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Abstract

This paper identifies the misinterpretation of001
the context can be a significant issue during the002
reasoning process of large language models,003
spanning from smaller models like Llama3.2-004
3B-Instruct to cutting-edge ones like DeepSeek-005
R1. For example, in the phrase “10 dollars per006
kilo,” Llama3.2-3B-Instruct might not recog-007
nize that “per” means “for each,” leading to008
calculation errors. We introduce a novel, post-009
training approach called Stick to the Facts010
(SIFT) to tackle this. SIFT leverages increas-011
ing inference-time compute to ground LLM012
reasoning in contexts. At the core of SIFT lies013
the Sticker, which is generated by the model it-014
self to explicitly emphasize the key information015
within the context. Given the curated Sticker,016
SIFT generates two predictions—one from the017
original query and one from the query aug-018
mented with the Sticker. If they differ, the019
Sticker is sequentially refined via forward op-020
timization (to better align the extracted facts021
with the query) and inverse generation (to con-022
form with the model’s inherent tendencies)023
for more faithful reasoning outcomes. Stud-024
ies across diverse models (from 3B to 100B+)025
and benchmarks (e.g., GSM8K, MATH-500)026
reveal consistent performance improvements.027
Notably, SIFT improves the pass@1 accuracy028
of DeepSeek-R1 on AIME2024 from 78.33%029
to 85.67%, establishing a new state-of-the-art030
in the open-source community. The code will031
be public after acceptance.032

1 Introduction033

Recent advancements in large language models034

(LLMs) (Dubey et al., 2024; Yang et al., 2024;035

Liu et al., 2024) have significantly advanced036

the field of natural language processing. Tech-037

niques including Chain-of-Thought (CoT) Prompt-038

ing (Wei et al., 2022b; Kojima et al., 2022)039

and Self-Consistency (Wang et al., 2023b), as040
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Figure 1: Applying SIFT to DeepSeek-R1 estab-
lishes state-of-the-art reasoning performance on both
AIME2024 and MATH-500. (pass@1 accuracy)

well as reasoning-enhanced models, e.g., OpenAI- 041

o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 042

2025), and KIMI-k1.5 (Team et al., 2025), have all 043

contributed to improvements in multi-step reason- 044

ing for solving hard problems. 045

Recent discussions in the community suggest 046

that advanced reasoning capabilities in LLMs 047

mainly stem from two factors: (i) foundational 048

knowledge acquisition through massive pretrain- 049

ing on diverse data (Dubey et al., 2024; Lin 050

et al., 2025), and (ii) strategic refinement via post- 051

training interventions like supervised fine-tuning 052
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Query

Josh decides to try flipping a house.  He buys a house for
$80,000 and then puts in $50,000 in repairs.  This increased the
value of the house by 150%.  How much profit did he make?

Sticker
Conditions:
1. Josh buys a house for $80,000.
2. He spends $50,000 on repairs.
3. The value of the house increases by 150%.
Question:
What is the total profit Josh made from flipping the house?

Figure 2: An example of a query and its Sticker.

