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Abstract

Bias in natural language processing manifests
as disparities in error rates across author de-
mographics, typically disadvantaging minority
groups. Although dataset balancing has been
shown to be effective in mitigating bias, ex-
isting approaches do not directly account for
correlations between author demographics and
linguistic variables. To achieve Equal Oppor-
tunity fairness, this paper introduces a simple
but highly effective objective for countering
bias using balanced training. We extend the
method in the form of a gated model, which
incorporates protected attributes as input, and
show that it is effective at reducing bias in
predictions through demographic input pertur-
bation, outperforming all other bias mitiga-
tion techniques when combined with balanced
training.

1 Introduction

Natural Language Processing (NLP) models have
achieved extraordinary gains across a variety of
tasks in recent years. However, naively-trained
models often learn spurious correlations with de-
mographics and socio-economic factors (Hendricks
et al., 2018; Lu et al., 2018; Bolukbasi et al., 2016;
Park et al., 2018), leading to disparities across
author demographics in contexts including coref-
erence resolution, sentiment analysis, and hate
speech detection (Badjatiya et al., 2019; Zhao et al.,
2018; Li et al., 2018a; Diaz et al., 2018).

Two popular approaches for mitigating such bi-
ases are: (1) balancing each demographic group
in training, either explicitly via sampling (Zhao
et al., 2018; Wang et al., 2019) or implicitly via
balancing losses for each group (Hofler et al., 2005;
Lahoti et al., 2020); and (2) removing demographic
information from learned representations (Li et al.,
2018a; Wang et al., 2019; Ravfogel et al., 2020;
Han et al., 2021D).

While balancing methods have been shown to be
successful, they have not been tested extensively

in NLP. In this paper, we focus on author bias and
adapt three balanced training approaches for de-
biasing. In addition, we propose a new objective
for balanced training, which can be used for proxy
optimization of Equal Opportunity (Hardt et al.,
2016). We first provide a theoretical justification
for our approach, and then conduct experiments
on two benchmark datasets which show that our
proposed objective is highly effective in achieving
Equal Opportunity fairness.

Even when the training data is balanced, ig-
noring demographic-specific features can lead to
bias (Wang et al., 2019; Lahoti et al., 2020), due
to differences in language use across demograph-
ics (Hovy, 2015). There is thus a fine line to be
walked in terms of optimizing for linguistic vari-
ables associated with different demographic groups
(potentially boosting overall model accuracy), and
ensuring model fairness.

Inspired by work in domain adaptation on learn-
ing domain-specific representations that generalize
across domains (Bousmalis et al., 2016; Li et al.,
2018b), we propose a gated model, which incorpo-
rates author demographics as an input to generate
group-specific representations but also generalizes
across demographic groups. We show that when
combined with instance reweighting during train-
ing, this technique leads to substantial bias reduc-
tions over leading debiasing techniques, typically
with higher predictive accuracy. We also introduce
a second means of bias reduction through tailoring
gating coefficients of the trained model, which al-
lows for fine-tuning of the accuracy—fairness trade-
off. Our experiments over two benchmark datasets
for language debiasing show that our techniques
are competitive with much more complex state-of-
the-art methods for debiasing in situations where
the demographic attribute is not known at test time,
and provide substantial gains over the state-of-the-
art when the protected attribute is observed. Codes
will be released upon acceptance.



2 Balanced Training

Despite their simplicity and versatility, balanced
training approaches have only received limited at-
tention in prior work in NLP. In this section, we
review three balanced training approaches, and dis-
cuss their objectives and applications. We further
propose a novel objective for balanced training,
which we will show to be a proxy optimization for
the Equal Opportunity metric.

2.1 Problem Formulation

In this paper, we focus on bias mitigation for
NLP classification tasks. Formally, we assume
a dataset D = {(z4,vi, )}y where z; € X is
a d-dimensional input text representation vector,
yi € Y denotes the main task label (e.g. senti-
ment), and g; € G represents the private attribute
associated with z;, e.g., author gender.

A standard model M is trained to predict Y
given X, while debiasing methods generally aim to
learn a model M’ that is fair wrt G by considering
X x G together.

2.2 Fairness Measurement

As in Barocas et al. (2019), the separation criterion
acknowledges the correlation between G and Y,
and is satisfied iff G | Y'|Y. A relaxation of the
separation criterion known as equality of opportu-
nity is widely used (Hardt et al., 2016; Ravfogel
et al., 2020; Han et al., 2021a). Equality of oppor-
tunity measures the difference in true positive rate
(TPR) across all groups, based on the notion that
the positive outcome represents ‘advantage’, such
as being accepted by a school or getting a loan.
Essentially, the difference (gap) in TPR reflects
whether different groups have equal opportunity.

2.3 Balanced Training Objectives

We now formally describe the objective functions
of three established balanced training approaches,
and discuss their applications.

Let X be the task loss and n be the number of
observed instances in the dataset D. The overall
empirical risk is written as £ = X 3" X (y;, §i:),
which can be rewritten as the aggregation of sub-
sets: £ = >3 >0 "HELy ., where ny g = |{i
Yi = Y,9; = g}, the number of instances with
target label y and demographic attribute g, and Ly o
is the empirical loss corresponding to the subset,
Lyg = 5=, X(yi9:)1(yi = y, 9 = g). Fur-
thermore, we use , as the notation for marginaliza-

tion, for example, 1y, = Zy nye. Letp be the
target objective, and p be the empirical probability
based on the training dataset.

