
Petri Nets Enable Causal Reasoning in Dynamical
Systems

Anonymous Author(s)
Affiliation
Address
email

Abstract

Dynamical systems, e.g. economic systems or biomolecular signaling networks,1

are processes comprised of states that evolve in time. Causal models represent these2

processes, and support causal queries inferring outcomes of system perturbations.3

Unfortunately, Structural Causal Models, the traditional causal models of choice,4

require the system to be in steady state and don’t extend to dynamical systems.5

Recent formulations of causal models with a compatible dynamic syntax, such as6

Probability Trees, lack a semantics for representing both states and transitions of a7

system, limiting their ability to fully represent the system and ability to encode the8

underlying causal assumptions. In contrast, Petri Nets are well-studied models of9

dynamical systems, with the ability to encode states and transitions. However, their10

use for causal reasoning has so far been under-explored. This manuscript expands11

the scope of causal reasoning in dynamical systems by proposing a causal semantics12

for Petri Nets. We define a pipeline constructing a Petri Net model and calculating13

the fundamental causal queries: conditioning, interventions, and counterfactuals. A14

novel aspect of the proposed causal semantics is an unwrapping procedure, which15

allows for a dichotomy of Petri Net models when calculating a query. On one16

hand, a base Petri Net model visually represents the system, implicitly encodes the17

traces defined by the system, and models the underlying causal assumptions. On18

the other hand, an unwrapped Petri Net explicitly represents traces, and answers19

causal queries of interest. We demonstrate the utility of the proposed approach on20

a case study of a dynamical system where Structural Causal Models fail.21

1 Introduction22

Dynamical systems are processes composed of states that evolve in time. Such systems are of great23

interest in many fields including economics, systems biology etc., where causal queries: conditioning,24

interventions, and counterfactuals [7] are of importance.25

Structural Causal Models [7], the traditional causal models of choice, only address fundamental26

causal queries when the dynamical system is in steady-state. This restriction is reasonable when the27

answer to the causal query does not depend upon the history of the values of the variables. When the28

history of variables is pertinent [10], structural causal models fail to distinguish between variables that29

represent events where the systems transitions from one state to another, and variables that represent30

the state of the system.31

This issue extends to recently proposed causal semantics for dynamical systems that only represent32

dependencies between states or dependencies between transitions [10, 2, 4]. Such models display a33

tension between transparency of causal assumptions and fidelity to the underlying system.34

Submitted to A causal view on dynamical systems workshop at NeurIPS 2022. Do not distribute.

In contrast, Petri Nets are well-studied models of dynamical systems, capable of interpretable35

representation of the relationship between event transitions and states of the system. So far Petri36

Nets have been primarily used for discrete event system modeling [6], and more recently to model37

dynamical systems of chemical reaction networks [12] and biological signaling networks [11]. To the38

best of our knowledge, there is currently no formal causal semantics developed for Petri Nets based39

on interventions and counterfactuals.40

The contributions of this manuscript are as follows:41

• We propose to expand the scope of causal reasoning in dynamical systems, by defining a42

Causal Petri Net model, and by providing an algorithm for its construction from a given43

dynamical system.44

• We show that the proposed Causal Petri Net leverages the power of representing states and45

transitions, allowing the Causal Petri Net to bypass the choice made by previous work. Thus46

the proposed model can completely and symbolically model the dynamical system, while47

outlining the underlying causal assumptions.48

• We define an interpretable causal semantics over the proposed model. To this end we use49

a novel unwrapping procedure, which allows us to compactly calculate queries of interest.50

We provide concrete algorithms for computing the fundamental queries of conditioning,51

interventions and counterfactuals.52

2 Background53

2.1 Prior work in causal models for dynamical systems54

A Probability Tree is a simple model for representing processes. Their semantics are self-explanatory:55

a node in the tree corresponds to a potential state of the process. An arrow indicates probabilistic56

transitions between the nodes, but does not support variables representing the space of transitions.57

Algorithms for causal reasoning with Probability Trees [2] were recently proposed. However, as Judea58

Pearl pointed out in his criticisms against this model [8], its purely numerical representation of the59

edges (and hence transitions) make the model unable to explicate the underlying causal assumptions60

apart from temporal order.61

In contrast, rule-based models utilized by Laurent et al. [4] are a powerful way to manage the62

combinatorial complexity of dynamical systems, using event transitions as variables. However,63

they have difficulties modeling the potential states of a system, and necessitate a causal semantics64

requiring pure simulation. Furthermore they can only use ad-hoc visualizations of traces thus similar65

to Probability Trees struggle to explicate causal assumptions.66

Other models, including Generalized Structural Equations models [9], Causal Constraints models [1]67

and CP-Logic [13] are similar to Causal Probability Trees and rule-based models, in that they lack68

the distinction between states and transitions, and thus the ability to encode their causal dependencies69

in a graphical structure.70

Situation Calculus causal models are capable of representing both events and states, but at the cost71

of requiring second-order logic to answer causal queries [3]. In this manuscript we are interested72

in a causal semantics of dynamical systems that only requires propositional logic to answer causal73

queries [5].74

2.2 Petri Nets75

Petri Nets, illustrated in Fig 1, are bipartite directed multi-graphs. They consist of places P (circles)76

that model potential states, and transitions T (rectangles) that model potential changes and events of77

the system. The directed arcs connect places to transitions and vice versa. Places contain movable78

objects called tokens (small black circles in Fig 1), representing the actual state of the system. The79

weights of the arcs correspond to the movement of tokens during the transitions along the arcs80

(weights equal to one are not shown).81

Definition 2.1 (Petri Net). A tuple PN := (P, T, F), consisting of a place set P , a transition set T ,82

and a flow function F : (P, T) ∪ (T, P)→ R. F takes as input directed edges and outputs a weight83

of the edge. The weight determines the input and output of tokens when a transition is fired.84

2

(a)

Figure 1: A Petri Net tuple P, T, F with
places P : {P1, P2, P3, P4}, transitions
T : {T1, T2} and F denoted by the arcs
connecting places and transitions, each with
a weight of one (not shown).

