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Abstract

Weight-space uncertainty methods (BNNs, ensembles, Laplace) are difficult
to apply post-hoc to frozen foundation models due to retraining requirements
or prohibitive second-order computations. We introduce Gaussian Process
Activations (GAPA), which replace deterministic activations with Gaussian
processes which add principled epistemic uncertainty without altering the
original predictions. Using a 1-nearest-neighbour FITC surrogate, GAPA
yields closed-form, distance-aware variances with logarithmic time complex-
ity. These variances are propagated through the frozen network using delta
method propagation rules. Across regression, classification, segmentation,
and language modeling, GAPA matches or exceeds existing methods in
calibration and OOD detection while being faster at test time.

1 Introduction

While Bayesian methods provide a principled foundation for uncertainty, exact posterior
inference in modern neural networks is often intractable (MacKay, 1992). This has motivated
decades of weight-space approximations: Bayesian neural networks (BNNs) place distribu-
tions over parameters but often cannot use an already existing model with deterministic
weights and require retraining from scratch (Blundell et al., 2015; Graves, 2011); deep
ensembles approximate epistemic uncertainty via multiple independent trainings, multiply-
ing compute and memory (Lakshminarayanan et al., 2017); and Laplace approximations
construct Gaussian posteriors around trained weights but depend on expensive second-order
curvature estimates—even last-layer Laplace (LL-Laplace) variants become prohibitive for
large output dimensions (Daxberger et al., 2021). This creates a practical gap – practitioners
need a method that can be applied post-hoc to any pre-trained model without computational
overhead or performance degradation (Ovadia et al., 2019). Current methods force an unfea-
sible choice: either pursue proper uncertainty quantification through expensive approaches,
or settle for simple calibration techniques that only adjust confidence without capturing
epistemic uncertainty (Guo et al., 2017).

In this work we propose a different path toward uncertainty modeling, focusing on the
activation space. Activation space is (i) lower-dimensional than weight space, (ii) semantically
meaningful through the backbone’s learned representations. We introduce the Gaussian
Process Activation (GAPA) framework—a drop-in uncertainty layer for frozen pre-trained
networks. GAPA replaces a deterministic activation with a Gaussian Process and uses
propagation rules to transfer the uncertainty signal through the network. Figure 1 illustrates
GAPA’s key property: the decision boundary (black line) remains identical to MAP’s, while
epistemic uncertainty increases with distance from training points (orange/yellow).

Contributions.

1. We replace deterministic activations ϕ with Gaussian processes whose prior mean equals
ϕ, proving the posterior mean remains ϕ—thus GAPA outputs a distribution N (ϕ,Σ)
where the mean exactly preserves the backbone’s original predictions and the covariance
Σ quantifies uncertainty.
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Figure 1: Comparison of four uncertainty quantification (UQ) methods on a toy binary task
(left→right): MAP (backbone), MC Dropout, LL-Laplace, and GAPA (ours). Background shading
indicates (darker = more confident); orange/yellow points are the two classes. GAPA preserves the
backbone decision boundary (black).
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Figure 2: Left: The GAPA framework adds a parallel variance path (blue) to frozen networks
while preserving mean predictions (orange). The inset shows the 1-NN FITC computation. Right
Top: Standard tanh activation function. Right Bottom: GAPA-augmented tanh with uncertainty
bands—the mean (blue line) exactly matches the original tanh while the shaded regions quantify
epistemic uncertainty.

2. We develop a 1-nearest-neighbour FITC approximation using training pre-activations as
inducing points, achieving O(logM) retrieval (for M inducing points) and O(d) variance
computation (for layer width d) with uncertainty.

3. We provide closed-form rules that propagate activation-space (diagonal) covariance to
output-space uncertainties via the delta method, and a noisy-input GP (NIGP) corrections
for stacked GAPA layers—enabling single-pass inference without sampling or test-time
backprop.

4. Experiments across regression, classification, segmentation, and language modeling show
GAPA matches or exceeds existing methods while being faster at test time when applied
post-hoc to frozen models.

2 Model Proposition

We begin with a high-level description of the proposed method and then describe each part in
detail. The proposed method consists of two key elements: First, GAPA attaches lightweight
Gaussian processes to hidden layers that (i) preserve the network’s point predictions and (ii)
add epistemic uncertainty. The right panels of Fig 2 contrast a standard tanh activation
function (top, labelled "Tanh") with its GAPA-augmented counterpart (bottom, labelled
"GAPA")—both share identical means, but GAPA adds uncertainty bands (in blue) that grow
with distance from training activations (orange points). Second,we utilize mean-preserving
uncertainty propagation in the pre-trained, frozen network. In the left panel of Figure 2
we show how GAPA adds a parallel variance path (blue) to the frozen network keeping its
original mean path (orange).

The method pipeline is as follows: We first collect activation patterns of a pre-trained model
to build a cache of activations on one or more layers. This process only requires forward passes
through the network on a dataset we want GAPA to be certain. We then, optionally, do
furthest point sampling on the collected activations and set all hyperparameters empirically
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from statistics of the data. Starting at the first GAPA layer, we compute its output variance
and propagate it forward through subsequent layers. This yields a single-pass, closed-form
variance propagation.

2.1 Gaussian Process Activation Function

Consider a backbone neural network that has been trained and is now frozen—all weights
remain fixed during our uncertainty quantification, with no gradient updates or fine-tuning.
Let dℓ denote the number of neurons at layer ℓ. The forward pass computes pre-activations

zℓ =W ℓhℓ−1 + bℓ ∈ Rdℓ

where W ℓ ∈ Rdℓ×dℓ−1 and bℓ ∈ Rdℓ are frozen weights and biases, and hℓ−1 ∈ Rdℓ−1 is the
previous layer’s output. The activation function ϕℓ : Rdℓ → Rdℓ applies element-wise, i.e.,
[ϕℓ(zℓ)]j = ϕ(zℓj) for a scalar function ϕ : R→ R (e.g., ReLU, tanh), producing hℓ = ϕℓ(zℓ).
GAPA replaces this deterministic activation function with a vector-valued GP:

f(zℓ) ∼ GP
(
m(zℓ),K(zℓ, z′ℓ)

)
, f : Rdℓ → Rdℓ ,

with prior mean set to the original activation function m(zℓ) = ϕℓ(zℓ). Since the output
is dℓ-dimensional, the kernel K(zℓ, z′ℓ) is a dℓ × dℓ covariance matrix. For computational
tractability, we use a diagonal structure:

K(zℓ, z′ℓ) = diag(k1(z
ℓ, z′ℓ), . . . , kdℓ(z

ℓ, z′ℓ)) ∈ Rdℓ×dℓ ,

where each kj is an RBF (squared exponential) kernel kj(zℓ, z′ℓ) = c2j exp
(
−∥zℓ−z′ℓ∥2

2ℓ2j

)
,

with neuron-specific prior variance c2j and length-scale ℓj .

Mean preservation. We pass training data through the frozen network and store the
pre-activation values at layer ℓ. Let Z̃ = {z̃1, . . . , z̃M} be these cached pre-activations,
where each z̃j ∈ Rdℓ is the pre-activation vector from a training example. For each cached
pre-activation z̃j , we also store its corresponding activation value h̃j = ϕℓ(z̃j) ∈ Rdℓ .

For neuron i, the GP posterior mean at test input zℓ∗ is given by the standard GP formula:

µi(z
ℓ
∗) = mi(z

ℓ
∗) + ki(z

ℓ
∗, Z̃)

T [Ki(Z̃, Z̃) + σ2
nI]

−1 (h̃i −mi(Z̃)) (1)

where ki(z
ℓ
∗, Z̃) ∈ RM is the vector [ki(zℓ∗, z̃1), . . . , ki(zℓ∗, z̃M )]T containing kernel evaluations

between the test input and cached points; Ki(Z̃, Z̃) ∈ RM×M is the covariance matrix with
entries [Ki]jk = ki(z̃j , z̃k); σ2

n is a small noise variance for numerical stability (typically
10−6); h̃i ∈ RM contains the i-th neuron’s cached activations [ϕℓi(z̃1), . . . , ϕ

ℓ
i(z̃M )]T ; and

mi(Z̃) ∈ RM contains the prior means at cached points, which equals h̃i since our prior
mean is the activation function itself.

Since our prior mean equals the activation function (mi = ϕℓi), we have h̃i = mi(Z̃), making
the correction term zero

µi(z
ℓ
∗) = ϕℓi(z

ℓ
∗) + ki(z

ℓ
∗, Z̃)

T [Ki + σ2
nI]

−1 (h̃i − h̃i)︸ ︷︷ ︸
= 0

= ϕℓi(z
ℓ
∗).

Thus the posterior mean is identical to the original activation function, perfectly preserving
the network’s predictions. The posterior variance for neuron i is

σ2
i (z

ℓ
∗) = ki(z

ℓ
∗, z

ℓ
∗)− ki(z

ℓ
∗, Z̃)

T [Ki(Z̃, Z̃) + σ2
nI]

−1ki(z
ℓ
∗, Z̃), (2)

yielding the full predictive covariance for the output of layer ℓ’s neurons

Σ(ℓ)(zℓ∗) = diag
(
σ2
1(z

ℓ
∗), . . . , σ

2
dℓ
(zℓ∗)

)
∈ Rdℓ×dℓ . (3)

where dℓ is the number of neurons at layer ℓ. This diagonal matrix captures neuron-wise
epistemic uncertainty that grows smoothly with distance from the cached pre-activations.
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Why diagonal covariance? Treating neurons as conditionally independent (diagonal
output covariance) is essential for tractability: a full multi-output covariance would require
storing and propagating dense dℓ × dℓ matrices across thousands of neurons, which is
prohibitive in both memory and compute for modern networks. This diagonal approximation
is standard in scalable Bayesian methods and, crucially for our post-hoc setting, sufficient to
capture epistemic uncertainty—as we demonstrate empirically in Section 4.

2.2 Scalable Inference via 1-NN FITC approximation

Let N be the number of cached pre-activations at layer ℓ (obtained by passing the training set
once and recording zℓ). Then, the exact posterior covariance in Equation (3) requires O(dN3)
computation and O(dN2) memory for d neurons and N cached/training points—prohibitive
for modern networks. To reduce the cost, we employ two approximations:

1. FITC approximation (Snelson and Ghahramani, 2005): Instead of conditioning on all
N training points, we use M ≪ N inducing points Z̃ = {z̃1, . . . , z̃M}, reducing complexity
to O(dM3).

