task of region-customized
image restoration with human instruction, which represents an important class of practical IR tasks. (2)
Second, we develop a data generation engine and construct a large-scale dataset with 536, 945 triplets
to support this task. (3) Finally, we present InstructRestore, the first model that understands user
instructions for region-customized restoration for real-world complex degradation. Our experiments
demonstrate the capability and effectiveness of our InstructRestore model, showcasing its great
potential for interactive and user-instructed image restoration.

2 Related Work

Diffusion-based Restoration in Real World. Recent diffusion models have significantly advanced
the task of IR in real world, addressing mixed degradations such as noise, blur, JPEG compression, and
resolution reduction. StableSR [38] and DiffBIR [25] treat the low-quality (LQ) input as condition
to guide reverse diffusion process. PASD [50] and SeeSR [46] introduce the semantic prompts
like short captions or tags to enrich the result with finer semantic details. SUPIR [52] scales up
datasets along with long descriptions to boost perceptual quality with SDXL [30] pre-trained model.
DreamClear [2] and FluxIR [8] introduce Diffusion Transformer (DiT)-based models designed for
enhanced performance in image restoration. To tackle the inefficiency of iterative sampling, one-
step diffusion methods [45, 35, 56] have emerged, ensuring quality with faster inference. Despite
their advancements, existing methods perform restoration uniformly, failing to accommodate user
preferences for region-specific refinements.

Instruction-guided Editing and Restoration. Natural language instructions enable intuitive human-
AI collaboration by translating high-level intent into pixel-level operations. Instruction-guided
image editing methods like InstructPix2Pix [4] and MagicBrush [58] have demonstrated remarkable
capabilities in spatially aware manipulations. Subsequent works like MGIE [10] and SmartEdit [13]
further advance instruction comprehension through multimodal LLMs. Others [19, 11] focus on
region-specific control, ensuring editing explicitly defined areas by user instructions. However,
these breakthroughs remain confined to semantic-level manipulation rather than physically grounded
restoration. To address this, recent efforts have incorporated user instructions into restoration
frameworks. InstructIR [7] and PromptFix [54] leverage task-specific instructions to enable a single
model to handle multiple restoration tasks, including denoising, deblur, rain removal, etc. SPIRE [31]
incorporates semantic descriptions to handle in-the-wild restoration scenarios. However, these
methods primarily use instructions for task differentiation or global parameter tuning, lacking the
ability to perform region-specific refinements. Our work introduces the first instruction-guided
restoration framework for real-world scenarios that enables region-specific refinements through
natural language commands, addressing the critical limitation of global-only operations in prior arts.

3 Dataset Construction

InstructRestore aims to adjust restoration effects on user-specified regions following human instruc-
tions. To achieve this goal, the model needs to understand the semantic information of the target
regions for performing localized restoration. A critical requirement for training such a model is the
availability of a large-scale dataset, which simultaneously offers high-quality images, descriptions of
target regions, and corresponding region masks. In this paper, we develop a data generation engine to
build such a comprehensive dataset, named Tri-IR, to facilitate the research of InstructRestore tasks.
The data generation process is detailed in Fig. 2.

3.1 Dataset Construction Pipeline

High-quality ground-truth image collection. High-resolution and high-quality ground-truth (GT)
images are critical for training IR models. Therefore, we collect high-quality images from LSDIR [20],
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Figure 2: Illustration of the annotation pipeline. For selected high-quality images, Semantic-SAM [18]
generates initial masks, followed by Osprey [55] for region-level descriptions. Qwen [48] reformats
descriptions into noun phrases and extracts semantic subjects. Identical semantics are merged to
produce final masks and region captions.

EntitySeg [32] train set and EBB! [14] bokeh train set with shorter side larger than 512 pixels and
MUSIQ [17] score larger than 60.