Given this notation, the three balanced training
objectives are as follows:

Balanced Demographics Zhao et al. (2018) aug-
ment the dataset according to the demographic la-
bel distribution (making p(G) uniform) for in-text-
bias mitigation. Although their gender-swapping
approach is not directly applicable to our tasks,
we adapt the general objective function as L& =
G 2y g -t Ly,g, Where |G| is the number of
distinct labels of G.

Conditionally Balance In a vision context,
Wang et al. (2019) down-sample the majority de-
mographic group within each class, so that on a
per-class basis, it does not dominate the minority
group (i.e. p(G|Y") is uniform for all Y), giving the
objective function: L&Y = ‘—Cl;' Dy Y Ly

n

Jointly Balance Lahoti et al. (2020) employ
instance reweighting for structural data classifi-
cation such that demographics and classes are
jointly balanced, leading to the objective: L&Y =

1
aT<vT 2y 2o Lue:
2.4 Achieving the objective

In this paper, we focus on two classic ways of
achieving the target objective: instance reweight-
ing, which manipulates the weight of each instance
during training, and down-sampling, which prepro-
cess the dataset before training.

Taking the objective £ = m 2oy 2o Lyg
as an example, instance reweighting reweights each
instance inversely proportional to the frequency of
the combination of its main label and demographic
label,

5

(%i,yi,9:) €D

NG = gi,Y = )X (yi, i),

where X is the task loss, and g; denotes the model
prediction given input text z;.

The other approach, down-sampling, sub-
samples non-minority instances to derive a bal-
anced training dataset, such that p(g,y) =

1

W,Vg € G,y € Y. Specifically, let D, 4

denote a subset of training instances s.t. D, ; =
{(@i,9i, 9)lyi = ¥, 9i = g}f—;. We sample with-
out replacement to get a target subset Dy ; such
that [Dy | = min{|Dy4|,Vy € Y,g € G}. The



sampled subsets are merged to form the training
set.

2.5 Towards equal opportunity

Without loss of generality, we illustrate with the
binary case of y € {T,F} and g € {0,1}. Re-
call that the equal opportunity metric is satisfied
if a binary classification model has an equal posi-
tive prediction rate conditioned on the advantaged
class. Assuming the advantaged class is denoted as
y = T, i.e. the positive class, the equal opportunity
is measured by the TPR GAP between protected
groups. Our proposed objective function for equal
opportunity is:

o nT* ”Fg
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Compared to the vanilla objective, the weights of
instances with T target label are adjusted. Specifi-
cally, the reweighting term 2

the minority group, and less than 1 for the majority
group.

From CE to TPR Cross-entropy is an estimate
of the TPR at the mini-batch level when consid-
ering a subset of instances with the same target
label. Recall that the CE loss for binary classifi-
cation, of an instance is —[y; - log(p(y;)) + (1 —
y;) - log(1 — p(y;))], where p(y;) is the predicted
probability of y; being True. Takingy = T for a
certain demographic group g as an example,

1 .
Lrg= X(yi, i)y =T,9i = g)
nrg =
1 )
=——> py)lyi=T,9: = g).
nTg

)

Essentially, minimizing L7 is equivalent to max-
imizing the predicted probability of § being True
given target label y is True, within the demographic
group g. That is, at the minibatch level, —L7 is
an estimator of p(y = Ty = T,g = g), which
is the TPR of group g. Given this, our proposed
objective minimizes the TPR GAP by focusing on
the TPR of the different demographic groups.

Beyond binary labels&demographic attributes
Although we have introduced both target labels and
demographic attributes to be binary, our proposed
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Figure 1: Gated model architecture. Given the in-
put vector z, e.g. a text representation, the model has

a shared encoder component and |G| encoder compo-
nents, one for each demographic group.

objective generalizes trivially. The equal oppor-
tunity metric was originally designed for binary
classification, under the assumption of a single ad-
vantaged class y = T'. To satisfy the multi-class
target label case, we adjust the equal opportunity
to consider the one-vs-all setting, and measuring
the TPR of each target class. Our proposed objec-
tive then becomes 3 >, %mﬁﬁﬁm' This
recovers the formulation of Conditionally Balanced
of section 2.3.

3 Demographic Factors Improve
Fairness

Ignoring demographic-specific features can lead to
bias even when the training data has been balanced
(Wang et al., 2019; Lahoti et al., 2020). Our ap-
proach to dealing with this is, rather than removing
demographic information from representations, to
use a gated model that uses demographic labels as
input.

As can be seen in Figure 1, the gated model con-
sists of (1+|G|) encoders: one shared encoder, and
a dedicated encoder for each demographic group in
G.! Formally, let £/ denote the shared encoder, E;
denote the encoder for the j-th demographic group,
C denote the classifier, and g; be a 1-hot input such
that g; ; is 1 if the instance (x;, g;, ;) belongs to
the j-th group, and 0 otherwise. The prediction for
an instance is: §; = C'(h$, h{), where hf = E(x;)
and hY = Z‘;GH gi.;jEj(x;). The two inputs are
Concatenated and input to the classifier C.

Intuitively, the shared encoder learns a gen-
eral representation, while each group-specific en-
coder captures group-specific representations dur-
ing training.

IStrictly speaking, it is possible to achieve a similar effect
with |G| encoders by merging one group with the shared
encoder, and using post-hoc correction to separate out the

general from the group-specific representation (Kang et al.,
2020).



