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ABSTRACT

Active Constrained Clustering (ACC) is a widely used semi-supervised clustering
framework to improve clustering quality through progressive annotation of infor-
mative pairwise constraints. However, the application of existing ACC methods
to large datasets with numerous classes incurs high computational or query ex-
penses. In this paper, we analyze the inefficiency of pair-based and sample-based
ACC and the rationale behind cluster-based ACC. Moreover, we provide the the-
oretical guarantee for cluster fusion under a certain purity constraint and a clus-
tering quality constraint with respect to normalized mutual information (NMI).
Drawing on these theoretical insights, we introduce a novel Active Probabilis-
tic Clustering (APC) framework designed to scale effectively with large datasets.
Compared to previous methods, APC demonstrates superior performance across
eight datasets of varying sizes (ranging from 350 to 100,000 samples) in terms
of clustering quality, query cost, and computational expense. Specifically, APC
accomplishes satisfactory clustering outcomes (e.g., NMI > 0.95) using 3,920
queries on a dataset with 100,000 samples, while baseline methods yield infe-
rior clustering results (e.g., NMI ≤ 0.85) with 10,000 queries. Concurrently, APC
operates at a speed 100x faster than baseline methods.

1 INTRODUCTION

Active Constrained Clustering has been extensively investigated in various semi-supervised clus-
tering scenarios, such as person re-identification (Zhao et al., 2013) and plant species identifica-
tion (Kumar et al., 2012; Xiong et al., 2016). It is particularly useful for handling datasets with a
vast and unknown label space that would require expert knowledge for ground truth class identifi-
cation (Basu et al., 2004; Mai et al., 2013; Xiong et al., 2016). This is because ACC simplifies the
labeling task by only requiring the oracles to judge whether two samples belong to the same class or
not (must-link or cannot-link), which is feasible even for untrained non-expert humans. The query
results are utilized as the constraints for the downstream constrained clustering part. ACC improves
the performance of semi-supervised clustering by incorporating these pairwise constraints in a care-
fully selected manner to guide the constrained clustering process. Therefore, selecting informative
sample pairs to query is critical for the success of ACC.

Existing ACC methods are in three major categories with pair-based, sample-based, and cluster-
based query strategies, respectively (Xiong et al., 2016). (1) Pair-based methods (Xu et al., 2005;
Wauthier et al., 2012; Abin, 2017) select informative sample pairs from a total of (N

2
) pairs, where

N represent the dataset size. These methods typically suffer from high computation costs due to the
iterative measurement of O(N2) pairs. (2) Sample-based approaches (Basu et al., 2004; Xiong
et al., 2016) reduce the cost by building neighborhoods with the selected samples, where differ-
ent neighborhoods consist of samples queried to belong to different classes (Xiong et al., 2013).
Nevertheless, these methods encounter challenges when applied to large datasets with numerous
classes, as they require at least (K−1

2
) queries to build neighborhoods covering K underlying classes.

(3) Cluster-based methods (Van Craenendonck et al., 2017; 2018; Shi et al., 2020) reduce the num-
ber of queries by querying pairs of cluster centroids obtained from initial clustering results using
classical methods such as K-means (Ahmed et al., 2020). However, centroid-based cluster merging
may degrade the clustering quality.

This work aims to pursue a cluster-based ACC algorithm with more accurate cluster fusion. Our
contributions are summarized below.
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Our Contributions. We first provide a theoretical result to guide the cluster fusion. In specific, we
demonstrate that clustering quality with be enhanced if the cluster pair satisfies a ‘purity constraint’
and the overall clustering quality is sufficient with respect to a ‘NMI value constraint’. Intuitively,
the purity constraint ensures that the majority of samples within the cluster belong to the same class.
The NMI value constraint guarantees a high level of coherence between the current clustering and
the real class distribution. Based on this theoretical result, we propose a new cluster-based ACC
framework named active probabilistic clustering. In particular, APC leverages the fast probabilistic
clustering (FPC) algorithm (Liu et al., 2022) for obtaining the initial clustering results. FPC is
chosen due to its robustness to noise samples and unknown cluster numbers, as well as its ability
to provide pairwise posterior probabilities between sample pairs, facilitating the selection of query
samples. Our strategy encompasses the following three ingredients:

• APC selects informative cluster pairs that maximize the NMI gain, where we derive two novel
estimators (Section 3.1) of NMI gain associated with candidate queries based on the pairwise
posterior probability from FPC.

• APC then examines selected clusters through a ‘Human Test’ mechanism (Section 3.2), which
first examines the purity of these clusters according to our theoretical result (Theorem 1). If the
purity constraint is satisfied, it further calls the human query to examine whether the dominant
classes of the cluster pair are identical.

• APC then decides whether to merge, split, or not operate the queried cluster pairs according to
the examination results. In terms of merging or splitting operations, we propose a fast relabeling
strategy to adjust the cluster identity of the samples in the cluster pairs (Section 3.3).

We conduct extensive experiments on eight image datasets ranging from 1,000 to 100,000 in scale.
In all cases, APC significantly improves clustering quality with at most a few thousand annotations.
In contrast, baselines require thousands of annotations to achieve limited improvements even on
datasets in the 1,000-scale range, which demonstrates the superiority of APC on larger datasets.

2 CLUSTER-BASED ACTIVE CONSTRAINED CLUSTERING

Definition 2.1 (ACC). We denote the true classes of N samples X = {x1,⋯, xN} by Y =
{y1,⋯, yN}, where yi ∈ {1,⋯,K} and K is the number of classes. ACC aims to improve the
clustering performance generated by a clustering algorithm with the supervisory information ac-
quired by human queries. It requires humans to judge if yi = yj for some carefully selected sample
pairs {(xi, xj)} and then perform constrained clustering with the constraints, i.e., the query re-
sults. ACC differs from conventional semi-supervised clustering methods in that it iteratively selects
sample pairs based on some strategy instead of randomly selecting them.

Effective ACC frameworks should possess three key properties: (1) Monotonicity: users should be
able to terminate the process at any point and receive an improved clustering result; (2) Speed: the
selection of sample pairs should be swift, minimizing wait times between queries; (3) Efficiency: the
framework should require as few queries as possible to achieve a substantial improvement in cluster-
ing accuracy(Van Craenendonck et al., 2018). Most pair-based ACC methods fail to meet these re-
quirements, and their high computational complexity poses challenges for scalability. Sample-based
ACC methods are more computationally efficient but struggle to fulfill the Efficiency requirement.
They confront an Accumulation Plane dilemma when faced with a large number of classes. In this
scenario, the clustering performance stagnates, and substantial improvement is not observed until a
significant number of queries are executed (see Figure 2).

