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Abstract

Vision-language model (VLM) embeddings have been shown to encode biases
present in their training data, such as societal biases that prescribe negative charac-
teristics to members of various racial and gender identities. VLMs are being quickly
adopted for a variety of tasks ranging from few-shot classification to text-guided im-
age generation, making debiasing VLM embeddings crucial. Debiasing approaches
that fine-tune the VLM often suffer from catastrophic forgetting. On the other
hand, fine-tuning-free methods typically utilize a “one-size-fits-all" approach that
assumes that correlation with the spurious attribute can be explained using a single
linear direction across all possible inputs. In this work, we propose BEND-VLM, a
nonlinear, fine-tuning-free approach for VLM embedding debiasing that tailors the
debiasing operation to each unique input. This allows for a more flexible debiasing
approach. Additionally, we do not require knowledge of the set of inputs a priori
to inference time, making our method more appropriate for online, open-set tasks
such as retrieval and text guided image generation.1

1 Introduction

Background. Pretrained foundation Vision-language models (VLMs) such as CLIP [33], BLIP
[22], and LLaVA [25] have seen wide adoption for tasks like image retrieval [21], zero and few-shot
classification [33, 4], text-guided image generation [32], and facial recognition [58]. But VL models
also encode societal biases [5, 27, 43, 49, 53]. As more and more systems rely on CLIP, the encoded
representational harm [12, 3, 15, 52] can lead to allocative harm [34, 46, 14, 51, 16, 29], such as
Black individuals being three times more likely to be misclassified into a nonhuman category by
computer vision systems [1].

State of the art. Debiasing VLMs is an active area of research [6, 10, 20, 19, 50, 28]. One common
approach is finetuning the embedding models to remove spurious correlations [59, 2, 42]. However,
finetuning often decreases accuracy and generalizability of foundation models [31]—a significant
drawback as these models are commonly used for zero-shot tasks. Most existing finetuning-free
methods learn debiasing transformations of the initial text embeddings, but typically use one-size-fits-
all linear debiasing functions that apply the same fixed transformation to every input [6, 10, 50].

While recent work has explored nonlinear VLMs [11], their method assumes access to the set of
classes at test-time, requiring the debiasing training pipeline to be rerun if a query for a new class is
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made. This is a major limitation in practice because many tasks VLMs are used for are often naturally
open-set, where the classes to be evaluated for at test-time are unknown prior to inference.

Problem Definition. We study online, open-set debiasing for VLM embeddings. In this setup, we
only have access to a VLM, along with a single-modal image dataset. This image dataset is only
for the purpose of "training", and is not the dataset that the downstream task will work on. We
assume that this dataset, which we call the reference dataset, has labels for the protected attribute(s)
of interest. During test-time, we receive online input queries one at a time. These queries are also
open-set, meaning that the classes or concepts they refer to are not known to us beforehand. For
instance, the query may be "a photo of a nurse", but we do not have knowledge that nurse is
a potential class of interest before receiving the query. Our goal is to debias the query embedding
from the VLM in such as way that it does not more strongly associate the query embedding with any
protected attribute value over another. For instance, the embedding for "a photo of a nurse"
should not be more associated with images of women than with men.

Challenges. Online, open-set VLM debiasing is a challenging task. First, we must overcome
catastrophic forgetting—a solution that debiases the embeddings, but degrades performance. Second,
the interaction between protected attributes and query classes may be nonlinear and instance-
dependent. For example, the transformation required to remove the gender bias from the embedding
of "nurse" is likely not the same as the one to untangle gender bias associated with the embedding
of "handyman". Third, queries from open-set classes means that our approach must be flexible
enough to remove the association of protected attributes from classes unknown prior to inference
time. Lastly, online settings demand computational efficiency and thus rule out refitting the debiasing
component for each now class or query.

Proposed approach. We propose Bias Elimination with Nonlinear Debiasing of Vision Language
Models (BEND-VLM), a test-time VLM debiasing method that leaves the VLM’s weights unchanged,
being efficient enough for online streaming queries. By using the easy-to-get pre-debiasing reference
dataset with protected attributes, BEND-VLM allows for unsupervised test-time debiasing. On a high
level, BEND-VLM consists of two main parts:

First, given an online query, we generate augmented queries that introduce protected attribute infor-
mation. For example, given "a photo of a nurse" we generate "a photo of a {ATTRIBUTE}
nurse", filling in {ATTRIBUTE} with male / female / nonbinary for gender debiasing, for instance.
We get these augmented queries from a small language model, and use them to find the directions
in the embedding space for that specific query that are most associated with the protected attribute.
Given these directions, we project the embedding such that it is orthogonal to the protected attribute
dimension, resulting in the first-stage debiased representation.

For the second step, we make use of the reference image dataset. We find the images in this dataset
that are most associated with the query, and then subset them by protected attribute value. We find an
updated, debiased query representation by solving a constrained optimization equation with the goal
of finding an embedding with minimal distance to the first-stage debiased representation while being
equally similar to the example images for each attribute value. For instance, we find an embedding
that is equally similar to the nearest images for each gender. The resulting embedding will have
little to no excess association with any of the debiased protected attribute values over any other. The
output can then be passed to the downstream task.

Contributions.

• We introduce BEND-VLM, a novel test-time VLM debiasing approach that does not require
finetuning.

• We propose a technique for finding local attribute subspaces specific to each query on-the-fly.
• We introduce a novel method for equalization by using a reference image dataset.
• We experimentally evaluate for classification, retrieval, and image captioning settings,

showing BEND-VLM consistently outperforms the compared approaches.

2 Problem Definition

Let (m, t, c,a) be an (image, text, class, attribute) tuple distributed according to PM×PT ×PC×PA,
a joint distribution over images, texts, classes, and attributes. Using the running example of nurses,
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BENDVLM’s Two-Step Approach 
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Figure 1: Overview of our two-step BEND-VLM method. In this example, the initial query embedding
of doctor is more strongly associated with males, and the CCF distance is 0.10. After performing
debiasing step 1, Orthogonalizing the Embedding, the embedding is modified to remove bias along
the gender direction defined by "male doctor" and "female doctor". This still results in a CCF
distance of 0.05. We then perform the second debiasing step, where the query embedding is again
modified to be equidistant to the relevant male and female images. The final representation achieves
the optimal distance of 0.00.

a realization of m could be an image of a nurse, t the text "a photo of a nurse", c the class
nurse, and a a protected attribute such as gender. Importantly, we do not assume that C, the support
of PC , is known. This means we do not know what classes the user will query for during inference,
and do not have access to a training set with these class labels.

