
NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World

Preference-Guided Bayesian Optimization for Control Policy
Learning: Application to Personalized Plasma Medicine

Ketong Shao ketong shao@berkeley.edu
Department of Chemical & Biomolecular Engineering
University of California, Berkeley, CA 94720, USA

Diego Romeres romeres@merl.com
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA 02139, USA

Ankush Chakrabarty achakrabarty@ieee.org
Mitsubishi Electric Research Laboratories (MERL)
Cambridge, MA 02139, USA

Ali Mesbah mesbah@berkeley.edu

Department of Chemical & Biomolecular Engineering

University of California, Berkeley, CA 94720, USA

Abstract

This paper investigates the adaptation of control policies for personalized dose deliv-
ery in plasma medicine using preference-learning based Bayesian optimization. Preference
learning empowers users to incorporate their preferences or domain expertise during the ex-
ploration of optimal control policies, which often results in fast attainment of personalized
treatment outcomes. We establish that, compared to multi-objective Bayesian optimization
(BO), preference-guided BO offers statistically faster convergence and computes solutions
that better reflect user preferences. Moreover, it enables users to actively provide feedback
during the policy search procedure, which helps to focus the search in sub-regions of the
search space likely to contain preferred local optima. Our findings highlight the suitability
of preference-learning-based BO for adapting control policies in plasma treatments, where
both user preferences and swift convergence are of paramount importance.

Keywords: Bayesian optimization; Preference learning; Personalized plasma medicine.

1. Introduction

A real-world challenge associated with learning optimal control policies stems from its
“evaluate-to-know” nature, i.e., the true performance of a control policy becomes evi-
dent only after it has been applied. Thus, control policy learning can be naturally cast
as a black-box optimization problem. Policy gradient methods (Silver et al., 2014) have
emerged as a popular approach for control policy learning within the realm of continuous
control-input spaces, especially for model predictive control (MPC) policies (e.g., (Zanon
and Gros, 2020)). One of the ways to view policy search is to optimize the parameters of
the policy, which can be approximated by deep neural networks (Levine and Koltun, 2013;
Sehnke et al., 2010). While policy-gradient reinforcement learning (RL) offers scalability, it
often lags in data efficiency, especially with poor initialization. In contrast, Bayesian opti-
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mization (BO) provides a powerful framework for data-efficient policy search, particularly
when dealing with limited performance data or interactions with real-world environments
(Paulson et al., 2023b). BO, a derivative-free and probabilistic method for “global” op-
timization (Shahriari et al., 2015), is well-suited to handle a combination of continuous,
discrete, and categorical decision variables, and BO algorithms have proven to be highly
customizable for controller optimization in real-world applications such as energy systems,
robotics, and manufacturing (Chakrabarty et al., 2021; Paulson et al., 2023a; Marco et al.,
2017; Koenig et al., 2023; Rothfuss et al., 2023; Hoang et al., 2023).

Control policy search often requires users to assess the quality of learned policies, es-
pecially when multiple conflicting objectives are at play. BO seamlessly accommodates the
multi-objective nature of policy search when the goal is to discover a set of optimal poli-
cies with conflicting objectives (Makrygiorgos et al., 2022; Turchetta et al., 2020). Multi-
objective BO (MOBO) methods may expend unnecessary efforts in search regions with
no preferred optimal solutions. Moreover, user expertise is typically leveraged only in the
final stage of policy selection. To overcome these challenges and maximize the utiliza-
tion of a user’s knowledge and preferences regarding closed-loop performance objectives,
preference-learning-based methods have been proposed. An approach is to construct the
utility function directly in terms of control policy, known as preferential BO (Eric et al.,
2007; Brochu, 2010; González et al., 2017; Siivola et al., 2021). While these methods avoid
the need for performance outcome information, they may pose challenges for non-expert
users in distinguishing between two control policies. Lin et al. (2022) proposed preference
exploration BO to address scenarios with multiple outcomes. This approach uses two Gaus-
sian processes to learn input-to-outcome and outcome-to-utility mappings, with alternating
knowledge enhancement in the different stages.