A transition is enabled if the places connected into the85

transition have tokens greater than or equal to the weight86

of the edge. An enabled transition fires by consuming the87

input tokens, and outputting tokens equal to the weight of88

the outgoing edges into the connected places. A sequence89

of transition firings is called a firing sequence. If no tran-90

sition is enabled, the Petri Net is said to be in deadlock.91

The token distribution is called a marking or equivalently92

a state, and describes a system’s state of the Petri Net. The93

full set of markings is called the marking set MPN . The94

state graph is a graph with each possible marking forming95

the nodes, and the directed edges are the transitions that96

connect them.97

In the following we refer to a marking as a set of tuples of98

the form: [(p, r)] where p is a place and r is the number of tokens in that place. The marking set of99

Fig 1 is [(P1, 1), (P3, 2), (P4, 1)] We denote PN(m) a Petri Net PN set to marking m. We denote100

Enabled(PN(m)) the set of enabled transitions of PN set to marking m.101

3 Methods102

Figure 2: Firing Squad toy example.
The court orders or doesn’t order the
prisoner’s death based on exogenous
variable Uc, which is assumed to be
uniform. If the court gives the order the
captain gives a signal, otherwise there
is no signal. Each riflemen (A and B)
see the signal and shoot the prisoner,
otherwise they don’t shoot. The pris-
oner dies if either riflemen shoot.

In this section we formally walk through the entire pipeline103

of calculating a causal query using Petri Nets. We first show104

how to construct a Petri Net model from data. Next, we define105

semantic structures to draw meaning from the model. Finally,106

we calculate the fundamental causal queries: conditioning, in-107

terventions, and counterfactuals. Proofs of lemmas somewhere108

are available in Supplementary Materials.109

Throughout this section we use the classic Firing Squad110

toy example outlined in Fig 2. We evaluate the "Kam-111

chatka" counterfactual query [8], proposed by Pearl in his ar-112

gument against Probability Trees [2]. The query illustrates113

that Firing Squad doesn’t describe a state of Kamchatka, i.e.114

the Captain has no influence on the Prisoner given the ac-115

tions of the riflemen: P (PrisonerDo(Riflemen=NoShoot) =116

Alive|Captain = Signal, Prisoner = Dead).117

We walk through this query in a manner to be illustrative to how118

Petri Nets should be applied to dynamic causal modeling. For119

clarity, we introduce concepts such as initialization of the agents120

(e.g., setting the riflemen to be on "standby") and tracking of121

the agents (i.e., at any given time we model all relevant agents,122

such that the Prisoner is viewed as alive unless otherwise shot).123

However these concepts are not strictly necessary, and a more124

classic treatment of the Firing Squad example is provided in125

Supplementary Materials.126

3.1 Dynamical systems of consideration127

Definition 3.1 (Discrete Dynamical System). A set of discrete random variables X : {X1, ..., Xn},128

where the possible states is defined to be S := {(Xi1 = x1, ..., Xik = xk)|i1, ..., ik ∈ {1, ...n}, xi ∈129

dom(Xi)} denotes the product space of these variables, a set of possible initial states S0 ⊆ S, and a130

family of functions F : S → S with an optional corresponding probability mass for each function131

∆(f).132

We define a dynamical system as comprised of: variables, any combination of realizations of the133

variables determines the possible states of the system, a set of initial states determines the space of134

initializations and a set of functional relations governs the state changes, usually through time, along135

3

with a probability mass associated with these functions determining the probability they occur if able.136

Here we represent a dynamic system as M := (X,S, S0, F,∆). A formal breakdown of examples137

using this definition is in Supplementary Materials.138

A dynamical system M implicitly defines various traces of states. Here traces are simply a sequence139

of states beginning with a valid initial state, connected by the defined family of functions of M . This140

motivates a more flexible definition of an event with respect to these traces. We define an event as a141

set of states over M where the event is said to occur within a trace if each state occurs in this trace.142

Definition 3.2 (Traces defined by M). A sequence of states t := [st0, ..., s
t
k] where st0 ∈ S0, s

t
i ∈ S.143

Furthermore ∃f ∈ F such that f(sti) = sti+i.144

Definition 3.3 (Events over M). A set of states e := {se1, ..., sen} where e is said to occur in a given145

trace t defined by M if for each se ∈ E there exists some st ∈ t s.t. se ⊆ st.146

3.2 Defining and constructing causal Petri Nets147

To represent the inherent stochasticity of dynamical systems, we define a Probabilistic Petri Net148

by imbuing a Petri Net tuple with a probability mass distribution over the transitions. Given a the149

set of enabled transitions at a given marking, we normalize the probability mass to determine the150

probability over the transitions. As a standard Petri Net inherently has a uniform distribution over its151

transitions, in the following we assume without loss of generality that all Petri Nets are Probabilistic152