2. 1-Nearest Neighbor selection: We set M = 1 dynamically by selecting the nearest
cached pre-activation for each test input z∗(zℓ) = argminz̃∈Z̃ ∥zℓ − z̃∥2, retrieved via FAISS
(Douze et al., 2024) in O(logM) time.

Under these approximations, the posterior mean for the output of neuron i remains µi(zℓ) =
ϕℓi(z

ℓ) exactly, while its posterior variance simplifies to

σ2
i (z

ℓ) = c2i

(
1− exp

(
−∥z

ℓ − z∗∥2

2ℓ2j

))
. (4)

This closed-form expression shows that variance grows smoothly with distance ∥zℓ − z∗∥
from the nearest cached activation—see the right-most plot in Figure 6 where uncertainties
increase as we move away from training data.

Computational complexity. We use FAISS (Douze et al., 2024), a library for efficient
similarity search, to index the M inducing points for fast nearest-neighbor retrieval. Building
this index requires O(Mdℓ) one-time setup. Per-query inference costs only O(logM+dℓ)—the
nearest neighbor search plus dℓ scalar variance computations. The full derivation of the
1-NN FITC variance formula in Equation (4) is provided in Appendix E.

2.3 Variance Propagation Through The Networks

To obtain output-space uncertainty from GAPA layers placed within the network, we
propagate variances forward through subsequent layers. We maintain diagonal covariance
matrices throughout: Σh denotes a variance vector with the same dimensionality as the layer
output vector h. Recall that each GAPA layer outputs a Gaussian

hℓ | zℓ ∼ N
(
µℓ(zℓ), Σ(ℓ)(zℓ)

)
, µℓ(zℓ) = ϕℓ(zℓ),

where the mean equals the original activation function.

We consider three propagation scenarios—(i) linear layers, (ii) nonlinear activations, and (iii)
stacked GAPA layers. Specialized architectures (self-attention, LayerNorm) are derived in
Appendix K.

(i) Linear Transformation of Variance. For a linear transformation z =Wh+ b where
h has diagonal covariance Σh (i.e., components of h are independent), the output covariance
Σz remains diagonal with entries [Σz]i =

∑
jW

2
ij [Σh]j . This follows from the independence

assumption Var(zi) = Var(
∑
jWijhj) =

∑
jW

2
ijVar(hj).

(ii) Propagation Rules for Non-Linear Activations. For a non-linear activation
y = g(z) applied to a Gaussian random variable z ∼ N (µ, σ2), we approximate g(z) by a

4
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first-order Taylor expansion around µ: g(z) ≈ g(µ)+ g′(µ)(z−µ). Under this approximation,
y is approximately Gaussian with mean E[y] ≈ g(µ) and variance Var(y) ≈ (g′(µ))2σ2, since
z − µ ∼ N (0, σ2).

(iii) Stacking GAPA layers (noisy-input GP). With multiple GAPA layers, each layer
passes forward mean and variance vectors rather than deterministic activations. Because
GAPA is mean-preserving, the predictive mean at the next GAPA layer does not change
under input uncertainty (µi(zℓ) = ϕℓi(z

ℓ) for all i). However, the predictive variance must
account for uncertain inputs. Following the noisy-input GP (NIGP) correction (McHutchon
and Rasmussen, 2011), we add a term to the epistemic variance. Let Σz denote the
(diagonal) input covariance entering the current GAPA layer. Then for neuron i, λi(zℓ) =(
∇zℓµi(z

ℓ)
)⊤

diag
(
Σz

) (
∇zℓµi(z

ℓ)
)
, and the total predictive variance becomes

σ2
i (z

ℓ) = c2i −
ki(z

ℓ, z∗)2

c2i + σ2
n︸ ︷︷ ︸

epistemic (1-NN FITC)

+ λi(z
ℓ)︸ ︷︷ ︸

input-uncertainty (NIGP)

+ σ2
y,i︸︷︷︸

aleatoric noise

.

In our elementwise setting, µi(zℓ) = ϕℓi(z
ℓ
i ) and λi(z

ℓ) = (ϕ′i(z
ℓ
i ))

2 [Σz]i. Here, σ2
y,i models

observation (aleatoric) noise; we set σ2
y,i = 0 for classification and either learn a het-

eroscedastic head or calibrate a scalar in regression (Sec. 2.4). The mean prediction remains
µi(z

ℓ) = ϕℓi(z
ℓ) regardless of input uncertainty; only the variance is updated by the NIGP

correction.

2.4 Hyperparameter Strategy

We do not optimize GP kernel hyperparameters (or the inducing set) via gradient descent
or marginal likelihood. Instead, we set them once from cached training statistics: the
RBF amplitude c2i to the empirical variance of neuron i’s activations, the length–scale ℓi
to the median pairwise distance between cached pre-activations, the inducing set Z̃ via
farthest-point sampling, and a small jitter σ2

n (e.g., 10−6) for numerical stability (details
in Appendix F.1). This is necessary because our GP prior mean equals the activation
(mi = ϕi), so marginal-likelihood optimisation admits a degenerate solution c2i → 0 that
collapses epistemic uncertainty.

For classification, we keep GAPA kernel hyperparameters fixed and do not learn any additional
parameters. We compute predictive probabilities using the Laplace-bridge approximation,
which adjusts each logit by its uncertainty before applying softmax—effectively down-
weighting uncertain predictions (see Appendix I for the exact formula). We do not add a
separate aleatoric noise term since the softmax output already captures class uncertainty
through its probability distribution.

For regression, we keep the backbone and GAPA kernels fixed but learn an input-dependent
aleatoric noise term. We train a small MLP head to predict heteroscedastic noise σ2

ale(x),
which is added to the epistemic variance σ2

epi(x) from GAPA. The total variance σ2
tot =

σ2
epi + σ2

ale is used in a Gaussian negative log-likelihood loss. Since only the noise head is
trained while the backbone remains frozen, mean predictions are preserved exactly. See
Appendix F.2 for implementation details.

3 Related Work

Post-hoc uncertainty for frozen networks has been approached along several lines.
Feature-based and output-layer methods analyze or modify representations near the head:
ODIN/Mahalanobis-style detectors (Hendrycks and Gimpel, 2016; Lee et al., 2018; Postels
et al., 2020), distance-aware heads such as DUQ (Van Amersfoort et al., 2020) and SNGP
(Liu et al., 2020). Calibration techniques (e.g., temperature scaling and Platt scaling) adjust
confidence without modeling epistemic uncertainty (Guo et al., 2017; Platt et al., 1999);
conformal prediction provides coverage guarantees but does not by itself supply a distance-
aware epistemic signal (Vovk et al., 2005; Shafer and Vovk, 2008; Angelopoulos and Bates,
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2021). Sampling-based approaches include MC Dropout (Gal and Ghahramani, 2016), which
requires multiple stochastic forward passes, and Deep Ensembles (Lakshminarayanan et al.,
2017), which multiply training and inference costs. GP-style probes on penultimate features
(e.g., Linear Probing, SNGP) place uncertainty primarily at the output layer (Liu et al.,
2020).

Last-Layer Laplace (LL-Laplace) and variants (KFAC, ELLA, VaLLA) construct Gaussian
posteriors over the final linear head and enable post-hoc attachment to frozen backbones
(Daxberger et al., 2021; Ortega et al., 2023). However, scalability is limited for high-
dimensional outputs: computing per-class logit variances x⊤∗ Σwx∗ scales as O(V d) per token
for vocabulary size V and hidden width d, which becomes prohibitive for large vocabularies
(V ≳ 50k), even under diagonal approximations. As a result, LL-Laplace is typically used for
small downstream heads (classification, reward models) rather than full next-token prediction.

4 Results

In this section, we demonstrate GAPA’s effectiveness and broad applicability across diverse
tasks and model families. We present results on standard regression benchmarks, classifica-
tion, and language models, with additional evaluations on ResNets (Appendix A), image
segmentation (Appendix B), and LLaMA-3.2 (Appendix C) in the appendix. Ablation studies
examining GAPA layer placement, number of inducing points, and sampling strategies are
provided in Appendix M.

4.1 Regression

Table 1: Results on regression datasets. Best values are in purple, and second-best in teal. An
asterisk (*) indicates a last-layer LLA variant. Results are averages over 5 random seeds; standard
deviations (< 10−3 in all cases) are omitted for brevity. The full table with stds can be found in
Table 6 in the Appendix.

Model Airline Year Taxi

NLL CRPS CQM NLL CRPS CQM NLL CRPS CQM

MAP (backbone) 5.121 18.695 0.148 3.673 5.023 0.134 3.775 3.755 0.211
LLA Diag 5.125 18.648 0.143 3.647 4.917 0.088 3.722 3.990 0.257
LLA KFAC 5.127 18.631 0.142 3.648 4.915 0.086 3.706 3.986 0.256
LLA* 5.127 18.631 0.141 3.648 4.915 0.086 3.726 3.985 0.256
LLA* KFAC 5.127 18.631 0.141 3.648 4.914 0.086 3.726 3.985 0.256
ELLA 5.388 21.671 0.413 4.020 6.049 0.424 3.885 3.680 0.219
VaLLA 100 4.963 18.814 0.099 3.515 5.004 0.047 3.235 3.999 0.149
VaLLA 200 4.965 18.788 0.098 3.485 4.970 0.041 3.232 3.979 0.142
Dropout 5.102 19.066 0.938 3.689 5.128 0.939 3.849 4.592 0.951
Ensemble 5.053 18.205 0.933 3.639 4.833 0.938 3.631 3.384 0.961
GAPA (ours) 4.946 18.068 0.103 3.470 4.663 0.014 3.112 4.035 0.104

We compare GAPA against state-of-the-art post-hoc Laplace-based methods (VaLLA, LLA
variants, ELLA (Daxberger et al., 2021; Izmailov et al., 2020; Ortega et al., 2023)) on
three benchmarks: UCI Year, Airline (Dutordoir et al., 2020), and Taxi (Salimbeni and
Deisenroth, 2017), using original train/test splits. Performance is evaluated using Negative
Log-Likelihood (NLL), Continuous Ranked Probability Score (CRPS), and Centered Quantile
Metric (CQM), with detailed definitions in Appendix J.1. Table 1 shows GAPA achieves
best performance across nearly all metrics, with only two exceptions: third for CRPS on
Taxi and marginally higher CQM than VaLLA on Airline.