Our setting differs from other debiasing meth-
ods in that we assume the demographic attribute
is available at training and prediction time, while
techniques such as adversarial training (Li et al.,
2018a) and INLP (Ravfogel et al., 2020) only re-
quire the attribute for training. This richer input
allows for more accurate predictions, courtesy of
the demographic-specific encoder, but limits ap-
plicability at test time. As suggested by Hovy
and Yang (2021), addressing demographic factors
is essential for NLP to get closer to the goal of
human-like language understanding, and increase
fairness. For better applicability, we also relax this
requirement by replacing demographic factors with
non-informative prior in section 4.8.

4 Experimental Results

4.1 Evaluation Metrics

Following Ravfogel et al. (2020), we use overall
accuracy as the performance metric, and the sepa-
ration criterion to measure fairness in the form of
TPR GAP and TNR GAP: the true positive rate
and true negative rate differences between demo-
graphic groups. For both GAP metrics, smaller is
better, and a perfectly fair model will achieve O.
For multi-class classification tasks, we follow Rav-
fogel et al. (2020) in reporting the quadratic mean
(RMS) of TPR GAP over all classes. In a binary
classification setup, TPR and TNR are equivalent
to the TPR of the positive and negative classes, re-
spectively, so we employ the RMS TPR GAP in
this case also.

Throughout this paper, we report accuracy and
GAP results as mean values + standard deviation
over the test set, averaged across five independent
runs with different random seeds.

For ease of comparison between approaches, we
introduce ‘distance to the optimum’ (DTO), a sin-
gle metric to incorporate accuracy and GAP into a
single figure of merit, which is calculated by: (1)
converting GAP to 1 — GAP (denoted as fairness;
higher is better); (2) normalizing each of accuracy
and fairness, by dividing by the best result for the
given dataset (i.e., highest accuracy and fairness);
and (3) calculating the Euclidean distance to the
point (1, 1), which represents the hypothetical sys-
tem which achieves highest accuracy and fairness
for the dataset. Lower is better for this statistic,
with minimum 0.

In addition to performance and fairness, we are
also interested in the efficiency of the different

debiasing approaches and report each method’s
average training time.> We present normalized
training times relative to the standard method, i.e.,
the average training time divided by that of the
standard model.

4.2 Dataset

Following Ravfogel et al. (2020), we conduct exper-
iments over two NLP classification tasks — senti-
ment analysis and biography classification — using
the same dataset splits as prior work.

4.2.1

This sentiment analysis dataset was collected by
Blodgett et al. (2016), and contains tweets that
are either African American English (AAE)-like
or Standard American English (SAE)-like. Each
tweet is annotated with a binary ‘race’ label (based
on language use: either AAE or SAE), and a binary
sentiment score determined by (redacted) emoji
contained in it. We use the train, dev, and test splits
from Han et al. (2021b) of 100k/8k/8k instances,
respectively.

MoJ1

4.2.2 BIosS

The second task is biography classification (De-
Arteaga et al., 2019; Ravfogel et al., 2020), where
biographies were scraped from the web, and an-
notated for binary gender and 28 classes of pro-
fession. Since the data is not directly available, in
order to construct the dataset, we use the scrap-
ing scripts of Ravfogel et al. (2020), leading to a
dataset with 396k biographies.® Following Ravfo-
gel et al. (2020), we randomly split the dataset into
train (65%), dev (10%), and test (25%).

4.3 Models

We first implement a “STANDARD” model on each
dataset, without explicit debiasing. On the MOJI
dataset, we follow Ravfogel et al. (2020); Han et al.
(2021b) in using DeepMoji (Felbo et al., 2017) as
the encoder to get 2304d representations of input
texts. The DeepMoji model contains 22.4 million
parameters and was pretrained over 1246 million
tweets to predict one of 64 common emojis. Ravfo-
gel et al. (2020) and Subramanian et al. (2021) used
uncased BERT-base (Devlin et al., 2019) as their

*Testing on Titan X and RTX 3090, all models have
roughly near-identical inference time.

3There are slight discrepancies in the dataset composition
due to data attrition: the original dataset (De-Arteaga et al.,
2019) had 399k instances, while 393k were collected by Rav-
fogel et al. (2020).



Model Accuracy? GAP | DTO |
STANDARD 82.3£0.0 16.0+0.5 0.093
BD (Zhao et al., 2018) 82.3+0.0 15.6+0.2 0.089
JB (Lahoti et al., 2020) 74.74+0.3 7.4+0.3 0.092
EO 79.44+0.1 9.7£0.6 0.043

Table 1: Results for balanced training methods (BT)
on the BI1OS test set. EO: our proposed objective in
section 2.5. BD and JB refer to baselines, balanced
demographics and jointly balance in section 2.3.

STANDARD model for the B1I0S dataset, taking the
‘CLS’ token as the source of a fixed text represen-
tation, without further fine-tuning. However, we
found that taking the average of all contextualized
token embeddings led to an accuracy improvement
of 1.4% and GAP fairness improvement of 2.4%.
Given this, we use 768d ‘AVG’ representations
extracted from the pretrained uncased BERT-base
model.