Petri Nets. We also define a useful "Tree-Like" property of a Petri Net, applicable when its structure153

mirrors that of a graphical tree.154

Definition 3.4 (Probabilistic Petri Net). A tuple PN := (P, T, F,∆) and ∆ : T → R is the firing155

probability mass function of the transitions.156

Definition 3.5 (Tree-like Petri Net). A Petri Net is tree-like iff each transition has at most one input157

and one output arc.158

We note that if a Tree-like Petri Net is probabilistic then, given a place r, we can calculate the159

probability P (c|r) of an ancestor c to occur. This is obtained by multiplying the unique firing160

sequence of transitions connecting c and r. Moreover, this procedure allows us to derive a distribution161

Pr(l)∀l ∈ Leaves(r) over all the leaves of a root place r.162

We can now define the Causal Petri Net. The definition parallels Judea Pearl’s method of separating the163

exogenous and endogenous variables of a system. Define PNU the portion of the model representing164

the exogenous part of the system, and PNM the portion representing the endogenous part. PNU165

consists of the one place (referred as the Root) and transitions which determine the initial marking of166

PNM .167

Definition 3.6 (Causal Petri Net model). A Petri Net tuple PN : (P, T, F) composed of three disjoint168

parts (PNU , PNM , Fc), where PN : (P, T, F), PNU : (PU , TU , FU) are Petri Net tuples and Fc is169

a flow function (TU , PM)→ R. We then define the elements of our Causal Petri Net: P = PU ∪PM ,170

T = TU ∪ TM and F = FU ∪ FM ∪ Fc, furthermore PU is a singleton set, called Root.171

3.2.1 Design choices in the construction of causal Petri Nets172

The very first step of the pipeline is constructing the model itself, from a dynamical system M :173

(X,S, S0, F,∆). This is done by enumerating all the variables X described by the system along174

with their possible values, represented by the places of the Petri Net. F will be represented by the175

transitions, where the flow function will be determined by the coefficients of the functions. We176

capture S0 with the exogenous Petri Net PNU . This is done by Alg 1.177

Lemma 3.1. Every trace t of the system M has a corresponding firing sequence {m} in its con-178

structed Petri Net, and every firing sequence {m} in Petri Net corresponds to a trace in M .179

Throughout our manuscript we will represent places as large rounded rectangles and transitions as180

smaller rectangles. We apply Alg 1 to the Firing Squad example shown in Fig 3 (a) . We see that all181

the values of the variables have been initialized as places, with a twist. We introduced the "StandBy"182

value representing the initialization state of the agents described by the example, as the relations are183

properly read as "Given the Captain’s signal Rifleman A then fires" implying the Riflemen existed in184

a state of not having made a decision initially. This gives a powerful meaning to the tokens as they185

effectively track the state of all the agents in the system. This additionally showcases itself in the186

4

Algorithm 1: ConstructPN
Input: M
A dynamical system M := (X,S, S0, F)
Output: A Causal Petri Net tuple PN : (PNU , PNM , Fc) modeling the input

1 Initialize two empty Petri Net tuples PNU : (PU , TU , FU), PNM : (PM , TM , FM)

2 We create a Place: (Xj = xi
j) ∈ PM for all i, j

3 for Each f ∈ F : f(xi) = xo where xi, xo ∈ X do
4 Create a transition t in TM

5 Let the inputs being the places corresponding to xi, with FM (xi, t) corresponding to the
coefficients

6 Let output places being the places corresponding to xo, with FM (t, xo) corresponding to the
coefficients

7 Create a place Root ∈ PU

8 for Each s0 ∈ S0 do
9 create a transition t in TU

10 Initialize one input arc FU (Root, t) = 1
11 Let output places being the places corresponding to s0, with Fc(Root, s0) corresponding to

the coefficients
12 Return: PN : (PU ∪ PM .TU ∪ TM , FU ∪ FM ∪ Fc)

bi-directionality of many of the transition arrows as often the relation doesn’t necessarily consume187

the agent. When Rifleman A sees the captains signal, the signal doesn’t go away as other Riflemen188

can still read it (in this example B). Thus it is natural that this relation doesn’t consume the token189

in the place corresponding to the Captains Signal. While these idiosyncrasies aren’t necessary (the190

model will effectively model the example without) they do serve as a example of the differences in191

dynamic modeling. We note the separation of models in Fig 3 (a), with the two transitions in the192

exogenous Petri Net corresponding to the two court orders.193

3.3 Unwrapping of a causal Petri Net for query calculation194

Often we want to reason about the overall states the Petri Net model can take as well as the connections195

between them (through the transitions that can occur). However we don’t want to enumerate all196

possible states the Petri Net has but rather a subsection of it. This unwrapping process is described197

by Alg 2. The Unwrapping Algorithm returns a tree-like Petri Net where the leaves label firing198

sequences where an event of interest occurs, and where they cannot occur. This procedure will prove199

critical in evaluating most queries over any Petri Net.

