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Abstract
Bias in natural language processing manifests001
as disparities in error rates across author de-002
mographics, typically disadvantaging minority003
groups. Although dataset balancing has been004
shown to be effective in mitigating bias, ex-005
isting approaches do not directly account for006
correlations between author demographics and007
linguistic variables. To achieve Equal Oppor-008
tunity fairness, this paper introduces a simple009
but highly effective objective for countering010
bias using balanced training. We extend the011
method in the form of a gated model, which012
incorporates protected attributes as input, and013
show that it is effective at reducing bias in014
predictions through demographic input pertur-015
bation, outperforming all other bias mitiga-016
tion techniques when combined with balanced017
training.018

1 Introduction019

Natural Language Processing (NLP) models have020

achieved extraordinary gains across a variety of021

tasks in recent years. However, naively-trained022

models often learn spurious correlations with de-023

mographics and socio-economic factors (Hendricks024

et al., 2018; Lu et al., 2018; Bolukbasi et al., 2016;025

Park et al., 2018), leading to disparities across026

author demographics in contexts including coref-027

erence resolution, sentiment analysis, and hate028

speech detection (Badjatiya et al., 2019; Zhao et al.,029

2018; Li et al., 2018a; Díaz et al., 2018).030

Two popular approaches for mitigating such bi-031

ases are: (1) balancing each demographic group032

in training, either explicitly via sampling (Zhao033

et al., 2018; Wang et al., 2019) or implicitly via034

balancing losses for each group (Höfler et al., 2005;035

Lahoti et al., 2020); and (2) removing demographic036

information from learned representations (Li et al.,037

2018a; Wang et al., 2019; Ravfogel et al., 2020;038

Han et al., 2021b).039

While balancing methods have been shown to be040

successful, they have not been tested extensively041

in NLP. In this paper, we focus on author bias and 042

adapt three balanced training approaches for de- 043

biasing. In addition, we propose a new objective 044

for balanced training, which can be used for proxy 045

optimization of Equal Opportunity (Hardt et al., 046

2016). We first provide a theoretical justification 047

for our approach, and then conduct experiments 048

on two benchmark datasets which show that our 049

proposed objective is highly effective in achieving 050

Equal Opportunity fairness. 051

Even when the training data is balanced, ig- 052

noring demographic-specific features can lead to 053

bias (Wang et al., 2019; Lahoti et al., 2020), due 054

to differences in language use across demograph- 055

ics (Hovy, 2015). There is thus a fine line to be 056

walked in terms of optimizing for linguistic vari- 057

ables associated with different demographic groups 058

(potentially boosting overall model accuracy), and 059

ensuring model fairness. 060

Inspired by work in domain adaptation on learn- 061

ing domain-specific representations that generalize 062

across domains (Bousmalis et al., 2016; Li et al., 063

2018b), we propose a gated model, which incorpo- 064

rates author demographics as an input to generate 065

group-specific representations but also generalizes 066

across demographic groups. We show that when 067

combined with instance reweighting during train- 068

ing, this technique leads to substantial bias reduc- 069

tions over leading debiasing techniques, typically 070

with higher predictive accuracy. We also introduce 071

a second means of bias reduction through tailoring 072

gating coefficients of the trained model, which al- 073

lows for fine-tuning of the accuracy–fairness trade- 074

off. Our experiments over two benchmark datasets 075

for language debiasing show that our techniques 076

are competitive with much more complex state-of- 077

the-art methods for debiasing in situations where 078

the demographic attribute is not known at test time, 079

and provide substantial gains over the state-of-the- 080

art when the protected attribute is observed. Codes 081

will be released upon acceptance. 082
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2 Balanced Training083