Annotation pipeline. To obtain high-quality images, we design an automatic annotation pipeline to
extract the semantic region masks and their corresponding descriptions with a combination of state-
of-the-art models. In the mask extraction phase, we first utilize a state-of-the-art segmentation model,
e.g., Semantic-SAM [18], to generate coarse-grained semantic segmentation masks for the semantic
region of the images. For images from EntitySeg [32], we directly reuse their pre-annotated masks.
Once the masks are obtained, we pair each image with its mask and feed them into a multi-modal
large language model, Osprey [55], to generate region-level descriptions. These descriptions serve
as part of instructions to specify the regions to be processed or restored. At this stage, though we
obtain preliminary masks and descriptions, they are still far from perfect as our training data due to
two key issues below: (1) Semantic-SAM [18] occasionally produces multiple mask pieces for one
semantic meaning, leading region ambiguity and harmful for the region customization learning; (2)
the descriptions are not always in noun phrase format due to the response arbitrariness, making them
unsuitable for embedding into instructions.

To address these issues, we first utilize Qwen-7B [3], a large language model (LLM), to perform
the following tasks through prompt tuning: (1) parsing the subject from the descriptions and (2)
reformatting them into noun phrases. Due to the randomness in LLM’s outputs, we iteratively perform
the refinement process. Specifically, we identify error cases and re-execute the above process by a
larger LLM, Qwen-72B [3]. This cycle is repeated 3 times to ensure high-quality outputs. More
details can be found in the appendices. Finally, based on the parsed subject, we merge the masks and
their corresponding descriptions for regions with identical semantics.

3.2 Dataset Statistics

Table 1: Statistics of our dataset and related
datasets.

Datasets
Annotation

Amount
Min

Resolution
Max

Resolution MUSIQ
RefClef [16] 99,523 320×480 360×480 67.06

RefCOCO [53] 196,771 157×160 640×637 69.73
RefCOCO+ [53] 196,737 157×160 640×637 69.73
RefCOCOg [27] 208,960 157×160 640×637 69.73

Ours 536,945 540×540 4464×2244 71.87

As shown in Fig. 2, our Tri-IR dataset, provides
triplets of high-quality GT images, region masks,
and descriptive captions. To underscore the rel-
evance and utility of our dataset, we compare it
with the most relevant referential segmentation
datasets including RefClef [16], RefCOCO [53],
RefCOCO+ [53] and RefCOCOg [27] in Ta-
ble 1, which also provide masks and captions for semantic regions. The comparison focuses on the
number of annotations, the range of image resolutions, and MUSIQ-based quality scores.

As can be seen from Table 1, existing datasets, while widely used for segmentation, exhibit critical
limitations for IR tasks. Their images are capped at resolution less than 650 pixels and their MUSIQ
scores fall significantly below ours. In contrast, our dataset not only provides 536,945 annotated
regions (surpassing other datasets in scale) but also delivers higher-resolution images with superior
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Figure 3: Framework of InsturctRestore. The framework uses red and green arrows to denote training
and inference processes respectively. During testing, user instructions are parsed to generate target-
region semantic masks, with differentiated coefficient modulation applied to conditional features
inside/outside mask regions, enabling instruction-guided region-specific restoration effects.

perceptual quality, meeting the need for IR tasks. Our dataset enables both precise semantic control
and photorealistic restoration. To further illustrate the semantic diversity and applicability of our
dataset, we plot a word cloud reflecting the relative frequency of different semantic content in the
appendices, which demonstrates that our dataset covers a wide range of semantic regions that are
commonly targeted in restoration tasks, such as plants, buildings, animals, etc.

4 InstructRestore Model Design

Our network is designed to achieve region-specific restoration effects based on user instructions,
where each instruction contains both spatial region specifications and restoration strength. The core
challenge lies in how to accurately localize specified regions and implement continuous controllable
local restoration effects with given strength, while keeping the restoration of remaining regions
unchanged. A straightforward approach might be to construct training data pairs corresponding
to different local restoration strengths. However, this approach is too labor-intensive. We develop
a more elegant solution to address the above challenges without requiring different strength pairs.
Specifically, existing SD-based IR models often employ a ControlNet architecture with the low-
quality (LQ) image as a conditional signal. In this architecture, the pre-trained SD backbone generates
text-guided features while the ControlNet branch extracts LR-derived features. The fusion between
these two pathways determines the final restoration output. We observe that scaling the ControlNet
features by a coefficient α during inference provides flexible control of the data fidelity and semantic
enhancement. Intuitively, a smaller coefficient allows the SD backbone to dominate, resulting in
richer generated details and enhanced perceptual quality, while a larger coefficient makes the output
closer to the degraded image, increasing fidelity but reducing generated details. Building on this
insight, we develop InstructRestore, which employs a ControlNet-like architecture during training
using only standard restoration data. The network learns to perform restoration while predicting
region masks from user instructions. During inference, InstructRestore generates region masks
and scales ControlNet feature by different coefficients inside and outside the masks based on user
instructions to achieve region-specific restoration.