To pursue effective ACC, recent work has begun exploring the cluster-based ACC framework. This
approach replaces the complex constrained clustering part of ACC with some relabeling strate-
gies(Shi et al., 2020) which decides how clusters should be merged or split. However, existing
methods lack a definitive criterion to guide the merging process. They require the oracle to query
the central sample of two clusters and merge them abruptly if the central samples belong to the same
class. This strategy carries risk concerning the Monotonicity property, especially when the purity of
some clusters in the clustering is low, which makes the central sample not representative.
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In light of this, we introduce a pivotal theorem that offers clear guidance for merging actions. This
is achieved through an evaluation of the normalized mutual information (Vinh et al., 2009), which
is a measure of how much information two clusters share.
Definition 2.2 (NMI). Given N samples and their two clustering Ω = {w1,⋯,wk} and Ω′ =
{w′1,⋯,w′k}, the NMI n between Ω and Ω′ is defined as

n = 2I(Ω;Ω′)
H(Ω) +H(Ω′)

= 2I(ζ; ζ ′)
H(ζ) +H(ζ ′)

,

where ζ = (∣w1∣/N,⋯, ∣wk ∣/N) and ζ ′ = (∣w′1∣/N,⋯, ∣w′k′ ∣/N) are two distributions induced by
Ω and Ω′, respectively. Here, I(ζ; ζ ′) = ∑x∈ζ,y∈ζ′ P(x, y) log

P(x,y)
P(x)P(y) denotes mutual information,

and H(ζ) = −∑x∈ζ P(x) log(P(x) denotes entropy.

Theorem 1 (Guarantee for Cluster Fusion). Assume that the clustering of N samples is Ω =
{w1,⋯,wk}, the ground truth clustering is C = {c1,⋯, cK}, and the NMI value of Ω with re-
spect to C is n1. We define the dominant class of a cluster w as argmaxj ∣w ∩ cj ∣, and the purity
of w as maxj

∣w∩cj ∣
∣w∣ . For any two clusters in Ω, say w1 and w2, suppose they have a common

dominant class c1 with purity of t1, t2 ∈ [0.7,1], respectively. After merging w1 and w2 into a
new cluster w1,2 and obtaining a new clustering Ω⋆ = {w1,2,w3,⋯,wk} with NMI value n2, if
n1 ≥ 2 ⋅ (1.0586 −min{t1, t2}), then we have n2 ≥ n1.

Theorem 1 offers guidance for the merge operation in cluster-based ACC, and the detailed proof is
in Appendix A.1. Specifically, merging two classes can achieve provable benefits when their purity
is at least 0.7 and previous NMI exceeds the threshold 2 ⋅ (1.0586 −min{t1, t2}). Notably, these
two constraints are generally satisfied when the clustering is based on features extracted with deep
neural networks (e.g., Liu et al., 2023). Therefore, we propose that a more effective cluster-based
ACC framework should aim to achieve maximum improvement in NMI with a minimal number of
queries. To fulfill this objective, we introduce Active Probabilistic Clustering (APC).

3 ACTIVE PROBABILISTIC CLUSTERING

3.1 QUERY STRATEGY

In this subsection, we introduce our query strategy, which includes the formulation of a metric for
assessing the impact of a human query—specifically, merging clusters when their dominant classes
are identical. Inspired by Theorem 1, we propose to estimate the expected improvement of NMI for
this query operation:

E[∆NMI ∣ wi,wj] = P(wi = wj ∣ wi,wj) ⋅ (n2 − n1), (1)

where n1 and n2 are the original NMI and updated NMI after merging wi and wj , respectively.
For the conditional probability expressions within, the condition wi implies that the samples within
this cluster share a common class, and the same interpretation applies to the condition wj . wi = wj

signifies the possible observed event that the classes of the two clusters are identical. In what follows,
we present how to approximate P(wi = wj ∣ wi,wj) and (n2 − n1).
Liu et al. (2022) establishes a probabilistic clustering framework that characterizes the clustering
state of samples using fundamental variables est, where est = 1/0 signifies whether ys equals yt or
not. The framework assumes independence among different est, an assumption we uphold through-
out this paper. As (wi = wj ∣wi,wj) equals (∀s ∈ wi,∀t ∈ wj , est = 1 ∣ ∀(s, t) ∈ wi or wj , est = 1),
we can estimate the conditional merging probability P(wi = wj ∣ wi,wj) with P(est = 1). The
procedure of estimating pairwise probability matrix PN×N = {P (est = 1)}s,t∈[1,⋯,N] is given in
Appendix B.1. Subsequently, leveraging the independence assumption and the conditional proba-
bility formula, we can express the merge probability as follows:

P(wi = wj ∣ wi,wj) =
∏s∈wi,t∈wj

P(est = 1)
∏s∈wi,t∈wj

P(est = 1) +∏s∈wi,t∈wj
P(est = 0)

. (2)

The detailed derivation of Eq. (2) is in Appendix A.2. However, Eq. (2) is relatively sensitive to the
estimation error of P(est = 1)when recalling cluster pairs, as it focuses on all pairwise relationships.
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Figure 1: The workflow of Active Probabilistic Clustering (APC) methods comprises three phases. In the Initial
Clustering Phase, we employ the Fast Probabilistic Clustering algorithm to obtain the input for APC, which
includes the posterior probability matrix PN×N and clustering result W . In the Active Probabilistic Querying
Phase, APC iteratively selects a cluster pair using a query strategy. Subsequently, it conducts a Purity Test on
both clusters. If both clusters pass the test, APC prompts the oracle to query their central samples to determine
whether these clusters should be merged. If at least one cluster fails the Purity Test, APC initiates a Subcluster
Partition process, wherein oracles assess sample pairs in the failed cluster, leading to its division into several
pure subclusters. APC then updates the constraints set and the PN×N . This cycle continues until a predefined
query cost is reached. In the Final Clustering Phase, APC outputs the new clustering result W⋆.

Specifically, the pairwise probability between inlier and outlier samples from wi and wj will degrade
the recall probability P(wi = wj ∣wi,wj) (i.e., making the result biased towards 0). To deal with this
issue, (reciprocal) k-nearest neighbors are widely used in clustering (Liu et al., 2023). Inspired by
this, we refine the merge probability as follows:

P×(wi = wj ∣ wi,wj) =
∏s∈wi,t∈knnwj

(s) P(est = 1)

∏s∈wi,t∈knnwj
(s) P(est = 1) +∏s∈wi,t∈knnwj

(s) P(est = 0)
, (3)

where knnwj(s) denotes the k-nearest neighbors of s in wj . Additionally, as an alternative to P×,
we introduce the following P+, which is more computationally efficient and robust to noises:

P+(wi = wj ∣ wi,wj) =
∑s∈wi,t∈knnwj

(s) P(est = 1)

∑s∈wi,t∈knnwj
(s) P(est = 1) +∑s∈wi,t∈knnwj

(s) P(est = 0)
. (4)

We will use both P× and P+ in the experiments where they achieve comparable performance. Also,
we compare them to the query strategy in previous cluster-based ACC methods and find that P+
shows a significant advantage in large datasets. See Section 4.3 for more discussions.