For INLP (Ravfogel et al., 2020), we take the
fixed STANDARD model for the given dataset, and
iteratively train a linear classifier and perform
nullspace projection over the learned representa-
tion. For the other baseline models — ADV and
DADV— we jointly train the adversarial discrimi-
nators and classifier. In order to ensure a fair com-
parison, we follow Han et al. (2021a) in using a
model consisting of the same fixed-parameter en-
coder as ours followed by a trainable 3-layer MLP.

4.4 Balanced Training Approaches

Since the MOIT dataset has been artificially bal-
anced for main task labels and demographic labels,
balanced training corresponding to p(g) makes no
difference, and moreover, the results for p(g|y) and
p(g,y) will be identical. Given this, we focus on
the B10S dataset for comparing different balanced
training objectives.*

Table 1 shows the results of balanced training
using the different objectives. Compared to the
STANDARD model, balanced training with differ-
ent objectives are all able to reduce bias, and the
objective proposed by Lahoti et al. (2020) achieves
the best TPR GAP. However, in terms of accuracy—
fairness trade-off, our proposed approach outper-
forms all other models, which is not surprising as
our proposed objective is designed to achieve better
equal opportunity fairness. Based on these results,

*As BIOS is a multi-class classification task and our pro-
posed approach generalizes to p(g|y) in this case, there is no
need to include Wang et al. (2019) in our comparison.

hereafter, we only report balanced training with our
proposed objective.

4.5 Main Results

We report results over the sentiment analysis and
biography classification tasks in Table 2. The
baseline models are: STANDARD, which is a
naively-trained MLP classifier; INLP (Ravfogel
et al., 2020), which removes demographic infor-
mation from text representations through iterative
nullspace projection; ADV (Li et al., 2018a; Wang
et al., 2019), which performs protected information
removal through adversarial training with a sin-
gle discriminator; and DADV (Han et al., 2021b),
which also uses adversarial training but with mul-
tiple adversaries subject to an orthogonality con-
straint, and represents the current state-of-the-art
(SOTA).

On the MOIJI dataset, compared to the STAN-
DARD model, BT simultaneously increases main
task accuracy and mitigates bias, leading to results
competitive with ADV and better than INLP. Al-
though BT does not outperform the SOTA DADV,
it leads to performance—fairness trade-offs that are
competitive with the other debiasing methods.

On the BIOs dataset, BT again leads to
performance—fairness trade-offs that outperform
the baseline methods. However, different to the
Moii dataset, BT does not further improve accu-
racy, increasing fairness by 5.3% absolute at the
cost of 2.9% accuracy.

In terms of training time, existing debiasing
methods (esp. DADV on MOIT) incur a substantial
overhead, while balanced training is much more
frugal: around 1.3 times faster (because of the re-
duction in training data volume).

In addition to evaluating BT, we also com-
bine GATE with BT, which achieves a better
performance—fairness balance, as shown in Table 2.
This is consistent with our argument that, rather
than removing demographic information, properly
used demographic factors can further reduce biases.
Indeed, the BT +GATE consistently outperforms
the current SOTA model DADV on both datasets.

Combining balanced training with benchmark
methods The baseline methods INLP and
DADV as presented above were used in a man-
ner consistent with their original formulation,
i.e., without balanced training. An important
question is whether balanced training might also
benefit these methods. It is trivial to combine



MoJ1 B10s

Method Model Accuracy? GAP | DTO | Time| Accuracy? GAP | DTO | Time|

STANDARD 71.6+0.1 31.0+0.3 0.261 1.0 82.3+0.0 16.0£0.5 0.110 1.0

Baselines INLP 68.5+1.1 33.843.9 0.300 14.0 70.5+0.5 6.7+0.9 0.145 6.3

) ‘ ADV 74.3+04 222437 0.163 36.1 81.1+0.1 12.7+0.3 0.077 1.3

DADV 74.54+0.3 185+2.0 0.123 109.4 81.14+0.1 126+0.3 0.076 2.4

Ours BT 74.04+0.2 21.5+0.4 0.155 0.8 79.4+0.1 9.74+0.6 0.057 0.7

+GATE*  74.94+0.2 13.8+0.3 0.072 0.8 79.4+0.1 9.24+0.2 0.053 0.7

L +DADV 72.240.2 14.34+0.2 0.085 90.4 79.34+0.1 9.9+0.2 0.059 2.7
Combination

+INLP 723+19 15.7+£3.1 0.099 8.9 73.6 £0.6 5.6+0.7 0.107 3.8

Table 2: Results over sentiment analysis (MOJT) and biography classification (B10S) tasks. DTO are measured
by the normalized Euclidean distance between each model and the ideal model, and lower is better. Bold = best
trade-off within category. Training time is reported relative to STANDARD, which takes 35 secs and 16 mins for
MoJrt and BIOS, respectively. *: requires demographic attribute at test time.

Model Size Accuracy? GAP | DTO |
STANDARD 257k  82.3+0.0 16.0£0.5 0.093
RW + p(g) 257k 82.34+0.0 15.6+0.2 0.089
RW +p(gly) 257k 757402 139404  0.107
RW +p(g,y) 257k 747403 74403 0092
DS +p(g) 237k 82.140.1 159+0.3 0.092
DS + p(gly) 37k 79.4+40.1 9.7+0.6 0.043
DS +p(g,v) 5k 66.1+0.1 10.94+04 0.200

Table 3: Results for balanced training methods on the
B1os test set. “RW” = balancing through instance
reweighting; “DS” = balancing through dataset down-
sampling; and “Size” = the number of instances in the
training dataset.

downsampling with INLP and DADV, as the
method simply prunes the training dataset, but
does not impact the training objective. To
combine instance reweighting with DADV,
we modify the training objective such that the
cross-entropy term is scaled by 5!, while leaving
the adversarial term unmodified, i.e., solve
for miny; maxz Z(wi,yi,gi)eb P X (i, 05)
XadvX (g, G). For INLP, we simply train a BT
model, and then iteratively perform INLP linear
model training and nullspace projection over the
learned representations.