(SFT) (Chung et al., 2022) or reinforcement learn-053

ing (RL) (Guo et al., 2025), which optimize the054

model’s ability to select contextually relevant rea-055

soning pathways. However, our studies reveal a056

critical lacuna in this framework: LLMs of vary-057

ing sizes systematically misinterpret, overlook, or058

hallucinate key information in the query context—059

an emergent vulnerability we term factual drift.060

For example, Llama3.2-3B-Instruct (Dubey et al.,061

2024) might incorrectly interpret “per” as “total”062

instead of “for each” in the phrase “10 dollars per063

kilo,” leading to reasoning errors even with the log-064

ical steps being correct. As a result, while current065

research prioritizes optimizing reasoning mecha-066

nisms in LLMs (Zelikman et al., 2022, 2024; Wu067

et al., 2024; Zhang et al., 2024b), we argue equal068

attention should also be placed on whether LLMs069

are reasoning about the correct problem.070

We note that advanced reasoning models, such as071

DeepSeek-R1 (Guo et al., 2025), can partially miti-072

gate factual drift during its reasoning process via073

self-verification. For example, the model dynam-074

ically paraphrases critical constraints (e.g., con-075

verting “at least 3 days” to “minimum duration076

≥72 hours”) to implicitly perform error-checking.077

This helps correct prior misunderstandings of the078

context and leads to better-aligned reasoning re-079

sults. However, such self-verification operates080

as a stochastic safeguard rather than a systematic081

protocol—it is not guaranteed to be triggered in082

various reasoning scenarios. Namely, the risk of083

factual drift remains and it can be significant con-084

sidering the results in Figure 1.085

Inspired by that humans usually use sticky notes086

to externalize critical elements when handling com-087

plex tasks, we propose the Stick to the Facts088

(SIFT) method to explicitly ground LLM reasoning089

in contexts using Stickers generated by the model090

itself. SIFT is a post-training approach, leverag-091

ing inference-time compute to improve generation 092

quality yet without reliance on reward models as in 093

Best-of-N (BoN) (Brown et al., 2024; Snell et al., 094

2024) and Monte-Carlo tree search (MCTS) (Qi 095

et al., 2024; Zhang et al., 2025). Concretely, SIFT 096

lets the target LLM summarize key facts within 097

the input query, including essential conditions and 098

the core question, into a structured Sticker (see 099

Figure 2), and make two predictions based on the 100

Sticker alone and the query augmented with the 101

Sticker, respectively. If they differ, the Sticker is 102

refined through bidirectional optimization—a for- 103

ward one to better align the Sticker with the query 104

and an inverse one to conform to the model’s rea- 105

soning preference—for more faithful reasoning. 106

Experiments demonstrate that SIFT can consis- 107

tently improve the reasoning performance across 108

various LLMs and benchmarks. Notably, for 109

DeepSeek-R1 (Guo et al., 2025), SIFT achieves 110

a 1.03% accuracy improvement over the vanilla 111

CoT (97.3%) on MATH-500 (Lightman et al., 112

2023). Additionally, on AIME2024 (of Amer- 113

ica, 2024), it brings a significant 7.34% accu- 114

racy improvement (see Figure 1), establishing a 115

new state-of-the-art in the open-source commu- 116

nity. We also witness a striking performance im- 117

provement for small-to-medium-sized models in- 118

cluding Llama3.2-3B-Instruct (Dubey et al., 2024), 119

Llama3.1-8B-Instruct (Dubey et al., 2024), and 120

Qwen2.5-7B-Instruct (Yang et al., 2024). 121

2 Related Work 122

Reasoning has long been a significant challenge for 123

LLMs. Several approaches aim to improve the rea- 124

soning capabilities of LLMs. These methods can be 125

broadly categorized into techniques that align rea- 126

soning through training, enhance reasoning through 127

search and planning, or augment reasoning during 128

inference. 129

Some approaches focus on aligning the reason- 130

ing path of LLMs through Supervised Fine-Tuning 131

(SFT) or Reinforcement Learning (RL). STaR (Ze- 132

likman et al., 2022) enables the model to use re- 133

ject sampling and learn from its mistakes by ra- 134

tionalizing its outputs, progressively enhancing 135

its reasoning capabilities. Quiet-STaR (Zelikman 136

et al., 2024) generates multiple rationales in par- 137

allel before each output token, thereby improving 138

the model’s ability to predict subsequent tokens. V- 139

STaR (Hosseini et al., 2024) employs a dual-system 140

framework where the generator creates preference 141

2



pairs to train the verifier, which then scores the142

candidate solutions.143

Additionally, a significant body of work aims to144

enhance model reasoning abilities through search145

and planning. Q* (Wang et al., 2024) formalizes146

multi-step reasoning as a Markov Decision Pro-147

cess (MDP) and uses the A* algorithm to guide the148

model in selecting the optimal next step. rStar (Qi149

et al., 2024) employs Monte Carlo Tree Search150

(MCTS) to enhance the model’s reasoning explo-151

ration and uses Mutual Verification to evaluate the152

reasoning paths. SR-MCTS (Zhang et al., 2024a)153

combines Self-Refinement and MCTS to iteratively154

improve and optimize newly discovered reasoning155

paths. MCTS-DPO (Xie et al., 2024) leverages156

MCTS to collect step-level preference data and157