Now we consider how to approximate n2 − n1. Following the notations in Theorem 1, we denote
∆h = H(Ω) −H(Ω∗) and have the approximation: n2 = 2I(Ω⋆;C)

H(Ω⋆)+H(C) ≈
2I(Ω;C)

H(Ω)+H(C)−∆h
, where we

use the fact that I(Ω∗;C) ≈ I(Ω,C) when the purity of wi and wj is sufficiently large (≥ 0.7).
Moreover, when the sizes of clusters wi and wj are significantly smaller than the sample size N , the
direct calculation gives that ∆h ≪ H(Ω) +H(C). Refer to Appendix A.3 for verification. Hence,
we have n2 − n1 = 2I(Ω;C)∆h

(H(Ω)+H(C)−∆h)(H(Ω)+H(C)) ≈
2I(Ω;C)∆h
(H(Ω)+H(C))2 ∝ ∆h. Combing this with Eq. (1),

Eq. (3), and Eq. (4), we obtain our estimators of E[∆NMI ∣ wi,wj]:
E[∆NMI ∣ wi,wj]∝ P×(wi = wj ∣ wi,wj)∆h or P+(wi = wj ∣ wi,wj)∆h. (5)

To ensure a high success rate in establishing “must-link” connections among recalled cluster pairs,
We employ a two-step query strategy: (1) we filter out low-quality cluster pairs by retaining those
whose conditional merge probability surpasses a predefined threshold denoted as Pl; (2) we employ
Eq. (5) to compute the expected NMI gain for each cluster pair for ranking and selection.
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3.2 HUMAN TEST

In this subsection, our primary target is to ascertain whether the selected cluster pairs should be
merged. To achieve this goal, we introduce an assessment mechanism referred to as the ‘Human
Test’. This test encompasses two essential steps: (1) conducting a Purity Test on the chosen clusters
to evaluate if they satisfy the ‘purity constraint’; (2) selecting the representative sample for each
cluster and requiring the oracles to judge if they belong to the same class. The details are as follows:
Purity Test. Given that the ground truth purity is unattainable without knowledge of their class
information, we alternate it by estimating the extent to which samples within a cluster are densely
concentrated in the probability space. We quantify the test on a cluster w as follows:

PT (w) = 1(
∑i∈w,j∈w(i) P(eij = 1)

∑i∈w ∣w(i)∣
> τ), w(i) = {j ∣ j ∈ w,P(eij = 1) < P(eijmid = 1)}, (6)

where jmid refers to the sample in cluster w that holds the intermediate position in terms of distance
from sample i. and τ is a predefined default threshold (e.g., 0.7). More implementation details are
presented in Appendix B.2.

Human Query. If both clusters pass the purity test, we select the central sample from them and
require the oracle to judge if the classes of the samples in this pair are identical. In probabilistic
clustering, the central sample of a cluster w is defined as argmaxi l(i) = ∑j∈w,j≠i log

P(eij=1)
P(eij=0) .

3.3 CLUSTERING UPDATE

In this subsection, we discuss updating the clustering with the queried constraints. We first introduce
our relabeling strategy which adjusts the cluster label of the cluster pair, then presents how to update
the constraints set and the pairwise probability matrix PN×N .

Relabeling Strategy. For different outcomes in the ‘Human Test’, we have that (i) In cases where
the Purity Test result is 1 for both clusters, if the Human Query result indicates a must-link, we
promptly assign the same label to all samples in the cluster pair (merge them into a single cluster);
otherwise, we retain the original clustering labels; (2) If the Purity Test result is 0 for one of the
clusters, we need to split it into several new subclusters, each with higher purity. Considering the
efficiency of sample-based ACC in dealing with small-scale datasets, we directly employ it for this
partition task and describe the procedure in Algorithm 2.

Transitive Inference. The must-link and cannot-link constraints possess the transitivity property
(e.g., (x1, x2), (x2, x3) are must-linked, then (x1, x3) is must-linked). To store the constraints, we
define a state matrix as S = {sij}N×N , sij ∈ {−1,0,1}. Here, 1/-1 denotes must-link/cannot-link,
and 0 indicates an unqueried state. To avoid unnecessary queries, we need to augment the constraints
set each time a new constraint is added. We assert that this expansion is only relevant to the preceding
constraints that share a common sample with the new constraint, and propose a Fast Transitive
Inference (Algorithm 3) method to update the constraints. The correctness of this assertion and
algorithm is proved in Appendix B.3. Meanwhile, for the sample pairs in the constraints set, we
update their pairwise probability by P(est = 1) = 1 − ϵ for must-link pairs, and P(est = 1) = ϵ for
cannot-link pairs, where ϵ = e−4.

APC Framework. Overall, we summarize the workflow of the Active Probabilistic Clustering
(APC) algorithm (Algorithm 1) in Figure 1. Specifically, we adopt the Fast Probabilistic Clustering
(FPC) algorithm (Liu et al., 2022) to generate our initial clustering result for two considerations:
(1) FPC does not require any ground truth information; (2) FPC isolates noise samples into outlier
clusters, leading to high purity in the remaining clusters, typically exceeding 0.7 in practice.

4 EXPERIMENTS

We organize the experiments as follows: We first introduce our experiment settings in Section 4.1;
explore how effective is the proposed APC as compared to baseline ACC methods in Section 4.2;
Then we discuss how the proposed query strategy influence the effectiveness of APC, especially
in alleviating the category fission problem in Section 4.3; Finally, we investigate whether APC can
handle large datasets more effectively than other baseline methods in Section 4.3.
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Algorithm 1: Active Probabilistic Clustering
Input: threshold Pl, τ , query limit Qmax, queries
q = 0

Obtaining PN×N and initial clustering Ω with FPC
for epoch in 1 ∶ T do

Get candidate cluster pairs as
C = {(wi,wj)∣wi,wj ∈ Ω,P+(wi = wj) > Pl}

Calculate and rank the cluster pairs in C with
Eq. (5)

while C is not empty and q < Qmax do
Remove the first pair from C as (w1,w2)
Implement Purity Test on w1 and w2

if Both clusters pass the test then
Select central samples x1 and x2 from
w1 and w2 respectively

Require oracle to query (x1, x2)
Merge w1 and w2 if (x1, x2) is

must-linked
else

Split w1 or/and w2 with Algorithm 2
end if
Update constraints set with Algorithm 3
Update q by adding the newly invested

number of queries
end while

end for

Algorithm 2: Subcluster Partition
Input: cluster w; subclustersN = {}
Sort w in descending order with l(i)
for i in w do

Select the cloest sample from each
subcluster inN , and get J

Query i with each sample in J till a
must-link is reached or all samples in J
have been queried

if i is must-linked to a sample from Jr in J
then

Move i from w to subcluster Jr

else
Move i from w to an empty subcluster,

and add the new subcluster {i} toN
end if

end for

Algorithm 3: Fast Transitive Inference
Input: State matrix S, new constraints (s, t).
for i in (s, t) do