4.1 Training Framework

Architecture design. As shown in Fig. 3, our InstructRestore model consists of a pre-trained SD
backbone, the ControlNet adaptor, and a lightweight mask decoder. The SD model is frozen during
the entire training stage. The region captions cR extracted from the user instructions cI act as text
prompts for the SD model, providing semantic guidance to generate semantic details. ControlNet
duplicates the encoder and middle blocks of the SD UNet as trainable copies. It receives features
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extracted from the LQ image and user instructions cI as input, then extracts hierarchical conditional
features from the input and injects them into the UNet decoder blocks at multiple scales.

To accurately localize the target regions in user instructions, we design a mask decoder to predict a
spatial mask M̂ . Since ControlNet is initialized from the pre-trained SD UNet, it has been revealed
[12] that the cross-attention features between textual and visual embeddings exhibit strong responses
to text-described semantic regions. We then extract cross-attention features {Al}Ll=1 between textual
embeddings and visual features at each scale of the ControlNet as input to the Mask decoder, which
is designed with a pyramidal structure to effectively process multi-scale features. The features of
each scale Al are first passed through two blocks, each consisting of a convolutional layer (Conv),
group normalization (GN), and a ReLU activation. The processed features are then upsampled and
concatenated with the cross-attention features Al+1 at the next scale. The combined features are
processed by another Conv-GN-ReLU block and passed to the subsequent scale.

Training process. Our constructed dataset consist of triplets [IHQ,M, cM ], where IHQ denotes the
high-quality GT image, M is the binary mask specifying the target region, and cM is the textual cap-
tion of the masked area. To generate training samples, we first apply the Real-ESRGAN degradation
pipeline to IHQ to obtain the LQ input ILQ. Subsequently, we construct specific instructions cI and
region caption cR based on cM , tailored to different restoration purposes. For region-specific restora-
tion, cI follows the template “make {cM} clear”, while cR is the same as cM . For bokeh-aware
restoration, the template becomes “make {cM} clear and keep other parts bokeh blur”, while cR
follows the template “{cM} in front of bokeh background”.

During training, IHQ is first encoded into the latent space by the pre-trained VAE encoder, yielding
z0. The diffusion process progressively corrupts z0 with Gaussian noise over randomly sampled
timesteps t, resulting in noisy latent states zt =

√
αtz0 +

√
1− αtϵ, where ϵ ∼ N (0, I) and αt

follow a cosine noise schedule. We utilize zt and region caption cR as inputs to pre-trained SD
backbone. The ControlNet takes ILQ, zt and cI as input to produce conditional features {F cond

l }Ll=1,
which are added to the frozen SD UNet decoder with scaling factor α = 1 during training. The
training flow is highlighted in red in Fig. 3.

The mask decoder takes the cross-attention features {Al}Ll=1 from ControlNet as input to generate
target region masks M̂ , supervised by the GT masks M with Cross-Entropy loss. The InstructRestore
network, denoted by ϵθ, is conditioned on noisy latent zt, LQ images ILQ, instruction cI , and region
caption cR. The training objective L combines the diffusion loss and mask supervision Lmask:

L = Et,ϵ

[
∥ϵ− ϵθ(zt, t, ILQ, cI , cR)∥22

]
+ λLmask(M̂,M), (1)

where Lmask(M̂,M) = CrossEntropy(M̂,M) and λ balances the two terms.