Despite their simplicity and versatility, balanced084

training approaches have only received limited at-085

tention in prior work in NLP. In this section, we086

review three balanced training approaches, and dis-087

cuss their objectives and applications. We further088

propose a novel objective for balanced training,089

which we will show to be a proxy optimization for090

the Equal Opportunity metric.091

2.1 Problem Formulation092

In this paper, we focus on bias mitigation for093

NLP classification tasks. Formally, we assume094

a dataset D = {(xi, yi, gi)}ni=1 where xi ∈ X is095

a d-dimensional input text representation vector,096

yi ∈ Y denotes the main task label (e.g. senti-097

ment), and gi ∈ G represents the private attribute098

associated with xi, e.g., author gender.099

A standard model M is trained to predict Y100

givenX , while debiasing methods generally aim to101

learn a model M ′ that is fair wrt G by considering102

X ×G together.103

2.2 Fairness Measurement104

As in Barocas et al. (2019), the separation criterion105

acknowledges the correlation between G and Y ,106

and is satisfied iff G ⊥ Ŷ |Y . A relaxation of the107

separation criterion known as equality of opportu-108

nity is widely used (Hardt et al., 2016; Ravfogel109

et al., 2020; Han et al., 2021a). Equality of oppor-110

tunity measures the difference in true positive rate111

(TPR) across all groups, based on the notion that112

the positive outcome represents ‘advantage’, such113

as being accepted by a school or getting a loan.114

Essentially, the difference (gap) in TPR reflects115

whether different groups have equal opportunity.116

2.3 Balanced Training Objectives117

We now formally describe the objective functions118

of three established balanced training approaches,119

and discuss their applications.120

Let X be the task loss and n be the number of121

observed instances in the dataset D. The overall122

empirical risk is written as L = 1
n

∑
iX (yi, ŷi),123

which can be rewritten as the aggregation of sub-124

sets: L =
∑

y
∑

g
ny,g
n Ly,g, where ny,g := |{i :125

yi = y, gi = g}|, the number of instances with126

target label y and demographic attribute g, and Ly,g127

is the empirical loss corresponding to the subset,128

Ly,g = 1
ny,g

∑
iX (yi, ŷi)1(yi = y, gi = g). Fur-129

thermore, we use ∗ as the notation for marginaliza-130

tion, for example, n∗,g =
∑

y ny,g. Let p be the 131

target objective, and p̃ be the empirical probability 132

based on the training dataset. 133

Given this notation, the three balanced training 134

objectives are as follows: 135

Balanced Demographics Zhao et al. (2018) aug- 136

ment the dataset according to the demographic la- 137

bel distribution (making p(G) uniform) for in-text- 138

bias mitigation. Although their gender-swapping 139

approach is not directly applicable to our tasks, 140

we adapt the general objective function as LG = 141
1
|G|

∑
y
∑

g
ny,g
n∗,g
Ly,g, where |G| is the number of 142

distinct labels of G. 143

Conditionally Balance In a vision context, 144

Wang et al. (2019) down-sample the majority de- 145

mographic group within each class, so that on a 146

per-class basis, it does not dominate the minority 147

group (i.e. p(G|Y ) is uniform for all Y ), giving the 148

objective function: LG|Y = 1
|G|

∑
y
ny,∗
n

∑
g Ly,g. 149

Jointly Balance Lahoti et al. (2020) employ 150

instance reweighting for structural data classifi- 151

cation such that demographics and classes are 152

jointly balanced, leading to the objective: LG,Y = 153
1

|G|×|Y |
∑

y
∑

g Ly,g. 154

2.4 Achieving the objective 155

In this paper, we focus on two classic ways of 156

achieving the target objective: instance reweight- 157

ing, which manipulates the weight of each instance 158

during training, and down-sampling, which prepro- 159

cess the dataset before training. 160

Taking the objective L = 1
|G|×|Y |

∑
y
∑

g Ly,g
as an example, instance reweighting reweights each
instance inversely proportional to the frequency of
the combination of its main label and demographic
label,

1

|D|
∑

(xi,yi,gi)∈D

p̃−1(G = gi, Y = yi)X (yi, ŷi),

where X is the task loss, and ŷi denotes the model 161

prediction given input text xi. 162

The other approach, down-sampling, sub- 163

samples non-minority instances to derive a bal- 164

anced training dataset, such that p̃(g, y) = 165
1

|G|×|Y | , ∀g ∈ G, y ∈ Y . Specifically, let Dy,g 166

denote a subset of training instances s.t. Dy,g = 167

{(xi, yi, gi)|yi = y, gi = g}ni=1. We sample with- 168

out replacement to get a target subset D∗y,g such 169

that |D∗y,g| = min{|Dy,g|,∀y ∈ Y, g ∈ G}. The 170
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sampled subsets are merged to form the training171

set.172

2.5 Towards equal opportunity173

Without loss of generality, we illustrate with the174

binary case of y ∈ {T, F} and g ∈ {0, 1}. Re-175

call that the equal opportunity metric is satisfied176

if a binary classification model has an equal posi-177

tive prediction rate conditioned on the advantaged178

class. Assuming the advantaged class is denoted as179

y = T , i.e. the positive class, the equal opportunity180

is measured by the TPR GAP between protected181

groups. Our proposed objective function for equal182

opportunity is:183

L =
nT,∗
n

1

2

∑
g∈{0,1}

LT,g +
∑

g∈{0,1}

nF,g
n
LF,g

=
∑

g∈{0,1}

nT,g
n

nT,∗
2nT,g

LT,g +
∑

g∈{0,1}

nF,g
n
LF,g

184

Compared to the vanilla objective, the weights of185

instances with T target label are adjusted. Specifi-186

cally, the reweighting term nT,∗
2nT,g

is larger than 1 for187

the minority group, and less than 1 for the majority188

group.189

From CE to TPR Cross-entropy is an estimate190

of the TPR at the mini-batch level when consid-191

ering a subset of instances with the same target192

label. Recall that the CE loss for binary classifi-193

cation, of an instance is −[yi · log(p̂(yi)) + (1 −194

yi) · log(1 − p̂(yi))], where p̂(yi) is the predicted195

probability of yi being True. Taking y = T for a196

certain demographic group g as an example,197

LT,g =
1

nT,g

∑
i

X (yi, ŷi)1(yi = T, gi = g)

= − 1

nT,g

∑
i

p̂(yi)1(yi = T, gi = g).
198

Essentially, minimizing LT,g is equivalent to max-199

imizing the predicted probability of ŷ being True200

given target label y is True, within the demographic201

group g. That is, at the minibatch level, −LT,g is202

an estimator of p(ŷ = T |y = T, g = g), which203

is the TPR of group g. Given this, our proposed204

objective minimizes the TPR GAP by focusing on205

the TPR of the different demographic groups.206

Beyond binary labels&demographic attributes207

Although we have introduced both target labels and208

demographic attributes to be binary, our proposed209

Figure 1: Gated model architecture. Given the in-
put vector x, e.g. a text representation, the model has
a shared encoder component and |G| encoder compo-
nents, one for each demographic group.

objective generalizes trivially. The equal oppor- 210

tunity metric was originally designed for binary 211

classification, under the assumption of a single ad- 212

vantaged class y = T . To satisfy the multi-class 213

target label case, we adjust the equal opportunity 214

to consider the one-vs-all setting, and measuring 215

the TPR of each target class. Our proposed objec- 216

tive then becomes
∑

y
∑

g
ny,g
n

ny,∗
|G|×ny,g

Ly,g. This 217

recovers the formulation of Conditionally Balanced 218

of section 2.3. 219

3 Demographic Factors Improve 220

Fairness 221

Ignoring demographic-specific features can lead to 222

bias even when the training data has been balanced 223

(Wang et al., 2019; Lahoti et al., 2020). Our ap- 224

proach to dealing with this is, rather than removing 225

demographic information from representations, to 226

use a gated model that uses demographic labels as 227

input. 228

As can be seen in Figure 1, the gated model con- 229

sists of (1+|G|) encoders: one shared encoder, and 230

a dedicated encoder for each demographic group in 231

G.1 Formally, let E denote the shared encoder, Ej 232

denote the encoder for the j-th demographic group, 233

C denote the classifier, and gi be a 1-hot input such 234

that gi,j is 1 if the instance (xi, gi, yi) belongs to 235

the j-th group, and 0 otherwise. The prediction for 236

an instance is: ŷi = C(hsi , h
g
i ), where hsi = E(xi) 237

and hgi =
∑|G|

j=1 gi,jEj(xi). The two inputs are 238

concatenated and input to the classifier C. 239

Intuitively, the shared encoder learns a gen- 240

eral representation, while each group-specific en- 241

coder captures group-specific representations dur- 242

ing training. 243

1Strictly speaking, it is possible to achieve a similar effect
with |G| encoders by merging one group with the shared
encoder, and using post-hoc correction to separate out the
general from the group-specific representation (Kang et al.,
2020).
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Our setting differs from other debiasing meth-244