GetML = {j∣S[i, j] = 1}
Get CL = {j∣S[i, j] = −1}
Let S[p, q] = 1, for p, q ∈ML
Let S[p, q] = −1, for p ∈ML, q ∈ CL

end for

4.1 EXPERIMENTAL SETTING

Datasets. We sampled eight datasets from four representative real-world image sources to serve
as our experimental data sources: Market-1501 (Zheng et al., 2015), which comprises human
body images from 1501 individuals.; Humbi (Yu et al., 2020), a large multiview image dataset
focused on human expressions like faces; Handwritten (Dua et al., 2017), a collection contain-
ing 2000 samples of handwritten digits from ‘0’ to ‘9’. (4) MS1M (Guo et al., 2016), a substantial
benchmark dataset commonly used in face recognition tasks. To facilitate a meaningful compari-
son with state-of-the-art ACC methods, which are typically evaluated on datasets with fewer than
3000 samples, we have extracted four subsets from these image sources which are denoted as MK20,
MK100, Handwritten and Humbi-Face. To assess the efficacy of our proposed APC frame-
work on larger datasets, we have further selected four sizable subsets: Humbi-Large, MS1M-10k,
MS1M-100k and MK500. The details of these datasets are shown in Table 1.

Baselines. We compare APC with two groups of work: the semi-supervised clustering methods that
randomly select pairwise constraints (Random-S (Wauthier et al., 2012), Random-P (Basu et al.,
2003)), and three representative ACC methods (FFQS (Basu et al., 2004), URASC (Xiong et al.,
2016) and NPU (Xiong et al., 2013)). Random-P applies the PCKMeans (Basu et al., 2003) to
update labels with randomly selected pairwise constraints. Random-S uses constrained spectral
clustering (Wauthier et al., 2012) for label adjustment. FFQS uses the farthest-first scheme to acquire
samples for better initialization. NPU is an ACC framework applicable to any semi-supervised
clustering methods. URASC is an active spectral clustering method that iteratively selects samples
that maximally reduce the uncertainty of the dataset.

Implementation. For the baseline methods, we maintain the same hyperparameter settings as re-
ported in their original papers to ensure fairness in the comparison. For the initialization of APC, we
set the number of neighbors to 50 when performing fast probabilistic clustering (Liu et al., 2022).
As for the choice of hyperparameters, we set the epoch T as 2 for all datasets. In addition, the setting
of probability threshold Pl and compactness threshold τ are shown in Table 5 in Appendix C.1.

Evaluation. As discussed in Vinh et al. (2009), NMI can exhibit bias towards fine-grained cluster-
ing. Therefore, in addition to NMI, we employ the Adjusted Rand Index (ARI) (Hubert & Arabie,
1985) to evaluate the performance of APC and baseline ACC methods. Both NMI and ARI fall
within the range of (0,1], with larger values indicating superior clustering performance. To further
investigate whether APC effectively mitigates the category fission problem, we introduce two sup-
plementary metrics: (1) the Fission Rate (Υ = k

K
), where K is the number of underlying classes and
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Table 1: This table presents details about the sampled datasets. Moreover, datasets in which each class contains
an equal number of samples are categorized as balanced datasets.

MK20 MK100 Handwritten Humbi-Face Humbi-Large MS1M-10k MS1M-100k MK500

N 351 1650 2000 2240 11200 10000 100000 9393
K 20 100 10 40 200 146 1469 500
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Figure 2: Performance comparison between APC and baselines on four datasets concerning the number of
queries. More queries are invested in baselines to demonstrate their difference.

k is the number of resulting clusters; and (2) the entropy of a partition Ω, denoted as H(Ω). When Υ
approaches 1 and the entropy of the resulting clusters by APC approaches the entropy of real class
partitions, we conclude that APC has effectively mitigated the category fission problem.

4.2 PERFORMANCE COMPARISON

We aim to evaluate the performance of APC (P+ in Eq. (5) is used) and baselines on multiple datasets
with varying characteristics. Specifically, we examine how dataset size, the number of underly-
ing classes, and class balance impact the effectiveness of these methods. To accomplish this, we
conducted a comparative analysis of APC and five baselines on datasets including MK20, MK100,
Handwritten and Humbi-Face, which collectively encompass the properties we intend to in-
vestigate. In Figure 2, we illustrate how the NMI and ARI results evolve with the investment of
more human queries. Our observations are as follows:

• APC consistently outperforms all baseline methods, achieving NMI and ARI scores of 0.9 or
higher, with absolute NMI and ARI gains of at least 0.08 and 0.3, respectively. Notably, this is
achieved with far fewer queries than the dataset size N . However, only NPU matches this level of
performance on MK20, but it requires six times as many queries.
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Table 2: More experiment details about the implementation of APC on five datasets: (i) the time cost of APC
(seconds); (ii) to what extent has APC alleviated the category fission problem.

Time (s) Υfpc Υapc Hreal Hfpc Hapc

MK20 0.28 2.10 1.10 2.67 3.39 2.80
MK100 5.18 1.76 0.94 4.28 4.68 4.69

Handwritten 1.88 10.50 3.10 2.30 3.88 2.52
Humbi-Face 2.46 3.22 1.10 3.69 4.53 3.71

Table 3: Ablation study on the query strategy of APC: (i) the ARI performance comparison of APC when dif-
ferent types of merge probability are used, under the same maximum query cost Qmax; (ii) how the probability
threshold, Pl influence the ARI performance of APC.

P P+ P× Pc Qmax 0.3 0.4 0.5 0.6 Qmax

MK20 0.807 0.957 0.940 0.953 60 0.916 0.836 0.836 0.834 30
MK100 0.542 0.782 0.731 0.722 200 0.749 0.734 0.728 0.699 150

Handwritten 0.502 0.915 0.914 0.805 100 0.829 0.888 0.911 0.913 90
Humbi-Face 0.715 0.891 0.820 0.829 100 0.786 0.847 0.884 0.912 100
Humbi-Large 0.648 0.844 0.823 0.758 600 0.691 0.747 0.828 0.858 600

• All baselines perform well in two scenarios: when the dataset is small (MK20) or when the num-
ber of underlying classes is small (Handwritten). However, they struggle to provide robust
improvements when N is large and K is slightly larger than 10 (Humbi-Face). They almost
fail when K is large, and the sample distribution is unbalanced across different classes (MK100).
In contrast, APC consistently enhances clustering quality significantly with a limited number of
queries, demonstrating its robustness across all three factors.

