
Approximate natural gradient in Gaussian processes
with non-log-concave likelihoods

Marcelo Hartmann 1

Abstract

Approximate Bayesian inference on Gaussian pro-
cess models with non-log-concave likelihoods is
a challenging problem. When the log-likelihood
function lacks concavity, finding the maximum
a posterior estimate of the Gaussian process pos-
terior becomes troublesome. Additionally, the
lack of concavity complicates computer imple-
mentations and may increase computational load.
In this work, we propose using an approximate
Fisher information matrix as an alternative for
defining a variant of the natural gradient update in
the context of Gaussian process modeling, achiev-
ing this without incurring additional costs and
with less analytical derivations. Moreover, experi-
ments show that the approximate natural gradient
works efficiently when the log-likelihood function
strongly lacks concavity.

1. Introduction
Gaussian processes (GP) are stochastic processes used in
Bayesian modelling as a prior distribution over some un-
known function of interest. GP models have been commonly
used in regression problems where the data is taken as a
noisy evaluation of the unknown function, and whose noise
distribution is taken as Gaussian. In many cases this as-
sumption can be inappropriate in practical data analysis,
where inference may be sensitive to outliers. To address
this, several variants of GP models for robust regression
have been proposed as in Taylor & Verbyla (2004), Kuss
(2006), Vanhatalo et al. (2009), Jylänki et al. (2011) and
Hartmann (2018). The core idea is to consider that the noisy
evaluation of such underlying true function is associated
with a probabilistic model in which the likelihood function

1Department of Computer Science, University of Helsinki,
Finland, Helsinki. Correspondence to: Marcelo Hartmann
<marcelo.hartmann@helsinki.fi>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

is not log-concave, and it can accommodate the influence of
points that are far away from the bulk of the remaining. In
other words, it is resistant to outliers. Besides, in this class
of GP models the posterior distribution is high-dimensional,
non-conjugate and lacks concavity.

Precisely, if the logarithm of the posterior distribution
were concave, it would guarantee a unique maximizer, and
second-order optimization routines would work well in prac-
tice (see Rasmussen & Williams, 2006, page 42, Section
3.4.1). However, the lack of concavity introduces additional
difficulties in approximate inference, such as finding the
maximum a posteriori (MAP) estimate for posterior analysis.
In this case, the posterior may not have a unique maximizer,
and optimization routines may struggle to find the best op-
tima. Therefore, alternative approximation techniques are
of central importance in applied Bayesian analysis for more
general scenarios.

In this work, we present a variant of the natural gradient
update to find the MAP estimate of the Gaussian process
posterior. Our method approximates the exact Fisher in-
formation matrix using only the gradient of the likelihood
function, requiring no Hessian computation. In Section
2, we review the basics of Gaussian processes. Section
3 revisits the inference problem when the log-likelihood
function is not concave. In Sections 4 and 5, we present a
variant of the natural gradient update and a case study us-
ing the Student-t model to impose strong non-log-concave
likelihood functions. Finally, in Section 6, we discuss our
findings and pose the open question of why the approximate
Fisher matrix used to define a variant of the natural gradient
updates improved the inference scheme compared to the
exact natural gradient updates when the lack of concavity
may be present.

2. Gaussian processes and the MAP estimate
Let f ∼ GP(m, k) denote the random function f follow-
ing a Gaussian process with mean function m and co-
variance function k (see O’Hagan, 1978; Rasmussen &
Williams, 2006, for details). For a data set y = {yn}Nn=1

that is conditionally independent given the function values
f = {f(xn)}Nn=1, the likelihood function of f factorizes
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as π(y |f) =
∏N

n=1 π(yn|fn) where fn = f(xn) is the
unknown function value at the input point (or covariate)
xn. In the Bayesian approach for statistical inference the
posterior distribution of f given y becomes,

π(f |y) =
∏N

n=1 π(yn|fn)π(f)
π(y)

(1)

where π(f) = N (f |µ,K) is a multivariate Gaussian play-
ing the role of the prior distribution. µ is the mean vector
whose elements are µn = m(xn) and K is a covariance
matrix whose (r, s) entry is formed from the covariance
function as Kr,s = k(xr,xs) for r, s = 1, . . . , N . It is
also common in the Bayesian methodology to summarize
the posterior distribution with a point estimate such as the
MAP, which is usually obtained via some type of gradient-
based optimisation or Newton’s method. Here we focus
on the latter, which has been first presented by Rasmussen
& Williams (2006) in the Algorithm 3.1 (page 46, Chapter
3), with numerically stable implementation of the computa-
tional algorithms.