ods in that we assume the demographic attribute245

is available at training and prediction time, while246

techniques such as adversarial training (Li et al.,247

2018a) and INLP (Ravfogel et al., 2020) only re-248

quire the attribute for training. This richer input249

allows for more accurate predictions, courtesy of250

the demographic-specific encoder, but limits ap-251

plicability at test time. As suggested by Hovy252

and Yang (2021), addressing demographic factors253

is essential for NLP to get closer to the goal of254

human-like language understanding, and increase255

fairness. For better applicability, we also relax this256

requirement by replacing demographic factors with257

non-informative prior in section 4.8.258

4 Experimental Results259

4.1 Evaluation Metrics260

Following Ravfogel et al. (2020), we use overall261

accuracy as the performance metric, and the sepa-262

ration criterion to measure fairness in the form of263

TPR GAP and TNR GAP: the true positive rate264

and true negative rate differences between demo-265

graphic groups. For both GAP metrics, smaller is266

better, and a perfectly fair model will achieve 0.267

For multi-class classification tasks, we follow Rav-268

fogel et al. (2020) in reporting the quadratic mean269

(RMS) of TPR GAP over all classes. In a binary270

classification setup, TPR and TNR are equivalent271

to the TPR of the positive and negative classes, re-272

spectively, so we employ the RMS TPR GAP in273

this case also.274

Throughout this paper, we report accuracy and275

GAP results as mean values ± standard deviation276

over the test set, averaged across five independent277

runs with different random seeds.278

For ease of comparison between approaches, we279

introduce ‘distance to the optimum’ (DTO), a sin-280

gle metric to incorporate accuracy and GAP into a281

single figure of merit, which is calculated by: (1)282

converting GAP to 1− GAP (denoted as fairness;283

higher is better); (2) normalizing each of accuracy284

and fairness, by dividing by the best result for the285

given dataset (i.e., highest accuracy and fairness);286

and (3) calculating the Euclidean distance to the287

point (1, 1), which represents the hypothetical sys-288

tem which achieves highest accuracy and fairness289

for the dataset. Lower is better for this statistic,290

with minimum 0.291

In addition to performance and fairness, we are292

also interested in the efficiency of the different293

debiasing approaches and report each method’s 294

average training time.2 We present normalized 295

training times relative to the standard method, i.e., 296

the average training time divided by that of the 297

standard model. 298

4.2 Dataset 299

Following Ravfogel et al. (2020), we conduct exper- 300

iments over two NLP classification tasks — senti- 301

ment analysis and biography classification — using 302

the same dataset splits as prior work. 303

4.2.1 MOJI 304

This sentiment analysis dataset was collected by 305

Blodgett et al. (2016), and contains tweets that 306

are either African American English (AAE)-like 307

or Standard American English (SAE)-like. Each 308

tweet is annotated with a binary ‘race’ label (based 309

on language use: either AAE or SAE), and a binary 310

sentiment score determined by (redacted) emoji 311

contained in it. We use the train, dev, and test splits 312

from Han et al. (2021b) of 100k/8k/8k instances, 313

respectively. 314

4.2.2 BIOS 315

The second task is biography classification (De- 316

Arteaga et al., 2019; Ravfogel et al., 2020), where 317

biographies were scraped from the web, and an- 318

notated for binary gender and 28 classes of pro- 319

fession. Since the data is not directly available, in 320

order to construct the dataset, we use the scrap- 321

ing scripts of Ravfogel et al. (2020), leading to a 322

dataset with 396k biographies.3 Following Ravfo- 323

gel et al. (2020), we randomly split the dataset into 324

train (65%), dev (10%), and test (25%). 325

4.3 Models 326

We first implement a “STANDARD” model on each 327

dataset, without explicit debiasing. On the MOJI 328

dataset, we follow Ravfogel et al. (2020); Han et al. 329

(2021b) in using DeepMoji (Felbo et al., 2017) as 330

the encoder to get 2304d representations of input 331

texts. The DeepMoji model contains 22.4 million 332

parameters and was pretrained over 1246 million 333

tweets to predict one of 64 common emojis. Ravfo- 334

gel et al. (2020) and Subramanian et al. (2021) used 335

uncased BERT-base (Devlin et al., 2019) as their 336

2Testing on Titan X and RTX 3090, all models have
roughly near-identical inference time.

3There are slight discrepancies in the dataset composition
due to data attrition: the original dataset (De-Arteaga et al.,
2019) had 399k instances, while 393k were collected by Rav-
fogel et al. (2020).
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Model Accuracy↑ GAP ↓ DTO ↓

STANDARD 82.3± 0.0 16.0± 0.5 0.093

BD (Zhao et al., 2018) 82.3± 0.0 15.6± 0.2 0.089
JB (Lahoti et al., 2020) 74.7± 0.3 7.4± 0.3 0.092
EO 79.4± 0.1 9.7± 0.6 0.043

Table 1: Results for balanced training methods (BT)
on the BIOS test set. EO: our proposed objective in
section 2.5. BD and JB refer to baselines, balanced
demographics and jointly balance in section 2.3.