uses Decision-Policy Optimization (DPO) to re-158

fine the model’s policy through multiple iterations.159

ReST-MCTS* (Zhang et al., 2025) takes a broader160

approach in evaluating reasoning paths, consid-161

ering not only the correctness of the results but162

also the quality of the reasoning process, such as163

the shortest path and error-free intermediate steps.164

CoRe (Zhu et al., 2022) constructs a dual-system165

approach with System 1 for generation and System166

2 for verification, training, and reasoning simultane-167

ously to simulate human-like reasoning processes.168

AlphaMath (Chen et al., 2024) treats the output of169

the LLM as an action and integrates a value model170

and a policy model, iteratively training the model171

to enhance its reasoning capabilities.172

There are also methods that focus on enhancing173

reasoning abilities during inference. Innovations in174

prompt engineering have contributed to advance-175

ments in reasoning capabilities. Chain-of-Thought176

(CoT) prompting (Wei et al., 2022a; Kojima et al.,177

2022) guides models in stepwise reasoning, such178

as by manually annotating natural language ratio-179

nales or appending “Let’s think step by step” after180

questions. Auto-CoT (Zhang et al., 2022) clusters181

questions and uses zero-shot Chain-of-Thought to182

generate reasoning chains, which are then used as183

prompts to guide the model’s answers. ToT (Yao184

et al., 2023) removes the constraints of chain struc-185

tures by incorporating tree structures and search186

algorithms, allowing models to explore widely187

during reasoning. The seminal Self-Consistency188

method (Wang et al., 2023a) aggregates answers189

through majority voting over multiple reasoning190

paths, while Madaan et al. (2024) introduces itera-191

tive self-correction via feedback loops.192

However, these methods primarily focus on re-193

LLM

LLM

LLM

Query

Carla is downloading a 200 GB file. Normally she can download 2
GB/minute, but 40% of the way through the download, Windows
forces a restart to install updates, which takes 20 minutes. Then Carla
has to restart the download from the beginning. How load does it take to
download the file?

Incorrect Sticker: Key constraints neglected (underline above)

Conditions:
1. Carla is downloading a 200 GB file.
2. Normally she can download 2 GB/minute.
3. Windows forces a restart to install updates, which takes 20 minutes.
4. Then Carla has to restart the download from the beginning.
Question:
How long does it take to download the file?

Query

(...) However, she has to choose between the boots and two pairs of
high heels that together cost five dollars less than the boots (...) how
many dollars are the boots?

Correct Sticker

Conditions:
(...) The two pairs of high heels together cost five dollars less than
the boots. (...)
Question:
How many dollars are the boots?

Incorrect Prediction: Misinterpretation (underline above)

(...) The boots cost five dollars less than the two pairs of heels, (...)

(i) Factual drift occurs within query ⇒ Sticker.

(ii) Factual drift occurs within Sticker ⇒ prediction.

Figure 3: Factual drift occurs during (i) Sticker genera-
tion and (ii) prediction generation from Sticker.

fining how models reason rather than ensuring that 194

they address the correct problem. Our approach 195

differs by prioritizing factual comprehension be- 196

fore answer generation, ensuring proper problem 197

understanding. 198

3 Method 199

This section first presents the factual drift issue 200

during LLM reasoning and then elaborates on the 201

proposed Stick to the Facts (SIFT) approach. 202

3.1 Factual Drift in LLM Reasoning 203

We define factual drift as the phenomenon where 204

the LLM reasoning fails due to misaligned com- 205

prehension of the query context rather than flawed 206

reasoning logic. This occurs when LLMs neglect 207

key constraints, misinterpret semantic relationships, 208

or hallucinate non-existent conditions during rea- 209

soning procedures. 210

We show that factual drift can be a systematic 211

failure mode of general LLM problem-solving pro- 212

cesses beyond reasoning. Taking the task of apply- 213

ing Stickers to Llama3.2-3B-Instruct (Dubey et al., 214
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Query
Josh decides to try flipping a house.  He buys a house for $80,000 and
then puts in $50,000 in repairs.  This increased the value of the house by
150%.  How much profit did he make?

Prediction: Self-verification in reasoning content
<think> (...) Now, the problem says that the repairs increased the value of 
the house by 150%. Wait, I need to make sure I understand this correctly. 
Does that mean the increase is 150% of the original value, or 150% of the 
repair cost? Hmm. Let's read the sentence again: "This increased the value of 
the house by 150%." The pronoun "this" refers to the repairs. So, putting in 
$50,000 in repairs increased the value by 150% of the original value? Or 
150% of the repair cost? (...)
(...) The problem states: "(...)" So
(...) The problem says (...)
(...) The problem states "(...)". (...) But it just says (...)
But the problem doesn't specify that the 150% is a return on the repair cost. It 
says "increased the value of the house by 150%". So (...)
Wait, there's a difference between "increased by" and "increased to". (...) 
"increased the value of the house by 150%" means (...) </think> (...)