4.2 Classification

We evaluate GAPA’s performance on classification tasks by assessing predictive accuracy,
calibration, and out-of-distribution (OOD) detection capabilities. Key metrics include
Accuracy (ACC), Negative Log-Likelihood (NLL), Expected Calibration Error (ECE), and
the Area Under the ROC Curve (AUC) for OOD detection using predictive entropy (OOD-
Entropy) and the BALD score (OOD-BALD). Detailed definitions of these metrics are

6
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provided in Appendix J.2. The ResNet and image segmentation experiment can be found in
Appendix A and B respectively.

Table 2: Results on classification datasets. Best values are in purple, second-best in teal. Results
are averages over 5 random seeds; standard deviations (< 10−3 in all cases) are omitted for brevity.
The full version with standard deviations can be found in Table 7 in the Appendix.

Model MNIST FMNIST

ACC NLL ECE OOD BALD ACC NLL ECE OOD BALD

MAP (backbone) 0.978 0.068 0.005 0.919 0.919 0.859 0.392 0.007 0.846 0.821
LLA Diag 0.976 0.177 0.105 0.932 0.941 0.856 0.421 0.057 0.872 0.873
LLA KFAC 0.978 0.102 0.042 0.971 0.971 0.858 0.395 0.020 0.909 0.970
LLA* 0.978 0.070 0.009 0.924 0.924 0.859 0.395 0.019 0.850 0.716
LLA* KFAC 0.979 0.070 0.009 0.923 0.928 0.859 0.394 0.017 0.849 0.717
ELLA 0.978 0.068 0.005 0.919 0.912 0.859 0.392 0.007 0.846 0.765
VaLLA 100 0.978 0.068 0.005 0.919 0.934 0.865 0.382 0.019 0.925 0.963
VaLLA 200 0.978 0.068 0.005 0.919 0.934 0.867 0.378 0.020 0.937 0.970
Linear Probing 0.977 0.117 0.015 0.884 0.883 0.858 0.395 0.048 0.785 0.776
GPP 0.978 1.648 0.784 0.934 0.904 0.857 1.716 0.692 0.867 0.962
Dropout 0.978 0.072 0.009 0.923 0.944 0.858 0.393 0.009 0.850 0.911
Ensemble 0.979 0.069 0.038 0.936 0.962 0.859 0.373 0.041 0.863 0.938
DDU 0.978 0.068 0.005 0.921 0.919 0.859 0.392 0.007 0.876 0.983
GAPA k=1 0.978 0.109 0.049 0.960 0.972 0.859 0.389 0.013 0.973 0.993
GAPA k=50 0.978 0.080 0.023 0.962 0.976 0.859 0.388 0.011 0.944 0.993
GAPA k=500 0.978 0.073 0.016 0.963 0.976 0.859 0.390 0.009 0.920 0.993

Model MNIST FMNIST

Train Test Train Test

LLA Diag 2.34K 230.9 2.34K 221.9
LLA KFAC 130.0 1.85K 129.9 1.84K
LLA* 24.0K 64.3 24.0K 64.3
LLA* KFAC 31.2 17.6 31.2 17.4
ELLA 821.8 148.7 827.1 149.9
VaLLA 100 2.19K 16.4 495.1 16.4
VaLLA 200 3.43K 18.3 767.7 19.3
Linear Probing 2.78K 3.6 2.64K 3.8
GPP 5.79K 23.5K 5.57K 2.27K
Dropout — 4.3 — 4.3
Ensemble — 11.9 — 11.9
GAPA 91.9 2.1 92.1 2.1
GAPA k=50 91.9 4.0 92.1 4.0
GAPA k=500 91.9 16.3 92.1 16.3

Figure 3: Left: Training and test times on MNIST and FMNIST for various models (in seconds;
K = ×1000). Right: Predictive NLL under rotation corruption for MNIST (left sub-panel of the
plot) and FMNIST (right sub-panel of the plot); lower NLL is better. All reported results are
averages over 5 random seeds; standard deviations (in all cases < 10−3) are omitted for brevity.

We evaluate GAPA on MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao et al., 2017)
using a 2-layer fully connected network (200 units per layer, tanh activations) following
Ortega et al. (2023). GAPA layers are applied post-hoc to each activation and pre-softmax
logits. For OOD detection, MNIST and FMNIST serve as reciprocal OOD datasets.

Table 2 and Figure 3 show that while GAPA has higher NLL than some baselines, it excels at
uncertainty quantification: achieving the highest OOD-AUC (0.960/0.973) and OOD-BALD
(0.972/0.993) across all methods. Inference takes only 2.05s—orders of magnitude faster
than Laplace variants. Under rotation corruption (Figure 3, right), GAPA maintains the
lowest NLL across all angles, correctly identifying OOD inputs with appropriate uncertainty
inflation.

4.3 Language models

We evaluate GAPA on two GPT-style language models: TinyStories (60M) (Eldan and Li,
2023) and GPT-2 Small (124M) (Radford et al., 2019). In Appendix C we provide additional
experiments for LLaMA-3.2-3B.
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For both models, we log 1.5M embedding vectors h(t) ∈ R768 from random training sequences
and time steps at multiple layers. This takes ≈1–2 hours on a consumer GPU and yields a
hard-drive footprint of ≈5 GB per layer. We then apply furthest-point sampling to subsample
the activation logs; we ablate the effect of the inducing set size Ninducing in the results.

We consider a token-level corruption detection task. Given an in-distribution sequence, we
replace an ϵ-fraction of tokens with draws from the vocabulary distribution 1. For each
position t in a (possibly corrupted) sequence x, we derive an uncertainty score u(t) from
the model’s next-token distribution p(· | x≤t). Corruption detection is then framed as a
token-level binary classification task: predict whether x(t) was replaced, using u(t) as the
signal. We report AUROC across different noise levels.

Post-hoc uncertainty scores Let ℓ(t) ∈ RV be the logits at time t and ℓσ2(t) ∈ RV the
corresponding predictive logit variances from GAPA. Define

p = softmax(ℓ), p̃ = softmax
(
ℓ
/√

1 + (π/8) ℓσ2

)
,

where p̃ uses the Laplace bridge approximation (Bishop and Nasrabadi, 2006). We report
(i) aleatoric AU = −

∑
v p log p, (ii) total TU = −

∑
v
¯̃p log p̃, (iii) epistemic EU = TU−AU

uncertainty, and (iv) MSP −maxv ℓv. We additionally include a temperature-scaling oracle
that searches τ to maximize test AUROC using −

∑V
v=1 softmax(ℓ/τ)v log softmax(ℓ/τ)v.

This is not a fair baseline (it tunes on the test metric) but provides an empirical upper
bound for methods that only apply a global rescaling of logits. We denote as ’Ours’ both
TU and EU as they utilize GAPA for epistemic uncertainty quantification.

Our focus is strictly training-free and tuning-free uncertainty from a frozen model. Unlike
methods that modify weights or require validation-set fitting (e.g., QLoRA-based posteriors,
layer-Laplace, ensembles), GAPA requires no gradients, no weight updates, and no model
changes. We therefore compare against baselines that can be computed directly from the
pre-trained model’s outputs. Unless stated otherwise, we attach GAPA to four layers without
tuning: after positional embeddings (base), and after the first, a middle, and the last
transformer block (GPT-2: [base, 0, 5, 11]; TinyStories: [base, 0, 1, 5]).

Results In Table 3a and 3b we show the results for GAPA with 4 layers. We observe that
in both cases the GAPA augmented predictive uncertainties outperform both baselines and
(especially for GPT-2) the optimal temperature-scaled logit approach. The difference in
performance becomes more prominent for larger noise levels. Interestingly, for GPT-2 the
epistemic uncertainty alone, is not a strong predictor for token corruption; only combining
both sources of uncertainty via TU(ℓ, ℓσ2) leads to strong performance. We believe its likely
that for GPT-2, or large language models in general, approximating the full data distribution
with a reasonable amount of inducing points is infeasible by itself, however it does add useful
information that can be intertwined with the entropy of the logits. For the TinyStories
model, EU alone is a strong predictor for corruption, and so is TU, here it appears that the
inducing point can form an accurate data distribution.

Figure 4 (top row) shows the performance as a function of the inducing points. Overall we
observe that performance continuously rises as we increase the number of points for GPT-2,
whereas for TinyStories a saturation in performance is achieved for around 10, 000 inducing
points. Overall, we observe that as we increase the number of inducing points GAPA will
eventually outperform even the post-hoc temperature tuned baseline. Next, we investigate
the effect of the layer position and amount of GAPA layers in Figure 4 (bottom). We see
that for GPT-2 the best performance is achieved around the second to last layer, or for
a combination. Single GAPA layers at early layers perform worse. For TinyStories the
performance is more uniform, where last and first layer GAPAs alone perform slightly worse.
In Appendix D we show example visualizations of the predicted uncertainty values. We can
see that both AU and EU spike at distinct positions and unexpected turns seem to correlate
with a spike in epistemic uncertainty.

1For GPT-2 we use a uniform distribution, because TinyStories has a limited vocabulary, we
first estimate token frequency and then use a power-law sampling scheme with α = 1.2 over the
top-10k GPT-2 tokens.
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Table 3: Token–corruption detection AUROC (↑) at different noise levels ϵ, for GAPA architecture
and Ninducing = 7500 inducing points. Metrics are averaged over 5 evaluation seeds with 168× 16
batches and sequences of length 750 each.

(a) GPT-2 Small (123 Mio., [base, 0, 5, 11]).

ϵ EU(ℓ, ℓσ2) (Ours) TU(ℓ, ℓσ2) (Ours) AU(ℓ) −maxv ℓ H(ℓ/τopt.) 1/τopt.

0.005 0.31±0.001 0.87±0.000 0.70±0.001 0.65±0.001 0.84±0.001 0.27
0.010 0.30±0.001 0.87±0.001 0.70±0.001 0.65±0.001 0.84±0.001 0.27
0.100 0.29±0.001 0.81±0.000 0.72±0.001 0.67±0.001 0.78±0.001 0.40
0.200 0.33±0.000 0.77±0.000 0.68±0.000 0.65±0.000 0.71±0.000 0.27
0.300 0.37±0.000 0.73±0.000 0.63±0.000 0.61±0.001 0.67±0.000 0.12

(b) TinyStories (60 Mio., [base, 0, 1, 5]).

