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ABSTRACT

The goal of continual learning (CL) is to train a model that can solve multiple
tasks presented sequentially. Recent CL approaches have achieved strong perfor-
mance by leveraging large pre-trained models that generalize well to downstream
tasks. However, such methods lack theoretical guarantees, making them prone to
unexpected failures. Conversely, principled CL approaches often fail to achieve
competitive performance. In this work, we bridge this gap between theory and
practice by integrating an empirically strong approach (RanPAC) into a principled
framework, Ideal Continual Learner (ICL), designed to prevent forgetting. Specifi-
cally, we lift pre-trained features into a higher dimensional space and formulate
an over-parametrized minimum-norm least-squares problem. We find that the
lifted features are highly ill-conditioned, potentially leading to large training errors
(numerical instability) and increased generalization errors (double descent). We
address these challenges by continually truncating the singular value decompo-
sition (SVD) of the lifted features. Our approach, termed ICL-TSVD, is stable
with respect to the choice of hyperparameters, can handle hundreds of tasks, and
outperforms state-of-the-art CL methods on multiple datasets. Importantly, our
method satisfies a recurrence relation throughout its continual learning process,
which allows us to prove it maintains small training and generalization errors by
appropriately truncating a fraction of SVD factors. This results in a stable continual
learning method with strong empirical performance and theoretical guarantees.

1 INTRODUCTION

Continual learning (CL) requires training a model that performs well on multiple tasks presented
sequentially. A primary challenge in CL is acquiring new knowledge without causing catastrophic
forgetting (i.e., substantial performance degradation on previously learned tasks). The availability
of large pre-trained models has recently facilitated advances in CL. As their weights are typically
frozen, they provide highly generalizable features that significantly boost performance with little
computational overhead (Wang et al., 2022d;a; McDonnell et al., 2023; Zhou et al., 2024b). Pre-
trained models also simplify network design, as concatenating a pre-trained model with a shallow
trainable network often attains competitive performance (Zhou et al., 2023; McDonnell et al., 2023).

A notable example is RanPAC (McDonnell et al., 2023), which lifts pre-trained features into a higher
dimensional space and then trains a ridge-regularized linear classifier on the lifted features. Despite
its simplicity, RanPAC has established state-of-the-art performance (Zhou et al., 2024a) and, as far
as we know, no subsequent work has been shown to consistently outperform it (Ahrens et al., 2024;
Prabhu et al., 2024). However, as we will analyze in detail, the performance of RanPAC is unstable
and sensitive to the choice of the ridge regularization parameter, which can make it ill-suited for long
task sequences. McDonnell et al. (2023) provides limited theoretical guarantees for RanPAC, and a
principled understanding of the method is thus imperative to overcome its instability.

On the other hand, the theoretically grounded Ideal Continual Learner (ICL) framework (Peng et al.,
2023) prevents catastrophic forgetting by design, as it optimizes the current task under the constraint
that prior tasks are solved to global optimality. Peng et al. (2023) derived generalization guarantees for
ICL, and described possible implementations for linear regression and matrix factorization. Nonethe-
less, the zero-forgetting promise of ICL has yet to be fully realized in practical implementations, and
its applicability in conjunction with pre-trained models remains largely unexplored.
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RanPAC and ICL are prime examples that illustrate the gap that prevails in the CL literature (as we
review in Appendix H): Theoretically grounded CL methods tend to be impractical (Evron et al.,
2022; Peng & Risteski, 2022; Peng et al., 2023; Cai & Diakonikolas, 2024), while highly performant
methods involve solving intricate, non-convex training problems, for which deriving informative
theoretical guarantees is challenging (Wang et al., 2022b;c;a; Smith et al., 2023; Wang et al., 2023;
Jung et al., 2023; Tang et al., 2023; Gao et al., 2024b; Roy et al., 2024; Kim et al., 2024).

Our primary objective is to bridge this gap between theory and practice in the context of CL with
pre-trained models. A natural idea towards this goal is to blend RanPAC and ICL, incorporating the
complementary strengths of both approaches. More specifically, we adopt the random ReLU feature
framework as used by RanPAC, and formulate a minimum-norm least-squares problem based on ICL
to train a linear classifier (cf. Section 2). Yet, random ReLU features are double-edged: while they
tend to boost performance by increasing feature separability (Telgarsky, 2022; Min et al., 2024), they
are also highly ill-conditioned, bringing computational challenges. Indeed, this ill-conditioning makes
RanPAC very sensitive to the choice of the ridge regularization parameter; and a naive combination
of RanPAC and ICL would inherit this instability. Crucially, we identify that the instability is related
to the extremely small singular values that emerge in the spectrum of the pre-trained random ReLU
features as more tasks are observed (Section 3). This intriguing finding motivates our method, termed
ICL-TSVD, which truncates the extremely small singular values (truncated SVD) prior to solving the
minimum-norm ICL problem (Section 4). ICL-TSVD bridges the gap between theory and practice
by delivering stable and strong performance with theoretical guarantees. Concretely:

• We provide a continual implementation of ICL-TSVD to train an over-parameterized linear classifier
with highly ill-conditioned features in a numerically stable fashion (Section 4). We show it stabilizes
RanPAC and ICL (Figs. 3 and 4), and it is both more scalable and efficient than RanPAC (Fig. 5).

• We derive theoretical guarantees for ICL-TSVD, proving that it has small estimation and general-
ization errors when a suitable fraction of SVD factors are truncated (Theorems 1 and 2, Section 5).
These results stem from a non-trivial recurrence relation that allows us to capture the continual
learning dynamics of ICL-TSVD (Lemma 1, Appendix D).

• We conduct extensive experiments on multiple datasets, showing that ICL-TSVD uniformly out-
performs prior works and specifically RanPAC (Section 6). Thanks to our stable implementation,
ICL-TSVD outmatches RanPAC by a significant margin in the CIL setting with one class given at a
time (Inc-1), where hundreds of tasks (classes) are sequentially presented (Table 2).

2 TECHNICAL BACKGROUND

Problem Setting. We consider classification tasks in the class-incremental learning (CIL) setting,
where each incoming task contains only unseen classes. Following conventions (Yan et al., 2021;
Zhou et al., 2023), we write B-q1, Inc-q2 to mean that the model is given q1 classes in the first task
and then q2 classes in each of the subsequent tasks (q1 = 0 means all tasks have q2 distinct classes).
We use vision transformers (ViTs) of Dosovitskiy et al. (2021) as pre-trained models.