Figure 4: Self-verification occurs during DeepSeek-
R1’s reasoning, where the model revisiting the query,
focusing on key information, and paraphrasing it.

2024) on GSM8K test set (Cobbe et al., 2021) as an215

example, we curate Stickers with the model, based216

on which predictions are made. We observe exten-217

sive factual drift errors, with typical examples dis-218

played in Figure 3. As shown, when mapping the219

query to Stickers, LLMs may neglect the original220

constraints. Moreover, even when the Sticker is cor-221

rect, LLMs may still misunderstand it, especially222

when the question is complex or uses less familiar223

phrasing. The above observations also highlight224

that more optimization mechanisms regarding the225

Sticker are required to make it 1) more aligned with226

the query and 2) able to be easily understood and227

leveraged by the target LLM.228

Self-verification of Advanced Reasoning Models.229

We note that, for advanced models like DeepSeek-230

R1 (Guo et al., 2025), the reasoning process231

sometimes involves self-verification—revisiting232

the original problem, focusing on key information,233

and paraphrasing it. As illustrated in Figure 4,234

DeepSeek-R1 often states, “Let’s read the sentence235

again: . . . ” or “Wait, the problem states: . . . ” as236

part of its thought process, helping to deepen its237

understanding of the context or self-correct.238

The excellent performance of such advanced rea-239

soning models underscores the efficacy of mitigat-240

ing factual drift to make the model better respect241

the context. Nevertheless, this self-verification242

functions more as a stochastic safeguard than a sys-243

tematic protocol—it may not always be activated244

across different reasoning scenarios. Consequently,245

the risk of factual drift persists. We consequently246

develop the novel SIFT framework to address this.247

Algorithm 1: LLM reasoning with SIFT
Input :Query Q
Output :Final result of Q

S1 ← SG(Q) ; // Sticker generation
P1 ← CP(Q,S1);
if P1 ̸=; then

return P1 ; // Exit if consensus
else

// Forward
S2 ← FO(Q,S1), P2 ← CP(Q,S2);
if P2 ̸=; then

return P2

else
// Inverse
S3 ← FO(Q, IG(PQ,S2));
P3 ← CP(Q,S3);
return P3 if P3 ̸=; else LLM(Q)

end
end

Algorithm 2: Consensus Prediction (CP)
Input :Query Q, Sticker S
Output :Prediction from Q & S, or ; (unequal)

PS ← LLM(S) ; // Sticker-only
PQ,S ← LLM(Q,S) ; // Query+Sticker
if EQUIVALENT(PS , PQ,S) then

// Consensus validation
return PQ,S

else
return ;

end

3.2 Stick to the Facts (SIFT) 248

SIFT includes four core operations (see Figure 5): 249

(i) Sticker Generation (SG), which extracts the 250

Sticker from the original query; (ii) Consensus 251

Prediction (CP), which validates the alignment be- 252

tween predictions from the Sticker and the query 253

augmented with the Sticker; (iii) Forward Opti- 254

mization (FO), which refines the Sticker to improve 255

its alignment with the facts in the query; (iv) In- 256

verse Generation (IG), which generates the Sticker 257

based on the prediction inversely. 258

The full procedure of SIFT is shown in Algo- 259

rithm 1 with the details of Consensus Prediction 260

in Algorithm 2. All prompts used can be found in 261

Appendix A. We explain some rationales below. 262

Consensus Prediction: Beyond Answer Ag- 263

gregation. Traditional self-consistency methods 264

sample diverse reasoning paths to aggregate an- 265

swers (Wang et al., 2023a), focusing on how mod- 266

els reason. In contrast, our Consensus Prediction 267

verifies whether models reason about the same 268

problem with dual representations: (i) the Sticker- 269

Only one, which forces the model to solve the prob- 270

lem using only the key conditions and the core 271
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LLM

LLM

LLM

Sticker Generation (SG)

LLM

LLM
=?

Consensus Prediction (CP)

Optimized Sticker (Align with the query)
Conditions:
1. The price of one glass is $5.
2. Every second glass costs only 60% of (...)
3. Kylar wants to buy 16 glasses.
Question:
What is the total amount Kylar needs to pay for 16 glasses?

Forward Optimization (FO)

Optimized Sticker (Align with the model)

Conditions:
1. The train travels from the first city to the second
city. (Added)
2. The distance from the second city to the third
city is 100 miles. (Revised sentence structure)
3. The distance from the third city to the first city
is 50 miles less than the combined distance of the
first two legs. (Rephrased)
4. The combined distance of the first two legs is
75 + 100 = 175 miles. (Rephrased)
(...) 
Question:
(...)