Algorithm 2: UnwrapPN
Input: (PN,M,E)
A causal Petri Net tuple PN = (PU , PM , Fc), the dynamical system M , and a set of events E
over M
Output: A Tree-Like Petri Net tuple PNs, with root place corresponding to PU and leaves

corresponding to when E occurs or can’t occur
1 Create an empty Petri Net tuple PNs : (Ps, Ts, Fs)
2 Add a place Root ∈ Ps which corresponds to the marking in PN with a token in root
3 Let m be Root ∈ Ps

4 ∀e ∈ E if m ∈ e we pop the corresponding element in e
5 We stop if an event e ∈ E is empty, if m is a child of itself, or if we are in deadlock
6 for Each t ∈ Enabled(PN(m)) do
7 Let mt denote the marking of PN when t fires
8 Append a transition t to Ts

9 Append an incoming arc F ((m, t)) = 1 and an outgoing arc F ((t,mt)) = 1

10 Repeat steps 4-9 for each child place of m in PNs

11 Return: PNs

200

5

(a) (b) (c)

Figure 3: Construction and Abduction on a Petri Net. (a) The constructed Petri Net of the Firing Squad
toy example. The green box outlines the exogenous Petri Net PNU , the red box the endogenous Petri Net
PNM and the blue arcs outline the connection arcs, Fc. We condition on the event b : {s1 = [(Captain =
Signal, 1)], s2 = [(Prisoner = Dead, 1)]} (b) The Petri Net with the places corresponding to the event
highlighted in green. The transitions in the exogenous Petri Net are highlighted in blue, and their probabilities
are shown. (c) The outline of the unwrapped model in the forward simulation step. Leaves where b occurs are in
green. Leaves where b doesn’t are in red. This allows us to calculate the desired distribution over the exogenous
states, using Bayes rule: P (∆(t1)|b), P (∆(t2)|b) = (0, 1) as desired. A fully labeled version of this Petri Net
is in Supplementary Materials.

3.4 Forward simulation on a causal Petri Net201

Given a Causal Petri Net model PN : (PNU , PNM , Fc) a fundamental query is to calculate the202

distribution over some set of events E over our dynamical system. We utilize the unwrapping203

algorithm, and then return the distribution over the leaves. This is outlined in Alg 2204

Algorithm 3: FSimPN
Input: (PN,M,E))
A Causal Petri Net tuple
PN = (PU , PM , Fc), the dynamical
system M and a set of events E over M
Output: A probability distribution

P (e)∀e ∈ E
1 Initialize P to map everything to 0
2 PNT ← UnwrapPN(PN,M,E)
3 For each e ∈ E set P (e) to be the sum of

all paths from root to leaf where e occurs
4 Return: P

Algorithm 4: ConditionPN
Input: (PN,M, a, b)
A Causal Petri Net tuple PN , and events
a, b over M
Output: The conditional P (a|b)

1 PNs ← UnwrapPN(PN,M, b)
2 Mark nodes where event a occurs over

PNs

3 Calculate P (a), P (b) over PNs

4 Let PNa be a subtree with root where a
occurs

5 P (b|a) is equal to P (b) over PNa

6 P (a|b) = P (b|a)P (a)
P (b)

7 Return: P (a|b)

205

Lemma 3.2. The probability of event e in M is equal to the probability returned by206

FSimPN(PN, e)207

3.5 Conditioning and abduction over a causal Petri Net208

Consider a system M and its causal Petri Net PN : (PNU , PNM , Fc). Conditioning revolves209

around calculating a probability of the form P (a|b), where a, b are events over M . We calculate the210

conditional using Bayes rule, to get the probabilities we consider the unwrapped Petri Net PNs over211

event b. We loop through PNs and mark all nodes where a occurs. We can now calculate P (b) and212

P (a) by summing the probabilities of all paths from the Root place. We now consider any node213

where a occurs, and sum the probabilities of all paths from this node to nodes where b occurs to get214

P (b|a). Applying Bayes rule we get P (a|b) as desired. This is formalized in Alg 4215

Lemma 3.3. The probability of P (a|b) in M is equal to the probability returned by216

ConditionPN(PN,M, a, b)217

6

Abduction is the act of inferring the distribution of the exogenous variables given some event b. Thus218

it is closely related to conditioning, where we condition on an event and infer the distribution over219

the exogenous states. We simply apply the conditioning algorithm over each marking mapped from220

PNU to PNM and note that the probability of each exogenous marking is simply it’s associated221

transition probability. Abduction is formalized in Alg 5. We can now perform the abduction step222

of the Kamchatka counterfactual query, conditioning the Constructed Causal Petri Net on the event:223

(Captain = Signal, Prisoner = Dead) shown in Fig 3 (b)-(c).224

Algorithm 5: AbductionPN
Input: (PN,M, b)
A Causal Petri Net tuple PN : (PNU , PNM , Fc), b
is an event over M
Output: An updated PN b

U : (P, T, F,∆b) where
∆b is the inferred probability distribution
over the exogenous markings

1 Let ∆ be the transition probabilities of PNU

2 Initialize ∆b

3 Let ∆(a) denote the transition probability of
exogenous marking a

4 PNs ← UnwrapPN(PN,M, b)
5 Calculate P (b) over the leaves in PNs

6 for each child u of Root in PNs do
7 Set P (u) to ∆(u)
8 Calculate P (b|u) over the leaves of the subtree

with u as the root
9 ∆b(u) = P (b|u)P (u)

P (b)

10 Return: PN b
U := (P, T, F,∆b)

Algorithm 6: CounterfactualPN
Input: (M,Q)
A system M , A counterfactual
query Q over M : Given X, what is
the probability of Y had we done Z
Output: The probability

distribution P (YDo(Z)|X)
1 PN : (PNU , PNM , Fc)←

ConstructPN(M)
2 PNX

U ←
AbductionPN(PN,M,X)