Let fT
θ : T → Rd represent the text embedding model (e.g., CLIP’s image encoder) and fM

θ : M →
Rd represent the image encoder, where T and M are the text and image domain, respectively. We
will use fθ = {fT

θ , fM
θ } when referring to the VL model in general, rather than its modality-specific

encoders. fθ is used to obtain d
(
fM
θ (m), fT

θ (t)
)
, where d(·, ·) is a distance metric such as cosine

distance. In practice, these (image, text) distance scores are used for zero-shot classification or image
retrieval.

Let tc ∈ T be a textual instance relating to class c. For instance, class c could be nurse and tc "a
picture of a nurse". Then, our goal is to obtain a text embedding z∗

c ∈ Rd that is Class
Conditionally Fair.

Definition 1 (Class Conditionally Fair (CCF)). A text embedding z∗
c is Class Conditionally

Fair for embedding model fθ, class c, and metric d if for all ai, aj ∈ A the following holds:

Em|ai,c

[
d(fM

θ (m′), z∗
c )
]
= Em′|aj ,c

[
d(fM

θ (m′), z∗
c )
]
.

Intuitively, a text embedding is CCF for class c if the expected similarity between the text representa-
tion and relevant image embeddings — image embeddings that are also associated with class c — is
independent of the protected attribute value a. For instance, an embedding of the query "a picture
of a nurse" is CCF if its expected similarity score for pictures of female nurses is equal to the
expected similarity score for male nurses.

We also define Class Conditionally Fair Distance as a measure from how far off an embedding is
from being CCF:

Definition 2 (Class Conditionally Fair Distance). The Class Conditionally Fair Distance for a
text embedding zc class c, and metric d is given by:

dCCF (zc, c) = ||Em|ai,c

[
d(fM

θ (m′), zc)
]
− Em′|aj ,c

[
d(fM

θ (m′), zc)
]
||1.
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The CCF distance of zc is 0 if and only if zc is CCF. In practice, we can’t exactly compute the
expectations in the CCF distance definition. Instead, these expectations can be replaced with the
average distances from relevant samples in the evaluation dataset.

Reference and Target Datasets. In practice, we assume that we have a dataset Dref =
{(mi,ai)}Ni=1 consisting of N images with labeled attributes. For instance, Dref could be a dataset
of pictures of people with corresponding gender, race, or age labels2. We focus on both the image
retrieval and zero-shot classification setting. This reference dataset will be used to obtain debiased
text embedding, as we describe in detail in the following section. We refer to the downstream dataset
to be used in retrieval or zero-shot applications as the target dataset Dtarget = {mj}

Ntarget

j=1 . Dtarget is
not available prior to inference.

For retrieval, we assume that Dtarget is an unlabeled dataset of images, such that we want to retrieve
images from this dataset that relate to streaming, open-set queries. For instance, the queries can be
free-form text searches coming from a search engine user. In this open-set scenario the set of classes
C is unknown — we do not know what classes users will search for a priori.

For zero-shot classification, we likewise focus on the streaming, open-set scenario. Images from
Dtarget will be compared against a set of texts {tc0, tc1, · · · , tcK} for the purpose of classification,
where this set of texts relates to classes c1, c2, . . . , cK ∈ C, where C is unknown to us and potentially
variable. For instance, a user may first wish to obtain zero-shot predictions of hair color of the
portraits in Dtarget, and later wish to obtain predictions of whether the individuals have eyeglasses.

In both settings, we make the simplifying assumption that each user query tc does not explicitly
reference the protected attribute of interest. For instance, the query is "a picture of a nurse",
not "a picture of a male nurse" — and thus it is desirable for the query embedding to not be
more associated with a particular gender. In the case where the query does contain explicit reference
to a — "a picture of a male nurse" — it is straightforward to abstain from debiasing by
using a language model to filter out these queries, or by checking for explicit attribute terms 3.

3 Methodology

On a high level, our BEND-VLM approach consists of a two-phase debiasing pipeline. We perform an
initial debiasing pass by first employing the classic approach of orthogonalizing fθ(t) to the attribute
subspace v [24, 9]. However, unlike most prior works, we do not assume that the attribute subspace
is globally constant for all queries; it may be the case that the direction in the embedding space
corresponding to gender that differentiates "a picture of a male nurse" from "a picture
of a female nurse" may not be equivalent to the gender direction between "a picture of a
baby boy" and "a picture of a baby girl". We find these local attribute subspaces using
our ATTRIBUTEAUGMENT module to obtain attribute augmented versions of t. After this first phase,
we are left with the partially-debiased embedding z′

c.

Our second and final debiasing pass consists of equalizing the distances between the embedding and
relevant images from the reference dataset Dref belonging to each attribute class. We obtain the final
debiased embedding z∗

c through an analytical solution to a constrained optimization equation.

3.1 Step 1: Making The Embedding Orthogonal To Local Attribute Subspace

Orthogonalizing text embeddings with respect to an attribute subspace, such as setting embedding
dimensions corresponding to gender or race equal to zero, is a classic approach used for standard
text embeddings [24, 9] and has recently shown promise in debiasing VL models [10]. Whereas
existing approaches typically find a single attribute subspace for instances, we find local attribute
subspaces in addition to the global subspace.

Let tc be the initial text query coming in to the system. We then obtain tc,ai
for all ai ∈ A.

For instance, if a refers to gender and tc = "a picture of a nurse", then we would ob-
tain "a picture of a male nurse" and "a picture of a female nurse" for tc,amale

and

2In a practical application, these protected attributes could be noisy labels assigned by an attribute predictor.
For instance, gender labels could be obtained by using CLIP for zero-shot gender prediction.

3e.g. we could filter for gender with GenderspacY: https://github.com/sidatasciencelab/gender-spacy
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tc,afemale
, respectively. We draw each tc,ai from our ATTRIBUTEAUGMENT module: {tc,ai}i∈A =

ATTRIBUTEAUGMENT(tc,ai
;A). In practice, we use an LLM to instantiate ATTRIBUTEAUGMENT.

In a lower resource setting, ATTRIBUTEAUGMENT could feasibly be implemented through simpler
text processing techniques to identify the subject of the query and insert corresponding attribute strings
before the subject; e.g. inserting "male" and "female" before the subject for gender debiasing.