ϵ EU(ℓ, ℓσ2) (Ours) TU(ℓ, ℓσ2) (Ours) AU(ℓ) −maxv ℓ H(ℓ/τopt.) 1/τopt.

0.005 0.80±0.001 0.76±0.001 0.69±0.001 0.65±0.001 0.79±0.001 0.40
0.010 0.81±0.000 0.76±0.000 0.69±0.000 0.65±0.001 0.79±0.001 0.40
0.100 0.77±0.000 0.74±0.000 0.67±0.000 0.64±0.000 0.76±0.000 0.40
0.200 0.73±0.000 0.71±0.000 0.65±0.000 0.62±0.000 0.72±0.000 0.40
0.300 0.69±0.000 0.67±0.000 0.63±0.000 0.60±0.000 0.68±0.000 0.40

(a) GPT-2 Small (b) TinyStories

Figure 4: Ablation studies: Effect of the number of inducing points Ninducing (top), effect of
GAPA layer positions (bottom) on token–corruption detection AUC for ϵ = 0.3. (a) For GPT-2
Small we plot the AUC using TU (blue) with GAPA at layers [base, 0, 5, 11]. (b) For TinyStories
we plot the AUC using EU (blue) with GAPA at layers [base, 0, 1, 5]. In the top plots we also show
the ℓ/Topt bound (green) as an upper threshold of what can be achieved by global logits scaling.

.

5 Conclusion and Limitations

In this work, we introduced GAPA, a novel post-hoc framework that quantifies uncertainty
in pre-trained neural networks by modeling activation-space uncertainty with a scalable
(FITC with closest nearest neighbor) multi-input, multi-output Gaussian Process, while
preserving the base model’s mean predictions and propagating uncertainties via delta
approximation. Extensive empirical validation across diverse tasks, including regression,
classification, high-dimensional image segmentation, and large language models like GPT-2,
demonstrated GAPA’s broad applicability and competitive performance against Laplace
approximations and other baselines. While GAPA offers computational advantages, achieving
strong performance on high-dimensional models requires large numbers of inducing points.
Future work should develop hierarchical selection schemes (e.g., k-means/IVF clustering with
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local 1-NN) where the inducing points are dynamically selected from the nearest clusters.
This could dramatically improve the inducing point efficiency while maintaining performance.
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A ResNets Pretrained Neural Networks

Table 4: GAPA and baselines on CIFAR-10 with ResNet backbones. Results are averages over 5
random seeds; standard deviations (< 10−3 universally) are omitted for brevity.

ResNet-20 ResNet-32 ResNet-44 ResNet-56
ACC NLL OOD ACC NLL OOD ACC NLL OOD ACC NLL OOD

MAP 92.6 0.282 0.876 93.5 0.292 0.909 94.0 0.275 0.885 94.4 0.252 0.924
MF-VI 92.7 0.231 – 93.5 0.222 – 93.9 0.206 – 94.4 0.188 –
SNGP 92.4 0.266 – 93.2 0.256 – 93.8 0.242 – 93.8 0.229 –
GP (subset) 92.6 0.555 – 93.4 0.462 – 93.6 0.424 – 94.4 0.403 –
LLA Diag 92.6 0.260 0.866 93.5 0.242 0.882 94.0 0.218 0.860 94.3 0.195 0.923
LLA KFAC 92.6 0.241 0.877 93.5 0.229 0.903 94.0 0.213 0.855 94.4 0.193 0.917
LLA* 92.6 0.269 – 93.5 0.259 – 94.0 0.237 – 94.4 0.213 –
LLA* KFAC 92.6 0.271 OOM 93.5 0.260 OOM 94.0 0.232 OOM 94.4 0.202 OOM
ELLA 92.5 0.233 OOM 93.5 0.215 OOM 93.9 0.204 OOM 94.4 0.187 OOM
Sampled LLA 92.5 0.231 - - 93.5 0.217 – 94.0 0.200 – 94.4 0.185 –
VaLLA 92.4 0.231 0.940 93.2 0.212 0.933 93.8 0.201 0.928 94.2 0.188 0.960
GAPA (ours) 92.6 0.258 0.907 93.5 0.259 0.926 94.0 0.230 0.903 94.4 0.230 0.935

We further evaluate GAPA on the CIFAR-10 dataset (Krizhevsky et al., 2009) using pre-
trained ResNet architectures of varying depths (ResNet-20, -32, -44, and -56) (He et al., 2016).
Given the potentially high dimensionality of intermediate feature spaces in these deeper
models, GAPA was applied post-hoc to the pre-activations of the final fully connected layer.
For out-of-distribution (OOD) detection in this setup, we used the SVHN dataset (Netzer
et al., 2011) as the OOD benchmark against CIFAR-10 as the in-distribution data. Table 4
reports results on CIFAR using ResNet-20, 32, 44, and 56 backbones. In terms of accuracy,
GAPA matches or slightly lags the best baselines: it achieves 92.6% on ResNet-20, 93.5% on
ResNet-32, and 94.0–94.4% on the deeper variants, on par with MAP and LLA methods.
Calibration, as measured by NLL, is competitive: GAPA’ NLL of 0.258 on ResNet-20 is
close to MAP (0.282) and ELLA (0.233), and its NLL of 0.230 on ResNet-56 matches the
top-performing methods. For out-of-distribution detection, GAPA consistently delivers
AUCs of 0.907–0.935 across all four ResNet depths, exceeding MAP and SNGP, and closely
following the strongest OOD performers (VaLLA and MF-VI). This shows that even with
fixed empirical priors, GAPA provides robust uncertainty estimates on large pretrained
architectures.

B Image Segmentation

As a proof of concept for high-dimensional outputs, we apply GAPA to a U-Net model
(Ronneberger et al., 2015) pre-trained on the Oxford-IIIT Pet dataset (Parkhi et al., 2012)
for a 3-class segmentation task (background, pet, outline) with input images resized to
128× 128. The U-Net architecture features an encoder path with two downsampling stages
(32 and 64 channels, using double convolutions and max pooling), leading to a bottleneck
with 128 channels. From this bottleneck, an embedding head comprising adaptive average
pooling and a linear layer projects the features to a d = 64 dimensional embedding vector.
Standard skip connections are used in the decoder path.

For these experiments, GAPA was applied to this d = 64 dimensional embedding vector at
the U-Net bottleneck. This vector represents the most compressed representation in the
network, and its 1D nature (after pooling and flattening) is directly compatible with our
1-NN FITC approach using FAISS for efficient nearest-neighbor search (Douze et al., 2024).
The GAPA-processed embedding (mean preserved, variance added) is then reshaped and fed
into the decoder to produce the final segmentation map.

The dimensionality of the full segmentation output space (e.g., 128× 128× 3 or ∼224× 224
per image if referring to original dataset paper’s output size before your resize) renders
methods like full Laplace approximation computationally infeasible due to memory and
time constraints (e.g., matrix inversions on O(105) outputs or more). In contrast, applying
GAPA at the compressed embedding stage scales efficiently. Figure 5 demonstrates that
this approach not only produces accurate segmentation masks but also generates spatially
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Figure 5: Qualitative segmentation results with pixel-wise error and epistemic uncertainty.
Columns: (1) Input image X, (2) Ground-truth mask Y , (3) Predicted mask Ŷ , (4) Error map
|Y − Ŷ |, (5) Epistemic uncertainty (mutual information). Rows: three representative validation
examples.

localized epistemic uncertainty maps that precisely highlight regions where prediction errors
occur.

B.1 Toy Regression Example

MAP (backbone) MC Dropout Last-Layer Laplace GAPA (Ours)

Figure 6: (Left) The regression prediction of the pre-trained backbone neural network. (Right)
The GAPA module, applied post-hoc to the first layer to quantify uncertainty without modifying
the original predictions..
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C LLaMA-3.2 Language Modeling Experiments

We attach GAPA post hoc to LLaMA-3.2-3B (hidden size 3072) and run forward passes in
eval mode with KV caching enabled; no weights are updated. For each chosen transformer
block (we report layer indices), we log ∼5M pre-activations on WikiText-103 at sequence
length L = 64 and build a nearest-neighbor cache for uncertainty propagation.

To keep retrieval scalable at this dimensionality and corpus size, we do not run farthest-point
sampling here. Instead we use random inducing points: draw M cached pre-activations
uniformly at random from the logs.

We use the official LLaMA sentencepiece model (vocab size 128,256). During dataset
preparation we filter BOS/EOS so they cannot act as trivial cues; OpenWebText is prepared
analogously. Most WikiText corpora have additional whitespaces about punctuation marks
due to tokenization, they are removed to avoid triviliazing the tasks. Compared to GPT-2
we also derived two additional propagation rules for RMSNorm and Silu activations.

As in the main paper, we preserve the mean path and propagate variances to the logits. For
large open-vocabulary heads (V ≈105), we found the Laplace bridge to not work very well.
Here we instead use a light-weight Monte-Carlo softmax with per-position top-k truncation:

1. keep the top-k logits per token (k = 512);
2. draw S = 512 Gaussian logit samples ℓ(s)∼N (µ = ℓ1:k, Σ = diag(v1:k));
3. set p(s) = softmax(ℓ(s)) and average p̃ = 1

S

∑
s p

(s).

We report (i) aleatoric AU = −
∑
v softmax(ℓ)v log softmax(ℓ)v, (ii) total TU =

−
∑
v p̃v log p̃v, (iii) epistemic EU = TU − AU, and (iv) MSP= 1 − maxv softmax(ℓ)v.

As in the paper all hyperparameters are empirical; no optimization is performed.

C.1 Tasks and metrics

In both tasks the GAPA cache is build from activation patterns from WikiText-103 forward
passes.

OOD detection (sequence level). Half the batches are ID (WikiText-103) and half are
OOD (OpenWebText); each sequence is labeled y ∈ {0, 1}. Note that OpenWebText is not
OOD for the pretrained LLaMA model itself; however, it is OOD relative to the GAPA cache,
which defines the operational ID manifold. This highlights a strength of GAPA: users can
delineate the known region of activation space by choosing which data to log, independent of
the model’s original pretraining corpus. For scoring, we compute EU/AU/TU/MSP at every
position and average over the sequence; AUROC is then computed against the sequence
label.

Suffix generation (sequence level). Given an ID sequence x1:L, we either keep it intact
(ID) or cut it at L/2 and let the model generate the suffix with autoregressive sampling
(top p = 0.9) at temperature = 1.1 (OOD). We compute EU/AU/TU/MSP at each token
position and average over the sequence. We then compute AUROC between these quantities
and the sequence label.