This paper presents a preferential BO strategy for adaptive deep learning-based approx-
imate MPC for preference-based and personalized plasma medicine. We demonstrate that
the proposed preference-guided BO outperforms classical MOBO strategies, and enables
users to efficiently adjust control policies based on their preferences. This is a critical step
towards expedited and effective plasma treatments in the context of biomedical applications.

2. Dose Delivery in Plasma Medicine

2.1 Atmospheric Pressure Plasma Jet (APPJ)

We use a kHz-excited atmospheric pressure plasma jet (APPJ) in helium (He), with proto-
typical applications for treatment of heat- and pressure-sensitive (bio)materials. Schematic
of the APPJ is shown in Appendix A; see (Gidon et al., 2019) for a detailed description.
The manipulated inputs include the applied power P and He flow rate q, while the mea-
sured outputs are the maximum surface temperature T and the total optical intensity I of
plasma at its incident point with the surface. The APPJ dynamics are described by a lin-
ear time-invariant state-space model identified from input-output data (Chan et al., 2023).
Here, we look to control the delivery of thermal effects of plasma to a target surface (e.g.,
patient’s skin). To quantify the delivered thermal effects to a surface, we use the so-called
cumulative equivalent minutes (CEM) metric defined as

CEM(k + 1) = CEM(k) +K(Tref−T (k))δt, (1)
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where constant K is governed by physical properties of surface, Tref is a reference temper-
ature (43◦C), and δt is the sampling time (Sapareto and Dewey, 1984; Gidon et al., 2017).
As such, the overall system dynamics are described by a nonlinear discrete-time model

x(k + 1) = f(x(k), u(k), w(k)), (2)

where x = [T, I,CEM]⊤ are the overall system states, u = [P, q]⊤ ∈ R2 are the manipulated
inputs, and w is a stochastic variable encapsulating system uncertainties.

In pursuit of the goal of delivering a specific thermal dose (CEM) within the shortest
possible time frame, all while adhering to a crucial safety constraint concerning surface tem-
perature (T ), which is vital for an individual’s comfort and well-being, we employ a robust
MPC strategy that takes into consideration uncertainties within the system. Subsequently,
the optimal state-input data are harnessed to train a deep neural network (DNN) policy.
It is because the computational demands and memory requirements associated with the
control policy generated by the robust MPC present a significant challenge when embed-
ding the controller on cost-effective, resource-constrained hardware (Bonzanini et al., 2021).
Embedded control is essential for the operation of point-of-use plasma biomedical devices
like APPJs; see Appendix B for further details on the DNN control policy.

2.2 Preference-Guided Control Policy Learning for Personalized Dose Delivery

Adapting the treatment protocol for individual subjects is essential for personalized plasma
medicine in order to enhance the therapeutic efficacy of treatment without compromis-
ing the safety and comfort of patients. In particular, the protocol adaptation will enable
accounting for the variability among different target surfaces (i.e., patients), as well as
the time-varying nature of the plasma and surface characteristics during successive treat-
ments. However, two main challenges arise in adapting the control policy (8): (i) a limited
number of treatments/trials can be performed in a biomedical context, which makes data
efficiency a prerequisite for control policy adaptation; and (ii) there do not exist closed-
form expressions for the mappings between control policy parameters, θ, and user-defined
“performance measures” that quantify the efficacy and safety of a plasma treatment. In ad-
dition, the treatment efficacy is typically defined in terms of multiple, possibly conflicting,
performance measures that are often observed only at the end of a treatment.