• APC possesses Monotonicity property, a result attributed to our Human Test, which ensures that
APC adheres to the constraints outlined in Theorem 1. In contrast, all baseline methods occa-
sionally degrade clustering performance when more queries are incorporated. This observation
suggests that genuine supervisory information can sometimes be detrimental to clustering, as it
may introduce conflicts (e.g., (xi, xj) is cannot-linked, but their similarity to xk is larger than 0.9)
in sample distribution and lead to contradictions within semi-supervised clustering, as discussed
in Davidson et al. (2006).

Category Fission. For each dataset, we report the fission rate of the clustering results obtained
using FPC (Liu et al., 2022) as Υfpc, along with the final fission rate after applying APC, denoted
as Υapc. Additionally, we provide entropy values of the resulting clustering (Hfpc and Hapc) and
the ground truth clustering, denoted as Hreal. The comprehensive results are tabulated in Table 3.
Our observations show a significant reduction in the fission rate and entropy for all datasets when
employing APC. This result reveals why APC is so effective: APC can accurately identify cluster
pairs that should be merged, hence alleviating the category fission problem in FPC fast.

4.3 ABALATION STUDY

In this section, we conduct a detailed ablation study to show the influence of APC’s query strategy
on its performance across five datasets with varying sizes, spanning from 351 to 11,200 instances.

Variants of Merge Probability. We conduct an ablation study on APC, focusing on assessing how
different merge probability types affect its performance. In addition to P in Eq. (2), P× in Eq. (3),
and P+ in Eq. (4), we also explore the application of a classical cluster-based ACC query strategy,
which utilizes the distance between centroid samples. To align with other types of merge probability,
we map the distance to pairwise posterior probability, denoted as Pc. We test these types of merge
probability in five datasets and keep the recalled cluster pair numbers fixed for a fair comparison. As
ARI is less biased than NMI and better depicts the impact of APC, we report their ARI performance
under a predefined maximum query time threshold in Table 3, the related NMI results are shown in
Table 6 in Appendix C.2. We observe that P× and P+, two variants of P, are more accurate when
recalling mergeable cluster pairs. This supports the rationale of only preserving the knn pairs in P×
and P+. Additionally, we observe that Pc achieves comparable performance with P+ and P× only in
the smallest dataset MK20. This underscores the superiority of our derived merge probability over
the traditional centroid distance strategy, particularly in the context of larger datasets.

Selection of Probability Threshold. As P+ consistently outperforms other merge probabilities, we
explore how to select an appropriate probability threshold. We apply APC to five datasets using
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four different Pl, and the results are in Table 3. We observe that as the size of the dataset increases,
larger Pl will cause better performance for APC. Because setting a higher Pl leads to an increased
probability of the query result being must-link, which will result in a higher merge success rate.

Table 4: Tests on Large datasets.

MS1M-10k MS1M-100k MK500
Time cost 59.45s 2h47m 56.48s
Query number 621 3920 1061
Initial NMI 0.893 0.926 0.877
Final NMI 0.972 0.957 0.900
Initial ARI 0.730 0.742 0.450
Final ARI 0.947 0.878 0.591

Performance on Large datasets. We further test APC
on three large datasets MS1M-10k, MS1M-100k and
MK500, and the result is in Table 4. We observe that
APC could still significantly improve the clustering per-
formance with a limited number of queries. Notably,
APC takes less than 4000 queries to improve the ARI of
MS1M-100k by 0.136 in less than 3 hours. Contrast-
ingly, URASC and NPU exhibit limited capacity to sig-
nificantly enhance the initial clustering performance of
MS1M-100k, even with an investment of 10k queries. Furthermore, their effectiveness diminishes
notably when the initial clustering result is relatively good. For example, when the initial NMI per-
formance of URASC on MK100 is 0.64, it requires 5000 queries to improve it to 0.78. However, if
the initial NMI performance of URASC reaches 0.76 on MK100, investing 5000 queries can even
lead to a degradation in the NMI value. More detailed results about the performance of APC are
shown in Figure 3 in Appendix C.3.

5 RELATED WORK

Query Strategy in ACC. Recent ACC methods have embraced a trend of incorporating sample
uncertainty into their query strategies. These methods frequently utilize entropy to quantify uncer-
tainty (Xiong et al., 2013; Abin, 2016; Xiong et al., 2016; Shi et al., 2020). A common task involves
estimating the probability of a sample belonging to different clusters or neighborhoods. Addition-
ally, alternative criteria such as maximum expected error reduction (Wang & Davidson, 2010) and
maximum expected clustering change (Biswas & Jacobs, 2014) have been proposed to assess the
stability of clustering results when perturbing the similarity values between two samples.

Constraints in ACC. When using the must-link and cannot-link constraints to perform constrained
clustering, two aspects are usually taken into consideration: the transitive inference of constraints
and whether the constraints can be violated. Transitive inference involves the derivation of additional
constraints through an initial set of queried constraints. Notably, Lutz et al. (2021) have proposed
an effective solution for implementing transitive inference within their pair-based active clustering
methods. In terms of utilizing the constraints, ACC methods usually allow them to be broken, as
they mostly adopt the classic soft Constrained Clustering algorithms like MPCKMeans (Basu et al.,
2003) and ASC (Wauthier et al., 2012). In contrast, we adopt a relabeling strategy to update the
cluster identities of samples, which does not violate the query result and is extremely time-saving
compared to soft-constrained clustering methods.

Estimation of Pairwise Probability. Estimating the matching probability between samples is cru-
cial in both probabilistic clustering (Lu & Leen, 2004) and some ACC methods (Biswas & Jacobs,
2014; Mai et al., 2013). Recently, Liu et al. (2022) have introduced using isotonic regression to learn
a function that maps the distance or similarity between samples to the posterior pairwise probability.
They have also derived the formula for aggregating pairwise probabilities in multi-view scenarios.

6 CONCLUSION

This paper studies Active Constrained Clustering (ACC) problems and aims to develop a cluster-
based algorithm capable of handling large datasets. Based on a new theoretical result regarding
the necessary condition of cluster fusion, we propose a new Active Probabilistic Clustering (APC)
framework. Extensive experiments demonstrate the superiority of APC when compared to existing
baseline methods, particularly when confronted with large datasets. Our work sheds light on the
active clustering algorithms for large datasets. It would be interesting to explore the performance of
APC or develop some new algorithms for larger datasets involving millions to billions of data.
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. Let p and q denote the sizes of w1 and w2, respectively. We further assume
that the class index of these outliers is ij ∈ {1,2,⋯,K}, where j ∈ {1,2,⋯, (1 − t1)p + (1 − t2)q}.
For ease of presentation, for any class index i ∈ {1,2,⋯,K}, we use si to denote the class size, i.e.,
∣ci∣ = si. Without loss generality, we assume that q ≥ p throughout this proof.