Algorithm 1 Natural gradient for finding the MAP
estimate
input y, K, µ, ℓ (log-likelihood function of f )

1: f := µ
2: repeat
3: G := E(−∇2ℓ) ▷ exact Fisher matrix
4: L := Cholesky(IN +G

1
2KG

1
2 )

5: b := G(f − µ) +∇ℓ

6: a := b−G
1
2L⊤\(L\(G 1

2Kb))
7: f new := Ka+ µ
8: until convergence

3. Problem revisited
Let’s denote the logarithm of (1) as,

ℓy(f) = ℓ(f) + log π(f)− log π(y) (2)

where ℓ(f) =
∑N

n ℓn(fn) comprises the logarithm of the
likelihood function with ℓn(fn) = log π(yn|fn). The last
terms are the logarithm of the prior distribution and the
logarithm of the normalizing constant.

When the likelihood function ℓ(f) is not concave, the Al-
gorithm 3.1 presented by Rasmussen & Williams (2006) no
longer works efficiently. Vanhatalo et al. (2009) and Jylänki
et al. (2011) try to tackle the lack of concavity by hand-tune
computer algorithms but no general solution is presented.
Hartmann (2018) presented one theory based solution using
the idea of natural gradient from Amari (1998). The latter
approach, however, needs to compute the Fisher information

matrix, which is most of the times a problem since integrals
might need to be solved when the probabilistic model for
the data y (the likelihood part) is not part of the exponential
family. Hartmann (2018) proposed a natural gradient update
to find the MAP of Equation (2). This is summarize in the
Algorithm 1. Basically, this is a variant of the Algorithm 3.1
aforementioned by just changing the negative Hessian ma-
trix of the log-likelihood function, denoted by W = −∇2ℓ,
with its expected value G = E(W ), i.e. the Fisher infor-
mation matrix. In our settings this matrix is diagonal and
whose nth main diagonal element is given by,

Gn,n(fn) = EYn

[
− ∂2

∂f2
n

log π(yn|fn)
]

(3)

=

∫
Ω

[
− ∂2

∂f2
n

log π(yn|fn)
]
π(yn|fn)dyn.

Here the expectation (integration) is taken over all possible
outcomes Yn, represented by the set Ω. If Yn is discrete,
then the integral is changed to a sum. Also, it is the diagonal
structure of W that makes G to be diagonal as well.

4. Approximate Natural gradient
An unbiased Fisher estimate has been presented by McLach-
lan & Peel (2000), Chapter 2, Section 2.15.3, page 65. In
the settings of this work we denote it as

F = S⊤S − 1

N
∇ℓ ∇ℓ⊤,

where

S =

∂1ℓ1 · · · ∂N ℓ1
...

. . .
...

∂1ℓN · · · ∂NℓN

 .

Hence, the matrix F can also be written as,

F =

N∑
n

∇ℓn∇ℓ⊤n − 1
N∇ℓ∇ℓ⊤.

Now, observe that the off-diagonal elements of S are zero,
Sr,s = ∂rℓs = 0 for r ̸= s, this due to the fact that each
data point yn is tied with only one function value fn in the
likelihood function. Thus we write

F = D − 1
N∇ℓ∇ℓ⊤ (4)

where
D = diag

(
(∂1ℓ1)

2, . . . , (∂NℓN )2
)
.

We make three useful observations.