3 PNZ
M ← PNM after the

intervention Z
4 Return: FSim(PNcount :=

(PNX
U , PNZ

M , Fc),M, Y)

225

3.6 Interventions on a causal Petri Net226

We now define an intervention on a Petri Net, which is simply an extension of DAG mutilation to this227

model.228

Definition 3.7 (Intervention on a Petri Net). Consider any Causal Petri Net tuple PN :229

(PNU , PNM , Fc), we define an intervention over the tuple PNM : (P, T, F). An intervention230

is a mapping of the form I : PN → PNI =: (P, TI , FI) where TI = (T\Tr) ∪ Ta, with Tr, Ta be231

the set of transitions we remove and add respectively, FI : (TI , P) ∪ (P, TI)→ R where R is the set232

of real numbers.233

Given an Intervened Petri Net PN with intervention DO(Z), we have that P (Y) is equal234

to P (YDO(Z)). We apply our definition to create the Intervened Petri Net corresponding to235

DO(riflemen = NoShoot) in the Kamchatka query shown in Fig 4 (a).236

3.7 Counterfactuals on a causal Petri Net237

A counterfactual query is a statement of the form: “Given that X happened, would Y have happened238

had we done Z". Consider a system M and it’s constructed causal Petri Net PN . Following [7] we239

perform counterfactuals in three steps of abduction, action and prediction:240

Abduction: We run the abduction algorithm with Causal Petri Net PN : (PNU , PNM , Fc), and X241

as the event to get the updated Exogenous Petri Net PNX
U242

Action: Convert Z to an intervention over PNM to get PNZ
M243

Simulation: We run the Forward Simulation algorithm with PN = (PNX
U , PNZ

M , Fc) over event244

Y to get P (Y) which is equivalent to the counterfactual query of interest: P (YDo(Z)|X) as the245

probability is calculated over the Petri Net with intervention DO(Z) conditioned on X .246

Putting these steps together we get Alg 6. Using this Algorithm we can now fully evaluate the247

Kamchatka query shown in Fig 4.248

7

(a) (b) (c)

Figure 4: Kamchatka intervention and counterfactual query on a Petri Net. (a) The Petri Net from Fig. 3 a.
after intervention DO(Riflemen = NoShoot). The deleted elements are highlighted red, while the added
elements are green. (b) The intervened net with the abducted distribution over the exogenous states. (c) Denotes
the outline of the forward simulation with event set Y := {{y1 : s1 = [(Prisoner = Alive, 1)]}, {y2 :
s2 = [(Prisoner = Dead, 1)]}} where y1, y2 are singleton events. We highlighted leaves where the prisoner
is alive as green, and leaves where the prisoner dies as red. We can now calculate the desired probability
P (PrisonerDo(Riflemen=NoShoot) = Alive|Captain = Signal, Prisoner = Dead) = 1 as part of our
algorithm’s output. Thus we are not in a state of "Kamchatka" as expected. For the fully enumerated Petri Net of
(c) with the places fully labeled readers can consult the supplementary section.

3.7.1 Counterfactuals on an individual trace249

Often in dynamic systems, we are interested in a counterfactual over a specific trace simulated by250

the system. The query is of the form “Given a sequence of states, X, connected by the system’s251

functions, what is the probability of Y had we done Z". This is computed in a similar manner as the252

traditional counterfactual query. The only difference is that for this conditioning we replace PNU253

with a singular transition to the marking in X just before the intervention. This method is showcased254

in the case study below.255

4 Counterfactual Resimulation case study256

Motivation We now work through a problem in which SCMs were unable to represent [4], requiring257

the authors to repeatedly resimulate the system to answer a counterfactual query. Furthermore, the258

rule-based model was unable to visually represent the dynamical system, shown in Fig 5 (a), requiring259

multiple ad-hoc partial representations. We show how the Causal Petri Net can both represent and260

answer causal queries over this system.261

Problem description This problem follows from the description outlined in [4]. In this setting we262

have a set of reactions consisting of some input molecules, some output molecules and a probability263

of occurrence. Fig 5 (a) illustrates the reactions used by the authors.264

Query The query Laurent et al.[4] explored was a classic counterfactual query. Given trace:265

b, u, pk, b, p, u∗, would we get a bounded and phosphorylated p molecule, either (pSK, pSKp),266

had pk not occurred.267

Calculation As we are calculating the counterfactual w.r.t. a single trace we apply our trace algorithm268

shown in 5. We get precisely the authors findings that the target occurs with very low probability, .1,269

had pK not occurred.270

5 Discussion271

5.1 Benefits of the causal Petri Net model272

The base model fully and symbolically models the system and does not need a predefined stop273

point for construction. The constructed Causal Petri Net implicitly encodes all possible traces in our274

defined dynamical system in a symbolic manner, proven by Lemma 3.1. We can explicitly see this275

Kamchatka query calculation in Fig 4 (b). where the fact that the captain has no effect on the prisoner276

is shown through the disconnect from the captain and the place signifying the prisoners death.277

Unwrapped models share the causal assumptions of the base model. The power of the unwrapping278

procedure is that the unwrapped Petri Net only generates traces which the base model can generate.279

Which means the defined forward simulation algorithm 3 gives us correct probabilities, proven by280

8

(a) (b) (c)