STANDARD model for the BIOS dataset, taking the337

‘CLS’ token as the source of a fixed text represen-338

tation, without further fine-tuning. However, we339

found that taking the average of all contextualized340

token embeddings led to an accuracy improvement341

of 1.4% and GAP fairness improvement of 2.4%.342

Given this, we use 768d ‘AVG’ representations343

extracted from the pretrained uncased BERT-base344

model.345

For INLP (Ravfogel et al., 2020), we take the346

fixed STANDARD model for the given dataset, and347

iteratively train a linear classifier and perform348

nullspace projection over the learned representa-349

tion. For the other baseline models — ADV and350

DADV— we jointly train the adversarial discrimi-351

nators and classifier. In order to ensure a fair com-352

parison, we follow Han et al. (2021a) in using a353

model consisting of the same fixed-parameter en-354

coder as ours followed by a trainable 3-layer MLP.355

4.4 Balanced Training Approaches356

Since the MOJI dataset has been artificially bal-357

anced for main task labels and demographic labels,358

balanced training corresponding to p(g) makes no359

difference, and moreover, the results for p(g|y) and360

p(g, y) will be identical. Given this, we focus on361

the BIOS dataset for comparing different balanced362

training objectives.4363

Table 1 shows the results of balanced training364

using the different objectives. Compared to the365

STANDARD model, balanced training with differ-366

ent objectives are all able to reduce bias, and the367

objective proposed by Lahoti et al. (2020) achieves368

the best TPR GAP. However, in terms of accuracy–369

fairness trade-off, our proposed approach outper-370

forms all other models, which is not surprising as371

our proposed objective is designed to achieve better372

equal opportunity fairness. Based on these results,373

4As BIOS is a multi-class classification task and our pro-
posed approach generalizes to p(g|y) in this case, there is no
need to include Wang et al. (2019) in our comparison.

hereafter, we only report balanced training with our 374

proposed objective. 375

4.5 Main Results 376

We report results over the sentiment analysis and 377

biography classification tasks in Table 2. The 378

baseline models are: STANDARD, which is a 379

naively-trained MLP classifier; INLP (Ravfogel 380

et al., 2020), which removes demographic infor- 381

mation from text representations through iterative 382

nullspace projection; ADV (Li et al., 2018a; Wang 383

et al., 2019), which performs protected information 384

removal through adversarial training with a sin- 385

gle discriminator; and DADV (Han et al., 2021b), 386

which also uses adversarial training but with mul- 387

tiple adversaries subject to an orthogonality con- 388

straint, and represents the current state-of-the-art 389

(SOTA). 390

On the MOJI dataset, compared to the STAN- 391

DARD model, BT simultaneously increases main 392

task accuracy and mitigates bias, leading to results 393

competitive with ADV and better than INLP. Al- 394

though BT does not outperform the SOTA DADV, 395

it leads to performance–fairness trade-offs that are 396

competitive with the other debiasing methods. 397

On the BIOS dataset, BT again leads to 398

performance–fairness trade-offs that outperform 399

the baseline methods. However, different to the 400

MOJI dataset, BT does not further improve accu- 401

racy, increasing fairness by 5.3% absolute at the 402

cost of 2.9% accuracy. 403

In terms of training time, existing debiasing 404

methods (esp. DADV on MOJI) incur a substantial 405

overhead, while balanced training is much more 406

frugal: around 1.3 times faster (because of the re- 407

duction in training data volume). 408

In addition to evaluating BT, we also com- 409

bine GATE with BT, which achieves a better 410

performance–fairness balance, as shown in Table 2. 411

This is consistent with our argument that, rather 412

than removing demographic information, properly 413

used demographic factors can further reduce biases. 414

Indeed, the BT +GATE consistently outperforms 415

the current SOTA model DADV on both datasets. 416

Combining balanced training with benchmark 417

methods The baseline methods INLP and 418

DADV as presented above were used in a man- 419

ner consistent with their original formulation, 420

i.e., without balanced training. An important 421

question is whether balanced training might also 422

benefit these methods. It is trivial to combine 423
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MOJI BIOS

Method Model Accuracy↑ GAP ↓ DTO ↓ Time↓ Accuracy↑ GAP ↓ DTO ↓ Time↓

Baselines

STANDARD 71.6± 0.1 31.0± 0.3 0.261 1.0 82.3± 0.0 16.0± 0.5 0.110 1.0
INLP 68.5± 1.1 33.8± 3.9 0.300 14.0 70.5± 0.5 6.7± 0.9 0.145 6.3
ADV 74.3± 0.4 22.2± 3.7 0.163 36.1 81.1± 0.1 12.7± 0.3 0.077 1.3
DADV 74.5± 0.3 18.5± 2.0 0.123 109.4 81.1± 0.1 12.6± 0.3 0.076 2.4

Ours
BT 74.0± 0.2 21.5± 0.4 0.155 0.8 79.4± 0.1 9.7± 0.6 0.057 0.7

+GATE ∗ 74.9± 0.2 13.8± 0.3 0.072 0.8 79.4± 0.1 9.2± 0.2 0.053 0.7

Combination
+DADV 72.2± 0.2 14.3± 0.2 0.085 90.4 79.3± 0.1 9.9± 0.2 0.059 2.7
+INLP 72.3± 1.9 15.7± 3.1 0.099 8.9 73.6± 0.6 5.6± 0.7 0.107 3.8

Table 2: Results over sentiment analysis (MOJI) and biography classification (BIOS) tasks. DTO are measured
by the normalized Euclidean distance between each model and the ideal model, and lower is better. Bold = best
trade-off within category. Training time is reported relative to STANDARD, which takes 35 secs and 16 mins for
MOJI and BIOS, respectively. ∗: requires demographic attribute at test time.