In this work, the patient-to-patient variability stems from the value of constant K in the
CEM dose (1). Generally, K is estimated for a population of subjects and, thus, follows a
probability distribution. We look to adapt the control policy parameters θ during successive
plasma treatments to tailor the treatment to an individual subject with a fixed, but unknown
value of K. We seek to realize two objectives pertaining to patient comfort and safety via
adapting the policy (8), as quantified by the following performance objectives. We aim to
minimize the treatment time

ψ1 = τp, (3)

while concurrently minimizing the cumulative surface temperature constraint violation cost

ψ2 =

N∑
k=0

([T (k)− Ttol]+)2, (4)
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where Ttol is the nominal tolerated temperature constraint, [·]+ denotes the positive part
of the function, and N is the total number of surface temperature measurements over the
treatment. We note that minimizing the treatment time, essential for improved patient
experience and comfort, would involve aggressive thermal dose delivery to the surface,
which would in turn lead to significant violations of the surface temperature constraint
that is unsafe. Hence, the control policy adaptation problem must naturally be cast as a
multi-objective optimization problem to trade-off between these two conflicting objectives.

In practice, the degree of trade-off between these two objectives can be informed by
a user’s preferences (i.e., physician’s expertise). This leads to the notion of preference
learning (Houlsby et al., 2011; Obeng and Bakshy, 2020), where a user’s preferences guide
the search for decisions that result in the most desirable outcomes. In the context of
the above plasma treatment problem with multiple objectives, preference learning can be
formulated as a single-objective optimization problem to maximize a user-defined score.
Formally, the preference learning problem with multiple outcomes can be defined as

max
θ∈Θ

u(f(θ)), (5)

where Θ ⊂ Rnθ represents the space for policy parameters θ, f : Θ → Ψ ⊂ Rnψ is a
multi-outcome function, and u : Ψ→ U ⊂ R is the utility function.

Here, we formulate the utility function based on the performance metrics described in
equations (3) and (4). Our premise is grounded in the assumption that an ideal plasma
treatment, from the user’s standpoint, should ideally have a duration of 30 seconds while
maintaining zero cumulative temperature violations. Consequently, the utility function is:

u = −α|ψ1 − 30| − β|ψ2| = −α|tp − 30| − β
N∑
k=0

([T (k)− Ttol]+)2. (6)

In this expression, α and β serve as weight parameters for ψ1 and ψ2, respectively. It’s
essential to clarify that this utility function’s primary role is to facilitate the comparison
of outcomes from the user’s perspective. Notably, the black-box optimization technique
detailed below operates with no prior knowledge of the utility function, reflecting the fact
that the preference should be learned during the algorithm.

3. Co-Active Preference Learning Bayesian Optimization

We now introduce a preference learning BO strategy that can accommodate user preferences
in control policy adaptation. The proposed strategy iteratively loops over two main stages
called preference exploration (PE) stage and experimentation (EXP) stage to learn the utility
function u and the multi-outcome function f , respectively, until the optimal parameters θ∗

of the control policy are obtained. The main purpose is to provide the patient or the
physician an intuitive way to adapt the treatment accordingly to their standard of comfort.
The outcomes time (3) and temperature (4) are easily interpretable by humans and our
method allows the user to propose ideal outcomes, accordingly to their preference, that are
used by the optimization algorithm to guide the search of the optimal parameters.

The method is summarized in Appendix C in Algorithm 1. During each iteration of
the PE stage M pairs of possible outcomes ψ1,m and ψ2,m are presented to the user to
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obtain a pairwise preference r(ψ1,m,ψ2,m). Moreover, the user is asked to provide a de-
sired outcome, ψ3,m, accordingly to their own preference. We can therefore assume that
u(ψ3,m) > u(ψ1,m), u(ψ2,m) since the user provides the feedback based on their best in-
terest. This step is what we define the co-active feedback because both the user and the
algorithm are actively suggesting new outcomes to achieve reachable solutions that satisfy
the user’s preference. The outcome pairs are obtained by optimizing the acquisition func-
tion Expected Utility of Best Option (EUBO) that was proposed in (Lin et al., 2022). The
model of the utility function, û, is a pairwise Gaussian process trained on the compar-
isons {(ψi,m,ψj,m), r(ψi,m,ψj,m)} with i, j ∈ {1, 2, 3} ∨ i ̸= j using a probit likelihood as
described in Chu and Ghahramani (2005).