Figure 5: Counterfactual Resimulation case study. (a) Denotes the dynamical system. We have a series of
reactions labeled on the left, with their input and output molecules on the right. Dotted arrows indicate a low
probability reaction and solid arrows indicate a high probability reaction, specific values aren’t specified in the
original paper and aren’t of fundamental importance. (b) The Causal Petri Net model of the dynamical system.
We let a probability mass of plow = .1 denote a low probability reaction while a probability of phigh = .9
a high probability one. The elements highlighted in red denote the intervention of removing pk. The places
highlighted green showcase the target molecules. (c) Shows the forward simulation step. We have that the
conditioned trace corresponds to the following firing sequence: mx = b1, u1, pK, b3, p2, as the intervention
is removing pk, the marking up to the point of intervention is the marking after u1 fires: [(S, 1), (K, 1)]. We
then forward simulate, where [(S, 1), (K, 1)] is the initial marking, with event set: Target := {e1 : {se1 =
[(pSK, 1)]}, e2 : {se2 = [(pSKp, 1)]}}. We get the petri net shown, the leaves where the target occurs are
highlighted green and the others are highlighted red. We can now calculate: P (targetDO(noPK)|mx) = .1.
Note we showed the normalized probability of occurance, which we denoted with P and not the probability
mass, denoted by ∆, which is why P (b1) = 1.

Lemma 3.2. Thus the causal assumptions of the base model are in effect for the unwrapped model.281

Therefore the unwrapped Petri Nets can be safely used for query calculation and the base model282

visually represents the actual model in effect.283

The unwrapped model makes a distinction between all possible states and states which can284

occur in a given causal query, making it space efficient Due to the unwrapping procedure outlined285

in Alg 2, the number of states explicitly unwrapped is dependent on the query. This means the base286

model can be defined independently of any given query which allows for compact representation.287

Furthermore traces irrelevant to a query (ones where the target states cannot be reached) do not get288

unrolled in the unwrapping procedure, saving space. Seen in Fig 5 (c), our counterfactual forward289

simulation Petri Net requires very few states to be unrolled. Formalizing the extent of this would be290

of interest in future work.291

The causal semantics of a Petri Net do not necessitate simulation. Through the unwrapped Petri292

Nets we are able to answer causal queries directly on the level of the dynamical systems variables293

functions, as we were able to calculate the causal query Laurent et al. computed but without the need294

for simulation (Fig 5). This has clear advantages in the case of working with very low probability295

traces and conditionals.296

5.2 Future work and closing remarks297

Laurent et al. [4] stated that ideally there would be a principled approach to gluing together the298

explanatory accounts of the dynamical system of interest, which would summarize the causal structure299

of the system. We believe that Petri Nets serve as such a model. There remains many directions for300

improvement and formalization. Herein we only considered a discrete dynamical system, future work301

can potentially utilize Colored Petri Nets to extend the domain to continuous systems.302

9

References303

[1] T. Blom, S. Bongers, and J. M. Mooij. Beyond structural causal models: Causal constraints304

models. In Uncertainty in Artificial Intelligence, pages 585–594. PMLR, 2020.305

[2] T. Genewein, T. McGrath, G. Déletang, V. Mikulik, M. Martic, S. Legg, and P. A. Ortega.306

Algorithms for causal reasoning in probability trees. arXiv, 2020.307

[3] M. Hopkins and J. Pearl. Causality and counterfactuals in the situation calculus. Journal of308

Logic and Computation, 17(5):939–953, oct 2007.309

[4] J. Laurent, J. Yang, and W. Fontana. Counterfactual resimulation for causal analysis of rule-310

based models. In International Joint Conferences on Artificial Intelligence, 2018.311

[5] B. Lopes, M. Benevides, and E. H. Haeusler. Propositional dynamic logic for petri nets. Logic312

Journal of IGPL, 22(5):721–736, oct 2014.313

[6] T. Murata. Petri Nets: Properties, analysis and applications. In Proceedings of the IEEE,314

volume 77, page 541, 1989.315

[7] J. Pearl. Causal and counterfactual inference. The Handbook of Rationality, page 427, 2021.316

[8] J. Pearl, J. Zucker, C. Cinelli, and C. Huston. Kamchatka twitter thread on deep mind’s317

"algorithms for causal reasoning in probability trees", nov 2020.318

[9] S. Peters and J. Y. Halpern. Causal modeling with infinitely many variables. CoRR,319

abs/2112.09171, 2021.320

[10] K. Sachs, S. Itani, J. Fitzgerald, B. Schoeberl, G. P. Nolan, and C. J. Tomlin. Single timepoint321

models of dynamic systems. Interface Focus, 3:20130019, 2013.322

[11] A. Sackmann, M. Heiner, and I. Koch. Application of Petri Net based analysis techniques to323

signal transduction pathways. 7:482, 2006.324

[12] K. Trares, J. Ackermann, and I. Koch. The canonical and non-canonical NF- pathways and their325

crosstalk: A comparative study based on Petri Nets. Bio Systems, 211:104564, 2022.326

[13] J. Vennekens, M. Bruynooghe, and M. Denecker. Embracing events in causal modelling:327

Interventions and counterfactuals in CP-logic. In T. Janhunen and I. Niemelä, editors, Logics in328

artificial intelligence, volume 6341, page 313. Springer, 2010.329

Checklist330

1. For all authors...331

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s332

contributions and scope? [Yes]333

(b) Did you describe the limitations of your work? [Yes] See Section 5.2.334

(c) Did you discuss any potential negative societal impacts of your work? [N/A]335