Observation 1 : The approximate Fisher might be helpful
for the cases when W is not positive-definite everywhere
leading to possible instability of the Newton’s method.
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Observation 2 : There is no need to compute the Hessian
matrix of the log-likelihood function using the aforemen-
tioned approximate Fisher to find the MAP of the Gaussian
process posterior distribution. Moreover, the computational
cost will remain theoretically unchanged when defining an
approximate version of the natural gradient update.

Observation 3 : When the Newton’s method is suscepti-
ble to negative curvature it may blow up at saddle points
(Dauphin et al., 2014). Therefore the direction of approxi-
mating Newton’s method more accurately is not reasonable.
This will be common in cases where the log-likelihood func-
tion is not concave, e.g., Student-t or Cauchy.

In Algorithm 1 if instead of G we plug in the approximate
Fisher F , we have what we refer to as approximate natural
gradient. This substitution, however, can not be straightfor-
ward done. We need to make a suitable formulation for a
stable implementation. The main reason, as we will see, is
because the inverse F−1 can not be computed once it does
not exist.

To replace G with F in the natural gradient update, use as
starting point the classical Newton’s update (see Rasmussen
& Williams, 2006, page 43, Equation 3.18) with F instead
of W . Then we have,

f new = (K−1 + F )−1(F (f −µ) +∇ℓ) + µ (5)

As usual, we avoid inverting the matrix K due to its nu-
merical instability (eigenvalues possibly close to zero). By
rewriting (K−1 + F )−1 as

(K−1 + F )−1 = K −K(K + F−1)−1K (6)

we get F−1 that is also problematic. More precisely,

F−1 =
(
D − 1

N∇ℓ ∇ℓ⊤
)−1

(7)

= D−1 +
D−1 1√

N
∇ℓ∇ℓ⊤ 1√

N
D−1

1− 1
N ∥∇ℓ∥2D−1

.

Observe the denominator is null. That is,

1− 1
N ∥∇ℓ∥2D−1 = 1− 1

N∇ℓ⊤D−1∇ℓ

= 1− 1
N

N∑
n=1

(∂nℓn)
2/(∂nℓn)

2

= 1− 1
NN = 0.

To circumvent the above lets rewrite the matrix F−1 by
plugging (1− ϵ) in between ∇ℓ and ∇ℓ⊤, for 0 < ϵ < 1, in
the Equation (7). Then we get,

F−1 =
(
D − 1

N∇ℓ(1− ϵ)∇ℓ⊤
)−1

(8)

= D−1 +
D−1

√
(1−ϵ)√
N

∇ℓ∇ℓ⊤
√

(1−ϵ)√
N

D−1

1− (1−ϵ)
N ∥∇ℓ∥2D−1

.

The denominator becomes,

1− (1−ϵ)
N ∥∇ℓ∥2D−1 = 1− (1−ϵ)

N ∇ℓ⊤D−1∇ℓ

= 1− (1−ϵ)
N

N∑
n=1

(∂nℓn)
2/(∂nℓn)

2

= 1− (1−ϵ)
N N = ϵ.

Define R = D−1

√
(1−ϵ)√
N

∇ℓ and compute the inverse matrix
on the right side of (6) as the limit of ϵ approaching zero.

(K + F−1)−1 = lim
ϵ→0+

(K +D−1 +Rϵ−1R⊤)−1

= lim
ϵ→0+

E − ER(ϵ+R⊤ER)−1R⊤E

= lim
ϵ→0+

E −
(1−ϵ)
N ED−1∇ℓ∇ℓ⊤D−1E

ϵ+ (1−ϵ)
N ∥∇ℓ∥2D−1ED−1

= E − lim
ϵ→0+

(1−ϵ)
N ED−1∇ℓ∇ℓ⊤D−1E

ϵ+ (1−ϵ)
N ∥∇ℓ∥2D−1ED−1

= E − ED−1∇ℓ∇ℓ⊤D−1E

∥∇ℓ∥2D−1ED−1

, (9)

where

E = (K +D−1)−1 = D
1
2 (I +D

1
2KD

1
2 )−1D

1
2

and
D

1
2 = diag(|∂1ℓ1|, . . . , |∂NℓN |)).