Query Sticker

Sticker

Sticker

Query

Pred. from
Sticker

Pred. from
query+Sticker

Inverse Generation (IG)

Query
Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar
wants to buy 16 glasses. How much does he need to pay for them?

Incorrect Sticker (Red for error, blue for omission)
Conditions:
1. The cost of a regular glass is $5.
2. The 16th glass costs 60% of the price of a regular glass.
Question:
What is the total cost of the glasses Kylar needs to pay?

Original Sticker (Correct but suboptimal)

Conditions:
1. A train travels between 3 different cities.
2. It goes 75 miles from the first city to the second
city. (Redundant Information)
3. It goes 100 miles from the second city to the
third city.
4. The distance from the third city to the first city
is 50 miles less than the combined distance of the
other two segments.
5. The combined distance of the two known
segments is 75 + 100 = 175 miles.
(...)
Question:
(...)

Original
Sticker

Query

Pred. from
query+Sticker

Optimized
Sticker

Sticker 
after IG

FO

Figure 5: Four core operations in SIFT: (1) Sticker Generation (SG), (2) Consensus Prediction (CP), (3) Forward
Optimization (FO), (4) Inverse Generation (IG).

question, and (ii) the Query+Sticker one, which272

provides richer contexts. This way, the model ex-273

plores semantic invariance rather than sampling274

diversity when reasoning about the answers.275

CP does not require sampling and operates with276

greedy decoding by default. However, it remains277

compatible with stochastic sampling, as demon-278

strated in Table 1. Besides, the CP operates only279

based on the current Sticker, preventing contamina-280

tion from historical reasoning traces. As illustrated281

in Algorithm 2, consensus between representations282

acts as a factual invariant—a necessary (though not283

sufficient) condition for correctness. This design284

intentionally avoids conflating factual grounding285

with reasoning quality assessment.286

Forward Optimization: Anchoring Stickers to287

Source Semantics. As discussed in Section 3.1,288

the SG process can also inevitably suffer from fac-289

tual drift, where the original constraints are mis-290

represented or misunderstood. To address this, we291

combine the generated Sticker with the query to292

produce a refined Sticker. For example, it can cor-293

rect misinterpretations, such as changing “the 16th294

glass” to “every second glass” in Figure 5.295

Inverse Generation: Aligning Stickers to Model 296

Reasoning Preference. It is frequently observed 297

that for LLM reasoning, contexts with the same 298

semantics but different presentations can yield dis- 299

tinct results. This implies that, after doing FO, it 300

can be beneficial to further refine the Sticker based 301

on the LLM’s reasoning process. Given this insight, 302

we use the LLM to inversely infer a new Sticker 303

given the model prediction. We further invoke FO 304

once again to the new Sticker to avoid factual drift. 305

This step makes the Sticker respect the internal rea- 306

soning preferences of the model for representing 307

facts, arranging conditions, or structuring questions 308

(see Figure 5). This also helps the model recognize 309

the difference between the Sticker from IG and 310

the original question, to enable the model to cap- 311

ture overlooked information and generate a more 312

comprehensive Sticker. 313

4 Experiments 314

In this section, we first validate the effectiveness 315

and generalization of SIFT (Section 4.1). Next, 316

we explore several variants (Section 4.2 & 4.3). 317
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Figure 6: Comparison of SIFT and traditional Zero-shot CoT across multiple models and datasets. We divide SIFT
into three stages: Stage 1 only uses SG & CP, while Stage 2 and Stage 3 optimize the Sticker through forward
(+FO) and inverse (+IG) direction, respectively. The bidirectional arrows in the figure highlight the performance
gap between Zero-shot CoT and the complete SIFT (i.e., Stage 3). We see that in nearly all scenarios, SIFT leads to
a significant performance improvement.