Pretrained Features and Labels. Given mt images of task t, we feed them to pre-trained ViTs,
obtaining the output features Xt ∈ Rd×mt . Here, d is the feature dimension (d = 768 in the ViTs
used). Corresponding to Xt is the label matrix Yt ∈ Rct×mt . Every column of Yt is a one-hot vector,
that is some standard basis vector in Rct , where ct is the total number of classes observed so far. We
thus have c1 ≤ · · · ≤ ci ≤ · · · ≤ ct. Let Mt := m1 + · · ·+mt. While Yi ∈ Rci×mt might have a
different number of rows as ci varies, one can pad ct− ci zero rows to Yi when new class information
is revealed; so, with a slight abuse of notation, Yi is viewed as having ct rows. We denote by Y1:t the
label matrix of the first t tasks: Y1:t = [Y1, . . . ,Yt] ∈ Rct×Mt .

Random ReLU Features. Let relu : ξ 7→ max{0, ξ} be a ReLU layer and P ∈ RE×d denote a
random Gaussian matrix with i.i.d. N (0, 1) entries; here we assume E ≫ d. These allow us to
embed Xt into a higher dimensional space and get random ReLU features Ht ∈ RE×mt via

Ht := relu(PXt), H1:t := [H1, . . . ,Ht] ∈ RE×Mt . (1)

Note that relu is a pointwise non-linearity, applied to PXt entry-wise. The goal is to learn a linear
classifier W ∈ Rct×E continually, using features Ht and labels Yt of task t.
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ICL and RanPAC Formulations. With random ReLU features Ht and labels Yt of task t, we can
now instantiate the ICL framework of Peng et al. (2023) as a linearly constrained quadratic problem:

min
W∈Rct×E

∥WHt − Yt∥2F s.t. WHi = Yi, i = 1, . . . , t− 1. (ICL)

Since E is assumed to be very large, ICL is always feasible. Moreover, it has infinitely many
global minimizers reaching zero loss, and every such minimizer W satisfies WHi = Yi for every
i = 1, . . . , t. A popular approach is to select the one with minimum norm:

min
W∈Rct×E

∥W ∥2F s.t. WHi = Yi, i = 1, . . . , t. (Min-Norm ICL)

Since the constraints WHi = Yi force previous tasks to be solved to global optimality, both ICL
and Min-Norm ICL prevent forgetting by design. That said, no CL method was implemented for
solving Min-Norm ICL in the work of Peng et al. (2023) in the context of pre-trained models.

The RanPAC formulation of McDonnell et al. (2023) is a ridge regression program (λ > 0):

min
W∈Rct×E

λ · ∥W ∥2F +

t∑
i=1

∥WHi − Yi∥2F. (RanPAC)

The importance of RanPAC lies in its ability to achieve remarkable accuracy across a range of CL
datasets when λ is appropriately chosen, as evidenced in Table 1 of Zhou et al. (2024a). However,
McDonnell et al. (2023) do not provide a formal analysis of ridge regression in this context. Despite
the similarities between the methods, RanPAC does not benefit from the zero-forgetting guarantee
offered by Min-Norm ICL. Moreover, the theoretical justification for the strong empirical performance
of RanPAC remains limited. This lack of theoretical guarantees has critical implications: RanPAC
can exhibit instability and fail unpredictably, as we show in the sequel.
Remark 1. An alternative way to view these formulations is through a two-layer neural network (NN)
model, in which pre-trained features X are fed to a NN

X 7→W · relu(PX),

where P are randomly generated, then fixed, and W are trainable parameters. On a historical note,
networks of this form predate the early work of Schmidt et al. (1992); Pao & Takefuji (1992). The
latter are known as extreme learning machines and random feature models. In Appendix H.2 we
review these lines of research, providing connections to our work.
Remark 2. The MSE loss is used for ICL and RanPAC, and will also be used in our approach
(Section 4). Janocha & Czarnecki (2017); Hui & Belkin (2021) showed that, in many settings, the
MSE and cross-entropy losses yield similar performance. We utilize the MSE loss as it allows for a
closed-form least-squares solution to be rapidly computed and continually updated.
Remark 3. In RanPAC, first-session adaptation is executed before the first CL iteration. That is, the
pre-trained model is fine-tuned with data from the first task in a parameter-efficient way (Panos et al.,
2023). This needs extra hyperparameters and yields different features than H1:t. We study the impact
of this step in Table 1, Section 6, and Table 11, Appendix K.2.

3 EMERGENCE OF INSTABILITY

In this section, we showcase and analyze the instability of Min-Norm ICL and RanPAC.

Instability of Min-Norm ICL. Fig. 1a plots the eigenvalues of H⊤
1:tH1:t, showing that H⊤

1:tH1:t is
highly ill-conditioned and has just a few extremely large and extremely small eigenvalues, outnum-
bered by the eigenvalues in between that decay more slowly. Fig. 1b plots extreme eigenvalues of
H⊤

1:tH1:t, revealing that the minimum eigenvalue drastically drops after a certain number of tasks.
Comparing Fig. 1b and Fig. 1c, we see that the accuracy of solving Min-Norm ICL plummets exactly
when the extremely small eigenvalues emerge and begin to invade the spectrum.

Instability of RanPAC. Fig. 2 shows RanPAC with a small regularization parameter λ can fail to
achieve competitive performance, while it seems to work well with a large enough λ (e.g., λ = 104).
In constrast, Prabhu et al. (2024) finds that small λ (of order 10−5) works better when H1:t is replaced
with random Fourier features. This suggests that the optimal choice of λ depends, among other factors,
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(1a) The eigenvalues of H⊤
1:tH1:t arranged in descending order (t fixed).

(1b) Maximum and minimum eigenvalues of H⊤
1:tH1:t as the number t of seen tasks increases.

(1c) Final test accuracy of the incremental SVD solution to Min-Norm ICL (subject to numerical errors).

Figure 1: Spectral analysis of H⊤
1:tH1:t and its impact on test accuracy (see also Appendix K.5).

The matrix H⊤
1:tH1:t is highly ill-conditioned (1a); and test accuracy drops drastically when small

eigenvalues (of order 10−5) invade the spectrum (1b, 1c).

Figure 2: RanPAC is unstable as it breaks down for the small regularization λ. Cross-validation does
not fully stabilize RanPAC (cf. Section 6). See Section 6 for detailed experimental settings.

on the scale of the features and the noise level. McDonnell et al. (2023) selects λ from the pool of
candidates {10−8, 10−7, . . . , 108} via cross-validation on a small faction of training data. Although
this suffices to stabilize RanPAC in some settings, cross-validation can fail when the validation (or
training) set of the current task is small and not representative of test data. Unfortunately, this failure
occurs often in CIL with small increments (cf. Section 6).