Results are presented in the final section of Ta-
ble 2 (“Combination”), and indicate that the com-
bined methods appreciably outperform both the
standalone demographic removal methods and bal-
anced training approaches, without extra training
time cost. That is, demographic information re-
moval and balanced training appear to be comple-
mentary.

4.6 Reweighting vs. Down-sampling

Table 3 shows the results of the naively-trained
MLP model (“STANDARD”) and six balanced-
training methods, all based on the same MLP
model architecture as STANDARD. Corpus down-
sampling (“DS”) removes instances from major-
ity groups and thus leads to less training data and
overall lower accuracy than instance reweighting
(“RW”).

When using p(g) as the objective, both RW and
DS perform similarly to the STANDARD model, as
the overall gender distribution is quite balanced,
which can also be seen in the size of the training
data for DS + p(g). Both RW + p(g,y) and RW
+ p(g|y) reduce bias and performance, but RW
+ p(g,y) outperforms RW + p(gly) in terms of
the performance—fairness trade-off, in that RW +
p(g,y) achieves similar performance but substan-
tially better fairness (6.6% absolute improvement
in GAP). However, p(g,y) is not as effective as
p(g]y) when combined with DS, due to the big
drop in the volume of training data.

4.7 Gated Model

If the training dataset is imbalanced and contains
spurious correlations between task labels and de-
mographic attributes, a naively trained model will
learn and possibly amplify dataset biases. The
gated model, with its explicit conditioning and
group-specific encoding, will be particularly vul-
nerable to bias.

Table 4 shows that, on both datasets, the GATE
model increases the accuracy but amplifies bias
(e.g., GAP of 65 on MOIJI): as it uses demo-
graphic information directly to make predictions, it
is highly vulnerable to bias in the training dataset.



MoJ1 B1os

Model Accuracy? GAP | DTO | Accuracy? GAP | DTO |
BT 74.0+0.2 21.5+£04 0.155 79.4+0.1 9.7+0.6 0.057

+GATE * 74.940.2 13.84+£0.3 0.072 79.4+£0.1 9.2+0.2 0.053
GATE * 64.8+0.1 65.2+£0.9 0.640 82.4+£0.1 19.2+0.3 0.144
GATE &t 72.7+0.2 30.2+0.3 0.250 80.8+0.1 11.6+0.3 0.066
GATE 1t * 748402 20.3+03 0.142  81.1+0.1 198404 0.151
GATE it * 73.5+0.2 7.1+0.3 0.019 80.5+0.1 11.1+0.3 0.063

Table 4: Results over M0OJI and B10S. *: demographic attributes available at test time.

Intuitively, the only objective of GATE training is
standard cross-entropy loss, which has been shown
to lead to bias amplification under imbalanced train-
ing without regularisation. The gate components
explicitly rely on demographic information, and
thus become a strong indicator of main label pre-
dictions due to spurious correlations between the
main task label and demographic labels in the train-
ing set. Balanced training approaches act as regu-
larizers in preventing the model from learning and
amplifying spurious correlations in training.

4.8 Soft Averaging

Although the gated model naturally requires the
demographic attribute at test time, we also evaluate
a condition where this is not available.

GATE f)‘fsft Instead, we take a Bayesian approach
by evaluating p(y|z) = >_, p(9)p(ylg, ), where
we can control the prior explicitly. For exam-
ple, under a uniform demographic attribute prior,
we simply average the predictions p(y|z, g) and
p(y|x, —g). This Bayesian approach can be approx-
imated by soft averaging, whereby the activation
of all demographic-specific encoders are uniformly
averaged inside the model, i.e., g; ; = ‘—(1;' rather
than selecting only one in the standard gated model
(i.e., gi,:is 1-hot).?

GATE 5 and GATE §$fty  When the protected
attribute is observed at test time the soft averag-
ing method may still prove useful, which we use
as a means for fine-tuning the balance between
accuracy and bias. Specifically, we consider non-
uniform encoder averaging conditioned on the gold
protected attribute, g*. Let « and 3 denote to what
extend the 1-hot labels are manipulated according
to the value of g* as 0 and 1 respectively, the soft

labels are {oz 1-— a} and [1 - B B]. Le., the

SResults for Bayesian averaging vs. soft in-network aver-
aging were near identical, hence we report only the latter.

two specific encoders are weighted by either o and
1 — a,or 1 — (3 and g, respectively, according to
the value of ¢g*. Values of a, 8 < 0.5 mean the
protected label is (softly) preserved, while values
> (0.5 mean the label is flipped. In cases where the
model is biased towards or against a demographic
group, it may be advantageous to use these two
additional parameters to correct for this bias, by
disproportionately using the other group’s encoder.