Finally, we include ablation studies to gain further318

insights into our approach (Section 4.4).319

4.1 Enhancing LLM Reasoning with SIFT320

Models & Datasets. We test SIFT on a diverse321

set of state-of-the-art LLMs, including Llama3.2-322

3B-Instruct (Dubey et al., 2024), Llama3.1-323

8B-Instruct (Dubey et al., 2024), Qwen2.5-7B-324

Instruct (Yang et al., 2024), and DeepSeek-R1 (Guo325

et al., 2025). These models cover a range of326

sizes, architectures (Mixture-of-Experts (MoE) vs.327

dense), and reasoning capabilities. We select328

well-established reasoning benchmarks, including329

GSM8K (Cobbe et al., 2021), MATH-500 (Light-330

man et al., 2023), GPQA-Diamond (Rein et al.,331

2023), and AIME2024 (of America, 2024).332

Test Protocol. To isolate the effect of SIFT from333

the influence of sampling, all tests are conducted334

using greedy decoding, except for DeepSeek-R1.335

Because the default settings of the used Volcengine336

API (temperature=1.0, top-p=0.7) cannot be mod-337

ified, the SIFT on DeepSeek-R1 is based on sam- 338

pling. Specifically, for DeepSeek-R1 on MATH- 339

500, we perform 3 sampling runs and report av- 340

erage results. For AIME2024, due to its small 341

size, we perform 10 sampling runs and report the 342

average. Additionally, we divide the entire SIFT 343

process into three stages: (i) Stage 1: Only SG and 344

CP are used. (ii) Stage 2: Building upon Stage 1, 345

FO is used to optimize the Sticker. (iii) Stage 3: 346

The complete process outlined in Algorithm 1. The 347

accuracy after each stage is measured: If the CP re- 348

sults are not aligned (;), the model’s direct answer 349

to the query is used instead. All evaluations are 350

performed on OpenCompass (Contributors, 2023). 351

Main Results. The results are shown in Figures 1 352

and 6. As observed, SIFT consistently delivers 353

robust and significant performance improvements 354

compared to traditional Zero-shot CoT across all 355

settings. From a methodological perspective, as 356

the stages increase—i.e., with the forward and in- 357

verse optimization of Sticker—the average num- 358
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Figure 7: Iterative optimization results for SIFT. The
performance improves as the number of tokens per sam-
ple increases across different stages. Significant gains
are observed in the first repeats of Stage 2 and Stage 3.

ber of tokens used per sample rises, and accuracy359

shows an upward trend as well. From a model360

standpoint, SIFT demonstrates notable effective-361

ness across various scales (ranging from several362

billion to hundreds of billions of parameters), ar-363

chitectures (both dense and MoE), and paradigms364

(traditional and reasoning models). Particularly365

noteworthy is its significant impact on DeepSeek-366

R1. For instance, on MATH-500, it achieves a367

1.03% absolute accuracy improvement over an al-368

ready exceptionally high baseline of 97.3%. On369

AIME2024, it also brings a substantial absolute370

accuracy increase of 7.34%. These results indi-371

cate that even for advanced reasoning models like372

DeepSeek-R1, sticking to the facts remains crucial373

for optimal performance.374

4.2 Iterative Optimization375

In this section, we explore whether the Sticker can376

be continually optimized in SIFT.377

Setup. We test with Llama3.2-3B-Instruct (Dubey378

et al., 2024) on the GSM8K dataset (Cobbe et al.,379

2021). Specifically, we conduct multiple optimiza-380

tion repeats for Stage 2 and Stage 3. The other381

settings are the same as in Section 4.1.382

Results. The experimental results are shown in383

Figure 7. We observe that SIFT shows a test-time384

scaling, with the performance improving as the av-385

erage number of tokens per sample increases. For386

Stage 2, the saturation is rapid, but adding Stage 3387

can result in an additional, noticeable performance388

boost. Nevertheless, the most significant gains are389

observed at the first repeat. One possible expla-390

nation is that extracting the optimal Sticker for391

GSM8K is relatively easy. In more complex con-392

ditions, however, extracting a good Sticker may be393

Consistency
Stage 1 Stage 2 Stage 3

Dimension

Greedy 77.56 78.62 79.23
(i) Sticker 78.85 79.65 80.29
(ii) Prediction 85.37 86.20 86.28
(iii) SIFT - - 87.25

Table 1: Performance comparison of different consis-
tency integration strategies for SIFT across multiple
stages. The results show that integrating SIFT with Self-
Consistency (Wang et al., 2023a) leads to significant per-
formance improvements, with SIFT-Consistency achiev-
ing the highest accuracy boost.