Next, at each bth iteration of the EXP stage N sets of optimal parameters θ1:N,b are
obtained based on the current utility and multi-outcome models by optimizing the batch
expected improvement under utility uncertainty (qEIUU) proposed in (Astudillo and Fra-
zier, 2020; Lin et al., 2022). The optimal parameters are then tested on the plasma treatment
scenario (2) to obtain the real outcomes ψ1:N,b, and make the user decide if the optimization
has produced the parameters θ∗ that satisfy their preferences. The model of the outcome
function f̂ is a multi-output Gaussian process trained based on the outcomes data (θi,b,ψi,b).

The proposed method draws inspiration from (Lin et al., 2022), which however does not
incorporate the co-active feedback.

4. Case Study and Results

The DNN control policy in Section 2, a fully-connected feedforward DNN with L = 4
number of hidden layers, H = 7 number of nodes for each hidden layer and ReLU activation
functions, is trained using ns = 5000 samples of state-to-optimal-input mappings using
PyTorch (Paszke et al., 2019). The nominal control policy before adaptation is obtained
with parameters Kpop = 0.5 and Ttol,pop = 45◦C in (1) assuming these are the population
mean requirements. In Marelli and Sudret (2014) is shown that the customization to a new
patient can be minimizing the final layer of the DNN policy, which consists of |θ| = 14
parameters including weights and biases. Notice that the DNN-policy nearly matches the
MPC control law’s performance while being approximately 1,000 times faster on a standard
CPU (2.4 GHz quad-core Intel i5 processor).

Assume that the comfort of a new patient is expressed by the ideal parameters K = 0.55
in (1), Ttol = 45.5◦C in (4) and α = 1 and β = 1000 in (6) which are unknown to the
optimization algorithm. To avoid infinite-time treatment due to consistent low temperature,
the treatment will be terminated if the setpoint CEMsp cannot be reached after 120 seconds.
Therefore, τp,max = 120. In Algorithm 1, the number of pairwise comparisions in the PE
stage is M = 1 and the number of experiments in the EXP stage is N = 3. Selecting
large values for either N or M carries the risk of making decisions during the preference
exploration or exploration stages when lacking of accurate surrogate models. In the context
of plasma treatment, our goal is to ensure that the information for both f and u grows
equitably. The models f̂ and û are initially trained with 5 initial datapoints for D0 =
{(ψi, θi)}5i=1 and 3 pairwise comparisons for P0 = {(ψ1,j ,ψ2,j , r(ψ1,j ,ψ2,j))}3j=1 constructed
via uniform random sampling from Θ and Ψ. The co-active feedback from the user is

5



simulated to give an outcome that is closer than ψ1,ψ1 to the ideal ψ∗ of the patient:

ψ3 = ψ
∗ + ϵψ+, (7a)

ψ+ = [ψ∗ −ψ1,ψ
∗ −ψ2]Iψ , (7b)

Iψ = argmin{abs(ψ∗ −ψ1), abs(ψ
∗ −ψ2)}, (7c)

where Iψ represents the index vector resulting from element-wise arg-minimization, with
argmin and abs applied element-wise. ψ+ is the improvement vector gathered from two
vectors according to Iψ. The parameter ϵ determines the extent to which the new rec-
ommendation ψ3 is close to ψ∗ or to the suggested ψ1,2. We set ϵ to 0.3. In addition,
we applied 10% probability that a user will make a wrong preference feedback on a given
outcome pair {ψ1,ψ2}. This reflects the fact that human beings are usually unreliable and
a correct judgement based on preference is often noisy in plasma medicine.