4.2 Region-customized Inference

After training, our framework enables users to specify target regions and restoration intensities
through structured instructions during inference, as shown in the green flow in Fig. 3. The user
instructions follow task-specific templates. For general restoration, we set the template as “make
{region caption} clear with {s1}, and make other parts clear with {s2}”; for bokeh-aware restoration,
the template is “make {region caption} clear with {s1}, and keep other parts bokeh blur with {s2}”.
The {region caption} specifies the textual caption of region of interest (e.g., “the dog on the sand
beach”), and s1, s2 ∈ R+ define the enhancement scales towards fidelity for the target and other
regions, respectively. Here, larger values of s1 and s2 result in higher fidelity (closer to the degraded
input), while smaller values allow more semantic enhancement. The instruction parsing process
extracts three key components: the region caption for SD backbone text conditioning, the main
instruction body for ControlNet text encoding, and the fidelity scales s1, s2 for mask modulation.
For region-customized restoration, the region caption is directly used as SD text condition, while
for bokeh-aware restoration, it is modified to “{region caption} in front of bokeh background” to
stimulate the pre-trained SD backbone to generate bokeh blur effect features. Similarly, the main
instruction body differs between tasks: “make {region caption} clear” for general restoration and

“make {region caption} clear and keep other parts bokeh blur” for bokeh-aware restoration.

The trained ControlNet branch processes the degraded image and the parsed instruction to generate a
mask M ∈ [0, 1] indicating the target region. It is dynamically resized to match the spatial dimensions
of each U-Net upsampling decoder layer, producing masks at multiple scales {Ml}Ll=1. At each layer
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l, a modulation map is computed as:

Ml = s1 ·Ml + s2 · (1−Ml), (2)

where s1 and s2 control the fidelity scales for the target and background regions, respectively. This
modulation map determines how much ControlNet features contribute to the final output: higher
values preserve more original content, while lower values allow more semantic enhancement. The
modulated ControlNet features F cond

l are fused with the base SD features F sd
l via element-wise

multiplication:
F out
l = F sd

l +Ml ⊙ F cond
l . (3)

By applying this modulation progressively across all decoder layers, our framework ensures precise
alignment with user intent, i.e., enhancing target regions with intensity s1 while maintaining natural fi-
delity in non-target areas with intensity s2. Our architecture seamlessly transitions between differently
enhanced regions, producing photorealistic restoration results that follow user instructions.

5 Experiments

5.1 Experiment Settings

Training details. Our method is built on SD2.1 [33]. Training data is generated by the data generation
engine described in Section 3. The LQ images are obtained by the Real-ESRGAN [39] degradation
pipeline. The LQ images and instructions serve as inputs to the model, while the GT images and
region masks provide supervision. Our model is first trained on the general degradation dataset for
120K iterations, guided by the instruction template “make the { region caption } clear ”. The training
continues by combining the bokeh dataset with the general degradation dataset for 14k iterations.
During this stage, the sampling probability is set to 25% for the general degradation dataset and 75%
for the bokeh dataset, which is paired with the instruction template “make the { region caption } clear
and keep other parts bokeh blur.”. The training is conducted on two A100 GPUs with a batch size of
64 and an initial learning rate of 5e−5. AdamW is adopted as the optimizer for network training.

Comparison methods. As the first instruction-based region-customized IR approach, InstructRestore
mainly benchmarks against: (1) GAN-based Real-ESRGAN [39]; (2) Diffusion-based methods like
StableSR [38], DiffBIR [25], PASD [50], SeeSR [46], SUPIR [52], and OSEDiff [44].

5.2 Results on Localized Enhancement
We first show InstructRestore’s results with user instructions. Then we demonstrate its precise
restoration of specified regions. Finally, we compare it with existing methods.

Test dataset. We curate 100 real-world images from multiple sources, including RealSR [5],
DRealSR [43], and the RAIM challenge [21], to construct our Instruct100Set. Specifically, we
select and crop images with clear semantic region to ensure meaningful evaluation. The foreground
masks are generated using the pipeline described in Section 3, ensuring accurate and consistent ROI
extraction. The user instructions used in the experiment are in the format of “make { target region
caption } clear with { fidelity level 1 } and keep other parts clear with { fidelity level 2 }.”

Evaluation metrics. To comprehensively assess the performance of our method, we adopt both
reference-based and no-reference metrics, evaluating both target regions and the entire image. The
reference-based metrics include PSNR, SSIM [42] (on the Y channel in YCbCr space) and LPIPS
[62]. The no-reference metrics include MANIQA [49], MUSIQ [17] and CLIPIQA [37]. For region-
specific evaluation, we compute PSNR and SSIM exclusively within human-specified regions by
using the provided GT mask. For other metrics, we zero out pixels outside the target region based on
GT mask for computation. This ensures the evaluation focusing on the target regions while being
compatible with standard implementations of these metrics.