Moreover, let

S = D−1∇ℓ = [1/(∂1ℓ1) · · · 1/(∂NℓN )]⊤,

we simplify (9) to compute (6) as

(K−1 + F )−1 = K −KEK +KES(KES)⊤/ ∥S∥2E .
(10)

Observe that the matrix form of the approximate Fisher ma-
trix in the Equation (4) is similar to that one of the Hessian
matrix of the likelihood function in multi-class classifica-
tion problems. See for example Williams & Barber (1998)
or Rasmussen & Williams (2006). Finally, using Equation
(10) into the original Newton’s update and rearranging, we
propose the approximate natural gradient step as follows,

f new = (K−1 + F )−1(F (f −µ) +∇ℓ) + µ

= (K−1 + F )−1b+ µ

=
[
K −K

(
E − ES(ES)⊤/ ∥S∥2E

)
K
]
b+ µ

= Kb−KEKb+KES(KES)⊤b/ ∥S∥2E + µ

= Kb−Kc+KESS⊤c/ ∥S∥2E + µ

= K
(
b− c+ ES⟨S, c⟩/ ∥S∥2E

)
+ µ

= K
(
b− c+ ES ⟨S,c⟩

∥S∥2
E

)
+ µ

= Ka+ µ
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where we had set b = F (f −µ) + ∇ℓ, c = EKb and
a = b − c + ES⟨S, c⟩/ ∥S∥2E . The approximate natural
gradient update is summarised in the Algorithm 2. The

Algorithm 2 Approximate natural gradient for finding
the MAP estimate
input y, K, µ, ℓ (log-likelihood function of f )

1: f := µ
2: repeat
3: D

1
2 := diag(|∂1ℓ1|, . . . , |∂NℓN |))

4: S := D−1∇ℓ
5: L := cholesky(IN +D

1
2KD

1
2 )

6: E := D
1
2L⊤\(L\D 1

2 )
7: b := F (f − µ) +∇ℓ
8: c := EKb
9: a := b− c+ ES ⟨S,c⟩

∥S∥2
E

10: f = Ka+ µ
11: until convergence

notation | · | in it stands for the absolute value function.

5. Study case
In this section we study the practical performance of the
proposed Algorithms 1 (exact Fisher) and 2 (approximate
Fisher). We do so by varying how strong the logarithm of
likelihood function lacks being concave. The ideal candidate
as a probabilistic model to study such a problem is the
Student-t model. This is because we can control how strong
the log-likelihood function of such a model lacks concavity.
See Vanhatalo et al. (2009) and Hartmann (2018) Section
3.1 for detailed introduction for this model properties.

In the subsequent experiments we fix the data set y and the
parameters of the Gaussian process model. We set m =
0 and choose k(x, x′) = σ2

f exp
(
− (x − x′)2/l2

)
with

σ2
f = 1 and l = 1. We then consider the Student-t model

for the data y and set the mean parameter of this model to
follow a Gaussian process. This way the likelihood function
π(y |·) : RN → R is

π(y |f) =
N∏

n=1

Γ
(
ν+1
2

)
σ
√
πνΓ

(
ν
2

) (1 + (yn − fn)
2

νσ2

)− ν+1
2

.

(11)

The data set generated is obtained by drawing yn = f(xn)+
en where en ∼ Student-t(f(xn), σ

2, ν) with σ2 = 0.1 and
degree of freedom ν = 3, for n = 1, . . . , N . The true
underlying function is f(x) = 1/4|x| + u(x) where u is
a random draw from the GP(0, k) in a very dense grid of
points in the interval I = [−20, 20]. We select N = 150
points randomly in the interval I . The Figure 1 depicts
the data points obtained together with the true underlying

function f(x). Also, it shows the results of the Algorithm 1
and Algorithm 2 to find the MAP of the Equation (1) when
the value of ν, in the Equation (11), is set to 5e−8.