The Cause of Instablity. Two types of errors could give rise to instability of Min-Norm ICL and
RanPAC. First of all, the fact that H⊤

1:tH1:t is highly ill-conditioned (Fig. 1a) can lead to numerical
errors. Also, extremely small eigenvalues can account for the double descent phenomenon (Schaeffer
et al., 2024), producing substantial generalization errors. In the case of Min-Norm ICL, the training
MSE loss 1

Mt
∥WH1:t − Y1:t∥2F of the solution to Min-Norm ICL explodes (Fig. 3) precisely when

the extremely small eigenvalues emerge (Fig. 1b). Thus, we argue that numerical errors are the main
cause underlying the instability of Min-Norm ICL. Since RanPAC does not suffer from this training
loss explosion (cf. Appendix K.7.1), its instability is more likely due to generalization errors.

4 ICL-TSVD: STABILIZING ICL VIA TRUNCATED SVD

Offline Description. The numerical evidence collected so far suggests that the instability of Min-
Norm ICL relates to the emergence of extremely small eigenvalues. This motivates a simple remedy,
called ICL-TSVD (offline description), which consists in truncating the smallest singular values
(vectors) of H1:t and then solving Min-Norm ICL using the truncated version of H1:t. More
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Figure 3: The average training MSE loss 1
Mt
∥WH1:t − Y1:t∥2F of the incremental SVD solution to

Min-Norm ICL explodes when extremely small eigenvalues emerge (Fig. 1b). TSVD (25%) truncates
25% minimum singular values and implements ICL-TSVD online, stabilizing Min-Norm ICL.

Algorithm 1: Continual Solver of ICL-TSVD (detailed version in Algorithm 4)

1 Input (Task t): Features Ht ∈ RE×mt (1), labels Yt ∈ Rct×mt , truncation percentage ζ ∈ [0, 1];
2 For t← 1, 2, . . . :
3 kt ← (1− ζ)Mt; // Mt := m1 + · · ·+mt can be updated online
4 J1:t ← Y1:tH

⊤
1:t; // online update of J1:t detailed in Algorithm 5, Appendix C

5 Form B̃t as per (3);
6 (Ũ1:t, Σ̃1:t)← Top-kt SVD factors of B̃t; // Algorithm 3 if t = 1, or Algorithm 2 if t > 1

7 Compute linear classifier W̃t := J1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t; // cf. (2) and (4)

concretely, write the SVD of H1:t as σ1u1v
⊤
1 + · · · + σMtuMtv

⊤
Mt

with ordered singular values
σ1 ≥ · · · ≥ σMt

. The truncation can then be described with some integer kt ∈ [1,Mt] by a function
τkt

that maps H1:t to σ1u1v
⊤
1 + · · ·+σkt

ukt
v⊤
kt

; here kt is the number of top SVD factors preserved.
Applying this idea to Min-Norm ICL means solving the following program:

W t ∈ argmin
W∈Rct×E

∥W ∥2F s.t. W τkt
(H1:t) = Y1:t. (ICL-TSVD)

It will be useful to write down the closed-form expression of W t. Let U1:tΣ1:tV
⊤
1:t be an SVD of

H1:t, and U1:tΣ1:tV
⊤
1:t an SVD of τkt(H1:t), where Σ1:t,Σ1:t are invertible square matrices. Then

W t = Y1:tV 1:tΣ
−1

1:tU
⊤
1:t = Y1:tV 1:tΣ1:tU

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
(i)
= Y1:tV1:tΣ1:tU

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
= Y1:tH

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
,

(2)

where equality (i) holds as the column vectors of U1:t not shown in U1:t are orthogonal to U1:t.
Remark 4. ICL-TSVD combines principal component analysis and ordinary least-squares, which is
analogous to principal component regression (PCR) (Xu & Hsu, 2019; Huang et al., 2022; Hucker
& Wahl, 2023; Bach, 2024; Green & Romanov, 2024). While PCR truncates the SVD of H1:t only
once, our implementation of ICL-TSVD performs the truncation continually for each t. Hence, our
approach can be viewed as continual PCR. See also Remark 6.

Continual Implementation. In order to turn (2) into a continual implementation, we need to update
J1:t := Y1:tH

⊤
1:t and U1:tΣ

−2

1:tU
⊤
1:t in an online fashion. This procedure is described in Algorithm 1,

where the following points are considered:

• Since the columns of Y1:t are one-hot vectors, we can compute Y1:tH
⊤
1:t incrementally by matrix

addition rather than (sparse) matrix multiplication.

• An exact update of U1:t and Σ1:t would require computing the SVD factors of the full data H1:t.
However, past data H1:t−1 is not available when observing task t. Thus, for each task t, we maintain
two matrices Ũ1:t, Σ̃1:t; which capture the information in U1:t and Σ1:t. Specifically, as shown in
Line 6, we set Ũ1:t, Σ̃1:t to be the top kt SVD factors of B̃t, where B̃t is defined as

B̃t :=

{
H1 if t = 1;[
Ũ1:t−1Σ̃1:t−1, Ht

]
otherwise.

(3)
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(4a) Test accuracy of TSVD applied to Min-Norm ICL for varying truncation percentage (cf. Fig. 1c).

(4b) Test accuracy of TSVD (25%) applied to RanPAC for varying regularization parameter λ (cf. Fig. 2).

Figure 4: TSVD stabilizes Min-Norm ICL and RanPAC (E = 105).

The top-kt singular values of B̃t and H1:t are close to each other (cf. Fig. 1a, Fig. 10, Fig. 11, and
Theorem 6), which showcases the effectiveness of our continual updating strategy. Then, as shown in
Line 7 and recalling (2) and J1:t := Y1:tH

⊤
1:t, we construct a linear classifier via

W̃t ← J1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t. (4)

• In Algorithm 1, ζ denotes the truncation percentage. Given ζ , we set kt = (1− ζ)Mt, which is the
number of top SVD factors preserved for each task t. Note that the choice of ζ is not sensitive to the
scale of the data, unlike the ridge regularization parameter λ of RanPAC (recall Section 3).
Remark 5. At test time, given a sample, we make a forward pass and obtain its random ReLU feature
h. The predicted class is then set according to the maximum entry of W̃th.

Stability Improvements. Our method stabilizes the training losses (Fig. 3) and stabilizes Min-Norm
ICL for a wide range of truncation percentages (Fig. 4a). Furthermore, we extend the solution of (4)
into J1:tŨ1:t(Σ̃

2
1:t + λIE)

−1Ũ⊤
1:t for ridge regression, where IE is the E × E identity matrix. This

stabilizes RanPAC and is practically immune to changes in the regularization parameter λ (Fig. 4b).
Extensive experimental validation is provided in Section 6 and Appendix K.

5 PROVABLY CONTROLLED ESTIMATION AND GENERALIZATION

In this section, we present Theorems 1 and 2, which bound the estimation and generalization error of
the output (4) of our approach (Algorithm 1).