Results We next look to the Bayesian “soft av-
eraging” approach to gating, and mitigating bias
at inference time. Note that this does not involve
retraining the model, as the soft averaging hap-
pens at test time. We first evaluate the effective-
ness of using a uniform averaging in gated model
predictions, where « = 8 = 0.5. We label this
method “GATE 8‘?”, and present results in Table 4.
The method results in a much better performance—
fairness trade-off than the standard GATE, and for
the B1OS dataset, its results are competitive with
the best debiasing methods.

We next take the demographic labels into con-
sideration and search for the best gating coeffi-
cients for each group. Figure 2 shows accuracy
and GAP results from tuning the coefficients on
development data for the basic GATE model. The
results show that « = 8 = 0.5 is a reasonable de-
fault setting, however small gains may be possible
for non-uniform parameter settings.

To demonstrate the power of adjusting these pa-
rameters, we take the trained GATE model, and then
optimize « and 3 over the development set, and
report the corresponding results on the test set. We
select the parameter values that achieve either: (1)
the highest development accuracy; or (2) the lowest
development GAP, provided accuracy is above a
threshold.® The results are reported in Table 2, un-

%The [a, B8] values are [0.64,0.66] and [0.00,0.08] for ac-
curacy over MOJI and B10S, respectively, and [0.64, 0.99]
and [0.38, 0.72] for GAP optimised models. We also experi-
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Figure 2: Accuracy and GAP of « and 5 settings for
Mot and B1oS. The axes refer to the propensity to
change the gold group in gating the encoder compo-
nents, and the bottom left point « = 5 = 0 is the GATE
model using true demographic inputs. Lighter shading
denotes better performance.

der GATE X’fg and GATE f{’ﬁs, respectively. On the
Mou1 dataset, our results show that GATE with soft
averaging can consistently outperform the STAN-
DARD and GATE models without balanced training.
In terms of GAP, the model is substantially better
than all other models, while remaining competitive
in terms of accuracy. The BI0S dataset is noisier,
meaning there are bigger discrepancies between
the development and test datasets. As a result, the
accuracy-optimized model under performs below
the standard GATE model in terms of both accu-
racy and fairness. However, we achieve a good
performance—fairness trade-off when optimizing
for GAP, at a level comparable to the much more
complex INLP and DADV models.

5 Related Work

Fairness Much work on algorithmic fairness has
focused on group fairness, i.e. disparities in error
rates across groups defined by protected attributes,
such as gender, age, or race. Many criteria have
been proposed for group fairness, such as statisti-
cal parity (Dwork et al., 2012) and equal opportu-
nity (Hardt et al., 2016). Broadly speaking, fairness
can be classified into three categories: indepen-

mented with adjusting the gating coefficients for the GATE +
RW model, in which case there was no benefit to accuracy or
GAP from using non-zero « or 3.

dence, separation, and sufficiency (Barocas et al.,
2019), with the most recent work addressing sep-
aration criteria, i.e. potential correlations between
main task labels and protected attributes.

Mitigating bias Many approaches for bias miti-
gation haven been proposed in recent work, includ-
ing removing protected information form hidden
representations (Li et al., 2018a; Wang et al., 2019;
Ravfogel et al., 2020; Han et al., 2021b), prepro-
cessing data to remove bias (Zhao et al., 2018;
Vanmassenhove et al., 2018; Saunders and Byrne,
2020), modifying the training algorithm (Badjatiya
et al., 2019), and post-hoc correction (Hardt et al.,
2016).

In the context of NLP, the best results have been
achieved through protected information removal. It-
erative nullspace projection (INLP: Ravfogel et al.
(2020)) takes hidden representations and projects
them onto the nullspace of the weights of a linear
classifier for each protected attribute. The classifier
training and projection are carried out over mul-
tiple iterations to more comprehensively remove
protected information.

Another popular approach is adversarial training,
which jointly optimizes the removal of sensitive
information and main task performance, through
the incorporation of adversarial discriminator(s) to
identify protected attributes from the hidden repre-
sentations (Li et al., 2018a; Elazar and Goldberg,
2018; Wang et al., 2019). Differentiated adversarial
learning (DADV: Han et al. (2021b)) uses an en-
semble of adversaries for each protected attribute,
subject to an orthogonality constraint.

6 Conclusions and Future Work

This paper proposed the adoption of balanced train-
ing approaches to mitigate bias, and demonstrated
their effectiveness relative to existing methods, as
well as their ability to further enhance existing
methods. We also proposed a gated model based
on demographic attributes as an input, and showed
that while the simple version was highly biased,
with a simple Bayesian extension at inference time,
the method was highly effective at mitigating bias.
For future work, it is important to consider set-
tings where there are multiple protected attributes,
such as author age, gender, and ethnicity. A simple
extension would be to treat GG as being intersec-
tional classes, defined as the Cartesian product of
the multiple demographic groups. E.g., k binary
groups would result in 2* intersectional classes.
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A Dataset distribution
Al MoJ1

This training dataset has been artificially balanced
according to demographic and task labels, but ar-
tificially skewed in terms of race—sentiment com-
binations, as follows: AAE-happy = 40%, SAE-
happy = 10%, AAE-sad = 10%, and SAE-sad =
40%.

A.2 BIoS
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Figure 3: Bios dataset statistics.

Figure 3 shows the statistic of the B10S dataset.
Each row corresponds to a profession, including
the total number of instances and number of fe-
male instances. Besides, each profession is also
annotated with the percentage of female instances.