Model Size Accuracy↑ GAP ↓ DTO ↓

STANDARD 257k 82.3± 0.0 16.0± 0.5 0.093

RW + p(g) 257k 82.3± 0.0 15.6± 0.2 0.089
RW + p(g|y) 257k 75.7± 0.2 13.9± 0.4 0.107
RW + p(g, y) 257k 74.7± 0.3 7.4± 0.3 0.092

DS + p(g) 237k 82.1± 0.1 15.9± 0.3 0.092
DS + p(g|y) 37k 79.4± 0.1 9.7± 0.6 0.043
DS + p(g, y) 5k 66.1± 0.1 10.9± 0.4 0.200

Table 3: Results for balanced training methods on the
BIOS test set. “RW” = balancing through instance
reweighting; “DS” = balancing through dataset down-
sampling; and “Size” = the number of instances in the
training dataset.

downsampling with INLP and DADV, as the424

method simply prunes the training dataset, but425

does not impact the training objective. To426

combine instance reweighting with DADV,427

we modify the training objective such that the428

cross-entropy term is scaled by p̃−1, while leaving429

the adversarial term unmodified, i.e., solve430

for minM maxA
∑

(xi,yi,gi)∈D p̃
−1X (yi, ŷi) −431

λadvX (g, ĝ). For INLP, we simply train a BT432

model, and then iteratively perform INLP linear433

model training and nullspace projection over the434

learned representations.435

Results are presented in the final section of Ta-436

ble 2 (“Combination”), and indicate that the com-437

bined methods appreciably outperform both the438

standalone demographic removal methods and bal-439

anced training approaches, without extra training440

time cost. That is, demographic information re-441

moval and balanced training appear to be comple-442

mentary.443

4.6 Reweighting vs. Down-sampling 444

Table 3 shows the results of the naively-trained 445

MLP model (“STANDARD”) and six balanced- 446

training methods, all based on the same MLP 447

model architecture as STANDARD. Corpus down- 448

sampling (“DS”) removes instances from major- 449

ity groups and thus leads to less training data and 450

overall lower accuracy than instance reweighting 451

(“RW”). 452

When using p(g) as the objective, both RW and 453

DS perform similarly to the STANDARD model, as 454

the overall gender distribution is quite balanced, 455

which can also be seen in the size of the training 456

data for DS + p(g). Both RW + p(g, y) and RW 457

+ p(g|y) reduce bias and performance, but RW 458

+ p(g, y) outperforms RW + p(g|y) in terms of 459

the performance–fairness trade-off, in that RW + 460

p(g, y) achieves similar performance but substan- 461

tially better fairness (6.6% absolute improvement 462

in GAP). However, p(g, y) is not as effective as 463

p(g|y) when combined with DS, due to the big 464

drop in the volume of training data. 465

4.7 Gated Model 466

If the training dataset is imbalanced and contains 467

spurious correlations between task labels and de- 468

mographic attributes, a naively trained model will 469

learn and possibly amplify dataset biases. The 470

gated model, with its explicit conditioning and 471

group-specific encoding, will be particularly vul- 472

nerable to bias. 473

Table 4 shows that, on both datasets, the GATE 474

model increases the accuracy but amplifies bias 475

(e.g., GAP of 65 on MOJI): as it uses demo- 476

graphic information directly to make predictions, it 477

is highly vulnerable to bias in the training dataset. 478
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MOJI BIOS

Model Accuracy↑ GAP ↓ DTO ↓ Accuracy↑ GAP ↓ DTO ↓

BT 74.0± 0.2 21.5± 0.4 0.155 79.4± 0.1 9.7± 0.6 0.057
+GATE ∗ 74.9± 0.2 13.8± 0.3 0.072 79.4± 0.1 9.2± 0.2 0.053

GATE ∗ 64.8± 0.1 65.2± 0.9 0.640 82.4± 0.1 19.2± 0.3 0.144
GATE soft

0.5 72.7± 0.2 30.2± 0.3 0.250 80.8± 0.1 11.6± 0.3 0.066

GATE soft
Acc
∗ 74.8± 0.2 20.3± 0.3 0.142 81.1± 0.1 19.8± 0.4 0.151

GATE soft
RMS

∗ 73.5± 0.2 7.1± 0.3 0.019 80.5± 0.1 11.1± 0.3 0.063

Table 4: Results over MOJI and BIOS. ∗: demographic attributes available at test time.

Intuitively, the only objective of GATE training is479

standard cross-entropy loss, which has been shown480

to lead to bias amplification under imbalanced train-481

ing without regularisation. The gate components482

explicitly rely on demographic information, and483

thus become a strong indicator of main label pre-484

dictions due to spurious correlations between the485

main task label and demographic labels in the train-486

ing set. Balanced training approaches act as regu-487

larizers in preventing the model from learning and488

amplifying spurious correlations in training.489

4.8 Soft Averaging490

Although the gated model naturally requires the491

demographic attribute at test time, we also evaluate492

a condition where this is not available.493

GATE soft
0.5 Instead, we take a Bayesian approach494

by evaluating p(y|x) =
∑

g p(g)p(y|g, x), where495

we can control the prior explicitly. For exam-496

ple, under a uniform demographic attribute prior,497

we simply average the predictions p(y|x, g) and498

p(y|x,¬g). This Bayesian approach can be approx-499

imated by soft averaging, whereby the activation500

of all demographic-specific encoders are uniformly501

averaged inside the model, i.e., gi,j = 1
|G| , rather502

than selecting only one in the standard gated model503

(i.e., gi,: is 1-hot).5504

GATE soft
Acc and GATE soft

RMS When the protected505

attribute is observed at test time the soft averag-506

ing method may still prove useful, which we use507

as a means for fine-tuning the balance between508

accuracy and bias. Specifically, we consider non-509

uniform encoder averaging conditioned on the gold510

protected attribute, g∗. Let α and β denote to what511

extend the 1-hot labels are manipulated according512

to the value of g∗ as 0 and 1 respectively, the soft513

labels are
[
α 1− α

]
and

[
1− β β

]
. I.e., the514

5Results for Bayesian averaging vs. soft in-network aver-
aging were near identical, hence we report only the latter.