harder, requiring more repeats to achieve optima. 394

Additionally, since we use a training-free approach 395

for SIFT, a model trained to exclusively optimize 396

Sticker could lead to better iterative results. 397

4.3 Sample Augmentation 398

In this section, we explore the use of Self- 399

Consistency (SC) (Wang et al., 2023a) to enhance 400

SIFT, demonstrating how SIFT and SC can be ef- 401

fectively coupled together. 402

Specifically, SIFT and SC can be integrated 403

in three ways: (i) Sticker-Consistency: Multiple 404

Sticker samples are drawn, and consistency is ap- 405

plied to the predictions generated by each Sticker 406

or by the query combined with each Sticker. (ii) 407

Prediction-Consistency: Consistency is applied 408

separately to predictions generated using Sticker 409

alone and those generated with Query + Sticker, 410

considering their respective samples. (iii) SIFT- 411

Consistency: End-to-end sampling is conducted 412

across the entire SIFT to ensure consistency. We 413

test Llama3.2-3B-Instruct (Dubey et al., 2024) on 414

GSM8K (Cobbe et al., 2021) with a temperature of 415

0.6, a top-p of 0.9, and 10 sampling iterations. 416

The results of these configurations are presented 417

in Table 1. It is observed that our method can be 418

combined with SC to achieve better performance. 419

Specifically, Integrating SIFT across all dimensions 420

results in performance improvements. Notably, 421

SIFT-Consistency provides the most significant 422

boost, demonstrating that the simplest sampling 423

method—end-to-end—can lead to substantial per- 424

formance gains for SIFT. 425

4.4 Ablation 426

Evolution of Consensus Across Optimization 427

Stages. The efficacy of SIFT hinges on improv- 428

ing agreement between predictions derived from 429
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Figure 8: Venn diagrams illustrating the accuracy of predictions obtained from the “Only Sticker” and “Query &
Sticker” representations at each stage. The percentages represent the accuracy where both methods correctly predict
the same outcomes. From Stage 1 to Stage 2, the accuracy increases by 6.14%, and from Stage 2 to Stage 3, it
increases by 4.85%. The results show the significant impact of Forward Optimization (FO) and Inverse Generation
(IG) in improving prediction alignment from the two representations.

Model Stage 1 Stage 2 Stage 3
Stage 3

from Stage 1

Llama 77.56 78.62 79.23 74.07
Qwen 92.57 92.95 92.87 90.90

Table 2: Performance comparison of Llama3.2-3B-
Instruct and Qwen2.5-7B-Instruct on GSM8K, with and
without Stage 2. The results show a performance drop
when skipping directly from Stage 1 to Stage 3.

Sticker-only and Query + Sticker representations430

through iterative refinement. To quantify this431

alignment, We select Llama3.2-3B-Instruct (Dubey432

et al., 2024) on the GSM8K dataset (Cobbe et al.,433

2021). We plot the accuracy of predictions ob-434

tained using “Only Sticker” and “Query & Sticker”435

after each stage, visualized in the Venn diagram436

in Figure 8. As shown, both FO and IG signif-437

icantly improve the alignment of the predictions438

from the two representations. Specifically, the ac-439

curacy where both methods correctly predict the440

same outcomes increased by 6.14% from Stage 1441

to Stage 2, and by an additional 4.85% from Stage442

2 to Stage 3.443

FO Required Before Adding IG. We investigate444

whether it is possible to skip directly from Stage445

1 to Stage 3. We select Llama3.2-3B-Instruct and446

Qwen2.5-7B-Instruct on GSM8K. All settings re-447

main the same as in Section 4.1, except for skipping448

directly to Stage 3 after Stage 1. The results are449

shown in Table 2. As observed, skipping Stage450

2 leads to a significant performance drop. This451

indicates that during the initial optimization of452

Sticker, FO is essential to align Sticker with the453

query, followed by aligning it with model cogni-454

tion. This is consistent with our experience, where455

Strategy Accuracy

PQ,S if PQ,S=PS else PQ 77.56
PS if PS=PQ else PQ,S 77.02
PQ if PQ=PQ,S else PS 76.04

Table 3: Performance comparison of various CP strate-
gies. Here, PQ, PS , and PQ,S represent the predictions
generated from query, Sticker, and query augmented
with Sticker, respectively. The first row of the table
represents the strategy used in SIFT, which is shown to
be the optimal approach.