Notations. Denote by µk(·) the k-th largest eigenvalue of a symmetric matrix. Let

γ1 = 1, γt :=
µkt

(
B̃tB̃

⊤
t

)
maxi=1,...,t−1

{
µki+1

(
B̃iB̃⊤

i

)} , ∀ t > 1. (5)

The quantity γt relates to the stability-plasticity tradeoff, as it is the ratio between the minimum
preserved eigenvalue µkt

(
B̃tB̃

⊤
t

)
at task t and the maximum eigenvalues being truncated in the

past, µki+1

(
B̃iB̃

⊤
i

)
. Clearly γt > 0, as we truncate only non-zero eigenvalues. Furthermore, if we

truncate eigenvalues smaller than a given threshold δ, we have γt ≥ 1. In this case, the threshold δ

implicitly determines ki’s and we have µkt

(
B̃tB̃

⊤
t

)
≥ δ > µki+1

(
B̃iB̃

⊤
i

)
. Finally, as suggested by

Fig. 1a, γt can be as large as 1010. For instance, if we set δ = 10−2, then the maximum truncated
eigenvalue is of order 10−5 and the minimum preserved is of order 105.

Then, the accumulative error at is defined as

a0 = 0, at :=

t∑
i=1

µki+1

(
B̃iB̃

⊤
i

)
, ∀t ≥ 1. (6)

6
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The term at reflects the information ignored by our algorithm, as µki+1

(
B̃iB̃

⊤
i

)
is the maximum

eigenvalue truncated at task i. Note that, even when observing thousands of tasks (e.g., t ≈ 103), if
we truncate the smallest eigenvalues (of order 10−5), at is in the order of 10−2.

Model Assumption. We consider a noisy linear regression model. Specifically, we assume there is
some ground-truth weight matrix W ∗

t ∈ Rct×E and noise E1:t ∈ Rct×Mt satisfying
Y1:t = W ∗

t H1:t + E1:t. (7)
The quantities W ∗

t and E1:t are colored to reflect the fact that they are unknown and not computable.
The model in (7) is related to probabilistic principal component analysis (PPCA); cf. Tipping &
Bishop (1999) and Chapter 2.2 of Vidal et al. (2016). The two main differences with PPCA are that
we make no probabilistic assumptions on H1:t or E1:t (except in Appendix F); and we consider the
overparameterized case with large E, while PPCA assumes W ∗

t is a tall matrix (i.e., E < ct).

Estimation Guarantee. In the over-parametrized regime E ≫ Mt, a solution to Min-Norm ICL
should, in principle, perfectly fit the data and achieve zero training MSE. However, solving Min-
Norm ICL is numerically unstable and empirically entails huge losses (Fig. 3). As a remedy, our
approach truncates the data spectrum continually, trading-off between perfectly fitting training data
and increasing numerical stability. The following theorem, whose proof can be found in Appendix E,
connects the eigenvalue ratio γt and the accumulative error at with our method’s training loss,
showing that the estimation error is provably under control:

Theorem 1. Let B̃t, γt, at be defined as in (3), (5), and (6) respectively. If Y1:t = W ∗
t H1:t + E1:t

(7), then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤ 4 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
(8)

+ 2 · ∥E1:t∥2
(
(Mt − kt)

Mt
+

(t− 1)min {Mt−1 − kt−1, (t− 1)kt}
γ2
tMt

)
.

One of the main quantities governing the bound in Theorem 1 is at/Mt, which reflects the truncation
process for the current task. When truncating the extremely small eigenvalues (of order 10−5) and
observing hundreds of tasks, at is in the order of 10−3, which makes at/Mt insignificant. Then,
the terms (t− 1)/γt and at−1/Mt capture the continual past truncations and are equal to zero for
t = 1. Similarly to at, when truncating only the smallest eigenvalues, we have at−1 ≈ 10−5(t− 1)
and (t − 1)/γt ≈ 10−10(t − 1). Hence, all terms involving (t − 1)/γt and at−1/Mt are under
control for hundreds- even thousands- of tasks. Finally, although the ground-truth W ∗

t and noise E1:t
are unknown, we empirically verify that the minimum-norm solution to ICL-TSVD achieves high
accuracy (Section 6). This suggests the linear model assumption is adequate, and that ∥E1:t∥2 and
∥W ∗

t ∥2F are reasonably small. In summary, the upper bound (8) shown in Theorem 1 behaves well
and is quite small if we truncate the eigenvalues suitably (which makes γt large and at small).

Generalization Guarantee. Consider a test sample (h,y) satisfying y = W ∗
t h+ ϵ for some noise

vector ϵ. To obtain a generalization guarantee that is widely applicable, we only assume that h is
randomly sampled from some distribution with a finite second-order moment (Λ := E[hh⊤] <∞),
and that ϵ is random, independent of h. Given the output W̃t of our method (4), we bound its test
error Eh,ϵ

[
∥W̃th− y∥2

]
over the randomness of h, ϵ as follows:

Theorem 2. Let B̃t, γt, at be defined as in (3), (5), and (6) respectively. Assume Y1:t = W ∗
t H1:t +

E1:t (7) and y = W ∗
t h+ ϵ with Λ := E[hh⊤]. The output W̃t of Algorithm 1 satisfies

Eh,ϵ

∥∥W̃th− y
∥∥2 ≤ 4 · ∥W ∗

t ∥2F · Bt + 4 · ∥E1:t∥2 · Vt + 2 · Eϵ

[
∥ϵ∥2

]
, (9)

where Bt and Vt are defined as follows:

Bt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥(1 + (t− 1)2

γ2
t

)
+

(
at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)

Vt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(B̃tB̃⊤
t

)
+

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt} .

(10)
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There are two major terms in Bt (10). The term in the right-most large parenthesis also appears in the
estimation bound of Theorem 1; and reflects the fact that training losses impact generalization errors.
Then, the term

∥∥Λ− 1
Mt

H1:tH
⊤
1:t

∥∥ is commonly seen in covariance estimation (Wainwright, 2019),
where h and the columns of H1:t are assumed to be independent i.i.d. Gaussian vectors. In this case,
if Λ furthermore satisfies some boundedness condition, we can show

∥∥Λ− 1
Mt

H1:tH
⊤
1:t

∥∥ converges
to 0 as Mt →∞; cf. Theorem 9 of Koltchinskii & Lounici (2017). Note that Vt is independent of
noise, so the rest of the terms in (9), which are weighted by noise magnitudes ∥E1:t∥2, Eϵ

[
∥ϵ∥2

]
, are

negligible if the noise is sufficiently small (as suggested by Section 6).