two specific encoders are weighted by either α and 515

1 − α, or 1 − β and β, respectively, according to 516

the value of g∗. Values of α, β < 0.5 mean the 517

protected label is (softly) preserved, while values 518

> 0.5 mean the label is flipped. In cases where the 519

model is biased towards or against a demographic 520

group, it may be advantageous to use these two 521

additional parameters to correct for this bias, by 522

disproportionately using the other group’s encoder. 523

Results We next look to the Bayesian “soft av- 524

eraging” approach to gating, and mitigating bias 525

at inference time. Note that this does not involve 526

retraining the model, as the soft averaging hap- 527

pens at test time. We first evaluate the effective- 528

ness of using a uniform averaging in gated model 529

predictions, where α = β = 0.5. We label this 530

method “GATE soft
0.5 ”, and present results in Table 4. 531

The method results in a much better performance– 532

fairness trade-off than the standard GATE, and for 533

the BIOS dataset, its results are competitive with 534

the best debiasing methods. 535

We next take the demographic labels into con- 536

sideration and search for the best gating coeffi- 537

cients for each group. Figure 2 shows accuracy 538

and GAP results from tuning the coefficients on 539

development data for the basic GATE model. The 540

results show that α = β = 0.5 is a reasonable de- 541

fault setting, however small gains may be possible 542

for non-uniform parameter settings. 543

To demonstrate the power of adjusting these pa- 544

rameters, we take the trained GATE model, and then 545

optimize α and β over the development set, and 546

report the corresponding results on the test set. We 547

select the parameter values that achieve either: (1) 548

the highest development accuracy; or (2) the lowest 549

development GAP, provided accuracy is above a 550

threshold.6 The results are reported in Table 2, un- 551

6The [α, β] values are [0.64,0.66] and [0.00,0.08] for ac-
curacy over MOJI and BIOS, respectively, and [0.64, 0.99]
and [0.38, 0.72] for GAP optimised models. We also experi-

7



(a) MOJI Accuracy (b) MOJI GAP

(c) BIOS Accuracy (d) BIOS GAP

Figure 2: Accuracy and GAP of α and β settings for
MOJI and BIOS. The axes refer to the propensity to
change the gold group in gating the encoder compo-
nents, and the bottom left point α = β = 0 is the GATE
model using true demographic inputs. Lighter shading
denotes better performance.

der GATE soft
Acc and GATE soft

RMS, respectively. On the552

MOJI dataset, our results show that GATE with soft553

averaging can consistently outperform the STAN-554

DARD and GATE models without balanced training.555

In terms of GAP, the model is substantially better556

than all other models, while remaining competitive557

in terms of accuracy. The BIOS dataset is noisier,558

meaning there are bigger discrepancies between559

the development and test datasets. As a result, the560

accuracy-optimized model under performs below561

the standard GATE model in terms of both accu-562

racy and fairness. However, we achieve a good563

performance–fairness trade-off when optimizing564

for GAP, at a level comparable to the much more565

complex INLP and DADV models.566

5 Related Work567

Fairness Much work on algorithmic fairness has568

focused on group fairness, i.e. disparities in error569

rates across groups defined by protected attributes,570

such as gender, age, or race. Many criteria have571

been proposed for group fairness, such as statisti-572

cal parity (Dwork et al., 2012) and equal opportu-573

nity (Hardt et al., 2016). Broadly speaking, fairness574

can be classified into three categories: indepen-575

mented with adjusting the gating coefficients for the GATE +
RW model, in which case there was no benefit to accuracy or
GAP from using non-zero α or β.

dence, separation, and sufficiency (Barocas et al., 576

2019), with the most recent work addressing sep- 577

aration criteria, i.e. potential correlations between 578

main task labels and protected attributes. 579

Mitigating bias Many approaches for bias miti- 580

gation haven been proposed in recent work, includ- 581

ing removing protected information form hidden 582

representations (Li et al., 2018a; Wang et al., 2019; 583

Ravfogel et al., 2020; Han et al., 2021b), prepro- 584

cessing data to remove bias (Zhao et al., 2018; 585

Vanmassenhove et al., 2018; Saunders and Byrne, 586

2020), modifying the training algorithm (Badjatiya 587

et al., 2019), and post-hoc correction (Hardt et al., 588

2016). 589

In the context of NLP, the best results have been 590

achieved through protected information removal. It- 591

erative nullspace projection (INLP: Ravfogel et al. 592

(2020)) takes hidden representations and projects 593

them onto the nullspace of the weights of a linear 594

classifier for each protected attribute. The classifier 595

training and projection are carried out over mul- 596

tiple iterations to more comprehensively remove 597

protected information. 598

Another popular approach is adversarial training, 599

which jointly optimizes the removal of sensitive 600

information and main task performance, through 601

the incorporation of adversarial discriminator(s) to 602

identify protected attributes from the hidden repre- 603

sentations (Li et al., 2018a; Elazar and Goldberg, 604

2018; Wang et al., 2019). Differentiated adversarial 605

learning (DADV: Han et al. (2021b)) uses an en- 606

semble of adversaries for each protected attribute, 607

subject to an orthogonality constraint. 608

6 Conclusions and Future Work 609

This paper proposed the adoption of balanced train- 610

ing approaches to mitigate bias, and demonstrated 611

their effectiveness relative to existing methods, as 612

well as their ability to further enhance existing 613

methods. We also proposed a gated model based 614

on demographic attributes as an input, and showed 615

that while the simple version was highly biased, 616

with a simple Bayesian extension at inference time, 617

the method was highly effective at mitigating bias. 618

For future work, it is important to consider set- 619

tings where there are multiple protected attributes, 620

such as author age, gender, and ethnicity. A simple 621

extension would be to treat G as being intersec- 622

tional classes, defined as the Cartesian product of 623

the multiple demographic groups. E.g., k binary 624

groups would result in 2k intersectional classes. 625
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A Dataset distribution802

A.1 MOJI803

This training dataset has been artificially balanced804

according to demographic and task labels, but ar-805

tificially skewed in terms of race–sentiment com-806

binations, as follows: AAE–happy = 40%, SAE–807

happy = 10%, AAE–sad = 10%, and SAE–sad =808

40%.809

A.2 BIOS810

Figure 3: Bios dataset statistics.