B Reproducibility

B.1 Hyperparameter Tuning

All approaches proposed in this paper share the
same hyperparameters as the standard model. Hy-
perparameters are tuned using grid-search, in or-
der to maximise accuracy for the standard model,
and to minimise the fairness GAP for debiasing
methods, subject to the accuracy exceeding a given
threshold. The accuracy threshold is chosen to
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ensure the selected model achieves comparable per-
formance to baseline methods, defined as up to 2%
less than best baseline accuracy. Taking RW as an
example, the best baseline accuracy on the B10S
development dataset is 75.7% and accordingly the
(development) accuracy threshold is set to 73.7%;
among models in the hyperparameter search space
that exceed this threshold, we take the model with
minimum GAP. We report test results for the se-
lected models.

In terms of the baseline models, both DADV
and INLP have additional hyperparameters: for
DADV these are the weight of the adversarial loss,
which controls the performance—fairness trade-off;
the number of sub-adversaries; and the weight of
the difference loss, to better remove demographic
information; while INLP also has a trade-off hy-
perparameter, the number of null-space projection
iterations, and other hyperparameters related to lin-
ear attackers and classifiers.

The trade-off hyperparameter makes such mod-
els more flexible in performing model selection.
However, it also requires manual selection for bet-
ter trade-offs, and different strategies have been
introduced. For example, INLP manually selects
the model at a iteration where the accuracy is mini-
mally damaged while the fairness improves greatly.
Similar manual selection for better trade-offs is
also required for ADV and DADV, but the strate-
gies proposed in the original papers are slightly
different to one another, and are also task-specific.

In order to reproduce previous methods, we fol-
low the original paper in setting the accuracy thresh-
old, and then tuning hyperparameters for the best
fairness.

For the ADV and DADV models, following the
work of Han et al. (2021b), we tune extra hyper-
parameters separately, such as the trade-off hyper-
parameter, while using the same shared hyperpa-
rameters to the selected base models. Similarly, the
number of iterations for the INLP model is tuned
once other hyperparameters have been fixed.

B.2 Training Details

We conduct all our experiments on a Windows
server with a 16-core CPU (AMD Ryzen Thread-
ripper PRO 3955WX), two NVIDIA GeForce RTX
3090s with NVLink, and 256GB RAM.

B.2.1 Mo

For all baseline models, we follow the method
of Han et al. (2021b). Specifically, we train the



Best assignment

Hyperparameter Search space STANDARD ADV DADV DS RW DADV+DS DADV+RW
number of epochs - 100
patience - 10
encoder - DeepMoji (Felbo et al., 2017)
embedding size - 2304
hidden size - 300
number of hidden layers choice-integer][1, 3] 2
batch size loguniform-integer[64, 2048] 1024 1024 1024 512 1024 512 1024
output dropout uniform-float[0, 0.5] 0.4 0.4 0.4 0.5 0.5 0.2 0.1
optimizer - Adam (Kingma and Ba, 2015)
learning rate loguniform-float{1076,107']  3x107® 3x107® 3x 107> 107° 10~* 3 x107° 3x107*
learning rate scheduler - reduce on plateau
LRS patience - 2 epochs
LRS reduction factor - 0.5
ADV loss weight loguniform-float[10~4, 10%] - 10791 10791 - - 1002 1000
ADV hidden size loguniform-integer[64, 1024] - 256 256 - - 256 256
number of adversaries choice-integer(1, 8] - 1 3 - - 3 3
DADV loss weight loguniform-float[10~°, 10°] - - 1037 - - 102 1026
Table 5: Search space and best assignments on the MOJI dataset
Best assignment
Hyperparameter Search space STANDARD ADV DADV DS RW DADV + DS DADV + RW
number of epochs - 100
patience - 10
encoder - uncased BERT-base (Devlin et al., 2019)
embedding size - 768
embedding type choice{‘CLS’, ‘AVG’} ‘AVG’
hidden size - 300
number of hidden layers choice-integer[1, 3] 2
batch size loguniform-integer[64, 2048] 512 128 128 128 256 256 512
output dropout uniform-float[0, 0.5] 0.5 0.3 0.2 0.3 0.5 0.2 0.4
optimizer - Adam (Kingma and Ba, 2015)
learning rate loguniform-float[10=6,10"']  3x10=® 107 107 1073 3x107° 3x 1073 3x107*
learning rate scheduler - reduce on plateau
LRS patience - 2 epochs
LRS reduction factor - 0.5
ADV loss weight loguniform-float[10~8, 10%] - 10723 10723 _ - 10728 107°
ADV hidden size loguniform-integer[64, 1024] - 256 256 - - 256 256
number of adversaries choice-integer[1, 8] - 1 3 - - 3 3
DADV loss weight loguniform-float[107°, 10°] - - 102 - - 10% 1033

Table 6: Search space and best assignments on the BIOS dataset

STANDARD model for 100 epochs with the Adam
optimizer (Kingma and Ba, 2015), learning rate
of 3 x 10~°, and batch size of 1024. For ADV,
the main model is jointly trained together with ad-
versaries which are implemented as 3-layer MLP,
and the weight of adversarial loss is 0.8. For each
iteration (epoch) of the main model, an adversary
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is trained for 60 epochs, keeping the checkpoint
model that performs best on the dev set. Three
sub-adversaries are employed by the DADV, with
the difference losss weight of 10%7. For INLP,
logistic regression models are used for both iden-
tifying null-space to the demographic information
at each iteration, and making the final predictions