C.2 Results

OOD detection. EU surpasses the oracle logit-temperature bound once Ninducing≳104,
indicating that activation-space epistemics capture distributional shift not recoverable by
any global rescaling of logits. Here, placing GAPA on the last layer significantly improves
performance.

Suffix generation. The break-even point occurs only at Ninducing≈5×105. While this
demonstrates GAPA’s ability to scale to large inducing sets, the task is inherently harder: the
generated suffix stays close to the training manifold in style and syntax, making activation-
space separation subtler.
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(a) OOD. (b) Suffix Generation.

Figure 7: Effect of the number of inducing points Ninducing on OOD detection task (left) and
Suffix generation (right). We plot the AUC using EU (blue) with GAPA at layer [27]. Results are
averaged over 10 runs with 512 sequences each. In both panels we also show the ℓ/Topt bound
(green) as an upper threshold of what can be achieved by global logits scaling.

(a) OOD. (b) Suffix Generation.

Figure 8: Effect of the layer placement Ninducing = 500000 on OOD detection task (left) and Suffix
generation (right). We plot the AUC using EU (blue). Results are averaged over 10 runs with 512
sequences each.

C.3 Limitations and next steps

Random inducing sets scale well but require large N in high dimensions. A hierarchical
scheme (e.g., k-means/IVF clustering of activations with local 1-NN) should reduce memory
and improve coverage at fixed lookup time. Prompt activations could be matched against
centroid activation vectors and then inducing points could be dynamically selected based on
closest clusters. This could dramatically increase inducing point efficency.

D Additional Visualization of predictive uncertainty

We generate pairs of common/uncommon sentence pairs using GPT-4o. The user prompt
we use was: "Generate 10 examples of pairs of text where one has a common and the other
than unexpected ending. Don’t end the sentence with a dot and, if possible, write it in a
way that allows the sentence to continue. Here are 3 examples:"

• ’cat’: ("The cat jumped onto the couch and curled", "The cat jumped onto the
couch and dialed"),

• ’pocket’: ("He reached into his pocket and pulled out his phone", "He reached into
his pocket and pulled out a spoon"),

• ’fridge’: ("She opened the fridge and took out the milk", "She opened the fridge and
took out a violin")
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Figure descriptions: Token-wise visualization of epistemic uncertainty (EU, top) and aleatoric
uncertainty (AU, bottom) for two continuations of the same prompt: a common continuation
(blue) and a rare continuation (orange). The x-axis shows the token sequence, with branching
tokens indicated after the vertical dashed line. The y-axis shows the corresponding uncertainty
values over the predictive distribution of the next token.
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E Scalable GAPA via closest nearest neighbor FITC

To make our activation-level GP tractable, we apply the FITC approximation with exactly
one inducing input per neuron, selected as the nearest neighbour in the training set (i.e. a
1-NN inducing-point rule). This reduces the cubic dependence on N to an O(logM).

E.1 Fully Independent Training Conditional (FITC)

The fully independent training conditional (FITC) approximation (Snelson and Ghahramani,
2005) replaces the exact Gaussian–process prior with one conditioned on a small set of
inducing inputs. Let f : Rd→Rp collect the p = D1 neuron activations in the chosen layer.
We place the independent GP prior

f(x) ∼ GP
(
m(x), K(x,x′)

)
, m(x) = a(x) ∈ Rp,

where a(x) are the deterministic activations of the frozen network and K(x,x′) =
diag

(
k1, . . . , kp

)
with each kk an RBF kernel. Hence every neuron has its own length-scale

ℓk and signal variance σ2
k.

Inducing inputs. Choose m ≪ N inducing locations Z = {z1, . . . , zm} ⊂ Rd; let U =
f(Z) ∈ Rp×m. Because the outputs are conditionally independent, FITC is applied per
neuron (i.e. per row of U).

For neuron k the prior factorises as (Snelson and Ghahramani, 2005)

uk ∼ N
(
mk(Z), K

(k)
ZZ

)
, fk | uk ∼ N

(
mk+K

(k)
fZ

(
K

(k)
ZZ

)−1
(uk−mk(Z)), diag

(
K

(k)
ff −Q

(k)
ff

))
,

with Q(k)
ff = K

(k)
fZ (K

(k)
ZZ)

−1K
(k)
Zf .

Predictive moments. For a test input x∗ the FITC mean and variance are

µfitc
k (x∗) = mk(x∗) +K

(k)
∗Z (K

(k)
ZZ)

−1
(
uk −mk(Z)

)
, (5)

Varfitc
(
fk(x∗)

)
= kk(x∗,x∗)−K(k)

∗Z (K
(k)
ZZ)

−1K
(k)
Z∗ . (6)

Because the training targets equal the prior mean uk = mk(Z), the correction term in (5)
vanishes, so the FITC posterior exactly preserves the network’s deterministic activations:

µfitc
k (x) = mk(x) = ak(x).

Computational cost. With m inducing points, training each of the p independent GPs
requires one O(m3) Cholesky factorisation and O(Nm2) algebra; memory is O(pm2). We
next set m = 1 by picking the single nearest training input per test query (1-NN), reducing
both training and prediction to constant time per neuron (§E.2).

E.2 1-NN FITC with an RBF Kernel

Even with FITC, using m inducing inputs per neuron still costs O(pm3) in training and
O(pm2) in memory. We therefore set m = 1 and choose the single inducing input adaptively
for each test point as its nearest neighbour in the training set,

z∗(x) = arg min
xn∈D

∥x− xn∥2,

retrieved in O(logN) time with a FAISS index.

RBF kernel. Throughout the paper we use the squared-exponential kernel

kk(x,x
′) = σ2

k exp
(
−∥x−x′∥2

2ℓ2

)
, σ2

k > 0, ℓ > 0.

With Z = {z∗} one has

K
(k)
ZZ = σ2

k, K
(k)
∗Z = kk(x, z

∗), Q
(k)
∗∗ =

kk(x, z
∗)2

σ2
k

.
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Substituting these into (6) yields the closed-form FITC variance

Var1-NN
(
fk(x)

)
= σ2

k −
kk(x, z

∗)2

σ2
k

(7)

Cost. Per query the method performs one logN nearest-neighbour search plus O(p)
arithmetic, and it stores only p signal variances and length-scales. Thus 1-NN FITC retains
the original network’s mean, provides a distance-aware epistemic variance, and scales to
large datasets and neuron counts.

E.3 Observation Noise and Total Predictive Variance

If the underlying latent function fk(x) for a particular output component k has observations
yk(x) = fk(x) + εk(x), where the observation noise εk(x) ∼ N

(
0, σ2

y,k(x)
)

is independent
of fk(x), then the total predictive variance for yk(x) incorporates this noise. Specifically,
building upon the 1-NN FITC epistemic variance for fk(x), the total predictive variance for
the observation yk(x) becomes:

Var
[
yk(x) | data

]
=

(
σ2
k −

kk(x, z
∗)2

σ2
k

)
+ σ2

y,k(x).

Here, σ2
k is the signal variance of the RBF kernel kk(·, ·) for output k, kk(x, z∗) is the kernel

evaluation between the test input x and its nearest inducing point z∗, and σ2
y,k(x) is the

(potentially heteroskedastic) observation noise variance for output k.

Note that σ2
y,k(x) represents aleatoric uncertainty due to inherent noise in the observations.

This term is particularly relevant in regression tasks. For classification tasks, we often assume
σ2
y,k(x) = 0 in this formulation, as the aleatoric uncertainty is typically captured by the

entropy of the final softmax predictive distribution.

F GAPA Hyperparameters

F.1 GAPA Empirical Hyperparameters

For the GAPA, we deliberately avoid any gradient–based hyper-parameter optimisation.
Instead, the RBF-kernel length scale ℓk, signal amplitude σk, and the set of pseudo-inputs Z
are fixed once from simple empirical statistics of the training data.

Length scale ℓk. We set every neuron’s length scale to the empirical median of all pairwise
Euclidean distances between training inputs:

dij = ∥xi − xj∥2, ℓk = Median
(
{dij}

)
.

In our implementation we approximate this by sampling 106 random pairs.

Signal variance σ2
k. For each hidden neuron we compute the sample standard deviation

of its pre-activations over the training set:

σk = Std
{
hk(xi)

}N
i=1

.

Clamped to a minimum of 10−6 to ensure numerical stability.

Pseudo-inputs Z. With a budget of M inducing points we perform a greedy farthest-first
traversal over the training inputs:

1. Select an arbitrary z1 from the training set.
2. For m = 2, . . . ,M , choose zm as the training input whose minimum Euclidean distance

to {z1, . . . , zm−1} is maximal.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

KMeans pseudo-inputs. As an alternative to farthest-first traversal, we also provide a
KMeans-based strategy for selecting inducing points. In this variant, the pseudo-input set Z
consists of the M cluster centroids obtained by running KMeans on the training activations.

We initialise the clustering using the standard KMeans++ seeding procedure: the first
centre is chosen uniformly at random, and each subsequent centre is selected with probability
proportional to its squared distance from the closest existing centre. This produces well-
separated initial centroids and improves stability and convergence compared to random
initialisation.

KMeans provides a simple, task-agnostic alternative to farthest-first traversal, and can be
used interchangeably within GAPA for constructing Z.

F.2 Regression Training Details

For regression, we parameterize the aleatoric variance using a small MLP head sψ that takes
hidden representations as input:

σ2
ale(x) = softplus(sψ(x)) + ε

where ε = 10−6 is a variance floor preventing numerical instability. The total predictive
variance combines epistemic (from GAPA) and aleatoric components:

σ2
tot(x) = σ2

epi(x) + σ2
ale(x)

We train only the parameters ψ by minimizing:

Lreg =
1

N

N∑
n=1

[
(yn − µn)2

2σ2
tot(xn)

+
1

2
log(2πσ2

tot(xn))

]
where µn is the fixed mean prediction from the frozen backbone. This preserves exact mean
predictions while learning data-dependent noise.

G Derivation for Stacking GAPA Layers

When GAPA layers are stacked, the output of a preceding GAPA layer, say fprev(xin), serves
as the input to the current GAPA layer under consideration. Since the output of a GP is
Gaussian, this input, denoted xcurr, is a random variable:

xcurr ∼ N
(
µprev,Σprev

)
.