By the definition of mutual information, we have

I(Ω∗;C) = I(Ω;C) +
K

∑
τ=1

P(w1,2 ∩ cτ) log
P(w1,2 ∩ cτ)
P(w1,2)P(cτ)

−
K

∑
τ=1

P(w1 ∩ cτ) log
P(w1 ∩ cτ)
P(w1)P(cτ)

−
K

∑
τ=1

P(w2 ∩ cτ) log
P(w2 ∩ cτ)
P(w2)P(cτ)

= I(Ω;C) +
K

∑
τ=1

∣w1,2 ∩ cτ ∣
N

log
N ⋅ ∣w1,2 ∩ cτ ∣
∣w1,2∣ ⋅ ∣cτ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(I)

−
K

∑
τ=1

∣w1 ∩ cτ ∣
N

log
N ⋅ ∣w1 ∩ cτ ∣
∣w1∣ ⋅ ∣cτ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(II)

−
K

∑
τ=1

∣w2 ∩ cτ ∣
N

log
N ⋅ ∣w2 ∩ cτ ∣
∣w2∣ ⋅ ∣cτ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(III)

. (7)

Then we bound these three terms respectively. For Term (I), we have

(I) =
∣w1,2 ∩ c1∣

N
log

N ⋅ ∣w1,2 ∩ c1∣
∣w1,2∣ ⋅ ∣c1∣

+
K

∑
τ=2

∣w1,2 ∩ cτ ∣
N

log
N ⋅ ∣w1,2 ∩ cτ ∣
∣w1,2∣ ⋅ ∣cτ ∣

= t1p + t2q
N

log
N(t1p + t2q)
(p + q)s1

+
(1−t1)p+(1−t2)q

∑
j=1

1

N
log

N ⋅ ∣w1,2 ∩ cij ∣
(p + q)sij

. (8)

Similarly, we have

(II) = ∣w1 ∩ c1∣
N

log
N ⋅ ∣w1 ∩ c1∣
∣w1∣ ⋅ ∣c1∣

+
K

∑
τ=2

∣w1 ∩ cτ ∣
N

log
N ⋅ ∣w1 ∩ cτ ∣
∣w1∣ ⋅ ∣cτ ∣

= t1p

N
log

Nt1
s1
+
(1−t1)p
∑
j=1

1

N
log

N ⋅ ∣w1 ∩ cij ∣
psij

, (9)

and

(III) = ∣w2 ∩ c1∣
N

log
N ⋅ ∣w2 ∩ c1∣
∣w2∣ ⋅ ∣c1∣

+
K

∑
τ=2

∣w2 ∩ cτ ∣
N

log
N ⋅ ∣w2 ∩ cτ ∣
∣w2∣ ⋅ ∣cτ ∣

= t2q

N
log

Nt2
s2
+
(1−t2)q
∑
j=1

1

N
log

N ⋅ ∣w2 ∩ cij ∣
qsij

. (10)

Plugging Eq. (8), Eq. (9), and Eq. (10) into Eq. (7), together with the fact that

∣w1,2 ∩ cij ∣ ≥max{∣w1 ∩ cij ∣, ∣w2 ∩ cij ∣}, ∀j ∈ {1,2,⋯, (1 − t1)p + (1 − t2)q},
we obtain that

I(Ω∗;C) ≥ I(Ω;C) + t1p

N
log

t1p + t2q
t1(p + q)

+ t2q

N
log

t1p + t2q
t2(p + q)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(IV)

(11)

− ((1 − t1)p + (1 − t2)q
N

log(p + q) − (1 − t1)p
N

log p − (1 − t2)q
N

log q)
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(V)

. (12)
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Term (IV) in Eq. (11). For Term (IV) in Eq. (11), by the Taylor expansion

log(1 + x) =
∞
∑
u=1

(−1)u−1

u
⋅ xu,

we have

(IV) = t1p

N

∞
∑
u=1

(−1)u−1

u
⋅ ((t2 − t1)q

t1(p + q)
)
u

+ t2q

N

∞
∑
u=1

(−1)u−1

u
⋅ [(t1 − t2)p

t2(p + q)
]
u

=
∞
∑
v=1

1

2v − 1
⋅ [ t1p

N
⋅ ((t2 − t1)q

t1(p + q)
)
2v−1
+ t2q

N
((t1 − t2)p
t2(p + q)

)
2v−1
]

−
∞
∑
v=1

1

2v
⋅ [ t1p

N
⋅ ((t2 − t1)q

t1(p + q)
)
2v

+ t2q

N
((t1 − t2)p
t2(p + q)

)
2v

]. (13)

For ease of presentation, we denote m = q/p ≥ 1. Then for any v ≥ 1, we have
∞
∑
v=1

1

2v
⋅ [ t1p

N
⋅ ((t2 − t1)q

t1(p + q)
)
2v

+ t2q

N
((t1 − t2)p
t2(p + q)

)
2v

]

=
∞
∑
v=1

pq(t1 − t2)2v

2vN(p + q)2v
⋅ [q

2v−1

t2v−11

+ p2v−1

t2v−12

]

≤
∞
∑
v=1

mp2(3/10)2v

2vNp2v(1 +m)2v
⋅ (1 +m2v−1) ⋅ (10p

7
)
2v−1

≤ 3p

20N

∞
∑
v=1

1

v
⋅ (3

7
)
2v−1
≤ 0.0716p

N
, (14)

where the first inequality uses m = q/p and the assumption that t1, t2 ∈ [0.7,1], the second inequality
follows the fact that m(1 +m2v−1) ≤ (1 +m)2v , and the last inequality follows that

∞
∑
v=1

1

v
⋅ (3

7
)
2v−1
≤ 3

7
+
∞
∑
v=2

1

2
⋅ (3

7
)
2v−1
= 267

560

and simple calculations.

On the other hand, for any v ≥ 1, we have
∞
∑
v=1

1

2v − 1
⋅ [ t1p

N
⋅ ((t2 − t1)q

t1(p + q)
)
2v−1
+ t2q

N
((t1 − t2)p
t2(p + q)

)
2v−1
]

=
∞
∑
v=1

pq(t1 − t2)2v−1

(2v − 1)N(p + q)2v−1
⋅ [p

2v−2

t2v−22

− q2v−2

t2v−21

]

=
∞
∑
v=1

pq(t1 − t2)2v+1

(2v + 1)N(p + q)2v+1
⋅ [p

2v

t2v2
− q2v

t2v1
]. (15)

Furthermore, we have
∞
∑
v=1

pq(t1 − t2)2v+1

(2v + 1)(p + q)2v+1
⋅ [p

2v

t2v2
− q2v

t2v1
] ≥ −

∞
∑
v=1

pq∣t1 − t2∣2v+1

(2v + 1)N(p + q)2v+1
⋅ [p

2v

t2v2
+ q2v

t2v1
]

≥ − p

N

∞
∑
v=1

1

2v + 1
⋅ ( 3

10
)
2v+1

≥ −0.0096p
N

, (16)

where the second inequality uses the facts that (p + q)2v+1 ≥ q2v+1 + qp2v and t1, t2 ∈ [0.7,1], and
the last inequality follows that

∞
∑
v=1

1

2v + 1
( 3
10
)
2v+1
≤ 9

1000
+ 1

5

∞
∑
v=2
( 3
10
)
2v+1
= 9

1000
+ 243

455000
< 0.0096.