(d) Have you read the ethics review guidelines and ensured that your paper conforms to336

them? [Yes]337

2. If you are including theoretical results...338

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.339

(b) Did you include complete proofs of all theoretical results? [Yes] See Section A.3.340

3. If you ran experiments...341

(a) Did you include the code, data, and instructions needed to reproduce the main experi-342

mental results (either in the supplemental material or as a URL)? [N/A]343

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they344

were chosen)? [N/A]345

(c) Did you report error bars (e.g., with respect to the random seed after running experi-346

ments multiple times)? [N/A]347

10

(d) Did you include the total amount of compute and the type of resources used (e.g., type348

of GPUs, internal cluster, or cloud provider)? [N/A]349

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...350

(a) If your work uses existing assets, did you cite the creators? [N/A]351

(b) Did you mention the license of the assets? [N/A]352

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]353

354

(d) Did you discuss whether and how consent was obtained from people whose data you’re355

using/curating? [N/A]356

(e) Did you discuss whether the data you are using/curating contains personally identifiable357

information or offensive content? [N/A]358

5. If you used crowdsourcing or conducted research with human subjects...359

(a) Did you include the full text of instructions given to participants and screenshots, if360

applicable? [N/A]361

(b) Did you describe any potential participant risks, with links to Institutional Review362

Board (IRB) approvals, if applicable? [N/A]363

(c) Did you include the estimated hourly wage paid to participants and the total amount364

spent on participant compensation? [N/A]365

11

A Appendix366

A.1 Classic Firing Squad walkthrough367

We present a walkthrough of the Kamchatka Counterfactual Query as done in the paper but in a368

much more traditional firing squad layout. This is to show that the changes we made (while relatively369

superficial) were by no means a necessity and that the Petri Net model is flexible enough to handle370

multiple encodings.371

(a) (b) (c)

(d) (e) (f)

Figure 6: [OV: Rephrase the caption as in Fig 3, to clearly label each subfigure] Kamchatka Counterfactual
walkthrough: We have the constructed Petri Net shown in (a), we then perform abduction over the event
E := {e1 = [(Captain = S, 1)], e2 = [(Prisoner = Dead, 1)]} on the model in (b) with the exogenous
transition probabilities highlighted to get the unwrapped Petri Net in (c) this allows us to perform Bayes to get
the updated probabilities: ∆1 = 0,∆1 = 1. We now perform the intervention DO(Riflemen = NoShoot)
which gives us the Petri Net model in (d) with the deleted elements in red and the added elements in green, we
now initialize the updated counterfactual Petri Net model shown in (e) and we perform forward simulation in
(f) to get that P (Prisoner = AliveDO(Riflemen=NoShoot)|(Captain = Signal, Prisoner = Dead)) = 1
getting the same result as in our paper’s variation and showing we aren’t in a state of Kamchatka as desired.

12

A.2 Dynamic model encoding of examples372

A.2.1 Classic Firing Squad373

Random variables:
Xcourt : {Order,NoOrder}

Xcaptain : {S,NoS}
XA : {Shoot,NoShoot}
XB : {Shoot,NoShoot}
Xprisoner : {Alive,Dead}

Initial states:
(Xcourt = NoOrder)

(Xcourt = Order)

Functions and their corresponding probability mass:

f1((Xcourt = NoOrder)) = (Xcaptain = NoS),∆(f1) = 1

f2((Xcourt = Order)) = (Xcaptain = S),∆(f2) = 1

f3((Xcaptain = NoS)) = (XA = NoShoot,XB = NoShoot),∆(f3) = 1

f4((Xcaptain = S)) = (XA = Shoot,XB = Shoot),∆(f4) = 1

f5((XA = NoShoot,XB = NoShoot)) = (Xprisoner = Alive),∆(f5) = 1

f6((XA = Shoot)) = (Xprisoner = Dead),∆(f6) = 1

f7((XB = Shoot)) = (Xprisoner = Dead),∆(f7) = 1

A.2.2 Firing Squad374

Random variables:
Xcourt : {Order,NoOrder}

Xcaptain : {StandBy, S,NoS}
XA : {StandBy, Shoot,NoShoot}
XB : {StandBy, Shoot,NoShoot}

Xprisoner : {Alive,Dead}

Initial states:

(Xcourt = NoOrder,Xcaptain = Standby,XA = StandBy,XB = Standby,Xprisoner = Alive)

(Xcourt = Order,Xcaptain = Standby,XA = StandBy,XB = Standby,Xprisoner = Alive)