For comparison, we consider the following four methods: (i) random sampling, (ii)
multi-objective BO using qNEHVI (MOBO), the batch of which is also 3 for consistency,
(iii) the proposed method without co-active feedback (Preference Learning BO), and (iv)
the proposed method in Section 3 (Co-active Preference Learning BO). Each method is
repeated 256 times, with different D0 and P0 to initialize the outcome and utility surrogate
model, and Q = 20 loops of the PE and EXP stages. As can be seen on the left of

Figure 1: Left: Comparison of the best achieved utility performance at the experimentation
stages. Right: State and input profiles of closed-loop experiments at various
experimentation stages of co-active preference-learning BO.

Fig. 1, preference-based BO algorithm outperforms both random and MOBO methods. In
addition, when considering the co-active feedback higher utility (lower distance to best
reachable utility) can be achieved in a lower number of iterations. This means that under
the proper guidance of a user via co-active feedback, preference-learning BO can leverage
the user’s knowledge to enable faster identification of high preference region. We further
look into the detailed performance of the adapted closed-loop treatment. Fig. 1 right shows
how the inputs and states profiles evolve as more experimentation stages are executed in
co-active preference-learning BO. It can be seen that this method can quickly reduce the
required treatment time while still satisfying the temperature constraint. We validated the
proposed method also in benchmark problems as shown in Appendix D.
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Appendix A: Experimental Setup

In this work, a prototypical atmospheric pressure plasma jet is employed to simulate the cold
plasma treatment process in plasma medicine. Briefly, plasma is generated in a quartz tube
by applying high-frequency AC voltage to a copper electrode, wrapped around the tube,
as He flows through. The plasma is then directed onto a grounded metal plate covered
with a substrate (here, glass), situated 3 mm below the APPJ’s tip. The manipulated
inputs include the applied power P and He flow rate q, while the measured outputs are the
maximum surface temperature T and the total optical intensity I of plasma at its incident
point with the surface. Measurements are taken every 0.5 seconds. Control of the plasma
is achieved via Arduino manipulating the flowrate of Helium and the applied power. The
data for training the DNN policy are also collected using this setup.

Grounded metal plate

Glass
cover slip

Copper 
electrode

Gas (He) flowrate

IR camera
Surface 

temperature

Applied 
power

Optical 
intensitySpectrometer

Mass flow 
controller

Microcontroller

AmplifierFunction 
generatorComputer

Amplifier Function 
generator

Fig. 1. Schematic of the kHz-excited CAP jet in helium (He). The
manipulated inputs are denoted along the black dotted arrows, and the
measured outputs are denoted in red.

based control policies in a run-to-run manner. MOBO uses
probabilistic surrogate models of multiple closed-loop per-
formance measures (i.e., plasma treatment outcomes) to
systematically trade off between exploration and exploitation
of a subset of DNN parameters. The selection of this subset
of parameters is guided by a global sensitivity analysis
that quantifies the influence of each network parameter
on the performance measures. As such, MOBO yields a
data-efficient scheme for performance-oriented adaptation of
DNN-based control policies. We experimentally demonstrate
the proposed strategy for adaptive DNN-based approximate
MPC of a CAP jet (CAPJ) with prototypical applications in
processing of heat-sensitive biomaterials.

II. ROBUST MPC OF COLD ATMOSPHERIC PLASMA JET

In this section, we present the control problem for a
prototypical CAPJ in the context of personalized plasma
treatments. We use a kHz-excited CAPJ in helium (He) that
consists of a copper ring electrode wrapped around a quartz
tube [21]. A schematic of the CAPJ is shown in Fig. 1. As
He gas flows through the tube, plasma ignition is achieved by
applying a high-frequency alternating current (AC) voltage to
the copper electrode. The plasma is directed out of the tube
onto a target substrate, in this case, a grounded, glass-covered
metal plate at a distance of 3 mm below the tip of the tube.
The applied power P and He flow rate q are the manipulated
inputs. The maximum surface temperature T and total optical
intensity I of the plasma at the plasma-surface incident point
are the measured outputs. Measurements are made available
every 0.5 s.