The result of the experiment depicted in Figure 1 shows
that the MAP estimate using Algorithm 1, with the exact
Fisher information, was not able to recover the underlying
true function. In the other hand, the MAP estimate using Al-
gorithm 2, with an approximate Fisher, was able to provide
a good estimate of f(x).

Note that the parameter ν has extremely small value, thus
the function (11) becomes hard to optimise. Also observe
that in the works of Vanhatalo et al. (2009) and Jylänki
et al. (2011) they impose the restriction ν ≥ 1 to avoid
non-convergence issues with their approach.

Figure 1. This figure shows the performance of Algorithms 1 and
2 in the task of finding the MAP estimate for a fixed dataset y
and fixed ν = 5e−8. The MAP estimate using Algorithm 1 is
displayed in red and for the Algorithm 2 it is in blue. Algorithm 2
was able to find a better MAP estimate than Algorithm 1.

In the next experiment, presented in Figure 2, we keep the
same scenario as before, but vary only the value of ν in the
Equation (11). We select 60 different values of ν equally
spaced in the interval Iν = [5e−8, 0.5]. For each value
ν takes in Iν we run Algorithm 1 and Algorithm 2, and
report the number of steps until convergence alongside the
wall-clock time required.

The results presented in Figure 2 show that the number of
iterations until convergence of the Algorithms 1 and 2 are
significantly different when the value of ν is small, that
is the lack of concavity of the log-likelihood function is
strong. The Algorithm 2 is faster in almost all values of
ν in the interval given. For larger values of ν, Algorithm
1 and 2 have practically the same performance. This is
expected. Since in this case the likelihood function (11)
will start to approximate that of a Gaussian when ν grows.
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Figure 2. In the top plot, we measure the performance of Algo-
rithm 1 and Algorithm 2 in terms of the number of iterations until
convergence for the varying values of ν ∈ Iν , in Equation (11).
The number of iterations until convergence for Algorithm 1 is
displayed in red, while for Algorithm 2 it is displayed in blue. In
the bottom plot, we conduct the same experiment as in the top plot
but record the wall-clock time until convergence.

In other words, we get a likelihood function that starts to
lack less log-concavity in the whole domain of the posterior
distribution.

Note that, in principle, the behavior observed in the previous
experiments were not expected. In fact, we would expect
Algorithm 1 to be faster in all cases since it uses the exact
Fisher information matrix. Surprisingly, what we see is that
Algorithm 2 shows better performance for smaller ν, having
similar performance compared to Algorithm 1 for larger
ν. This goes against the usual empirical evidence that the
exact Fisher metric would improve optimisation routines

and convergence.

6. Concluding remarks and discussion
Optimization methods using natural gradients have been
employed by many authors in various fields. See for ex-
ample Robert E. Kass (1997), Amari (1998), Taylor & Ver-
byla (2004), Hensman et al. (2012), Hartmann (2018), Lin
et al. (2019), Martens (2020) and the references therein. In
all these works, the exact form of the natural gradient has
demonstrated improved convergence of optimization rou-
tines. In this work, we present a case where an approximate
version of the natural gradient provides better inferential
procedures compared to its exact version in a specific sce-
nario. This finding has broader implications, as explained
below.

The natural gradient can be seen as a geometry-aware op-
timization method, where the Fisher information describes
the underlying geometry of the problem. From a differential-
geometric perspective, as discussed in Do Carmo (1992),
Lee (2003) and Hartmann (2019); Hartmann et al. (2022;
2023), one is free to choose the underlying geometry of
the problem as long as it satisfies certain properties. The
assumption that the underlying geometry is described by
the Fisher information matrix is primarily motivated by its
relation to the lower bound of the variance of unbiased es-
timators (George Casella, 2001; Lehmann, 2003) or as the
second-order derivatives of the Kullback-Leibler divergence
(Calin & Udrişte, 2014). However, as this work shows, the
choice of the exact Fisher information matrix for the natural
gradient update may not always be ideal. Furthermore, we
are not aware of any work that theoretically guarantees the
Fisher information matrix as the best representative of the
underlying geometry of the problem.
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