Let A be a matrix whose columns are fT
θ (tc,ai)−fT

θ (tc) for i = 1 → |A|. To combat potential noise
from estimating the local attribute subspace, we additonally include generic attribute text embeddings
into the columns of A as well. For instance, for gender debiasing we include the embeddings of
"a picture of a man" and "a picture of a woman". We then obtain the initial debiased
embedding z′

c as:
z′
c = V fT

θ (tc),

where V = I −A(A⊤A)−1A⊤ is the orthogonal projection matrix of A [10].

Importantly, despite z′
c being orthogonal to the local attribute subspace it is not necessarily equally

similar to the image embeddings of relevant instances when conditioned on the "debiased" attribute.

Lemma 1 (Orthogonalization does not yield Class Conditional Fairness.). The following does
not hold in general:

Em|ai,c

[
d(fM

θ (m′), z′
c)
]
= Em′|aj ,c

[
d(fM

θ (m′), z′
c)
]
.

We show an example of this in Figure 1, where we see that step 1 does not result in significantly
improved CCF distances. To mitigate this, we propose a second debiasing step.

3.2 Step 2: Using Reference Images To Equalizing the Text Embedding

In this second stage, we equalize the distances between the images in Dref and the debiased embedding
z′
c, with the goal of making relevant images from each attribute group equally similar to the text

embedding. Let Dref(ai, c) be images in the reference dataset that are associated with attribute class
ai and class c. We want to find the embedding z∗

c that satisfies the following set of conditions C:

C =

{∑
mj∈Dref(ai,c)

d(fM
θ (mj , z

∗
c ))

|Dref(ai, c)|
=

∑
mk∈Dref(a1,c)

d(fM
θ (mk, z

∗
c ))

|Dref(a1, c)|

}
i=1→|A|

These constraints say that the average distance between relevant image embeddings should be equal
for all attribute value splits. For example, the distance between the embedding of "a picture of
a nurse" and relevant male images should match the distance between the embedding and relevant
female images.

Note that since we do not assume access to context labels for Dref, it is not immediately obvious on
how to obtain each Dref(ai, c). Instead, Dref(ai, c) is by selecting n images with attribute value ai

that are most similar to the query embedding z′
c. The value of n could be found using change-point

detection, such that n is the value where the elbow in the plot of similarity over indexes sorted by
similarity score [38]. A less sophisticated approach — but one we find works well in practice — is to
simple chose n as a hyperparameter, and use the same value for each attribute and query.

Finding any embedding that satisfies C is not enough, since we want to ensure that the debiased
embedding does not lose information unrelated to the protected attribute a. This means we want to
find a debiased embedding with minimal distance to the previous embedding. We want to find a z∗

c
that minimizes distance to the first-pass debiased z′

c:

Linitial = d
(
z∗
c , z

′
c

)
We thus find z∗

c by solving the following constrained optimization equation:

z∗
c = argmin

z∗
c

Linitial, under the set of constraints C. (1)

Equation 1 has a simple analytical solution for the binary attribute case, when d(·, ·) is cosine distance
and each embedding has unit norm length.
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Lemma 2. The value of z∗
c that minimizes the distance from the initial embedding z′c while

satisfying the image-embedding fairness constraint is:

z∗
c =

z′
c − λµ(a2, c) + λµ(a1, c)

||z′
c − λµ(a2, c) + λµ(a1, c)||2

,

where λ is given by:

λ =
µ(a1, c) · z′

c − µ(a2, c) · z′
c

2µ(a2, c) · µ(a1, c)− µ(a2, c) · µ(a2, c)− µ(a1, c) · µ(a1, c)
,

and µ(ai, c) =
1

|Dref (ai,c)|
∑

mj∈Dref (ai,c)
mj is the average embedding of Dref (ai, c).

As the requirement that the embeddings have unit norm length simplifies the analytical solution, we
add in this norm constraint {||z∗

c ||2 = 1} to the set C. In the case where the protected attribute is not
binary, z∗

c can be found using a constrained optimization solver [48].

After obtaining the result of this final debiasing step, our modified embedding can then be passed
along to a downstream task such as retrieval or zero-shot classification on a target dataset Dtarget, or
used to condition another model such as a text to image generator.

4 Experiments

Datasets. We compare our BEND-VLM to existing debiasing approaches on the FAIRFACE [18],
CELEBA [26], and UTKFACE [57] datasets. Each dataset contains pictures of people. CELEBA has
gender annotations, while FAIRFACE and UTKFACE have both gender and race labels.

Models. We evaluate the ability of the debiasing approaches to improve the performance of the
CLIP-ViT-Base-Patch16 (CLIP-ViT-B-P16) and CLIP-ViT-Large-Patch14 (CLIP-ViT-L-P14) VLMs.
For image captioning, we use ClipCap [30] pretrained on Conceptual Captions [41], which uses a
ViT-B/32 architecture. We use Mistral-7B-Instruct-v0.2 [17] for our ATTRIBUTEAUGMENT module.

Compared Methods. We compare BEND-VLM against the following debiasing methods:

• Baseline CLIP [33] is simply the original CLIP model (e.g. ViT-B-P16 or ViT-L-P14)
without any debiasing steps. This acts as our baseline.

• Orthogonal Projection (Orth-Proj.) [10] debiases the query embedding by making the
embedding orthogonal to the global spurious attribute subspace (e.g. making the embedding
orthogonal to the directions in the embedding space most correlated with gender).

• Orthogonal Calibration (Orth-Cal.) [10] likewise makes the embedding orthogonal to
the global spurious attribute subspace, but introduces an additional regularization term to
encourage attribute-augmented versions of the query to be close together after projection.

• DebiasCLIP [6] finetunes a CLIP model to remove spurious attribute bias. The authors have
released the weights for DebiasCLIP trained to do gender debiasing on CLIP-ViT-B-P16,
but have not made their training code available. This means we compare against this method
only when evaluating on experiments that use CLIP-ViT-B-P16. Note that while the released
DebiasCLIP model was trained for gender debiasing, we also include it in evaluations for
race debiasing but do not expect it to be competitive in these settings.

Implementation details. We do a 50/50 split of each dataset for the reference and target datasets.
We additionally create 5 folds for the target dataset so that we can compute confidence intervals
for all methods. We chose n = 100 when selecting the n most relevant images for computing each
Dref(ai, c) (see Section 3.2). We use the default value of λ = 1000 for Orth-Cal. and Orth-Proj.’s
main hyperparameter. During retrieval, we always sample 500 images from the target dataset. Our
reference and target datasets are drawn from the pre-established training split of each dataset.