Remark 6. There is a comprehensive line of works on the generalization theory of linear models in
the over-parameterized setting, developed to understand the phenomenon known as benign overfitting
or double descent (cf. Appendix H.2). Specifically, our results are related to Xu & Hsu (2019);
Huang et al. (2022); Hucker & Wahl (2023); Bach (2024); Green & Romanov (2024), that analyze
the generalization errors of principal component regression (cf. Remark 4). Nevertheless, these
papers consider the offline setting, where truncation is performed only once. In constrast, we analyze
the continual truncation setting, which is most pertinent for CL. Indeed, for t = 1, B1 is equal to
the corresponding term in Theorem 1 of Huang et al. (2022) up to a constant. More importantly,
these papers make statistical (e.g., Gaussian) assumptions on H1:t, which are potentially violated by
generating H1:t via Ht := relu(PXt), with Xt consisting of features from pre-trained models. In
contrast, Theorems 1 and 2 have few assumptions, and so they apply, at least in principle, to the full
architecture (i.e., a pre-trained model and random ReLU feature model in cascade).

6 NUMERICAL VALIDATION

This section highlights the performance and efficiency of ICL-TSVD in the CIL setting across
a diverse range of datasets and increments. For additional results, see Appendix K, particularly
Appendix K.3 for experimental outcomes in the DIL (domain-incremental learning) setting.

6.1 SETUP

Baselines. The most relevant baseline to compare is RanPAC (McDonnell et al., 2023). Additional
competitive baselines include L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), Co-
daPrompt (Smith et al., 2023), SimpleCIL, ADAM (Zhou et al., 2023) and EASE (Zhou et al., 2024b).
We also compare ICL-TSVD with a joint linear classifier, that is, a linear model trained using either
the pre-trained features X1:T of all T tasks, or the random ReLU features H1:T . We denote these two
methods by LC (X1:T ) and LC (H1:T ). To ensure a fair comparison, all experiments are conducted
based on the PILOT GitHub repository of Sun et al. (2023). Additional experimental details, as well
as a comprehensive review of relevant baselines is given in Appendix J and Appendix H.

Pre-trained Models. We use ViT models pre-trained on ImageNet-1K; specifically the model
vit_base_patch16_224 from the timm repository (Wightman, 2019). Experiments using ViTs
pre-trained on ImageNet-21K are presented in Appendix K.2.

Datasets. Following prior works (Zhou et al., 2023; McDonnell et al., 2023), we run CIL experiments
with B-q1, Inc-q2 on continual learning versions of the following datasets: CIFAR100 (Krizhevsky
et al., 2009), ImageNet-R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), CUB-200
(Wah et al., 2011), ObjectNet (Barbu et al., 2019), OmniBenchmark (Zhang et al., 2022), VTAB
(Zhai et al., 2019), and StanfordCars (Krause et al., 2013). We set q1 = 0 for most cases, but since
StanfordCars and VTAB have 196 and 50 classes, respectively, we take q1 = 16 and q1 = 10 for
them. We let q2 vary in {5, 10, 20}, and also consider the more challenging case q2 = 1.

Metrics. After learning task t we evaluate the top-1 classification accuracyAi,t for every i = 1, . . . , t.
For a total of T tasks, the accuracy matrix A is defined as a T × T upper triangular matrix with its
(i, t)-th entry being Ai,t. Final accuracy is defined as the average 1

T

∑T
i=1Ai,T of the last column

of A. Total accuracy is defined as the average 1
T (T−1)

∑
1≤i≤t≤T Ai,t of all upper triangular entries.

Following common practices, we use total accuracy and final accuracy as our evaluation metrics.
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Table 1: Final accuracy with pre-trained ViTs. Large accuracy gaps between RanPAC and ICL-
TSVD (ours) are shown in bold. †: Methods using first-session adaptation with the corresponding
hyperparameters set as per RanPAC† (cf. Remark 3). ∗: Methods using first-session adaptation with
the hyperparameters set as per EASE∗ (Zhou et al., 2024b). Details are in Appendix J.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.

LC (X1:T ) 87.56 72.42 58.85 88.76 76.90
LC (H1:T ) 87.76 73.00 59.25 88.72 77.18

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 80.25 83.53 83.57 67.92 71.78 73.42 44.50 48.52 51.28 53.60 59.20 67.81 65.45
DualPrompt 80.85 83.86 84.59 67.12 71.57 72.87 49.70 53.72 56.75 54.79 63.99 69.93 67.48
CodaPrompt 82.93 86.31 87.87 67.80 72.73 74.85 34.43 49.57 59.51 36.39 60.18 71.29 65.32
SimpleCIL 80.48 80.48 80.48 63.47 63.47 63.47 58.72 58.72 58.72 80.45 80.45 80.45 70.78
RanPAC 86.71 87.02 87.10 71.90 71.97 72.50 56.48 62.34 61.75 88.08 87.15 88.13 76.76
ICL-TSVD 88.18 88.18 88.21 73.67 73.72 73.63 62.74 63.20 63.20 89.36 89.27 89.23 78.55

ADAM† 83.55 85.13 85.86 63.73 65.03 71.40 58.72 58.66 58.99 80.49 80.66 81.00 72.77
RanPAC† 88.73 90.04 90.74 70.80 73.37 78.80 62.34 62.08 62.28 88.42 87.57 88.68 78.65
ICL-TSVD† 89.73 90.82 91.44 73.58 74.55 79.13 62.74 62.80 62.94 89.14 89.19 89.27 79.61

EASE∗ 84.43 86.48 88.16 73.53 77.02 77.55 58.26 61.69 62.28 80.66 81.68 81.13 76.07
ICL-TSVD∗ 89.46 90.90 91.67 78.73 80.43 81.45 63.40 64.45 65.64 89.14 89.19 89.44 81.16

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.
LC (X1:T ) 59.70 79.55 91.32 74.12 76.17
LC (H1:T ) 59.96 80.02 91.17 73.65 76.20

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 45.53 52.05 55.49 54.50 57.29 60.50 59.32 73.25 78.91 13.70 27.46 43.68 51.81
DualPrompt 47.56 53.68 55.64 56.14 59.18 62.39 64.10 77.78 83.75 11.38 18.84 27.89 51.53
CodaPrompt 46.61 54.44 59.17 60.00 64.98 68.25 68.77 76.81 86.32 7.96 11.29 30.74 52.95
SimpleCIL 51.66 51.66 51.66 70.19 70.19 70.19 82.53 82.53 82.53 35.46 35.46 35.46 59.96
RanPAC 58.77 57.66 57.69 77.63 77.63 77.46 91.15 91.58 91.58 58.03 71.40 71.40 73.50
ICL-TSVD 60.83 60.86 60.77 79.50 79.60 79.70 92.46 92.55 92.56 74.21 74.39 74.39 76.82