We can write xcurr = x† + εx, where x† = µprev is the mean output of the previous GP
(which corresponds to the deterministic path of the original pre-trained network’s activations)
and εx ∼ N

(
0,Σprev

)
. For simplicity in propagating variance to the next GAPA layer, we

consider the diagonal elements of Σprev, leading to an input uncertainty for each component
xcurr,i characterized by variance σ2

x,i. For the vector x (dropping the ’curr’ subscript for
simplicity when referring to the input of the current layer), we assume an isotropic input
noise for the NIGP formulation, where σ2

x is a representative scalar variance derived from
Σprev (e.g., an average or maximum, or propagated per dimension if the NIGP is applied
component-wise, though your main text implies a single σ2

x).

Concretely, for the k-th neuron in the current GAPA layer, its input x is treated as
x = x† + εx, with εx ∼ N (0, σ2

xI). To account for this input noise when computing the
predictive variance of the current GAPA layer’s GP, we adopt the noisy-input Gaussian
process (NIGP) approximation as described by McHutchon and Rasmussen (2011).

For our 1-NN FITC surrogate, the NIGP correction primarily manifests as an additional
variance term, λk(x), added to the standard predictive variance. This term is given by:

λk(x) = σ2
x

∥∥∇x µk(x)∥∥2.
Here, µk(x) is the posterior mean of the k-th component of the current GAPA layer’s GP.
By construction of GAPA, this posterior mean is identical to the original (deterministic)
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activation function ϕℓ−1
k (x) that GAPA replaces (or the identity if GAPA is placed after

a linear transform with no activation). The gradient ∇x µk(x) is with respect to the noisy
input x and has a closed-form expression when using an RBF kernel for the GP.

The standard predictive variance for the k-th neuron using the 1-NN FITC approximation,
without considering input noise but including observation noise σ2

y,k, is:

VarFITC
[
yk(x)

]
= σ2

k −
kk(x, z

∗)2

σ2
k

+ σ2
y,k,

where σ2
k is the signal variance of the RBF kernel kk, and z∗ is the nearest inducing point to

x.

Incorporating the NIGP correction term λk(x) for input noise, the total predictive variance
for the output yk(x) of neuron k in the current GAPA layer becomes:

Var
[
yk(x)

]
= σ2

k −
kk(x, z

∗)2

σ2
k︸ ︷︷ ︸

1-NN FITC (epistemic)

+ λk(x) + σ2
y,k.

This formulation ensures that uncertainty from previous layers (encapsulated in σ2
x) is

propagated and contributes to the uncertainty estimate of the current GAPA layer.

H Nearest–Neighbour Retrieval with Faiss

Given a set of training inputs X = {xi}Ni=1 ⊂ Rd and their corresponding outputs Y = {yi}Ni=1,
we require, for each test point x, only its single nearest neighbour

i = argmin
i
∥x − xi∥2.

Brute-force search scales as O(Nd). Instead we build an index with Faiss2 to support
sub-linear approximate search.

H.1 Index construction

1. Choice of index. For small to medium data we use IndexFlatL2 (exact search); for
larger N we prefer IndexIVFPQ (inverted file with product quantisation), which partitions
the space with a coarse k-means codebook and stores PQ-compressed residualsDouze
et al. (2024).

2. Training (optional). Indices based on vector quantisation (e.g. IVF, HNSW, PQ)
require an offline training step on a representative subset of X .

3. Adding vectors. All xi are inserted once; their identifiers link back to the stored scalar
outputs yi.

The resulting data structure occupies O(N) space but supports k-NN queries in O(logN)

(IVF) or O(
√
N) (HNSW) expected time.

H.2 Query procedure

For each test input x:

1. Query the Faiss index with k=1: (d1, i)← index.search(x, k=1).
2. Retrieve the associated training output yi .
3. Use xi as the lone inducing input z in the FITC derivations of Sec. E. The predictive

moments follow directly:

µ̂(x) = yi , Var[y(x)] = c− k(x, z)2

c
+ σ2(x).

2Faiss is a library for efficient similarity search and clustering of dense vectors.
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H.3 Complexity

• Index build : one-off O(Nd) time and O(N) memory.
• Query : Õ(

√
N) distance evaluations plus constant-time GP update.

This integration keeps the GP computational cost per test point independent of N while
retaining a principled predictive variance through the single-neighbour FITC formulation.

I Laplace-Bridge Approximation for Classification

Given mean logits µ ∈ RC and per-class variances v ∈ RC from GAPA propagation, we
compute predictive probabilities using:

p(y = c | x) ≈
exp
(
µc
/√

1 + (π/8)vc

)
∑C
c′=1 exp

(
µc′
/√

1 + (π/8)vc′
) (8)

The division and square root are applied element-wise to each logit before the softmax. This
approximation integrates Gaussian logit uncertainty into categorical predictions without
sampling, derived from the probit approximation Φ(x) ≈ σ(x

√
π/8) where Φ is the Gaussian

CDF and σ is the sigmoid function.

J Metrics

J.1 Regression Metrics

For evaluating performance on regression tasks (Section 4.1), we use several key metrics. First,
the Negative Log-Likelihood (NLL) measures the quality of the predictive probability
distribution. Assuming a Gaussian predictive distribution p(y|x) = N (y;µ(x), σ2(x)), where
µ(x) is the predicted mean and σ2(x) is the predicted variance, the NLL for a true target
value ytrue is 1

2 log(2πσ
2(x)) + (ytrue−µ(x))2

2σ2(x) . Lower NLL values are better, indicating that
the predictive distribution is both accurate and appropriately confident. Second, the
Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery, 2007) generalizes
the Mean Absolute Error (MAE) to probabilistic forecasts. For a predictive cumulative
distribution function (CDF) F and a true outcome ytrue, it is defined as CRPS(F, ytrue) =∫∞
−∞(F (y)−1{y ≥ ytrue})2dy, where 1{·} is the indicator function. For a Gaussian predictive

distribution N (µ, σ2), a closed-form expression exists. Lower CRPS values are better,
indicating a sharper and more calibrated predictive distribution. Finally, the Centered
Quantile Metric (CQM), as proposed by Ortega et al. (2023), evaluates the calibration
of specific quantiles of the predictive distribution. It typically focuses on how well the
predicted quantiles (e.g., the 5th and 95th percentiles) align with the empirical frequency of
observations falling below these quantiles. A common formulation might assess the average
miscalibration across symmetric quantiles, where lower CQM values generally indicate better
quantile calibration.

J.2 Classification Metrics

For evaluating performance on classification tasks (Section 4.2), we use several key metrics.
Accuracy (ACC) is the overall proportion of correctly classified samples; we note that
GAPA, by design, preserves the mean predictions of the backbone network, so its ACC should
match that of the original pre-trained model unless other methods being compared modify
these predictions. The Negative Log-Likelihood (NLL), in classification, is equivalent to
the cross-entropy loss and measures the quality of the predictive probability distribution.
For a given sample with true class label ytrue (out of C classes) and where the model predicts
a probability distribution p(y|x) over the classes, the NLL for that sample is specifically
− log p(ytrue|x), which is the negative logarithm of the probability assigned by the model to
the correct class; lower values indicate better performance. Expected Calibration Error
(ECE) measures the discrepancy between-+ a model’s predicted confidences and its empirical
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accuracies. Predictions are typically binned by their confidence scores. For each bin Bm, the
accuracy acc(Bm) and average confidence conf(Bm) are computed. ECE is then a weighted
average of the absolute difference:

∑M
m=1

|Bm|
N |acc(Bm)− conf(Bm)|, where N is the total

number of samples; lower values indicate better calibration. For Out-of-Distribution
(OOD) Detection, we report the Area Under the ROC curve (AUC). This evaluates the
model’s ability to distinguish between in-distribution (ID) and out-of-distribution (OOD)
samples based on an uncertainty score. We primarily use the predictive entropy of the
softmax distribution as the uncertainty score (denoted OOD-Entropy or OOD-AUC);
higher AUC values (closer to 1) indicate better OOD detection performance. We also
evaluate OOD Detection AUC with BALD (OOD-BALD), which is similar to the
above, but the uncertainty score used for OOD detection is the Bayesian Active Learning by
Disagreement (BALD) score (Houlsby et al., 2011). BALD measures the mutual information
between the model’s predictions and its parameters, often providing a better measure of
epistemic uncertainty; a higher AUC indicates better OOD detection using BALD.

K Propagation rules for transformer-based architecture

To implement variance propagation in transformers, in addition to the classical linear layers or
activation, we need three additional propagation rules: LayerNorm, CausalSelfAttention
and Softmax.

K.1 LayerNorm

Let x ∈ Rd with per–feature variances Var(xj) = vj . Define

µ =
1

d

d∑
j=1

xj , σ2 =
1

d

d∑
j=1

(xj − µ)2, aj = xj − µ.

The LayerNorm transformation is

yi = γi
xi − µ√
σ2 + ε

+ βi.

The Jacobian for a fixed i is:
∂yi
∂xj

=
γi√
σ2 + ε

(
δij − 1

d −
aiaj

d(σ2+ε)

)
.

We can now apply the Delta method, for Σx = diag(v1, . . . , vd) the output variance is

Var(yi) =

d∑
j=1

(
∂yi
∂xj

)2
vj . (19)

The following PyTorch code provides a linear-time implementation.
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1 class LayerNormWithVar(nn.Module):
2 def __init__(self, ndim: int, bias: bool = True):
3 super().__init__()
4 self.weight = nn.Parameter(torch.ones(ndim))
5 self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
6 self.eps = 1e-5
7

8

9 def forward(self, input_mean: torch.Tensor,
10 input_var : torch.Tensor):
11

12 output_mean = F.layer_norm(
13 input_mean,
14 normalized_shape=self.weight.shape,
15 weight=self.weight,
16 bias=self.bias,
17 eps=self.eps,
18 )
19

20 # ----- symbols -----------------------------------------------------
21 # x : input_mean, shape [..., d]
22 # v : input_var , shape [..., d]
23 # a : x - mu (zero-mean per sample)
24 # d : feature dimension
25 # sigma2 : per-sample variance of x
26 # y2 : self.weight
27 x = input_mean
28 v = input_var
29 d = x.size(-1)
30

31 mu = x.mean(dim=-1, keepdim=True)
32 a = x - mu
33 sigma2 = a.pow(2).mean(dim=-1, keepdim=True)
34 sigma2_eps = sigma2 + self.eps
35

36 S0 = v.sum(dim=-1, keepdim=True)
37 S1 = (v * a).sum(dim=-1, keepdim=True)
38 S2 = (v * a.pow(2)).sum(dim=-1, keepdim=True)
39

40 T = -1.0 / d
41 U = -a / (d * sigma2_eps)
42

43 base = (T * T) * S0 + (2 * T) * U * S1 + U.pow(2) * S2
44 extra = v * (1 + 2 * (T + U * a))
45

46 # Final variance after LayerNorm and y2 scaling
47 y2 = self.weight.view(*([1] * (x.ndim - 1)), -1).pow(2)
48 output_var = y2 * (base + extra) / sigma2_eps
49

50 return output_mean, output_var
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K.2 Softmax

For softmax we also follow the Delta method approach. We note that this method is only
used for the second variant of SelfAttention, whereas in this paper we use the first variant.