Evaluation metrics. We measure KL[P̂a||Pa], the KL divergence between the attribute prior Pa

(e.g. the true distribution of genders in the target dataset) and P̂a, the empirical distribution of
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Figure 2: Our approach increases accuracy while decreasing bias.

attribute labels for the set of images retrieved from the target dataset for a given query. Intuitively,
if the query does not rely on the spurious attribute when computing similarity, then the instances
retrieved (e.g. the most similar instances) should result in an empirical attribute distribution that
matches the overall distribution of the spurious attribute. For instance, if a dataset contains 40%
males and 60% females, then if we sample independently of gender we should retrieve roughly
40% males and 60% females. We also report the MaxSkew between the attribute prior and
empirical retrieved distribution, MaxSkew = maxai

log(P̂a(ai)/Pa(ai)).

For zero-shot classification, we compute the AUC ROC for each group using the similarity between
the query and images from each group in the retrieval set as the score. We then report Worst Group
AUC ROC: minaiAUC_ROC

(
[1− d(mj,ai , z)]

nai
j=1, [cj ]

nai
j=1

)
, where d(·, ·) is cosine distance and

1− d(·, ·) is cosine similarity. Worst Group AUC ROC tells us how useful the similarity score to the
text embedding is for zero-shot classification for members of the most disadvantaged group.

Queries sets. Since CELEBA has class labels for hair color, we use a set of
queries relating to this which we refer to as HAIRCOLOR so that we can mea-
sure zero-shot classification performance via Worst Group AUC. HAIRCOLOR
is the set {"A photo of a celebrity with {COLOR} hair"}, for COLOR ∈
{blond, black, brown, gray}. We also use the query set STEREOTYPES, a set of negative
words such as "delinquent" and "terrorist" taken from the SO-B-IT VLM auditing taxonomy [15],
which is known to contain race and gender bias. Each of our queries is given in the appendix.

4.1 Optimizing Accuracy And Minimzing Fairness

We study the effect debiasing has on accuracy through Worst Group AUC ROC as well as the KL
divergence and MaxSkew bias metrics. We use CELEBA since it has class labels for HAIRCOLOR.

Figure 2 shows Worst Group AUC vs MaxSkew. The ideal method would be in the top left of the plot,
indicating high accuracy and low bias. Our BEND-VLM method is close to this ideal region. We
increase Worst Group AUC over the baseline, roughly matching the AUC performance of Orth-Proj.
and Orth-Cal. while having significantly less bias than them. DebiasCLIP has a better MaxSkew than
Orth-Proj. and Orth-Cal — but still worse than BEND-VLM — while decreasing AUC compared to
the baseline. We include additional results for this experiment in Section A.1 in the appendix; see
Table 6 for results for this same setting, along with the KL divergence metric. We clearly see that
BEND-VLM consistently has significantly better bias scores than all compared method, while having
negligibly worse AUC than the next method and significantly better AUC than the baseline.

4.2 Mitigating STEREOTYPE Bias

We evaluate our method on removing the association the Stereotype words have to race and
gender. The results for UTKFACE, FAIRFACE, CELEBA are shown in Tables 1, 2, and 3 respectively.
We again see that BEND-VLM consistently has less bias than the compared methods in all the
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scenarios we evaluated. Notably, the other debiasing techniques generally improve over the baseline
but sometimes have worse MaxSkew or KL Divergence — which is never observed for our approach.

Table 1: Debiasing the UTKFACE dataset with respect to gender and race for STEREOTYPE
queries.

CLIP-ViT-B-P16 CLIP-ViT-L-P14
Attribute Method KL Div.↓ MaxSkew↓ KL Div.↓ MaxSkew↓
Race Baseline CLIP 0.114 ± 0.003 0.451 ± 0.004 0.107 ± 0.005 0.437 ± 0.005
Race Orth-Proj. 0.259 ± 0.003 0.525 ± 0.004 0.182 ± 0.005 0.484 ± 0.005
Race Orth-Cal. 0.251 ± 0.002 0.526 ± 0.003 0.196 ± 0.003 0.560 ± 0.006
Race DebiasCLIP 0.158 ± 0.004 0.434 ± 0.003 - -
Race BEND-VLM 0.041 ± 0.002 0.371 ± 0.015 0.047 ± 0.002 0.367 ± 0.017

Gender Baseline CLIP 0.120 ± 0.005 0.308 ± 0.004 0.029 ± 0.001 0.166 ± 0.003
Gender Orth-Proj. 0.191 ± 0.003 0.384 ± 0.003 0.043 ± 0.004 0.200 ± 0.010
Gender Orth-Cal. 0.254 ± 0.003 0.447 ± 0.003 0.030 ± 0.001 0.166 ± 0.005
Gender DebiasCLIP 0.091 ± 0.002 0.263 ± 0.002 - -
Gender BEND-VLM 0.008 ± 0.000 0.097 ± 0.004 0.004 ± 0.000 0.067 ± 0.002

Table 2: Debiasing the FAIRFACE dataset with respect to gender and race for STEREOTYPE
queries.

CLIP-ViT-B-P16 CLIP-ViT-L-P14
Attribute Method KL Div.↓ MaxSkew↓ KL Div.↓ MaxSkew↓
Race Baseline CLIP 0.234 ± 0.002 0.808 ± 0.005 0.223 ± 0.003 0.772 ± 0.006
Race Orth-Proj. 0.305 ± 0.003 0.808 ± 0.009 0.197 ± 0.003 0.744 ± 0.009
Race Orth-Cal. 0.292 ± 0.003 0.797 ± 0.007 0.209 ± 0.001 0.717 ± 0.007
Race BEND-VLM 0.084 ± 0.002 0.553 ± 0.009 0.069 ± 0.001 0.462 ± 0.009

Gender Baseline CLIP 0.133 ± 0.002 0.338 ± 0.002 0.094 ± 0.002 0.300 ± 0.004
Gender Orth-Proj. 0.340 ± 0.003 0.520 ± 0.001 0.033 ± 0.001 0.155 ± 0.004
Gender Orth-Cal. 0.426 ± 0.002 0.606 ± 0.001 0.041 ± 0.001 0.166 ± 0.002
Gender BEND-VLM 0.006 ± 0.000 0.080 ± 0.002 0.006 ± 0.001 0.086 ± 0.003

Table 3: Debiasing the CELEBA dataset with respect to gender for STEREOTYPE queries. We do
not evaluate race on CELEBA as this dataset lacks race annotations.