Localized enhancement with user-instruction. We first showcase our method’s ability to perform
localized enhancement with user-instructions. By specifying the target region and enhancement
strength, our method allows users to explicitly control the balance between data fidelity and generative
details. As illustrated in Fig. 4, by applying different fidelity scale instructions to the flower region,
we successfully adjust the level of details in the flower region while keeping other regions (e.g.,
leaves and soil) largely unchanged. To our best knowledge, our method is the first one to allow
user-instructed local enhancement. To quantitatively validate the instruction-following capability
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Table 2: Quantitative evaluation on the instruction following capability of InstructRestore. Experi-
ments are conducted on the Instruct100Set with instruction of “make { region caption of target area}
clear with { fidelity scale } and keep other parts clear with 1.”

Fidelity Scale
Target Area Remaining Area

PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑ MANIQA↑ PSNR↑ SSIM↑

0.5 29.71 0.7522 0.1610 0.6801 67.86 0.6108 31.27 0.8949
0.7 30.37 0.8188 0.1439 0.6931 68.23 0.6161 31.55 0.9047
0.9 30.64 0.8494 0.1331 0.6832 67.91 0.6091 31.61 0.9087
1.1 30.73 0.8649 0.1253 0.6659 66.92 0.5934 31.56 0.9108

Figure 5: Visual comparison of different methods. We set the instruction as “make the bush in front
of sign clear with 0.5 and keep other parts clear with 0.9” to keep the fidelity of sign and prioritize
detail enhancement of bushes.

of our method, we conduct experiments by varying the enhancement fidelity scales exclusively
within the target region while keeping the fidelity scale of the surrounding areas unchanged. For the
surrounding regions, we calculate reference-based metrics to assess their stability. The quantitative
results are shown in Table 2. We see that when the fidelity scale is small, the non-reference metrics
for the target region are significantly higher, indicating that the method tends to generate more details.

Figure 4: Localized enhancement following in-
struction on real-world test data. The details in
flowers are enhanced gradually while the other re-
gions keeping almost unchanged.

As the fidelity scale increases, the reference-
based metrics (e.g., PSNR and SSIM) improve,
while the non-reference metrics gradually de-
crease. This demonstrates that the method ef-
fectively follows the instructions, transitioning
from detail-oriented generation to a more input-
faithful reconstruction. Furthermore, the PSNR
of the target region varies by 1.02 db, while the
surrounding regions vary only by 0.29 db. This
stark contrast confirms that the enhancement
process is localized to the target region, leaving
the surrounding areas largely unaffected. Due to
space limitations, ablation studies on the mask
decoder and feature modulation mechanism are
provided in the appendices. We also conduct in-
struction variation experiments in the appendix,
testing with instructions that do not follow the
standard templates. Although not trained on
such variations, our model demonstrates reason-
able robustness in generating masks. Please re-
fer to the appendices for details.

Comparison with other methods. We then compare InstructRestore with the competing methods.
For images with heavier degradations, we prioritize stronger generative prior to synthesize more
details; for regions with high-frequency and irregular textures (e.g., flowers, brushes), we favor
generative enhancement to achieve realistic appearances; while for regions with regular structures
(e.g., sign and buildings), a conservative enhancement level is selected to avoid unnatural artifacts.
As shown in Figure 5, our method can handle well distinct regions, namely the sign and the bushes,
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Table 3: Quantitative comparison between our InstructRestore method and other methods on
Instruct100Set. The best and second best results of each metric are highlighted in red and blue.