MoJ1 B1os

Method Model Accuracy?t GAP | DTO| Time| Accuracy? GAP | DTO| Time]
STANDARD  71.6+0.1 31.0+0.3 0.261 1.0 823400 16.0+0.5 0.110 1.0

Basclincs INLP 68.5+1.1 33.8439 0300 140 705405 67409 0.145 6.3
ADV 743404 222437 0163 361 81.1+0.1 127403 0.077 1.3

DADV 745403 185420 0123 1094 81.1+01 12.6+0.3 0.076 2.4

Balance DS 71.940.1 232402 0.178 05 794401 97406 0.057 0.3
RW 740402 215404 0.155 1.0 747403  7.4+03  0.095 1.0

GATE 64.84+0.1 65.240.9 0.640 1.0 824401 192403 0.144 1.0

Gate GATE+DS 725400 16.3+0.7 0.104 0.6 794401 92402 0.053 0.3
GATE+RW  749+0.2 13.8+0.3 0.072 1.1 749402 71402 0.092 1.0

GATE 1t 727402 302403  0.250 1.0 80.8+0.1 11.6+0.3 0.066 1.0

Bayesian GATE 1t 748402 203403 0.142 1.0 811401 198404 0.151 1.0
GATE 9 735402 71403  0.019 1.0 805+0.1 11.1+0.3 0.063 1.0

DADV+DS 722402 143+02 0.085 721 793401 99402 0.059 2.3

Combination INLP+DS  T21£16  184=31 0127 6.3 732406 59408 0.112 1.3
OmbIMAUON KAy + RW  74.6+0.1 189403 0.127 1082 741402  7.2404 0.102 3.0
INLP+RW  723+1.9 157431 0.099 139 736406  56+0.7 0.107 6.3

Table 7: Results over the sentiment analysis (MOJI) and biography classification (B10S) tasks. Trade-offs are
measured by the normalized Euclidean distance between each model and the ideal model, and lower is better. Bold
= best trade-off within category. Training time is reported relative to STANDARD, which takes 35 secs and 16 mins

for MoJ1 and B10S, respectively.

given debiased hidden representations. Since the
number of iterations in INLP is highly affected by
the random seed at each run, we re-select it at each
iteration.

As for our models, the DS model is trained with
the learning rate of 10~° and batch size of 512; the
RW is trained with the learning rate of 10~% and
batch size of 1024; and the GATE is trained with
the the set of hyperparameters to the base model.

B.2.2 BI1OS

Models are trained with similar hyperparameters as
models on the MOJI dataset. We thus only report
main differences for each of them: the STANDARD
model is trained with the batch size of 512 and
learning rate of 3 x 10%; DS models are trained
with the batch size of 128 and learning rate of 1073,
and RW models are trained with the batch of 256
and learning rate of 3 x 107>,

We train the ADV model with the adversarial
loss weight of 10~23, learning rare for adversarial
training of 10~!, learning rate of 10~3, and batch
size of 128. The DADV is trained with same setting
as the ADV, excepting the difference loss weight of
102. For details of the assignment of other hyper-
parameters and hyperparameter searching space,
refer to Supplementary Materials.
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C The calculation of trade-off

We calculate DTO based on all results shown in Ta-
ble 7. Taking the DAdv model on the Moji dataset
for example, the trade-off is calculated as follows:

1. Find the best accuracy and fairness (1-GAP)
separately; i.e., 74.9 (GATE + RW) and 92.9

(GATE f{’{,}s), resp.

2. Normalize the accuracy and fairness metric
of DADV, resulting in 0.995 = %5 and
0.877 = %.

74.9

3. Calculate the Euclidean distance between
(1,1) and (0.995,0.877), giving 0.123.

D Training time estimation

Given that the training time is affected by factors
such as batch size, hidden size, and learning rate, to
perform a fair comparison between different mod-
els, we estimate the training time of a model based
on hyperparameter tuning results, over a shared
search space of base hyperparameters (i.e., the hy-
perparameters related to the standard model), with
any other approach-specific hyperparameters fixed.

E Balancing toward anti-stereotyping

As shown in Table 2, even with DS or RW balanc-
ing, the model still shows biases in its predictions.



We conduct preliminary experiments on MOJI with
RW and DS, while controlling for stereotyping
skew in training using values for 0.8 to 0.2. In
standard rebalancing we use as target 0.5, which
describes a balanced situation. A larger skew > 0.5
will amplifying stereotyping, and < 0.5 describes
a different type of stereotyping operating in the op-
posite direction. Balancing towards a 0.4 training
skew leads to the best test results, with an accuracy
of 71.7% and GAP of 11.8% for DS, and accuracy
of 74.5% and GAP of 11.3% for RW. Comparing
to the corresponding values in Table 2 (rows Bal-
ance DS and RW, for MOII), both results show a
substantial reduction in GAP.

This idea is related to existing reweighting ap-
proaches in long-tail learning. For example, Cui
et al. (2019) infer the effective number of sam-
ples which group each instance with its neigh-
bours within a small region instead of using all
data points, and reweight the loss of each class
inversely proportional to the effective number of
samples. We leave this further exploration of this
line of research to future work.

We also experiment with GATE +RW and GATE
+DS with a 0.4 training skew, however, the gated
model does not show the same behaviour, as it just
amplifies the training biases. This implies that, for
the gated model, balanced training can help remove
spurious correlations between protected attributes
and main task labels, which is similar in nature to
the effects of adversarial training.
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