CLIP-ViT-B-P16 CLIP-ViT-L-P14
Attribute Method KL Div.↓ MaxSkew↓ KL Div.↓ MaxSkew↓
Gender Baseline CLIP 0.436 ± 0.010 0.749 ± 0.006 0.335 ± 0.002 0.702 ± 0.003
Gender Orth-Proj. 0.106 ± 0.002 0.284 ± 0.003 0.059 ± 0.001 0.291 ± 0.005
Gender Orth-Cal. 0.133 ± 0.005 0.296 ± 0.004 0.041 ± 0.001 0.223 ± 0.004
Gender DebiasCLIP 0.322 ± 0.007 0.637 ± 0.007 - -
Gender BEND-VLM 0.014 ± 0.001 0.139 ± 0.008 0.026 ± 0.001 0.217 ± 0.005

4.3 Intersecrtional Debiasing

We have conducted a new experiment where we debias FairFace with respect to gender for HairColor
queries, but evaluate on race. We do not expect to see improvements with respect to racial bias
after gender debiasing for any method. Table 4 that racial bias goes up for all debiasing methods
after gender debiasing. This reflects a known, frustrating “Whac-A-Mole” issue where debiasing for
one attribute often increases the bias of another attribute [23]. Interestingly, we do not see racial bias
increase when performing only Step 2 of the Bend-VLM debiasing, indicating that this short cut issue
is most strongly affected by the orthogonalization operation performed in Step 1. The other debiasing
methods also perform a similar orthogonalization step and likewise experience this shortcut problem.
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Table 4: Debiasing FAIRFACE with respect to HAIRCOLOR queries with respect to gender, but
evaluated on race.

Method KL Divergence ↓ MaxSkew ↓

Baseline CLIP 0.606 ± 0.043 0.155 ± 0.016

Orth-Proj. 0.826 ± 0.020 0.211 ± 0.014

Orth-Cal. 0.877 ± 0.021 0.226 ± 0.005

Bend-VLM (Without Step 1) 0.594 ± 0.074 0.146 ± 0.029

Bend-VLM (Without Step 2) 0.873 ± 0.024 0.223 ± 0.006

Bend-VLM (Full Method) 0.837 ± 0.035 0.193 ± 0.024

4.4 Debiasing Image Captioning

In this experiment, we evaluate the effect of BEND-VLM on debiasing automatic image captioning.
We study ClipCap [30] (ViT-B/32 vision encoder, pretrained on Conceptual Captions [41]), as it is
one of the few captioning methods which takes in only the final layer embedding vector, as opposed
to BLIP [22] or LLaVA [25], which take in the sequence of embeddings from the ViT.

We hand picked 20 images that we observed to have significantly negative or harmful captions
generated from the Baseline CLIP embeddings. After debiasing with BEND-VLM, we performed a
manual inspection and determined that 6 out of the 20 had less harmful captions after debiasing, 3
had increased harm, and 11 were equal to the original captions.

Next, we randomly sample 1600 images from FAIRFACE’s validation set that result in
captions containg any of the following negative words: [ "abandoned", "murder",
"homeless", "accuse", "kill", "anime", "arrest", "surprised", "blood",
"shot", "pregnant", "intoxicat", "charged", "bad day", "permanently
surprised", "bandage", "hit", "wilful", "no idea", "prison", "abuse",
"attack" ]. We then perform automated sentiment analysis using CLIP. Table 5 shows
that BEND-VLM decreases the average negative sentiment per race, and makes this average more
equal between the races.

Table 5: Average negative sentiment scores for the generated FAIRFACE captions. Lower is better.

White East Asian Latino_Hispanic Southeast Asian Black Indian Middle Eastern Max Disparity

Baseline CLIP 0.640 0.495 .568 0.534 0.525 0.656 0.624 0.161
BEND-VLM 0.355 0.290 0.360 0.321 0.309 0.385 0.355 0.095

5 Limitations and Broader Impact

BEND-VLM requires a reference dataset with protected attribute annotations, which is not feasible
for every scenario. In our current implementation, our ATTRIBUTESWAP module requires the use
of a relatively small 7B LLM. This could still incur too much computational overhead for very
resource-constrained settings. Additionally, our evaluation datasets are not perfect. They contain only
binary gender labels, but there is a large population of people who don’t identify that way. Moreover,
the race and gender labels are not from self-identification, meaning they are only a noisy signal for
identity. We believe that our method overall takes a step towards understanding and mitigating biases,
and can still be directly extended to support a more nuanced solution to the extreme challenges of
mitigating social biases.

6 Related Works

Biases in Vision-Language Models. Vision-Language models have become increasingly
widespread in recent years [33, 35, 37, 36]. However, these models are known to suffer from
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spurious correlations [55] and can be biased towards certain races and genders [8]. Studies have
shown that biases in these models can stem from the datasets they are trained on. For example,
Agarwal et al. [1] found that the CLIP model associates "white" text labels less accurately with
white individuals than with individuals from other racial groups, and images of people labeled as
Black are more likely to be mislabeled as animals. Additionally, Dehouche [12] identified gender
bias in CLIP when prompted with gender-neutral text, and Wolfe et al. [53] noted that multiracial
individuals are more likely to be assigned minority racial labels. The biases embedded in these
models reflect the biases present in the training data, which often include offensive and stereotypical
content [7, 8, 47, 39].

Debiasing Vision-Language Models. Recent advancements in debiasing vision, language, and
vision-language models have led to various methods for mitigating biases, ranging from data augmen-
tation and balancing [7] to model-level adjustments such as adversarial training [45]. For instance,
Wang et al. [50] proposed removing dimensions in the CLIP embedding correlated with gender
attributes, while Berg et al. [6] used prompt learning via an adversarial approach to debias CLIP mod-
els. Other techniques include learning additive residual image representations [40] and improving
robustness to spurious correlations in CLIP via employing contrastive learning [56] and spurious-
aware fine-tuning [55]. Friedrich et al. [13] developed a look-up table for fair text-to-image diffusion
models. Similarly, Kong et al. [20] addressed test-time bias in image retrieval by downsampling
the majority class in query results, and the Adept framework [54] use debiasing prompts for text
embeddings. Chuang et al. [10] reduced bias without extensive fine-tuning by orthogonalizing em-
bedding dimensions associated with protected attributes. Kim et al. [19] emphasized the importance
of addressing gender and racial biases in vision-language models. Despite these efforts, achieving
effective debiasing without extensive retraining remains challenging. In contrast, our approach, which
is fully zero-shot and does not depend on any downstream dataset or model training, aims to provide
a more scalable solution to debiasing vision-language models, especially in open-set scenarios where
only a piece of text is provided, rather than multiple classes.