Figure 3 shows the statistic of the BIOS dataset.811

Each row corresponds to a profession, including812

the total number of instances and number of fe-813

male instances. Besides, each profession is also814

annotated with the percentage of female instances.815

B Reproducibility816

B.1 Hyperparameter Tuning817

All approaches proposed in this paper share the818

same hyperparameters as the standard model. Hy-819

perparameters are tuned using grid-search, in or-820

der to maximise accuracy for the standard model,821

and to minimise the fairness GAP for debiasing822

methods, subject to the accuracy exceeding a given823

threshold. The accuracy threshold is chosen to824

ensure the selected model achieves comparable per- 825

formance to baseline methods, defined as up to 2% 826

less than best baseline accuracy. Taking RW as an 827

example, the best baseline accuracy on the BIOS 828

development dataset is 75.7% and accordingly the 829

(development) accuracy threshold is set to 73.7%; 830

among models in the hyperparameter search space 831

that exceed this threshold, we take the model with 832

minimum GAP. We report test results for the se- 833

lected models. 834

In terms of the baseline models, both DADV 835

and INLP have additional hyperparameters: for 836

DADV these are the weight of the adversarial loss, 837

which controls the performance–fairness trade-off; 838

the number of sub-adversaries; and the weight of 839

the difference loss, to better remove demographic 840

information; while INLP also has a trade-off hy- 841

perparameter, the number of null-space projection 842

iterations, and other hyperparameters related to lin- 843

ear attackers and classifiers. 844

The trade-off hyperparameter makes such mod- 845

els more flexible in performing model selection. 846

However, it also requires manual selection for bet- 847

ter trade-offs, and different strategies have been 848

introduced. For example, INLP manually selects 849

the model at a iteration where the accuracy is mini- 850

mally damaged while the fairness improves greatly. 851

Similar manual selection for better trade-offs is 852

also required for ADV and DADV, but the strate- 853

gies proposed in the original papers are slightly 854

different to one another, and are also task-specific. 855

In order to reproduce previous methods, we fol- 856

low the original paper in setting the accuracy thresh- 857

old, and then tuning hyperparameters for the best 858

fairness. 859

For the ADV and DADV models, following the 860

work of Han et al. (2021b), we tune extra hyper- 861

parameters separately, such as the trade-off hyper- 862

parameter, while using the same shared hyperpa- 863

rameters to the selected base models. Similarly, the 864

number of iterations for the INLP model is tuned 865

once other hyperparameters have been fixed. 866

B.2 Training Details 867

We conduct all our experiments on a Windows 868

server with a 16-core CPU (AMD Ryzen Thread- 869

ripper PRO 3955WX), two NVIDIA GeForce RTX 870

3090s with NVLink, and 256GB RAM. 871

B.2.1 MOJI 872

For all baseline models, we follow the method 873

of Han et al. (2021b). Specifically, we train the 874
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Best assignment

Hyperparameter Search space STANDARD ADV DADV DS RW DADV + DS DADV + RW

number of epochs - 100

patience - 10

encoder - DeepMoji (Felbo et al., 2017)

embedding size - 2304

hidden size - 300

number of hidden layers choice-integer[1, 3] 2

batch size loguniform-integer[64, 2048] 1024 1024 1024 512 1024 512 1024

output dropout uniform-float[0, 0.5] 0.4 0.4 0.4 0.5 0.5 0.2 0.1

optimizer - Adam (Kingma and Ba, 2015)

learning rate loguniform-float[10−6, 10−1] 3× 10−5 3× 10−5 3× 10−5 10−5 10−4 3× 10−5 3× 10−4

learning rate scheduler - reduce on plateau

LRS patience - 2 epochs

LRS reduction factor - 0.5

ADV loss weight loguniform-float[10−4, 102] - 10−0.1 10−0.1 - - 100.2 100.0

ADV hidden size loguniform-integer[64, 1024] - 256 256 - - 256 256

number of adversaries choice-integer[1, 8] - 1 3 - - 3 3

DADV loss weight loguniform-float[10−5, 105] - - 103.7 - - 102 102.6

Table 5: Search space and best assignments on the MOJI dataset

Best assignment

Hyperparameter Search space STANDARD ADV DADV DS RW DADV + DS DADV + RW

number of epochs - 100

patience - 10

encoder - uncased BERT-base (Devlin et al., 2019)

embedding size - 768

embedding type choice{‘CLS’, ‘AVG’} ‘AVG’

hidden size - 300

number of hidden layers choice-integer[1, 3] 2

batch size loguniform-integer[64, 2048] 512 128 128 128 256 256 512

output dropout uniform-float[0, 0.5] 0.5 0.3 0.2 0.3 0.5 0.2 0.4

optimizer - Adam (Kingma and Ba, 2015)

learning rate loguniform-float[10−6, 10−1] 3× 10−3 10−3 10−3 10−3 3× 10−5 3× 10−3 3× 10−4

learning rate scheduler - reduce on plateau

LRS patience - 2 epochs

LRS reduction factor - 0.5

ADV loss weight loguniform-float[10−8, 102] - 10−2.3 10−2.3 - - 10−2.8 10−5

ADV hidden size loguniform-integer[64, 1024] - 256 256 - - 256 256

number of adversaries choice-integer[1, 8] - 1 3 - - 3 3

DADV loss weight loguniform-float[10−5, 105] - - 102 - - 103 103.3

Table 6: Search space and best assignments on the BIOS dataset

STANDARD model for 100 epochs with the Adam875

optimizer (Kingma and Ba, 2015), learning rate876

of 3 × 10−5, and batch size of 1024. For ADV,877

the main model is jointly trained together with ad-878

versaries which are implemented as 3-layer MLP,879

and the weight of adversarial loss is 0.8. For each880

iteration (epoch) of the main model, an adversary881

is trained for 60 epochs, keeping the checkpoint 882

model that performs best on the dev set. Three 883

sub-adversaries are employed by the DADV, with 884

the difference losss weight of 103.7. For INLP, 885

logistic regression models are used for both iden- 886

tifying null-space to the demographic information 887

at each iteration, and making the final predictions 888
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MOJI BIOS

Method Model Accuracy↑ GAP ↓ DTO ↓ Time↓ Accuracy↑ GAP ↓ DTO ↓ Time↓

Baselines

STANDARD 71.6± 0.1 31.0± 0.3 0.261 1.0 82.3± 0.0 16.0± 0.5 0.110 1.0
INLP 68.5± 1.1 33.8± 3.9 0.300 14.0 70.5± 0.5 6.7± 0.9 0.145 6.3
ADV 74.3± 0.4 22.2± 3.7 0.163 36.1 81.1± 0.1 12.7± 0.3 0.077 1.3
DADV 74.5± 0.3 18.5± 2.0 0.123 109.4 81.1± 0.1 12.6± 0.3 0.076 2.4