Method Target Area Full Image
PSNR↑ SSIM↑ CLIPIQA↑ MUSIQ↑ MANIQA↑ PSNR↑ SSIM↑ LPIPS↓ CLIPIQA↑ MUSIQ↑ MANIQA↑

RealESRGAN 31.69 0.9065 0.7124 58.63 0.4991 27.69 0.7871 0.3185 0.7280 60.39 0.5030
StableSR 30.36 0.8522 0.6707 65.75 0.5915 25.39 0.7072 0.3001 0.7072 69.19 0.6691
DiffBIR 30.95 0.8804 0.6820 66.80 0.5971 26.64 0.6897 0.3434 0.7456 69.96 0.6609
PASD 31.80 0.9176 0.5724 61.02 0.5323 28.37 0.7893 0.2590 0.5768 62.92 0.5866
SeeSR 30.90 0.8788 0.6758 67.73 0.5974 26.75 0.7324 0.2879 0.7246 71.49 0.6691
SUPIR 30.74 0.8682 0.6868 62.98 0.5655 26.29 0.6997 0.3235 0.6840 64.40 0.6085

OSEDiff 30.21 0.8657 0.6417 66.75 0.5851 26.07 0.7340 0.2870 0.7342 71.88 0.6635
Ours 30.55 0.8368 0.6887 68.17 0.6137 25.65 0.6999 0.3245 0.7278 71.95 0.6809

within the same scene. In comparison, methods such as DiffBIR and SUPIR tend to over-enhance
the sign, introducing unnecessary artifacts and distortions, while other methods fail to adequately
reconstruct the bush, resulting in a smeared and over-smoothed appearance.

Our method allows adjusting the fidelity scale to meet the specific requirements of each region.
For example, for the sign, which requires high fidelity, we set the fidelity scale to 0.9 for faithful
restoration. For the bush, we prioritize detail enhancement with a fidelity scale of 0.5 to generate
richer textures. To provide an example of quantitative evaluation, we simply set the fidelity scale
for the foreground at 0.8, while that for other regions to 1. The evaluation results are reported in
Table 3. Since this setting prioritizes generative enhancement in target regions to achieve richer
details, it shows better no-reference metrics but relatively lower scores in reference metrics that favor
strict fidelity preservation. It is important to note that our InstructRestore enables users to adaptively
adjust restoration results based on their preferences. The metrics here only serve as an example to
demonstrate that our approach can produce visually pleasing results following user instructions.

5.3 Results on Images with Bokeh Effects
In this section, we perform experiments to demonstrate that our method can perform image restoration
while preserving bokeh effects and controlling the bokeh intensity.

Test dataset. We construct a test dataset by selecting images from two sources: the EBB! dataset [14]
and images with bokeh background carefully curated from Pixabay [1]. We select 70 images
from them with distinct semantic foregrounds and bokeh background. Masks are generated for the
foreground regions to precisely define the ROI, based on which the images are center-cropped to
ensure a consistent resolution of 512× 512. Subsequently, we apply Real-ESRGAN [39] degradations
to generate LQ and GT image pairs for evaluation. To support instructed interaction, we leverage the
masks and GT images to generate foreground descriptions using the pipeline illustrated in Section 3.
The user instructions are formatted as “make {foreground description} clear with {enhancement
fidelity level} and keep other parts bokeh blur with the {bokeh level}.”

Instruction: "make flower clear with 0.8 and keep other parts bokeh blur
with {fidelity scale s2}"

LQ

(a)

LQ

Instruction: "make flower clear with {fidelity scale s1} and keep other parts
bokeh blur with 0.8"

(b)

Figure 6: Control of bokeh effect and foreground
enhancement. (a) Restoration with controlled
bokeh effect while restoring foreground. (b)
Restoration with varying foreground enhancement
levels while preserving background bokeh.

Evaluation Metrics. We compute reference-
based metrics for full image and background re-
gions. In addition, we employ D-DFFNet [15],
a model for detecting blurred background, to
generate the background mask and compute the
Intersection-over-Union (IoU) with GT of back-
ground mask as a measure of bokeh preservation
performance.