7 Conclusion

This work proposes a test-time VLM debiasing method that does not require finetuning, and is
able to perform query-specific nonlinear debiasing rather than a one-size-fits-all approach. Our
experiments on removing race and gender bias in retrieval, classification, and image captioning
indicate that our method consistently decreases bias while improving worst group performance. We
found that our method consistently matches the accuracy of the best performing compared method,
while significantly decreasing bias beyond all compared methods. We hope that our method inspires
more work on efficient, nonlinear debiasing techniques for VLMs.
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A Appendix

A.1 Expanded CelebA HAIRCOLOR Results

Table 6: Debiasing the CELEBA dataset with respect to gender for the HAIRCOLOR queries.
Model Method KL Divergence ↓ MaxSkew ↓ Worst Group AUC ↑

CLIP-ViT-B-P16

Baseline CLIP 0.140 ± 0.004 0.377 ± 0.009 0.701 ± 0.001
Orth-Proj. 0.071 ± 0.003 0.252 ± 0.006 0.775 ± 0.003
Orth-Cal. 0.059 ± 0.001 0.260 ± 0.004 0.774 ± 0.003

DebiasCLIP 0.066 ± 0.001 0.228 ± 0.006 0.507 ± 0.001
BEND-VLM 0.016 ± 0.002 0.191 ± 0.008 0.772 ± 0.003

Baseline CLIP 0.118 ± 0.005 0.307 ± 0.008 0.761 ± 0.002

CLIP-ViT-L-P14
Orth-Proj. 0.146 ± 0.003 0.295 ± 0.007 0.807 ± 0.002
Orth-Cal. 0.067 ± 0.003 0.260 ± 0.007 0.803 ± 0.002

BEND-VLM 0.011 ± 0.001 0.132 ± 0.007 0.802 ± 0.002

Table 6 shows the results for debiasing Gender for the CELEBA dataset. We clearly see that BEND-
VLM consistently has significantly better bias scores than all compared method, while having
negligibly worse AUC than the next method and significantly better AUC than the baseline.

A.2 Ablation Study

We verify that both Step 1 and Step 2 contribute to the success of BEND-VLM through an ablation
study. Table 7 shows that while most of the Worst-Group Accuracy performance comes from Step
1, utilizing only step 1 results in a much more biased retrieval metric by having a much higher KL
divergence from a fair distribution. Utilizing step 2 alone results in a fair retrieval roughly equivalent
to the full BEND-VLM approach, but does not have as good of a Worst Group Accuracy. We achieve
the best results by combining Step 1 and Step 2 to make the full BEND-VLM approach. Results
shown on CELEBA for HAIRCOLOR queries.

Table 7: Ablation study. Debiasing the CELEBA dataset with respect to gender for the HAIRCOLOR
queries.

Model Method KL Divergence ↓ MaxSkew ↓ Worst Group AUC ↑

CLIP-ViT-B-P16

Baseline CLIP 0.140 ± 0.004 0.377 ± 0.009 0.701 ± 0.001
Orth-Proj. 0.071 ± 0.003 0.252 ± 0.006 0.775 ± 0.003
Orth-Cal. 0.059 ± 0.001 0.260 ± 0.004 0.774 ± 0.003

DebiasCLIP 0.066 ± 0.001 0.228 ± 0.006 0.507 ± 0.001
BEND-VLM (Without Step 1) 0.036 ± 0.015 0.256 ± 0.053 0.700 ± 0.004
BEND-VLM (Without Step 2) 0.094 ± 0.006 0.299 ± 0.019 0.772 ± 0.002

BEND-VLM (Full Method) 0.016 ± 0.002 0.191 ± 0.008 0.772 ± 0.003

Baseline CLIP 0.118 ± 0.005 0.307 ± 0.008 0.761 ± 0.002

CLIP-ViT-L-P14
Orth-Proj. 0.146 ± 0.003 0.295 ± 0.007 0.807 ± 0.002
Orth-Cal. 0.067 ± 0.003 0.260 ± 0.007 0.803 ± 0.002

BEND-VLM (Without Step 1) 0.021 ± 0.011 0.204 ± 0.056 0.754 ± 0.004
BEND-VLM (Without Step 2) 0.102 ± 0.007 0.308 ± 0.010 0.796 ± 0.005

BEND-VLM (Full Method) 0.011 ± 0.001 0.132 ± 0.007 0.802 ± 0.002

A.3 Evaluation Using An OOD Reference Dataset

In this experiement, FAIRFACE is used as the reference dataset while CELEBA is the target dataset.
While BEND-VLM with this out of distribution (OOD) reference dataset does not perform as well
as BEND-VLM with an in-distribution reference dataset, it still outperforms the other compared
approaches. See Table 8. Results shown for HairColor queries.
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Table 8: OOD reference data experiment. Reference data from FAIRFACE while the target data is
CELEBA. Debiasing the CELEBA dataset with respect to gender for the HAIRCOLOR queries.

Model Method KL Divergence ↓ MaxSkew ↓ Worst Group AUC ↑

CLIP-ViT-B-P16

Baseline CLIP 0.140 ± 0.004 0.377 ± 0.009 0.701 ± 0.001
Orth-Proj. 0.071 ± 0.003 0.252 ± 0.006 0.775 ± 0.003
Orth-Cal. 0.059 ± 0.001 0.260 ± 0.004 0.774 ± 0.003

DebiasCLIP 0.066 ± 0.001 0.228 ± 0.006 0.507 ± 0.001
BEND-VLM (OOD Ref. Data) 0.046 ± 0.007 0.220 ± 0.026 0.767 ± 0.002

BEND-VLM (ID Ref. Data) 0.016 ± 0.002 0.191 ± 0.008 0.772 ± 0.003

Baseline CLIP 0.118 ± 0.005 0.307 ± 0.008 0.761 ± 0.002

CLIP-ViT-L-P14
Orth-Proj. 0.146 ± 0.003 0.295 ± 0.007 0.807 ± 0.002
Orth-Cal. 0.067 ± 0.003 0.260 ± 0.007 0.803 ± 0.002

BEND-VLM (OOD Ref. Data) 0.036 ± 0.003 0.116 ± 0.011 0.791 ± 0.005
BEND-VLM (ID Ref. Data) 0.011 ± 0.001 0.132 ± 0.007 0.802 ± 0.002

A.4 Applying to non-CLIP VLMs

Our method requires a VLM that can construct a vector representation of text and images in a joint
space, but this does not need to be a CLIP model. To show this generalizability, we evaluate our
method on FLAVA [44]. Table 9 shows that Bend-VLM still outperforms the compared methods
when FALVA is the VLM. Results shown for the CelebA dataset. Note that there are no “ground
truth” labels for the stereotype queries, so it isn’t possible to compute AUC for them.