ADAM† 52.16 53.94 55.97 70.54 70.53 70.38 82.55 82.55 82.55 35.61 35.61 35.61 60.67
RanPAC† 58.77 57.66 64.59 78.10 78.46 78.86 91.48 91.86 91.86 58.65 72.24 72.24 74.56
ICL-TSVD† 61.78 63.56 66.48 80.07 80.28 80.45 92.55 92.53 92.60 74.87 74.89 75.13 77.93

EASE∗ 49.28 53.88 57.05 70.33 70.68 70.84 89.85 93.48 93.49 32.43 31.77 29.00 61.84
ICL-TSVD∗ 61.57 63.40 66.29 80.02 80.42 80.82 92.68 92.71 92.67 75.91 75.71 75.96 78.18

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1 contains the main results for q2 = 5, 10, 20 on 8 different CIL datasets. First observe that L2P,
DualPrompt, and CodaPrompt are unstable as their accuracy varies significantly in different datasets
for different values of q2. Second, SimpleCIL, ADAM, and EASE are unstable as their performance
is largely compromised on StanfordCars. Then, RanPAC is unstable with respect to q2 as it exhibits a
large performance gap compared to ICL-TSVD for q2 = 5 on ImageNet-A and StanfordCars. Finally,
we see ICL-TSVD has more stable performance across datasets and for varying q2.

Figure 5: Training times for varying embedding dimensions E (in minutes).

Why Does ICL-TSVD Uniformly Outperform RanPAC? The first reason is that ICL-TSVD’s high
efficiency and scalability enable the use of a larger embedding dimension. Indeed, ICL-TSVD uses
E = 105, taking advantage of the scaling law (Fig. 8, Appendix K.4), while RanPAC uses its default
choice E = 104. Note that this is a fair comparison since ICL-TSVD’s implementation is more
scalable and more efficient than RanPAC’s. Specifically, ICL-TSVD has O(E(kt−1 +mt)

2) time
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(6a) RanPAC (6b) ICL-TSVD (6c) RanPAC (6d) ICL-TSVD

Figure 6: The upper triangular accuracy matrices for class-incremental learning on ImageNet-A (B-0,
Inc-5) and StanfordCars (B-16, Inc-5), corresponding to the two bold cases in Table 1.

Table 2: Final and total accuracy in CIL datasets with q2 = 1 (Inc-1).

CIFAR100 ImageNet-R ImageNet-A CUB ObjectNet OmniBenchmark VTAB StanfordCars Avg.

Final Accuracy
RanPAC 87.06 71.78 55.43 85.03 58.51 77.89 91.11 1.19 66.00
ICL-TSVD 88.58 73.33 62.94 89.36 60.82 79.30 92.44 74.44 77.65

Total Accuracy
RanPAC 91.58 70.41 38.25 73.22 64.94 85.79 77.06 57.43 69.83
ICL-TSVD 92.88 79.24 71.22 93.28 73.19 87.01 96.22 81.16 84.27

complexity while RanPAC takes O(E3) time for each task t (Remark 8, Appendix C). An alternative
way to make a fair comparison is to set the same embedding dimension E for both methods, in which
case ICL-TSVD can be up to 1000 times faster than RanPAC (e.g., see E = 25000 in Fig. 5).

The second reason is that RanPAC is not stable when using a fixed regularization parameter λ (cf.
Fig. 2), and the cross-validation strategy of McDonnell et al. (2023) does not fully address this
challenge, as it can fail when the validation set is small. This is the case in ImageNet-A (B-0, Inc-5)
and StanfordCars (B-16, Inc-5) (see Table 1), where the validation sets are small and RanPAC’s
performance is severly degraded. A more careful analysis of these two failure cases shows that the
accuracy matrices of RanPAC have multiple columns with nearly zero entries (in blue, Fig. 6a and
Fig. 6c), exposing RanPAC’s instability.

Inc-1: One Class at A Time. In light of the above analysis, we consider the CIL setting, with one
class given at each iteration (Inc-1). In this setting, a new task has much fewer training samples and
CL methods need to cope with hundreds of tasks (classes) on certain datasets. Note that adapter-based
methods such as EASE are infeasible for CIL with Inc-1 (cf. Appendix H.1). In this setting, the
fragility of RanPAC with respect to the choice of λ is amplified (see Table 2), and the method exhibits
a significant performance drop compared to Table 1. In contrast, ICL-TSVD’s performance is stable,
exhibiting high accuracy comparable to the cases of Inc-{5, 10, 20} in Table 1. Accuracy matrices
associated with Table 2 are plotted in Figs. 15 to 19 of Appendix K.7.2, where we present similar
results for Inc-{1, 2, 4, 5}.

7 CONCLUSION

This work puts forward a simple method that bridges the gap between empirical performance and
theoretical guarantees in continual learning with pre-trained models. By integrating the strengths
of RanPAC into the Ideal Continual Learner framework and addressing the ill-conditioning of
lifted features through continual SVD truncation, our approach achieves both stability and strong
performance. Extensive experiments demonstrated that our method outperforms state-of-the-art
methods across multiple datasets and can handle sequences with hundreds of tasks. Theoretically, we
proved that our method maintains small training and generalization errors by appropriately truncating
SVD factors. This work underscores the potential of combining empirical techniques with principled
frameworks to develop robust and scalable continual learning systems, and will encourage follow-up
works to achieve so as well.
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A OVERVIEW OF THE APPENDIX

• In Appendix B, we complie all the mathematical notations used throughout the paper.
• In Appendix C we describe the implementation details of ICL-TSVD. There, we also discuss

other potential implementations and our design choice.
• In Appendix D, we present auxiliary lemmas that are useful for proving our main theorems.
• In Appendix E, we prove the theorems displayed in the main paper (Theorems 1 and 2).
• In Appendix F we present results similar to Appendix E, with the difference that we now

assume the noise is Gaussian, which gives slightly tighter error bounds.
• In Appendix G, we prove some extra theoretical results such as perturbation bounds on

eigenvalues and eigenvectors (Theorem 6).
• In Appendix H we review related works on continual learning, focusing on CL methods

with pretrained models and existing theoretical developments.
• In Appendix I we report the statistics of the datasets we use for experiments.
• In Appendix J we specify the experimental setup.
• In Appendix K we report extra experimental results, figures, and tables.

B NOTATIONS

Here in Table 3 we compile all the notations used in the paper.