Balance
DS 71.9± 0.1 23.2± 0.2 0.178 0.5 79.4± 0.1 9.7± 0.6 0.057 0.3
RW 74.0± 0.2 21.5± 0.4 0.155 1.0 74.7± 0.3 7.4± 0.3 0.095 1.0

Gate
GATE 64.8± 0.1 65.2± 0.9 0.640 1.0 82.4± 0.1 19.2± 0.3 0.144 1.0
GATE + DS 72.5± 0.0 16.3± 0.7 0.104 0.6 79.4± 0.1 9.2± 0.2 0.053 0.3
GATE + RW 74.9± 0.2 13.8± 0.3 0.072 1.1 74.9± 0.2 7.1± 0.2 0.092 1.0

Bayesian
GATE soft

0.5 72.7± 0.2 30.2± 0.3 0.250 1.0 80.8± 0.1 11.6± 0.3 0.066 1.0

GATE soft
Acc 74.8± 0.2 20.3± 0.3 0.142 1.0 81.1± 0.1 19.8± 0.4 0.151 1.0

GATE soft
RMS 73.5± 0.2 7.1± 0.3 0.019 1.0 80.5± 0.1 11.1± 0.3 0.063 1.0

Combination

DADV + DS 72.2± 0.2 14.3± 0.2 0.085 72.1 79.3± 0.1 9.9± 0.2 0.059 2.3
INLP + DS 72.1± 1.6 18.4± 3.1 0.127 6.3 73.2± 0.6 5.9± 0.8 0.112 1.3
DADV + RW 74.6± 0.1 18.9± 0.3 0.127 108.2 74.1± 0.2 7.2± 0.4 0.102 3.0
INLP + RW 72.3± 1.9 15.7± 3.1 0.099 13.9 73.6± 0.6 5.6± 0.7 0.107 6.3

Table 7: Results over the sentiment analysis (MOJI) and biography classification (BIOS) tasks. Trade-offs are
measured by the normalized Euclidean distance between each model and the ideal model, and lower is better. Bold
= best trade-off within category. Training time is reported relative to STANDARD, which takes 35 secs and 16 mins
for MOJI and BIOS, respectively.

given debiased hidden representations. Since the889

number of iterations in INLP is highly affected by890

the random seed at each run, we re-select it at each891

iteration.892

As for our models, the DS model is trained with893

the learning rate of 10−5 and batch size of 512; the894

RW is trained with the learning rate of 10−4 and895

batch size of 1024; and the GATE is trained with896

the the set of hyperparameters to the base model.897

B.2.2 BIOS898

Models are trained with similar hyperparameters as899

models on the MOJI dataset. We thus only report900

main differences for each of them: the STANDARD901

model is trained with the batch size of 512 and902

learning rate of 3 × 103; DS models are trained903

with the batch size of 128 and learning rate of 10−3,904

and RW models are trained with the batch of 256905

and learning rate of 3× 10−5.906

We train the ADV model with the adversarial907

loss weight of 10−2.3, learning rare for adversarial908

training of 10−1, learning rate of 10−3, and batch909

size of 128. The DADV is trained with same setting910

as the ADV, excepting the difference loss weight of911

102. For details of the assignment of other hyper-912

parameters and hyperparameter searching space,913

refer to Supplementary Materials.914

C The calculation of trade-off 915

We calculate DTO based on all results shown in Ta- 916

ble 7. Taking the DAdv model on the Moji dataset 917

for example, the trade-off is calculated as follows: 918

1. Find the best accuracy and fairness (1-GAP) 919

separately; i.e., 74.9 (GATE + RW) and 92.9 920

(GATE soft
RMS), resp. 921

2. Normalize the accuracy and fairness metric 922

of DADV, resulting in 0.995 = 74.5
74.9 and 923

0.877 = 81.5
92.9 . 924

3. Calculate the Euclidean distance between 925

(1, 1) and (0.995, 0.877), giving 0.123. 926

D Training time estimation 927

Given that the training time is affected by factors 928

such as batch size, hidden size, and learning rate, to 929

perform a fair comparison between different mod- 930

els, we estimate the training time of a model based 931

on hyperparameter tuning results, over a shared 932

search space of base hyperparameters (i.e., the hy- 933

perparameters related to the standard model), with 934

any other approach-specific hyperparameters fixed. 935

E Balancing toward anti-stereotyping 936

As shown in Table 2, even with DS or RW balanc- 937

ing, the model still shows biases in its predictions. 938
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We conduct preliminary experiments on MOJI with939

RW and DS, while controlling for stereotyping940

skew in training using values for 0.8 to 0.2. In941

standard rebalancing we use as target 0.5, which942

describes a balanced situation. A larger skew> 0.5943

will amplifying stereotyping, and < 0.5 describes944

a different type of stereotyping operating in the op-945

posite direction. Balancing towards a 0.4 training946

skew leads to the best test results, with an accuracy947

of 71.7% and GAP of 11.8% for DS, and accuracy948

of 74.5% and GAP of 11.3% for RW. Comparing949

to the corresponding values in Table 2 (rows Bal-950

ance DS and RW, for MOJI), both results show a951

substantial reduction in GAP.952

This idea is related to existing reweighting ap-953

proaches in long-tail learning. For example, Cui954

et al. (2019) infer the effective number of sam-955

ples which group each instance with its neigh-956

bours within a small region instead of using all957

data points, and reweight the loss of each class958

inversely proportional to the effective number of959

samples. We leave this further exploration of this960

line of research to future work.961

We also experiment with GATE +RW and GATE962

+DS with a 0.4 training skew, however, the gated963

model does not show the same behaviour, as it just964

amplifies the training biases. This implies that, for965

the gated model, balanced training can help remove966

spurious correlations between protected attributes967

and main task labels, which is similar in nature to968

the effects of adversarial training.969
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