Table 9: Debiasing the CELEBA dataset with FLAVA.
Query Type Method KL Divergence ↓ MaxSkew ↓ Worst Group AUC ↑

HAIRCOLOR

Baseline CLIP 0.070 ± 0.002 0.164 ± 0.009 0.753 ± 0.005
Orth-Proj. 0.223 ± 0.011 0.528 ± 0.011 0.817 ± 0.003
Orth-Cal. 0.245 ± 0.013 0.542 ± 0.013 0.817 ± 0.003

BEND-VLM 0.030 ± 0.006 0.213 ± 0.025 0.818 ± 0.003

Baseline CLIP 0.636 ± 0.009 0.832 ± 0.012 -

STEREOTYPE
Orth-Proj. 0.284 ± 0.009 0.566 ± 0.014 -
Orth-Cal. 0.232 ± 0.008 0.528 ± 0.009 -

BEND-VLM 0.040 ± 0.008 0.298 ± 0.035 -

A.5 Proofs

A.6 Proof of Lemma 1

Proof of Lemma 1. We will prove by counter example. Without lack of generalizability, consider the
case where the embedding space is 2 dimensional and there are two instances in the reference dataset,
m1 and m2, where the first is associated with the spurious attribute value a1 and one associated
with a2. Define a basis where [0, 1] corresponds to the spurious attribute subspace and [1, 0] is the
space orthogonal to it. Let [1, 0] be the directtion of a1 and [−1, 0] be the direction of a2. After
orthogonalizing, the query embedding z′ lies on [0, 1], and has equal cosine similarity to [1, 0] and
[−1, 0]. Since m1 is associated with a1, it will have a higher cosine similarity with [1, 0] than [−1, 0].
The opposite is true for m2. However, this does not mean that the d(m1, [1, 0]) = d(m2, [−1, 0]).
This implies that d(m1, z

′
c) = d(m2, z

′
c) does not always hold.

A.7 Proof of Lemma 2

Proof of Lemma 2. . We can obtain this solution using Lagrange multipliers. In the binary case,
we will have two constraints: constraint1 : 1

|Dref (a2,c)|
∑

mj∈Dref (a2,c)
d(fM

θ (mj , z
∗
c )) =

1
|Dref (a1,c)|

∑
mk∈Dref (a1,c)

d(fM
θ (mk, z

∗
c )), (which states that the average distances to both at-

tribute values should equal), and z∗ ·z∗ = 1 (which states that the solution should have a length of 1).
We want to minimize −d(z∗, z) = −z∗ · z/||z∗|| · ||z|| = −z∗ · z (as each vector has a norm of 1).
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For ease of notation, let us refer to 1
|Dref (a2,c)| as 1

nx
, 1

|Dref (a2,c)| as 1
n2

, the jth instance of
Dref(a1, c) as xj and the ith instance of Dref(a2, c) as yi.

We can write then Lagrange multiplier equation as:

L(z∗
c , λ, π) = −z∗

c · zc + λ
( 1

ny

ny∑
i=1

yi · z∗
c − 1

nx

nx∑
j=1

xj · z∗
c

)
+ π

(
z∗
c · z∗

c − 1
)

Taking the gradient with respect to z∗
c and setting it to 0, we obtain:

0 = −zc + λ
( 1

ny

ny∑
i=1

yi −
1

nx

nx∑
j=1

xj

)
+ 2πz∗

c

Let ȳ = 1
ny

∑ny

i=1 yi and x̄ = 1
nx

∑nx

j=1 xj . Then,

0 = −zc + λ
( 1

ny

ny∑
i=1

yi −
1

nx

nx∑
j=1

xj

)
+ 2πz∗

c

= −zc + λ
(
ȳ − x̄

)
+ 2πz∗

c

= −zc + λȳ − λx̄+ 2πz∗
c

Solving for z∗
c :

z∗
c =

zc − λȳ + λx̄

2π

Plugging this into our norm constraint:

0 = z∗
c · z∗

c − 1

=
zc − λȳ + λx̄

2π
· zc − λȳ + λx̄

2π
− 1

=

(
zc − λȳ + λx̄

)
·
(
zc − λȳ + λx̄

)
4π2

− 1

Solving for π;

π =

√(
zc − λȳ + λx̄

)
·
(
zc − λȳ + λx̄

)
2

Now plugging our equation for z∗
c into constraint1:
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0 =
1

ny

ny∑
i=1

yi · zc −
1

nx

nx∑
j=1

xj · zc

=
( 1

ny

ny∑
i=1

yi

)
· zc −

( 1

nx

nx∑
j=1

xj

)
· zc

= ȳ · z∗
c − x̄ · z∗

c

= ȳ ·
(zc − λȳ + λx̄

2π

)
− x̄ ·

(zc − λȳ + λx̄

2π

)
=

ȳ ·
(
zc − λȳ + λx̄

)
− x̄

(
zc − λȳ + λx̄

)
2π

= ȳ ·
(
zc − λȳ + λx̄

)
− x̄

(
zc − λȳ + λx̄

)
= ȳ · zc − λȳ · ȳ + λȳ · x̄− x̄ · zc + λx̄ · ȳ − λx̄ · x̄

Solving for λ:

λ =
x̄ · zc − ȳ · zc

2x̄ · x̄− ȳ · ȳ − x̄ · x̄

Note that x̄ is equivalent to µ(a1, c) and ȳ is equivalent to µ(a2, c).

The last thing to note is that when plugging in π:

z∗
c =

zc − λȳ + λx̄

2π

=
zc − λȳ + λx̄

||zc − λȳ + λx̄||2

We have now obtained the solution given in Lemma 2.

A.8 Manually Evaluated Generation Captions
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Index Caption When Conditioning On
Baseline CLIP Embedding

Caption When Conditioned On
BEND-VLM Embedding

Qualitative Eval

853 a man has been arrested after he was
found with a bullet in his head.

person has been charged with driv-
ing under the influence of intoxicat-
ing liquor and driving under the in-
fluence of a controlled substance.

Equally Harmful

335 person, pictured in a photograph re-
leased by the police, was arrested by
police on thursday.

person, pictured as a young man,
died after being hit by a car.