Combining Eq. (13), Eq. (14), Eq. (15), and Eq. (16), we obtain that

(IV) ≥ −0.0812p
N

. (17)
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Term (V) in Eq. (12). For Term (V) in Eq. (12), we have

(V) = (1 − t1)p + (1 − t2)q
N

log(p + q) − (1 − t1)p
N

log p − (1 − t2)q
N

log q

= (1 − t1)p
N

log
p + q
p
+ (1 − t2)q

N
log

p + q
q

. (18)

Furthermore, we have
(1 − t1)p

N
log

p + q
p
+ (1 − t2)q

N
log

p + q
q

(19)

≤ (1 −min{t1, t2})p
N

log
p + q
p
+ (1 −min{t1, t2})q

N
log

p + q
q

= (1 −min{t1, t2})
N

⋅ [p log p + q
p
+ q log p + q

q
]. (20)

Let

∆h = 1

N
⋅ [p log p + q

p
+ q log p + q

q
]. (21)

Combining Eq. (18), Eq. (19), and Eq. (21), we obtain

(V) ≤ (1 −min{t1, t2}) ⋅∆h. (22)

Putting Together. Plugging Eq. (17) and Eq. (22) into Eq. (11) and Eq. (12), we have

I(Ω∗;C) ≥ I(Ω;C) − 0.0812p

N
− (1 −min{t1, t2}) ⋅∆h. (23)

Recall that the ∆h defined in Eq. (21) takes the form

∆h = 1

N
⋅ [p log p + q

p
+ q log p + q

q
]

= p

N
⋅ ( log(1 +m) +m log (1 + 1

m
))

≥ 2 log 2 ⋅ p
N

, (24)

where the second equality uses m = q/p, the last inequality uses m ≥ 1. Putting Eq. (23) and Eq. (24)
together, we have

I(Ω∗;C) ≥ I(Ω;C) − (1.0586 −min{t1, t2}) ⋅∆h. (25)

Then, we calculate the entropy after fusion.

H(Ω∗) = H(Ω) − p + q
N

log
p + q
N
+ p

N
log

p

N
+ q

N
log

q

N

= H(Ω) − p + q
N

log(p + q) + p

N
log p + q

N
log q

= H(Ω) −∆h (26)

Recall that

n1 =
2I(Ω;C)

H(Ω) +H(C)
, n2 =

2I(Ω∗;C)
H(Ω∗) +H(C)

.

By Eq. (25) and Eq. (26), we know that the sufficient condition of n2 ≥ n1 is

2[I(Ω;C) − (1.0586 −min{t1, t2}) ⋅∆h]
H(Ω) +H(C) −∆h

≥ 2I(Ω;C)
H(Ω) +H(C)

,

which is equivalent to

n1 =
2I(Ω;C)

H(Ω) +H(C)
≥ 2 ⋅ (1.0586 −min{t1, t2}),

which concludes the proof of Theorem 1.
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A.2 DERIVATION OF EQ. (2)

Derivation of Eq. (2). With the assumption of mutual independence among individual events est,
we can articulate the joint probability density of a clustering π = [z1, z2,⋯, zm] for m samples as
P(π) = 1

α ∏s,t∈[1,2,⋯,m] P(est = 1)I(zs=zt)×P(est = 0)I(zs≠zt), where I(⋅) is the indicator function,
and α is the normalization factor (Liu et al., 2022).

Under the condition of wi and wj (i.e., ∀(s, t) ∈ wi or wj , est = 1), the events of wi = wj (i.e.,
∀s ∈ wi,∀t ∈ wj , est = 1) and wi ≠ wj (i.e., ∀s ∈ wi,∀t ∈ wj , est = 0) are mutually exclusive.
Therefore, by the formula of conditional probability, we can obtain:

P(wi = wj ∣wi,wj) =
P(wi = wj ,wi,wj)

P(wi,wj)

=
P(wi = wj ,wi,wj)

P(wi = wj ,wi,wj) + P(wi ≠ wj ,wi,wj)

=
1
A ∏s∈wi,t∈wj

P(est = 1)∏s,t∈wi,s,t∈wj
P(est = 1)

1
A
[∏s∈wi,t∈wj

P(est = 1) +∏s∈wi,t∈wj
P(est = 0)]∏s,t∈wi,s,t∈wj

P(est = 1)

=
∏s∈wi,t∈wj

P(est = 1)
∏s∈wi,t∈wj

P(est = 1) +∏s∈wi,t∈wj
P(est = 0)

,

where A is the normalization factor of the joint probability density for samples in {wi,wj}.

A.3 JUSTIFICATION OF APPROXIMATION

Regarding the Mutual Information. If the purity of w1 and w2 is 1, and they belong to the same
class cτ , then we have

P(w1 ∩ cτ) = P(w1), P(w2 ∩ cτ) = P(w2), P(w1,2 ∩ cτ) = P(w1,2) = P(w1) + P(w2).

Hence, and we have I(Ω∗;C) = I(Ω;C). This is because

I(Ω∗;C) = I(Ω;C) + P(w1,2 ∩ cτ) log
P(w1,2 ∩ cτ)
P(w1,2)P(cτ)

− P(w1 ∩ cτ) log
P(w1 ∩ cτ)
P(w1)P(cτ)

− P(w2 ∩ cτ) log
P(w2 ∩ cτ)
P(w2)P(cτ)

= I(Ω;C) + P(w1,2) log
1

P(cτ)
− P(w1) log

1

P(cτ)
− P(w2) log

1

P(cτ)
= I(Ω;C).

Regarding the Approximation of Entropy. If (p + q)≪ N , then

∆h = p + q
N

log(p + q) − p

N
log p − q

N
log q

< p + q
N

log(p + q)

< p + q
N

log
N

p + q
.

Note that H(Ω) = ∑s
s
N
log N

s
, where s is the cluster size like p and q. Together with p + q ≪ N ,

we have
∆h≪ H(Ω) < H(Ω) +H(C).

B ALGORITHM DETAILS OF APC

B.1 PAIRWISE PROBABILITY ESTIMATION.

Following the setup in Liu et al. (2022), we train an isotonic regressor to estimate the pairwise
posterior probability P(eij = 1∣dij), where dij is the Euclidean distance between samples i and j.
The estimation consists of three steps:
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(1) As the real label is unavailable, we utilize the K-means clustering to generate the pseudo label for
the samples.

(2) Then, we use the k-nearest-neighbors of each sample to generate sample pairs. We label these
pairs as 0 or 1 using the pseudo labels, to indicate whether the two samples belong to the same
class.

(3) Finally, we use isotonic regression to learn a function that maps the Euclidean distance between
two samples to the probability that they belong to the same class.