Table 3: Notations

d dimension of pre-trained features
E Embedding dimension
mt number of training samples for task t
Mt m1 + · · ·+mt

ct Total number of classes seen in the first t tasks
T Total number of tasks
N (0, 1) Gaussian distribution with mean 0 and variance 1

IE E × E identity matrix
Xt d×mt matrix, whose columns are output features of pre-trained models
P E × d random embedding matrix with N (0, 1) entries
Ht Random ReLU features relu(PXt) as defined in (1)
λ Ridge regularization parameter in RanPAC

B̃t The matrix whose SVDs are truncated by Algorithm 4, defined in (3)
kt The number of singular values and vectors preserved for the first t tasks
τkt

(·) Function that computes the best rank-kt approximation of a matrix
µk(·) the k-th largest eigenvalue of a symmetric matrix

U1:tΣ1:tV
⊤
1:t SVD of H1:t

U1:tΣ1:tV
⊤
1:t SVD of τkt

(H1:t)

Ũ1:t, Σ̃1:t SVD factors of B̃t

at accumulative error defined in (6)
γt the eigengap between the present and past, defined in (5)
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C IMPLEMENTATION DETAILS FOR ICL-TSVD

In this section, we give full details of our algorithm for ICL-TSVD. Note that Algorithm 1 of the
main paper is a concise version of our approach, used to illustrate the methodology at high level.

In Appendix C.1, we introduce Algorithm 2, our implementation of the incremental SVD approach.
Note that Algorithm 2 dates back at least to Bunch & Nielsen (1978) and has been applied to
image processing, computer vision, and latent semantic indexing (Zha & Simon, 1999; Levey &
Lindenbaum, 2000; Brand, 2002; Ross et al., 2008). Recently a link between continual learning and
incremental SVD was built (Peng et al., 2023). However, it has not been applied to the context we
consider here to the best of our knowledge, and suitable modifications are needed to incorporate
incremental SVD for solving ICL-TSVD satisfactorily. For example, we truncate the SVD factors
in each continual update as shown Algorithm 2, and the outputs (Ũ1:t, Σ̃1:t) of Algorithm 2 are not
necessarily equal to the top-kt SVD factors of H1:t. It is then our contribution to arm Algorithm 2
with theoretical guarantees (cf. Lemma 1 and Theorem 6).

In Appendix C.2, we introduce Algorithm 4, a continual learning method that stably solves ICL-
TSVD.

In Appendix C.3, we examine other algorithmic options that could be used for solving the least-
squares type problems that we encountered in the main paper ( ICL-TSVD, Min-Norm ICL, or
RanPAC).

Our PyTorch code that implements ICL-TSVD will be made available soon.

C.1 INCREMENTAL TRUNCATED SVD

We first explain the design choice as suggested by (2): Should we maintain all SVD factors Ũ1:t, Σ̃1:t,
and Ṽ1:t, or should we just maintain the singular values Σ̃1:t and and left singular vectors Ũ1:t? In
the main paper, we suggested taking the latter choice, as we empirically found continually updating
all SVD factors Ũ1:t, Σ̃1:t, and Ṽ1:t lead to large test errors.

We now describe how to update the top kt SVD factors Ũ1:t, Σ̃1:t from the previous estimates
Ũ1:t, Σ̃1:t and new data Ht. Let QtRt be the QR decomposition of (IE − Ũ1:t−1Ũ

⊤
1:t−1)Ht. Then

we have [
Ũ1:t−1Σ̃1:t−1, Ht

]
=
[
Ũ1:t−1, Qt

] [
Σ̃1:t−1 Ũ⊤

t−1Ht

0 Rt

]
.

Note that [Ũ1:t−1, Qt] is already orthogonal, we can do a truncated SVD on the smaller (kt−1 +
mt)× (kt−1 +mt) matrix of the right-hand side. The full procedure is summarized below:

Algorithm 2: Incremental Truncated Singular Value Decomposition

1 Input: data matrix Ht ∈ RE×mt of task t, desired output rank kt ≤ m, SVD factors
Ũ1:t−1 ∈ RE×kt−1 and Σ̃1:t−1 ∈ Rkt−1×kt−1 of previous t− 1 tasks;

2 Compute the QR decomposition QtRt of (IE − Ũ1:t−1Ũ
⊤
1:t−1)Ht;

3 Set (Σtmp,Utmp) to the top-kt SVD components of // TSVD (Algorithm 3)
4 [

Σ̃1:t−1 Ũ⊤
t−1Ht

0 Rt

]
∈ R(kt−1+mt)×(kt−1+mt); (11)

5 Set Σ̃1:t ← Σtmp and Ũ1:t ← [Ũt−1 Qt]Utmp;
6 Ũ1:t ← The orthogonal factor of QR decomposition of Ũ1:t; // improve numerical stability

7 Output: (Ũ1:t, Σ̃1:t);

Remark 7. Since [Ũ1:t−1 Qt] and Utmp are orthogonal, Ũ1:t is expected to be orthogonal as well.
However, the multiplication Ũ1:t = [Ũt−1 Qt]Utmp might lose orthogonality due to numerical errors,
especially for large t. This is fixed by an extra post-processing step that orthogonalizes Ũ1:t.
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Algorithm 3: Truncated Singular Value Decomposition (TSVD)

1 Input: matrix H ∈ RE×m and desired output rank r ≤ min{E,m};
2 tmp← min{E,m};
3 Compute the SVD σ1u1v

⊤
1 + · · ·+ σtmputmpv

⊤
tmp of H;

4 Set Σ̃← diag(σ1, . . . , σr), Ũ ← [u1, . . . ,ur];
5 Output: (Ũ , Σ̃);

Memory Complexity Analysis. The extra working memory of this approach is roughly:

• O(Emt +m2
t ), for the QR factors QtRt;

• O((kt−1 +mt)
2), for the matrix in (11) and its SVD factors;

Hence, for large E, this is less than the O(E(kt−1 +mt)) memory used by the direct SVD method.

Time Complexity Analysis. The major cost is the SVD of (11), which takes O((kt−1 +mt)
3) time.

While in principle the QR orthogonalization for the post-processing of Ũ1:t takes O(E(kt−1 +mt)
2)

time, it is significantly faster than SVD as the constants behind its O(·) is very small. Therefore, one
would expect the SVD on the matrix of (11) in O((kt−1 +mt)

3) time should be much faster than the
SVD on the matrix [Ũ1:t−1Σ̃1:t−1, Ht], which needs O(E(kt−1+mt)

2) time, where E is far larger
than kt−1 +mt (e.g., E = 105 and kt−1 +mt = 104). This is true on a sequential machine, but their
running time difference is not significant for highly parallel GPU implementations in our experience
(e.g., computing the inner product between two E-dimensional vectors has similar running times to
computing the inner product between (kt−1 +mt)-dimensional vectors, due to parallelism). Hence,
for a parallel implementation, the main advantage of doing SVD on the matrix in (11) is that it takes
less working memory than SVD on [Ũ1:t−1Σ̃1:t−1, Ht].
Remark 8. While our method has O(E(kt−1 +mt)

2) time complexity, RanPAC solves the normal
equations W (H1:tH

⊤
1:t + λIE) = Y1:tH

⊤
1:t of the ridge problem in variable W for every task t

using off-the-shelf solvers implemented in PyTorch, which in general takes O(E3) time. This is why
it is slower than our method for the same E, particularly when E is large (Figs. 5 and 7).