Functions and their corresponding probability mass:

f1((Xcourt = NoOrder,Xcaptain = Standby)) = (Xcaptain = NoS),∆(f1) = 1

f2((Xcourt = Order,Xcaptain = Standby)) = (Xcaptain = S),∆(f2) = 1

f3((Xcaptain = NoS,XA = Standby)) = (Xcaptain = NoS,XA = NoShoot),∆(f3) = 1

f4((Xcaptain = NoS,XB = Standby)) = (Xcaptain = NoS,XB = NoShoot),∆(f4) = 1

f5((Xcaptain = S,XA = Standby)) = (Xcaptain = S,XA = Shoot),∆(f5) = 1

f6((Xcaptain = S,XB = Standby)) = (Xcaptain = S,XB = Shoot),∆(f6) = 1

f7((XA = Shoot,Xprisoner = Alive)) = (XA = Shoot,Xprisoner = Dead),∆(f7) = 1

f8((XB = Shoot,Xprisoner = Alive)) = (XB = Shoot,Xprisoner = Dead),∆(f8) = 1

13

A.2.3 Counterfactual Resimulation375

Random variables: We have discrete indicator variables for each molecule376

(S,K, pS,Kp, SK, pSK, SKp, pSKp)377

378

Initial states: (S,K)379

380

Functions and their corresponding probability mass:

b1((S,K)) = (SK),∆(b1) = plow

b2((pS,K)) = (pSK),∆(b2) = plow

b3((S,Kp)) = (SKp),∆(b3) = plow

b4((pS,Kp)) = (pSKp),∆(b4) = plow

u1((SK)) = (S,K),∆(u1) = phigh

u ∗ 1((SKp)) = (S,Kp),∆(u ∗ 1) = plow

u2((pSK)) = (pS,K),∆(u2) = phigh

u ∗ 2((pSKp)) = (pS,Kp),∆(u ∗ 2) = plow

p1((S)) = (pS),∆(p1) = plow

p2((SKp)) = (pSKp),∆(p2) = plow

pk((K)) = (Kp),∆(pk) = plow

14

A.3 Proofs of included theorems381

Lemma A.1. Every trace t of the system M has a corresponding firing sequence {m} in its382

constructed PN and every firing sequence {m} in PN corresponds to a trace in M383

Proof. Let M := (X,S, S0, F) be a dynamical system and let PN := (PNU , PNM , Fc) be the384

constructed causal Petri Net of M .385

386

Consider a trace t := [st0, ..., s
t
k] of M . We have by construction for every state sti ∈ S there exists387

a marking msti
in the marking set of PN . Since st0 ∈ S0 by construction there exists a transition388

t0 ∈ PNU connecting the root place to the marking mst0
. For every pair of states sti, s

t
i+1 in t389

there must exist a function fi ∈ F s.t. fi(stt) = sti+1. By construction there must exist a transition390

ti ∈ PNM connecting the marking msti
to the marking msti+1

. This means the marking sequence391

{m} := [mst0
, ...,mstk

] is a valid firing sequence of PN corresponding to the trace t as desired.392

393

Now consider a marking sequence {m} := [mst0
, ...,mstk

] of PN . We have by construction that394

every marking msti
must have a corresponding state sti ∈ S. We also have that st0 ∈ S0. By definition395

of a marking sequence for every pair of markings msti
,msti+1

there exists a transition ti in PN s.t.396

the marking of PN when set or marking msti
will be msti+1

. By construction there exists a function397

fi ∈ F s.t. fi(s
t
i) = sti+1. Thus we have a valid trace t := [st0, ..., s

t
k] of M corresponding to398

{m}.399

Lemma A.2. The probability of event e in M is equal to the probability returned by400

FSimPN(PN, e)401

Proof. We have that the probability that e happens in M is the sum of the probability of all traces402

where e occurs. Thus if FSimPN(PN, e) considers all the traces we have that it returns the correct403

result. This is equivalent to the statement that UnwrapPN(PN,M, e) enumerates all the possible404

traces where e can occur.405

We have that UnwrapPN(PN,M, e) considers every possible reachable marking at every step. It406

only stops a trace if e occurs, if PN reaches a state of deadlock or if PN reaches the same state twice407

in a trace. We note that if PN reaches deadlock and e hasn’t occurred (since if it had we would have408

stopped earlier) e cannot occur in this trace as no transition (and hence function in M by Lemma409

3.1) can be applied. If PN reaches the same state twice the current trace is a loop and since e hasn’t410

occurred it cannot occur. Thus UnwrapPN(PN,M, e) necessarily enumerates all possible traces411

where e can occur, which means the probability of e in M is equal to the probability returned by412

FSimPN(PN, e).413

Lemma A.3. The probability of P (a|b) in M is equal to the probability returned by414

ConditionPN(PN,M, a, b)415

Proof. We have that by 3.2 the probabilities calculated for P (a), P (b), P (b|a) correspond to the prob-416

abilities in M . This necessarily means the probability returned by ConditionPN(PN,M, a, b) =417
P (b|a)P (b)

P (a) is equal to P (a|b) in M from Bayes Theorem.418

15

A.4 Full-sized images419

Fig 3c420

Figure 7: Figure 3c in the main manuscript, with each place fully enumerated.

16

Fig 4c421

Figure 8: Figure 4c in the main manuscript, with each place fully enumerated.

17

	Introduction
	Background
	Prior work in causal models for dynamical systems
	Petri Nets

	Methods
	Dynamical systems of consideration
	Defining and constructing causal Petri Nets
	Design choices in the construction of causal Petri Nets

	Unwrapping of a causal Petri Net for query calculation
	Forward simulation on a causal Petri Net
	Conditioning and abduction over a causal Petri Net
	Interventions on a causal Petri Net
	Counterfactuals on a causal Petri Net
	Counterfactuals on an individual trace

	Counterfactual Resimulation case study
	Discussion
	Benefits of the causal Petri Net model
	Future work and closing remarks

	Appendix
	Classic Firing Squad walkthrough
	Dynamic model encoding of examples
	Classic Firing Squad
	Firing Squad
	Counterfactual Resimulation

	Proofs of included theorems
	Full-sized images