Liu et al. (2022) also proposed Graph-context-aware refinement to enhance the quality of the poste-
rior probability, but it is not an essential component of APC. Therefore, we did not include it in our
experiments. However, incorporating them would further enhance the performance of APC, as they
can improve the quality of the estimated merging probability between cluster pairs.

B.2 IMPLEMENTATION OF PURITY TEST

To estimate the compactness of a cluster, we need to calculate ∑j∈w(i) P(eij = 1) for every sample
i in w. In practice, we sort all samples in w according to their pairwise probability with i (i.e.,
P(eij = 1)) in descending order, and put the samples whose rank falls within the range between
⌊ ∣w∣

2
⌋ and ⌊ ∣w∣

2
+
√
∣w∣⌋ into the set w(i). After we get w(i) for all samples in w, we calculate the

compactness by ∑i∈w,j∈w(i) P(eij=1)
∑i∈w ∣w(i)∣

.

In the event that the compactness criterion is not met, we involve humans to judge the purity of the
harsh cluster. Within a cluster, our belief is that samples usually exhibit a greater pairwise probability
when compared to samples from the same class rather than samples from a different class. Hence,
we select a sample pair from this cluster for the purity test as follows: (i) we first select the central
sample of w, which is defined as s1. (ii) next, we rank all samples in w according to their pairwise
probability with the s1 in descending order. Then, we randomly select a sample whose rank falls
within the range of [⌊0.5 ∗ ∣w∣⌋, ⌊0.7 ∗ ∣w∣⌋], and denote the sample as s2. After selecting (s1, s2),
we let the humans judge if they belong to the same class. We claim that the cluster w passes the
Purity Test if the query result for this sample pair is a must-link.

B.3 FAST TRANSITIVE INFERENCE

FTI involves expanding the set of constraints based on the information within the original set. For
example, if (x1, x2) and (x2, x3) are must-link constraints, and (x1, x4) is a cannot-link constraint,
it implies that (x1, x3) must be a must-link constraint, while (x2, x4) and (x3, x4) must be cannot-
link constraints.

To facilitate the process, we present an efficient method, Fast Transitive Inference (FTI), which
is designed to discover the transitive closure for the constraint set in APC. The implementation is
shown in Algorithm 3.

The performance of FTI is guaranteed by Theorem 2.

Theorem 2 (Completeness of FTI). By executing the FTI algorithm every time a new human query
is made, we can always get the latest transitive closure.

Proof of Theorem 2. Suppose the must-link sample sets with samples i and j are denoted as Gi

and Gj , respectively. And the sample sets that are cannot-link with i and j are denoted as gi and
gj . When the constraints between i and j are queried, only the constraints of sample pairs within
{Gi,Gj , gi, gj}may change, as no must-link constraints are built between them and the rest samples.
We discuss the two cases where i and j are must-linked or cannot-linked:

1 (i, j) is must-linked. First, FTI updates the constraints for sample pairs related to i, then G′i =
Gi ∪ {j}, G′j = Gj ∪Gi, and g′j = gj ∪ gi. The constraints between i and Gj , gj have not yet been
updated. Then, FTI updates the constraints for sample pairs related to j, then we have G′i = Gi∪Gj

and g′i = gi∪gj . And this means all ml constraints between Gi and Gj , and cl constraints between
{Gi,Gj} and {gi, gj} are updated and stored in the state matrix S.
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2 (i, j) is cannot-linked. First, FTI updates the constraints for sample pairs related to i, then g′i =
gi ∪ {j} and g′j = gj ∪Gi. Then FTI updates the constraints for sample pairs related to j, then we
have g′i = gi ∪Gj . And this means all cl constraints between Gi and Gj are updated and stored in
S.

Combining these two scenarios, we finish the proof of Theorem 2

C MORE EXPERIMENTAL DETAILS

C.1 SELECTION OF PROBABILITY THRESHOLD.

We recommend selecting the probability threshold Pl from {0.7,0.6,0.5,0.4,0.3,0.2,0.1}. The
merging probability threshold should be chosen such that the number of recalled cluster pairs is
similar to the number of resulting clusters by FPC. Setting a higher threshold value increases the
likelihood of cluster pairs belonging to the same class. This can enhance the efficiency of APC as
shown in Table 3. Conversely, setting a lower threshold results in more recalled clusters, ultimately
leading to NMI performance approaching 1 with additional human queries.

For the actual implementation of APC, we report our choice of hyperparameter in Table 5.

Table 5: This table presents details about the sampled datasets. Moreover, datasets in which each class contains
an equal number of samples are categorized as balanced datasets.

MK20 MK100 Handwritten Humbi-Face MK500 MS1M-10k MS1M-100k Humbi-Large

Pl 0.2 0.3 0.5 0.5 0.6 0.6 0.6 0.6
τ 0.8 0.8 0.7 0.7 0.85 0.7 0.7 0.7

C.2 MORE ABLATION RESULTS

We report the NMI performance of the ablation study on APC in Table 6. We observe a similar trend
as the ARI performance in Table 3: (i) P+ shows consistent advantage over other merge probability;
(ii) Setting a larger probability threshold will improve the convergence speed of APC: reach a high
level performance with fewer human queries.

Table 6: Ablation study about the query strategy of APC: (i) the NMI performance comparison of APC when
different merge probability are used under the same max query limit, Qmax; (ii) how the probability threshold,
Pl affects the NMI performance of APC under the same max query cost Qmax.

NMI NMI
P P+ P× Pc Qmax 0.3 0.4 0.5 0.6 Qmax

MK20 0.917 0.955 0.948 0.955 60 0.93 0.917 0.917 0.918 30
MK100 0.862 0.905 0.899 0.896 200 0.895 0.895 0.897 0.891 150

Handwritten 0.746 0.918 0.916 0.867 100 0.872 0.896 0.911 0.913 90
Humbi-Face 0.903 0.958 0.937 0.937 100 0.918 0.938 0.954 0.965 100
Humbi-Large 0.913 0.953 0.944 0.935 600 0.916 0.926 0.946 0.956 600

C.3 MORE RESULTS ON LARGE DATASETS

We show how APC enhances the clustering quality on large datasets in Figure 3.

C.4 COMPLEXITY ANALYSIS

The major computational cost lies in calculating the merging probability and the expected NMI
gain between all cluster pairs, with a computational complexity of O(k2), where k is the number
of resulting clusters from FPC (excluding outliers). Overall, the computational cost of APC is
O(T ⋅ k2), where T is the number of epochs and is set to 2 in our experiments.
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Figure 3: The NMI and ARI performance of APC on four large datasets.

C.5 COMPUTING RESOURCES

We utilize a [GeForce RTX 3090 Ti] for feature extraction using DNN models. For the implemen-
tation of baseline methods and APC, we perform the experiments on a machine equipped with an
Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz.
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