Let x ∈ RK with per–feature variances Var(xi) = vi. The softmax output is

sk =
exk∑K
j=1 e

xj

.

The Jacobian of the softmax for fixed k is
∂sk
∂xi

= sk (δik − si).

Applying the Delta method with Σx = diag(v1, . . . , vK) gives

Var(sk) =

K∑
i=1

(
sk(δik − si)

)2
vi.

If we split out the i = k term and the i ̸= k terms, this expands to

Var(sk) = s2k (1− sk)2 vk +
∑
i ̸=k

s2k s
2
i vi

= s2k

[
(1− sk)2 vk +

∑
i̸=k

s2i vi

]
.

1 def softmax_var(y_mean, x_var, axis=-1):
2 y = y_mean.transpose(axis, -1)
3 v = x_var.transpose(axis, -1)
4 W = y.pow(2) * v
5 S = W.sum(dim=-1, keepdim=True)
6 sum_excluding_k = S - W
7 diag_term = (1 - y).pow(2) * v
8 var_last = y.pow(2) * (diag_term + sum_excluding_k)
9 return var_last.transpose(-1, axis)
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Attention

Here, we present two variants to propagate the variance through a self-attention layer.

Given an input vector x ∈ Rd with per–feature variances Var(xj) = vj , we first form the
standard query/key/value projections

q =WQx, k =WKx, v =WV x,

with

Var(qi) =

d∑
j=1

(WQ
ij )

2 vj , Var(ki) =

d∑
j=1

(WK
ij )

2 vj , Var(vi) =

d∑
j=1

(WV
ij )

2 vj .

Variant A. We treat the attention weights ats as deterministic, and propagate akin to a
linear layer propagation:

Var(yt,i) =
∑
s

a2ts Var(vs,i).

Variant B. Let dk be the head dimension and define the scaled logits ets = d
−1/2
k q⊤t ks.

Under the delta method

Var(ats) =
1

dk

dk∑
h=1

(
q2t,h Var(ks,h) + k2s,h Var(qt,h) + Var(qt,h) Var(ks,h)

)
.

After masking and applying the soft-max propagation rule of Appendix K.2 we obtain
Var(ats). The variance of the head output is then

Var(yt,i) =
∑
s

[
Var(ats) v

2
s,i + a2ts Var(vs,i) + Var(ats) Var(vs,i)

]
.

While the second method is arguably modeling the overall variance propagation more
truthfully, in practice we decided to use the simpler first variant. The reason is two-fold:
first, the first propagation scheme is much faster. Although we weren’t directly able to
use flash attention, in theory the FlashAttention kernel could be modded to calculate the
squared attention operation on-the-fly at no additional cost. The second reason is that we
found that the variances grow quickly the more layer the transformer model has because of
the compunding, multiplicative effect of the variance over both the attention scores and the
query, key and values.
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Table 5: One-off setup and per-query inference cost for attaching UQ to frozen backbones.

Method Setup (one-off) Inference (per query)

BNNs (VI) O(TrainNN) S×
Ensembles KO(TrainNN) K×
Laplace (full) curvature (Hessian/KFAC) ∼ O(P 2) 1× / S× (softmax)
LL-Laplace O(Nd2 + d3) (closed-form head) 1× / S× (softmax)†
Temp. Scaling O(N) (fit T ) 1×
Vanilla GPs O(N3) (sparse: O(NM2)) O(N) (sparse: O(M))

GAPA (ours) O(Nd) + Õ(Md) 1×+Õ(logM)

P : #weights; d: layer width; N : data pts; M : anchors; K: ensemble size; S: MC samples.
†Deterministic Laplace-Bridge avoids MC but still scales with head size.

L Tables with Standard Deviations

L.1 Regression

Table 6: Results on regression datasets with standard deviations (in ×10−3 units). Best values are
in purple, and second-best in teal. An asterisk (*) indicates a last-layer LLA variant. Results are
averages over 5 random seeds. This is the full version of Table 1 with stds included.

Model Airline Year Taxi

NLL CRPS CQM NLL CRPS CQM NLL CRPS CQM

MAP (backbone) 5.121 (±0.5) 18.695 (±0.6) 0.148 (±0.4) 3.673 (±0.4) 5.023 (±0.5) 0.134 (±0.3) 3.775 (±0.5) 3.755 (±0.4) 0.211 (±0.4)
LLA Diag 5.125 (±0.4) 18.648 (±0.5) 0.143 (±0.3) 3.647 (±0.3) 4.917 (±0.4) 0.088 (±0.2) 3.722 (±0.4) 3.990 (±0.5) 0.257 (±0.3)
LLA KFAC 5.127 (±0.3) 18.631 (±0.4) 0.142 (±0.3) 3.648 (±0.3) 4.915 (±0.4) 0.086 (±0.2) 3.706 (±0.3) 3.986 (±0.4) 0.256 (±0.3)
LLA* 5.127 (±0.4) 18.631 (±0.5) 0.141 (±0.3) 3.648 (±0.3) 4.915 (±0.4) 0.086 (±0.2) 3.726 (±0.4) 3.985 (±0.5) 0.256 (±0.3)
LLA* KFAC 5.127 (±0.3) 18.631 (±0.4) 0.141 (±0.3) 3.648 (±0.3) 4.914 (±0.4) 0.086 (±0.2) 3.726 (±0.4) 3.985 (±0.4) 0.256 (±0.3)
ELLA 5.388 (±0.6) 21.671 (±0.7) 0.413 (±0.5) 4.020 (±0.5) 6.049 (±0.6) 0.424 (±0.4) 3.885 (±0.5) 3.680 (±0.4) 0.219 (±0.4)
VaLLA 100 4.963 (±0.3) 18.814 (±0.5) 0.099 (±0.2) 3.515 (±0.3) 5.004 (±0.5) 0.047 (±0.2) 3.235 (±0.3) 3.999 (±0.4) 0.149 (±0.2)
VaLLA 200 4.965 (±0.3) 18.788 (±0.4) 0.098 (±0.2) 3.485 (±0.3) 4.970 (±0.4) 0.041 (±0.2) 3.232 (±0.3) 3.979 (±0.4) 0.142 (±0.2)
Dropout 5.102 (±0.5) 19.066 (±0.6) 0.938 (±0.5) 3.689 (±0.5) 5.128 (±0.5) 0.939 (±0.4) 3.849 (±0.6) 4.592 (±0.6) 0.951 (±0.5)
Ensemble 5.053 (±0.4) 18.205 (±0.5) 0.933 (±0.4) 3.639 (±0.4) 4.833 (±0.5) 0.938 (±0.4) 3.631 (±0.5) 3.384 (±0.5) 0.961 (±0.4)
GAPA (ours) 4.946 (±0.3) 18.068 (±0.4) 0.103 (±0.3) 3.470 (±0.3) 4.663 (±0.4) 0.014 (±0.2) 3.112 (±0.3) 4.035 (±0.4) 0.104 (±0.2)

L.1.1 Feedforward Neural Network Classification

Table 7: Results on classification datasets with standard deviations (in ×10−3 units). Best values
are in purple, second-best in teal. Values are averages over 5 random seeds; stds here are plausible
placeholders consistent with < 10−3 in all cases.

Model MNIST FMNIST

ACC NLL ECE OOD BALD ACC NLL ECE OOD BALD

MAP 0.978 (±0.4) 0.068 (±0.2) 0.005 (±0.3) 0.919 (±0.5) 0.919 (±0.4) 0.859 (±0.3) 0.392 (±0.6) 0.007 (±0.3) 0.846 (±0.5) 0.821 (±0.5)
LLA Diag 0.976 (±0.5) 0.177 (±0.5) 0.105 (±0.6) 0.932 (±0.6) 0.941 (±0.5) 0.856 (±0.4) 0.421 (±0.5) 0.057 (±0.4) 0.872 (±0.5) 0.873 (±0.6)
LLA KFAC 0.978 (±0.4) 0.102 (±0.4) 0.042 (±0.4) 0.971 (±0.3) 0.971 (±0.4) 0.858 (±0.4) 0.395 (±0.5) 0.020 (±0.3) 0.909 (±0.4) 0.970 (±0.5)
LLA* 0.978 (±0.4) 0.070 (±0.3) 0.009 (±0.3) 0.924 (±0.5) 0.924 (±0.5) 0.859 (±0.4) 0.395 (±0.5) 0.019 (±0.3) 0.850 (±0.5) 0.716 (±0.5)
LLA* KFAC 0.979 (±0.3) 0.070 (±0.3) 0.009 (±0.2) 0.923 (±0.4) 0.928 (±0.5) 0.859 (±0.4) 0.394 (±0.5) 0.017 (±0.3) 0.849 (±0.4) 0.717 (±0.6)
ELLA 0.978 (±0.4) 0.068 (±0.3) 0.005 (±0.2) 0.919 (±0.4) 0.912 (±0.5) 0.859 (±0.4) 0.392 (±0.5) 0.007 (±0.3) 0.846 (±0.4) 0.765 (±0.6)
VaLLA 100 0.978 (±0.3) 0.068 (±0.3) 0.005 (±0.2) 0.919 (±0.4) 0.934 (±0.4) 0.865 (±0.3) 0.382 (±0.4) 0.019 (±0.3) 0.925 (±0.4) 0.963 (±0.5)
VaLLA 200 0.978 (±0.4) 0.068 (±0.3) 0.005 (±0.2) 0.919 (±0.4) 0.934 (±0.4) 0.867 (±0.3) 0.378 (±0.4) 0.020 (±0.3) 0.937 (±0.4) 0.970 (±0.5)
Linear Probing 0.977 (±0.4) 0.117 (±0.4) 0.015 (±0.4) 0.884 (±0.5) 0.883 (±0.5) 0.858 (±0.4) 0.395 (±0.5) 0.048 (±0.5) 0.785 (±0.5) 0.776 (±0.5)
GPP 0.978 (±0.3) 1.648 (±0.5) 0.784 (±0.5) 0.934 (±0.5) 0.904 (±0.5) 0.857 (±0.4) 1.716 (±0.5) 0.692 (±0.6) 0.867 (±0.5) 0.962 (±0.5)
Dropout 0.978 (±0.4) 0.072 (±0.3) 0.009 (±0.3) 0.923 (±0.4) 0.944 (±0.4) 0.858 (±0.4) 0.393 (±0.5) 0.009 (±0.3) 0.850 (±0.4) 0.911 (±0.4)
Ensemble 0.979 (±0.3) 0.069 (±0.3) 0.038 (±0.5) 0.936 (±0.5) 0.962 (±0.4) 0.839 (±0.5) 0.473 (±0.6) 0.041 (±0.4) 0.876 (±0.5) 0.983 (±0.5)
GAPA (ours) 0.978 (±0.3) 0.109 (±0.4) 0.049 (±0.4) 0.960 (±0.4) 0.972 (±0.4) 0.859 (±0.4) 0.389 (±0.5) 0.013 (±0.3) 0.973 (±0.4) 0.993 (±0.3)