Using data collected from the CAPJ, we model the system
dynamics via a linear time-invariant (LTI) state-space model

x(k + 1) = Ax(k) +Bu(k), (1a)
y(k) = Cx(k) +Du(k), (1b)

where k is the discrete time step, x ∈ Rnx is the vector of
states, u = [P, q]⊤ ∈ Rnu is the vector of manipulated in-
puts, y = [T, I]⊤ ∈ Rny is the vector of measured output(s),
and A,B,C,D are the state-space matrices identified using
subspace identification [22]. The state-space model is defined
in terms of deviation variables around a nominal operating
condition. Furthermore, we assume an observable, canonical
form of (1), where C = I and D = 0. Additionally, we
assume that the overall system uncertainty is modeled as a
stochastic variable w that is added to (1a).

Plasma treatment of complex surfaces relies on quantifica-
tion of the delivered plasma effects to a surface. We describe
the accumulation of thermal effects on a target with a metric
called cumulative equivalent minutes (CEM), as given by

CEM(k + 1) = CEM(k) +K(Tref−T (k))δt, (2)

where K is an exponential base dependent on physical
properties of the substrate, Tref = 43◦C is the reference
temperature, and δt is the sampling time [23]. This definition
of the thermal dose is cumulative in that plasma effects
delivered cannot be retracted. With the CEM measure, the
augmented system states are x = [T, I,CEM]⊤. Accord-
ingly, the resulting nonlinear model of the CAPJ for thermal
treatment of surfaces takes the form

x(k + 1) = f(x(k), u(k), w(k)). (3)

The goal of a plasma treatment is to deliver a desired
amount of plasma effects as quickly as possible without
violating comfort and safety constraints. Here, we look to
systematically account for inherent uncertainties of CAPJs
using a robust MPC formulation. To this end, we use
scenario-based MPC (sMPC) [24]. sMPC assumes that the
system uncertainty is represented by a tree of discrete scenar-
ios, where each branch stemming from a node represents a
particular scenario of uncertainty realization. Further, to limit
the number of scenarios, a robust horizon Nr is often defined
to bound the uncertainty propagation up to a given point
[25]. In this work, we select a “worst-case” formulation of
the scenario tree, wherein the scenarios are generated based
on the worst-case bounds of the uncertainty. To represent
the trajectories generated by S scenarios, we adopt the
notation

(
xj(i), uj(i)

)
, where the addition of the superscript

j indicates the particular scenario j ∈ {1, . . . , S}. As such,
the optimal control problem at time step k is formulated as

min
xj ,uj

S∑
j=1

pjV j(·) (4a)

s.t. xj(i+ 1) = f
(
xj(i), uj(i), wj(i)

)
, (4b)(

xj(i), uj(i)
)
∈ X × U , (4c)

xj(0) = x(k), (4d)

uj(i) = ul(i) if xb(j)(i) = xb(l)(i), (4e)
∀i ∈ {0, . . . , Np − 1},

where pj is the probability of a particular scenario, V j(·)
is the control cost that can consist of a stage cost over a

2770

Figure 2: Schematic of the kHz-excited atmospheric pressure plasma jet in helium. The
manipulated inputs are denoted in black dashed lines and the measured outputs
are denoted in red dashed lines.
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Appendix B: Safe and Fast Control of Thermal Dose Delivery

Our objective is to deliver a desired amount of thermal dose CEM in minimal time without
violating a safety-critical constraint on surface temperature T that corresponds to a person’s
comfort and safety. Additionally, in order to ensure a safe plasma treatment, we look to
systematically account for system uncertainties, modeled by w in (2), in the control problem
formulation. To this end, the control problem is cast as a robust MPC problem based on
the system model (2) with the terminal control objective V (τp) =

(
CEMsp − CEM(τp)

)2
,

where CEMsp is a user-specified thermal dose setpoint, τp is a given treatment time, and
the surface temperature constraint is T ≤ 45◦C; c.f. Chan et al. (2023) for more details.