Less Harmful

684 the woman’s face was covered in
blood after she was hit by a car.

person, who died after being hit by
a car, is shown in this undated file
photo.

Equally Harmful

352 the girl’s mother, said she was
shocked to learn of her daughter’s
death.

the girl’s mother, said she was
shocked to learn of her daughter’s
death in the early hours of tuesday
morning.

Equally Harmful

588 person, who was born with a rare
genetic condition, said she was
shocked to learn she was the first
person to have a heart attack.

a woman eats a slice of cake. Less Harmful

296 person, pictured with her hair in a
ponytail, has been charged with driv-
ing under the influence of intoxicat-
ing liquor and driving under the in-
fluence of a controlled substance.

person, who has been charged with
second - degree murder, is shown in
this undated file photo.

More Harmful

22 person, who is facing a charge of
wilful wilful wilful wilful wilful wil-
ful with intent intent intent and in-
tent to wilful wilful wilful wilful
with intent to cause great bodily
harm to another person or property,
was found guilty of wilful wilful wil-
ful wilful wilful wilful wilful wil

person, who is facing a charge of
wilful wilful wilful wilful wilful wil-
ful with intent intent intent and in-
tent to wilful wilful wilful with in-
tent to cause great bodily harm to an-
other person or another person, was
found guilty of wilful wilful wilful
wilful wilful wilful wilful wilful

Equally Harmful

20 person, pictured with her hair in a
ponytail, has been charged with driv-
ing under the influence of intoxicat-
ing liquor and driving under the in-
fluence of a controlled substance.

person, who was the first person to
be charged with second degree mur-
der, is shown in this undated file
photo.

More Harmful

515 the man’s face was covered in blood
after he was hit by a car.

the man’s face is seen in this undated
image.

Less Harmful
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761 person, who was shot in the back of
the head by a member of the gang,
is now recovering in a hospital.

person, a senior, was one of the first
people to be diagnosed with the dis-
ease.

Less Harmful

309 this is the face of a man who has no
idea what he’s talking about.

this is the face of a man who has no
idea what he’s talking about.

Equally Harmful

561 a boy with a broken tooth. the boy’s mother said she had never
seen anything like this before.

Equally Harmful

884 person, a former contestant, has
been charged with counts of second
- degree murder and counts of wilful
infliction of death with intent to kill.

person, a former contestant, has
been charged with counts of second
- degree murder and counts of wilful
infliction of death with intent to kill.

Equally Harmful

593 person, pictured with her face cov-
ered with a bandana, has been diag-
nosed with cancer and has been told
she will not be able to walk again.

person, who was the first person to
be diagnosed with the condition, has
died at age.

Equally Harmful

403 person, pictured with person, has
been charged with second - degree
murder and counts of attempted sec-
ond - degree murder.

person, who has been living with
person, said he was shocked when
he saw his friend’s face in the mirror.

Less Harmful

266 the man’s face was covered in blood
after he was shot in the head.

person, the man who was shot and
killed in the block of flats.

Equally Harmful

409 person, pictured with his head in his
hands, has been charged with driv-
ing under the influence of intoxicat-
ing liquor and driving under the in-
fluence of a controlled substance.

person, who has been charged with
second - degree murder, is shown in
this undated file photo.

More Harmful

580 person, who is facing a possible jail
term for his role in the bungalow, is
seen in this undated file photo.

person, who is facing a charge of
wilful wilful wilful wilful wilful wil-
ful wilful with intent intent intent
intent and intent intent to wilful wil-
ful wilful wilful wilful wilful wilful
wilful wilful wilful wilful wilful wil-
ful wilful wilful wilful wilful wilful

Equally Harmful

785 the girl’s face after she was attacked
by a dog.

the girl’s face after she was attacked
by a dog.

Equally Harmful

575 person, who has been charged with
second degree murder, is shown in
this undated file photo.

person, who was the first person to
die in a plane crash, is shown in this
undated handout photo released by
government agency.

Less Harmful
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A.9 Prompt Templates

A.10 Minstrel 7B Prompt for ATTRIBUTEAUGMENT

"role": "user", "content": "I will be giving you a queries used for image search relating to
images of people. I want you to return 2 rephrasings of the query, one that makes the query
abotu a female and another that makes it abotu a male. Do not change the content of the query
other than adding this gender information. For the female rephrasing, start the rephrasing with
FEMALE: <rephrasing>. For male, do MALE: <rephrasing>. Do you understand?", "role":
"assistant", "content": "Yes, I understand. Please provide the first query to rephrase.", "role":
"user", "content": "An image of a carpenter", "role": "assistant", "content": "MALE: An
image of a male carpenter \n\nFEMALE: An image of a female carpenter \n\n Paraphrasing
done"

A.10.1 Attribute subspace prompts

A photo of a ATTRIBUTE person

We replace {ATTRIBUTE} with male or female for gender debiasing, and each of the races in
UTKFACE or FAIRFACE for race debiasing.

A.11 Prompts for HAIRCOLOR

A photo of a celebrity with black hair.

A photo of a celebrity with blond hair.

A photo of a celebrity with brown hair.

A photo of a celebrity with gray hair.

A.12 Prompts for STEREOTYPE Queries

A photo of a STEREOTYPE.

We replace {STEREOTYPE} with each of the following phrases, taken from the SO-B-IT VLM
auditing taxonomy [15]:

‘addict’, ‘burglar’, ‘criminal’, ‘dangerous person’, ‘delinquent’, ‘deviant person’, ‘embezzler’,
‘felon’, ‘fraud’, ‘freak’, ‘gangster’, ‘hacker’, ‘illegal person’, ‘insane person’, ‘lawless person’,
‘mugger’, ‘murderer’, ‘psychopath’, ‘robber’, ‘savage’, ‘shoplifter’, ‘terrorist’, ‘thief’, ‘thug’,
‘violent person’
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NeurIPS Reproducibility Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe our problem setting and scope of our proposed approach in the
abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 5.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We include the assumptions in the surrounding text and the proofs in the
appendix.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We described our setup in Section 4 and include our experimental code
publicly.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, our code is available at: https://github.com/waltergerych/bend_
vlm

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include key details in Section 4.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include 95% confidence intervals from 5 random seeds.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: We used a high-performance computing cluster for our experiments. All
experiments can be reproduced in under a day with a single NVIDIA A100 (80GB VRAM)
and 100GB of RAM.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and understood to the NeurIPS code of ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not result in new datasets or new pretrained models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the datasets and compared methods. Licence information is included
by the authors of these resources in their respective documents.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsouring or human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not have human subjects.
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