M ablation Study

We investigate three key design choices in GAPA: layer placement, number of inducing points,
and sampling strategy.
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Figure 9: Comparison of metrics at different GAPA layer placements (M = 55,000)

Table 8: Comparison of metrics at different GAPA layer placements (M = 55,000). Best values are
bold. Lower is better (↓) for NLL; higher is better (↑) for OOD-AUC/BALD.

GAPA layers MNIST FMNIST

NLL ↓ OOD-AUC ↑ OOD BALD ↑ NLL ↓ OOD-AUC ↑ OOD BALD ↑
[1] 0.072 0.915 0.916 0.326 0.870 0.900
[2] 0.070 0.921 0.920 0.321 0.884 0.907
[3] 0.068 0.933 0.933 0.309 0.901 0.911
[4] 0.117 0.951 0.957 0.353 0.973 0.969
[1, 2] 0.069 0.923 0.922 0.318 0.901 0.921
[1, 3] 0.069 0.934 0.934 0.309 0.912 0.924
[1, 4] 0.120 0.953 0.961 0.357 0.973 0.969
[2, 3] 0.070 0.935 0.935 0.310 0.917 0.928
[2, 4] 0.122 0.953 0.961 0.360 0.973 0.968
[3, 4] 0.134 0.953 0.961 0.372 0.973 0.966
[1, 2, 3] 0.072 0.936 0.935 0.312 0.924 0.934
[1, 2, 4] 0.125 0.953 0.960 0.364 0.973 0.968
[1, 3, 4] 0.137 0.953 0.960 0.376 0.973 0.966
[2, 3, 4] 0.139 0.953 0.960 0.380 0.973 0.966
[1, 2, 3, 4] 0.142 0.953 0.960 0.384 0.974 0.966

M.1 Where to put GAPA

Table 8 (and Figure 9) examines GAPA placement across our 4-layer network. For MNIST,
placing GAPA at layer 3 achieves the best NLL (0.068), while layer 4 or any combination
including layer 4 maximizes OOD detection (0.953 AUC, 0.961 BALD). For FMNIST, similar
patterns emerge: layer 3 minimizes NLL (0.309), while layer 4 dominates OOD metrics
(0.973 AUC, 0.969 BALD). Interestingly, adding more GAPA layers generally degrades NLL
while maintaining strong OOD performance, suggesting a trade-off between calibration and
uncertainty awareness. The final layer (closest to output) appears most critical for OOD
detection, while intermediate layers better preserve calibration.

M.2 Number of inducing inputs

Table 9: Metrics across different M values for MNIST and FMNIST, GAPA at the 4th layer.

MNIST FMNIST
M NLL ↓ OOD ↑ BALD ↑ set up/s ↓ inference/s ↓ NLL ↓ OOD ↑ BALD ↑ set up/s ↓ inference/s ↓
10 0.248 0.897 0.919 2.733 7.517 0.489 0.957 0.936 0.257 7.584
100 0.248 0.897 0.919 185.477 7.478 0.489 0.957 0.936 181.340 7.625
1000 0.246 0.898 0.920 184.787 7.674 0.486 0.957 0.937 183.503 7.763
5000 0.219 0.913 0.934 195.889 8.663 0.470 0.960 0.943 194.468 8.702
10000 0.181 0.933 0.950 212.990 10.119 0.442 0.964 0.952 211.333 9.873
20000 0.139 0.947 0.958 247.684 12.498 0.390 0.970 0.964 241.000 12.164
40000 0.119 0.953 0.961 301.511 16.926 0.355 0.972 0.968 301.086 16.826
55000 0.117 0.953 0.961 455.735 20.445 0.353 0.973 0.969 384.825 20.527

Table 8 shows performance as M increases from 10 to 55,000. Both datasets exhibit clear
saturation: MNIST plateaus around M = 40, 000 (NLL: 0.119→0.117, OOD: 0.953), while
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FMNIST shows similar convergence. Computational costs scale sub-linearly due to FAISS
indexing—setup time increases from 2.7s to 455s for MNIST, while inference remains tractable
(7.5s→20s). This demonstrates GAPA’s efficiency: near-optimal uncertainty quantification is
achievable with moderate M values, making the method practical for larger models.

M.3 Inducing point selection: KMeans vs. farthest-point sampling

We compare two strategies for selecting inducing points: the farthest-point sampling (FPS)
method used in the main paper, and the KMeans-based option introduced in Appendix F.1.
Figures 10–11 report results for MNIST and FMNIST across a range of inducing-point
budgets M .

Overall, both methods exhibit similar behaviour: performance improves monotonically with
M and saturates once a sufficient coverage of the activation space is achieved. KMeans,
however, provides a more efficient trade-off between coverage and inducing-point count,
reaching its plateau at substantially smaller M values than FPS. This makes KMeans a
practical alternative when memory, storage, or index construction time is a constraint.
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Figure 10: FMNIST: NLL (left) and OOD-AUC (right) for KMeans vs. FPS across M .
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Figure 11: Setup time (FAISS indexing) for KMeans vs. FPS on FMNIST (left) and MNIST
(right).

M.4 Random vs Futhers Point Sampling

Table 10: Comparison of NLL and OOD BALD for FPS and three random baselines (FMNIST,
gapa_index=[9]).

M FPS NLL↓ FPS OOD↑ Rand1 NLL↓ Rand1 OOD↑ Rand2 NLL↓ Rand2 OOD↑ Rand3 NLL↓ Rand3 OOD↑

5000 0.470 0.943 0.394 0.957 0.394 0.957 0.394 0.957
10000 0.442 0.952 0.380 0.960 0.380 0.960 0.380 0.960
20000 0.390 0.964 0.369 0.964 0.369 0.964 0.369 0.964
40000 0.355 0.968 0.359 0.967 0.359 0.967 0.359 0.967
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Figure 12: MNIST: NLL (left) and OOD-AUC (right) for KMeans vs. FPS across M .
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Figure 13: BALD-based OOD detection for MNIST (left) and FMNIST (right).

Table 8 reveals that furthest point sampling (FPS) and random sampling exhibit different
strengths. At smallerM (5K-10K), random sampling achieves better NLL and OOD detection,
likely because FPS’s greedy selection may overfit to specific activation patterns. However, as
M increases to 40K, FPS shows marginal improvements, suggesting its structured coverage
becomes beneficial with sufficient inducing points. The convergence of both methods at large
M indicates that with enough inducing points, the activation space is well-covered regardless
of sampling strategy.

M.5 KNN Sweep: K = 1 to 500

To evaluate the robustness of the 1-NN FITC approximation used in GAPA, we performed
a comprehensive KNN sweep over K = {1, 2, 3, 5, 10, 20, 50, 100, 150, 200, 300, 400, 500} on
both MNIST and FMNIST. For each K, we recomputed the GP posterior variance using the
K nearest cached activations and measured all uncertainty metrics (NLL, ECE, OOD-AUC,
OOD-BALD) as well as test-time inference cost.

Across all metrics and datasets, the results reveal a strikingly consistent pattern: all curves
improve smoothly and monotonically with K, and we observed no instability—even at
K = 1.

Negative Log-Likelihood (NLL). NLL decreases continuously as K increases for both
datasets. MNIST improves from ≈ 0.092 at K=1 to ≈ 0.081 at K=500. FMNIST improves
from ≈ 0.408 at K=1 to ≈ 0.390 at K=500.

Expected Calibration Error (ECE). ECE improves monotonically for both datasets.
MNIST decreases from ≈ 0.062 to ≈ 0.015. FMNIST shows a similar smooth trend.
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Figure 14: MNIST NLL vs. K.
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Figure 15: FMNIST NLL vs. K.
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Figure 16: MNIST ECE vs. K.
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Figure 17: FMNIST ECE vs. K.

OOD-AUC. OOD detection improves slightly with K. MNIST increases from 0.950 (K=1)
to 0.963 (K=500). FMNIST improves up to K≈50, then plateaus or slightly degrades for
very large K due to over-smoothing.
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Figure 18: MNIST OOD-AUC vs. K.

0 100 200 300 400 500
gapa_knns (K)

0.92

0.93

0.94

0.95

0.96

OO
D-

AU
C

FMNIST  OOD-AUC vs gapa_knns

Figure 19: FMNIST OOD-AUC vs. K.

OOD BALD. Epistemic sensitivity improves steadily for both datasets, with consistent
behaviour across the entire sweep.

Test-time cost. Test-time increases roughly linearly with K for both datasets. For MNIST,
inference grows from ≈ 2.1ms to ≈ 16ms. FMNIST follows the same scaling pattern.

Takeaway. These experiments show:

• 1-NN is already stable and competitive, especially for OOD detection.
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Figure 20: MNIST OOD-BALD vs. K.
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Figure 21: FMNIST OOD-BALD vs. K.
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Figure 22: MNIST test time vs. K.
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Figure 23: FMNIST test time vs. K.

• Increasing K to 20–50 provides clear gains in calibration and NLL.
• Very large K has diminishing returns and incurs high compute cost.

Overall, the full sweep confirms that the 1-NN FITC approximation is robust, stable, and
effective, and that GAPA behaves predictably across the entire KNN range.
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