The computational cost and memory footprint of the control policy obtained via the
above-described robust MPC pose a key challenge to controller implementation on low-
cost, resource-limited hardware required for point-of-use plasma biomedical devices such as
APPJs. Thus, the robust MPC policy is approximated by a deep neural network (DNN)
using in-silico data collected by solving the controller in closed-loop with the model (2)
(Chan et al., 2023). The basic structure of the DNN-based control policy consists of L
hidden layers with H nodes, creating a nonlinear mapping that transfers information from
input (i.e., measured states) to output (i.e., control inputs) via feedforward propagation
(Goodfellow et al., 2016). As such, given a measured system state z, the control policy used
in this work takes the form of

Π (z; θ0, C) =WL+1 ◦ (σL ◦WL) ◦ · · · ◦ (σ1 ◦W1) (z), (8)

where θ0 = {Wi}L+1
i=1 denotes the DNN parameters obtained by minimizing a mean-squared-

error loss function using the in-silico closed-loop data. In (8), ◦ symbolizes composition; C
represents the hyperparameters; andWi includes the weight matrix and bias for the ith and
(i+1)th layers, with σi denoting the activation function. The DNN-based control policy (8)
enables fast control computations as a function of measured system states at kHz sampling
rates (Bonzanini et al., 2020). However, (8) is trained offline based on a plasma dose model
established for a population of subjects; that is, the constant K in (1) is estimated for
a population, which can hinder therapeutically effective plasma treatment of individual
subjects. Thus, it is imperative to adapt the control policy (8), namely parameters θ0, in a
run-to-run manner to enable tailoring the plasma treatment to each individual subject.
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Appendix C: Pseudocode of the Co-active Preference Learning BO

Algorithm 1: Co-Active Preference Exploration Bayesian Optimization

Input: D0,P0,Θ
Output: θ∗

Parameter: N,M,Q
0. Initialization
Train f̂(·|D0) the multi-outcome model;
Train û(·|P0) the utility model;
Set D = D0,P = P0;
for b=1:Q do

1. PE Stage
for m=1:M do

f̂rff ← sample a function from f̂ from via random Fourier features;
θ1,m,θ2,m = argmax

ψ1,ψ2

EUBO(û(f̂rff(θ1)), û(f̂rff(θ1))) optimize outcomes for

the user;
ψ1,m,ψ2,m = f̂rff(θ1,m), f̂rff(θ2,m);
r(ψ1,m,ψ2,m)← user provides a comparison;
ψ3,m ← user provides a desired outcome based on ψ1,m,ψ2,m;
Update P = P ∪ {(ψ1,m,ψ2,m, r(ψ1,m,ψ2,m)), (ψ3,m,ψ1,m, r =
1), (ψ3,m,ψ2,m, r = 1)};
Train û(·|P) the utility model;

end
2. EXP Stage
θ1:N,b = argmax qEIUU(θ1:N,b) optimize N set of policy parameters;
ψ1:N,b = f(θ1:N,b) experiment the parameters in the real multi-outcome
function;
Update D = D ∪ {(θi,b,ψi,b)}Ni=1;

Train f̂(·|D) the multi-outcome model;
θ∗ = argmax{u(ψ1:N,b), u(f(θ

∗))} optimal parameters;

end
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Appendix D: Performance on Benchmarks

In this section we report the effect of considering the co-active feedback in three benchmark
problems taken from (Lin et al., 2022). Here the Co-Active Preference learning BO method
is called EUBO+Y3 and the Preference learning BO method is called EUBO.

Vehicle safety
(5 inputs 3 outcomes)

with Product of
Kumaraswamy CDFs

utility

DTLZ2
(8 inputs 5 outcomes)

with negative ℓ1 distance
utility

OSY
(6 inputs 8 outcomes)
with piece-wise linear

utility

Figure 3: The performance of co-active feedback on benchmark problems. The existence
of co-active feedback makes the algorithm outperform preference-learning BO
without co-active feedback.

The Co-Active Preference learning BO method significantly outperform or perform as
well as the Preference learning BO.
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