Control of bokeh effect. Our method allows
users to specify the desired intensity of bokeh
effects and foreground enhancement level via
instructions. As illustrated in Fig. 6 (a), our
method successfully adjusts the background
blur based on user instructions, simulating vary-
ing depth-of-field effects while maintaining the
sharpness and details in the foreground. More
importantly, the adjusted blur is not merely a
uniform increase in blur intensity. It faithfully
replicates the circular light spots of realistic bokeh, mimicking the optical effects produced by high-
quality digital single-lens reflex (DSLR) cameras. As mentioned in Section 4.2, we stimulate the
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Figure 7: Visual Comparison of bokeh preservation results between the compared methods.

generation of authentic bokeh features by incorporating “bokeh blur background” text into the SD
backbone. So smaller scale values result in less integration of LR input features, leading to increased
blur effects, enabling simulation of different depth-of-field effects. In addition to specifying the
intensity of bokeh effects, users can further specify the enhancement strength for the foreground,
achieving flexible control on the level of details in focal regions. As illustrated in Fig. 6 (b), the
fine details in the flower stamens become more pronounced as the instruction changes. Note that
such a feature is not supported by existing restoration methods. We also provide quantitative results
validating our controllable blur adjustment in the appendices.

Comparison with other methods. Since the foreground semantics in EBB! mainly include objects
like cars and road signs requiring high fidelity, we set the foreground enhancement strength to 1.0.
For simplicity and fairness, the bokeh fidelity scale is also set to a default value of 1, representing the
weakest depth-of-field effect. The quantitative comparison results are presented in Tab. 4.

Table 4: Quantitative comparison on Bokeh testset
Method Background Full Image

PSNR↑ SSIM↑ Bokeh IoU↑ PSNR↑ SSIM↑ LPIPS↓
RealESRGAN 30.86 0.8305 0.7203 23.69 0.7060 0.3700

StableSR 30.24 0.8049 0.7405 22.55 0.6305 0.3965
DiffBIR 30.46 0.8017 0.6289 22.20 0.5943 0.4415
PASD 31.87 0.8453 0.8234 24.27 0.7280 0.3523
SeeSR 30.42 0.8149 0.7580 22.95 0.6652 0.3677
SUPIR 29.92 0.7847 0.7739 21.21 0.5745 0.4375

OSEDiff 29.89 0.8175 0.7990 22.58 0.6707 0.3609
Ours 31.46 0.8462 0.8482 24.69 0.7437 0.3394

Our method demonstrates significantly better
performance in fidelity-oriented metrics com-
pared to competing methods, reflecting its abil-
ity to accurately approximate the GT’s bokeh
characteristics. In contrast, existing methods
fail to preserve bokeh effects, leading to devia-
tions from the GT. Visual comparison is shown
in Fig. 7. More comparisons are provided in the
appendices. Competing methods tend to restore
the background with sharp details, disrupting the bokeh effect, whereas our method preserves natural
background blur while enhancing foreground details, ensuring both fidelity and artistic quality.

6 Conclusion
We presented InstructRestore, the first framework for region-customized image restoration guided
by human instructions. To support this task, we designed a scalable data annotation engine and
constructed a dedicated dataset comprising 536,945 triplets, each containing a high-quality image,
the region mask and region caption. Building on this dataset, we developed an InstructRestore model
that parsed human instructions to achieve region-specific restoration. Our framework allowed users to
apply distinct enhancement intensities to different regions and adjust background bokeh effects. By
enabling fine-grained control via user instructions, our work advanced research in interactive image
restoration and enhancement techniques.

Limitations. While InstructRestore offers a baseline for region-customized restoration guided by
human instructions, it has several limitations. Currently, it lacks support for instance-level object
specification, which requires instance-level masks and captions. Moreover, users are recommended
to follow a predefined instruction format, though an off-the-shelf LLM can convert free-form inputs.
Furthermore, although our method achieves competitive results, it focuses more on localized cus-
tomization, while it deserves further exploration of global quality optimization. Reducing the number
of inference steps is also worth exploring. Addressing these limitations would boost the applicability
and performance of user-instructed image restoration in real world scenarios.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to content from line 73 to line 79

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: the paper does not include theoretical results.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Have described the detail of data and method
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The data is too big to be zipped as single file. Open access for data and code
will be offered after review. We offer details in main paper and appendices.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the detail

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the type of compute resources in main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research in the paper fully conforms to the NeurIPS Code of Ethics in
every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we analyze the potential social impact in appendix

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we clearly indicate the baseline methods and data used in the paper. Their
licenses permit use with academic scope.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce the detail of data and model, and will release all if accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowd sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowd sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Please refer to section 3 in main paper and corresponding content in appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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