the effectiveness of Sticker depends primarily on 456

its correctness—ensuring no factual drift—before 457

considering its alignment with the model. 458

Optimal Consensus Prediction Strategy. CP pro- 459

cess, our strategy involves comparing predictions 460

from Sticker and query + Sticker. If the predictions 461

are consistent, we adopt the prediction from Query 462

+ Sticker; otherwise, we use the prediction directly 463

from query. We validate this as the optimal strat- 464

egy. Several alternative strategies were evaluated 465

using Stage 1 results of Llama3.2-3B-Instruct on 466

the GSM8K dataset, as shown in Table 3. The re- 467

sults demonstrate that our CP strategy is effective, 468

aligning with the prior analysis in Section 3.2. 469

5 Conclusion 470

This study presents Stick to the Facts (SIFT), a 471

training-free framework that anchors LLM rea- 472

soning to contextual facts through iterative self- 473

refinement. This approach enhances the reliability 474

of LLM reasoning, providing a practical solution 475

for factually grounded reasoning without the need 476

for additional data or training. 477
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Limitations478

This work focuses on the training-free setting. In479

the future, SIFT could be internalized into small480

LLMs through dedicated training, enabling more481

efficient on-device reasoning. Separately, SIFT can482

be applied to reduce the output token length of rea-483

soning models, improving computational efficiency484

without compromising accuracy. Additionally, In-485

verse Generation in SIFT offers new inspiration for486

data generation in inverse synthesis tasks. Further487

studies are needed to generalize its effectiveness488

across a wider range of tasks.489
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A Prompting for SIFT666

In this section, we present the complete prompt667

formats used in the SIFT process (see Figures 9668

to 12 for details).669

Sticker  Prediction
{Sticker}

Please reason step by step, and put your final answer
within \boxed{}.

Query + Sticker  Prediction

{Query}
{Sticker}

Please reason step by step, and put your final answer
within \boxed{}.

Query  Prediction
{Query}
Please reason step by step, and put your final answer
within \boxed{}.

Figure 9: Prompt format for generating predictions.

Query  Sticker
Extract fundamental elements from the following query
using atomic decomposition methodology.

Requirements:
1. Conditions: Clearly list all the given information.
Write each condition on a separate line, numbered
sequentially.
2. Question: Summarize what is being asked in one clear
sentence. Remove all known conditions.

Output Format:

`
**Conditions:**
1. [Condition 1]
2. [Condition 2]
...(add more conditions as needed)  

**Question:**
[Clearly state what is being asked.]
`

Example:

Query:(...)

Expected Output:(...)

Query to Process:

`
{question}
`

Please provide your output strictly following the output
format without other unnecessary words.

Figure 10: Prompt format for generating a Sticker from
the query.

Query + Sticker  Sticker
Given a query and a candidate abstract (which includes
conditions and a question), output an optimized
abstract.

Requirements:
1. Definitions of Conditions and Question:
    * Conditions: Clearly list all the given
information. Write each condition on a separate line,
numbered sequentially.
    * Question: Summarize what is being asked in one
clear sentence. Remove all known conditions.
2. Focus of Optimization: Compare the Original Query
with the candidate Abstract. Identify and fix:
    * Missing/incorrect/redundant conditions
    * Imprecise question phrasing
    * Mathematical/logical inconsistencies
    * Output format error

Output Format:

`
**Conditions:**
1. [optimized Condition 1]
2. [optimized Condition 2]
...(add more conditions as needed)

**Question:**
[Optimized question phrasing. Clearly state what is
being asked.]
`

Some Examples:(...)

Input to Process:

`
Original Query:
{question}

Candidate Abstract:
{abstract}
`

Please provide your output strictly following the output
format without other unnecessary words.

Figure 11: Prompt format for forward optimization of
the Sticker.
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Prediction  Sticker
Given the prediction provided below, reverse-engineer
the abstract that led to it. The abstract should
include both the conditions and the question.

Abstract Format:

`
**Conditions:**
1. [Condition 1]
2. [Condition 2]
...(add more conditions as needed)  

**Question:**
[Clearly state what is being asked.]
`

Requirements:
1. Conditions: 
    - Clearly list all the given information. 
    - Write each condition on a separate line,
numbered sequentially. 
    - EACH CONDITION MUST BE ATOMIC AND INDIVISIBLE
(i.e., it cannot be divided into two sub-conditions). 
    - DO NOT INCLUDE ANY PART OF THE REASONING
PROCESS!!!
2. Question: 
    - Summarize what is being asked in one clear
sentence. 
    - Remove all known conditions.

Example:

Prediction:(...)

Expected Output:(...)

Prediction to Process:

`
{prediction}
`

Please provide your output strictly following the
ABSTRACT FORMAT without other unnecessary words.

Figure 12: Prompt format for generating a Sticker in-
versely from the prediction.
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