C.2 CONTINUAL SOLVER FOR ICL-TSVD

The proposed algorithm is shown in Algorithm 4. Here are a few details that we have not yet
mentioned in the main paper. First, note that Algorithm 4 formally updates Mt ad J1:t continually.
At Line 8 of Algorithm 4 we compute the label-feature covariance matrix J1 := Y1H

⊤
1 ∈ Rc1×E ,

and then at lines 10 and 11 we update J1:t−1 into J1:t via J1:t ← J1:t−1+Jtmp. The attentive reader
might find that J1:t−1 is of size ct−1×E while Jtmp is of size ct×E. But it could be that ct−1 < ct,
so it might not make sense to add J1:t−1 and Jtmp as in Line 11. Note that we wrote Line 11 just for
simplicity. The implementation would pad ct − ct−1 zero rows to J1:t−1 in a similar fashion to how
we extend Yt−1 into Yt when more classes are given, and this is what Line 11 should mean.

Second, we add an extra parameter rmax, to control the maximum allowable rank, that is the maximum
number of columns Ũ1:t is allowed to have. The purpose is to control the time complexity of
Algorithm 4 and allow it to run more efficiently on large datasets such as DomainNet (cf. Tables 7
and 8). We argue both the truncation percentage ζ and maximum allowable rank rmax are needed:
With ζ alone, the method might run slowly or even exceed the memory for large datasets such as
DomainNet (cf. Tables 7 and 8); with rmax alone, truncation is not activated before receiving rmax
samples, and numerical instability if it arises, can not be prevented before truncation is in effect.
Table 4 gives the values of ζ and rmax we use for each dataset.

C.3 ALTERNATIVE APPROACHES FOR ONLINE LEAST-SQUARES OR RIDGE REGRESSION

Here we examine a few alternative options of solving the least-squares or ridge regression problems
that appeared in the main paper (namely, Min-Norm ICL, ICL-TSVD, RanPAC).
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Dataset Truncation Percentage ζ Embedding Dimension E Maximum Allowable Rank rmax

CIFAR100 25% 105 10000
ImageNet-R 25% 105 10000
ImageNet-A 25% 105 10000
CUB-200 25% 105 10000
ObjectNet 25% 105 20000
OmniBenchmark 25% 105 20000
VTAB† 25% 105 10000
StanfordCars 25% 105 10000

Table 4: Hyperparameters we use for each dataset.

Algorithm 4: Continual Solver of ICL-TSVD

1 Input of Task t: Random ReLU features Ht ∈ RE×mt , label matrix Yt ∈ Rct×mt ,
truncation percentage ζ ∈ [0, 1], maximum allowable rank rmax;

2 For t← 1, 2, . . . :
3 Mt ←Mt−1 +mt; // update the total number of samples Mt

4 kt ← min(rmax, (1− ζ)Mt); // perserve kt SVD factors for the first t tasks

5 Form B̃t as per (3);
6 (Ũ1:t, Σ̃1:t)← Top-kt SVD factors of B̃t; // use Algorithm 3 if t = 1, or Algorithm 2 if t > 1

7 If t = 1: // Continual update of J1:t := Y1:tH
⊤
1:t

8 J1 ← Output of Algorithm 5 run with inputs H1,Y1; // label-feature covariance of task 1
9 Else:

10 Jtmp ← Output of Algorithm 5 run with inputs Ht,Yt; // label-feature covariance of task t
11 J1:t ← J1:t−1 + Jtmp;

12 Form the linear classifier W̃t := J1:t

(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
; // cf. (2) and (4)

Randomized Linear Algebra Techniques. Algorithm 3 can, in fact, be implemented by randomized
linear algebra techniques (Halko et al., 2011). Some of these techniques compute by design only the
top k SVD factors. Intuitively this could save time and memory if k is extremely small. One such
method is conveniently implemented in PyTorch as well (torch.svd_lowrank). However, in our
rudimentary attempts at using randomized approaches, we found this PyTorch routine does not seem
to be as efficient or accurate as our present implementation (we consistently set truncation percentage
ζ to 25%). This observation aligns with the PyTorch document of torch.svd_lowrank: In
general, use the full-rank SVD implementation torch.linalg.svd() for dense matrices due to its 10-fold
higher performance characteristics. The low-rank SVD will be useful for huge sparse matrices that
torch.linalg.svd() cannot handle. For the moment, we conclude that it needs deeper investigations to
see whether randomized techniques are suitable for the continual learning contexts.

Online Matrix Inversion. A key step in solving Min-Norm ICL or RanPAC would be computing the
inverse (H1:tH

⊤
1:t + λIE)

−1 or (H⊤
1:tH1:t + λIMt

)−1. Their inversion can be continually updated
via the celebrated Woodbury matrix identity or block matrix inversion lemma, and the signature use of
these matrix tools can be found in classic signal processing algorithms such as recursive least-squares
Sayed (2008). They are also used in recent continual learning papers of Zhuang et al. (2022; 2023).
Using them allows the inversion to be computed rapidly, while it is also known that they can be
numerically unstable. Indeed, in our setting, H1:t is extremely ill-conditioned. Our implementation
where (H1:tH

⊤
1:t + λIE)

−1 are continually updated via the Woodbury matrix identity suffers from
numerical errors, and it is unable to maintain strong performance and unable to outperform RanPAC.
Moreover, the numerical errors accumulate over time and can not handle long sequences of tasks.
Finally, even if we know the numerical errors exist, there is no obvious solution to fix them. This is
different from our ICL-TSVD implementation based on robust truncated SVD procedures, which has
an advantage that we could easily reduce numerical errors by re-orthogonalizing Ũ1:t (see Remark 7
and Algorithm 2).
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Algorithm 5: Compute The Label-Feature Covariance Matrix

1 Input: matrix H = [h1, . . . ,hm] ∈ RE×m and label matrix Y ∈ Rc×m;
2 Convert Y into a vector of indices y = [y1, . . . , ym] such that the i-th column of Y is the yi-th

standard basis vector (i.e., one-hot vector with 1 at position yi);
3 Initialize S = [s1, . . . , sc] to be the E × c zero matrix;
4 For i = 1, . . . ,m: // parallel implementation via torch.Tensor.index_add_
5 Syi ← Syi + hi;
6 Output: S⊤; // S is equal to HY ⊤

D AUXILIARY LEMMAS

The following lemma provides an explicit expression for the difference between the continually
truncated factors Ũ1:tΣ̃

2
1:tŨ

⊤
1:t and covariance H1:tH

⊤
1:t.

Lemma 1. Let B̃t be the matrix whose SVDs are truncated by Algorithm 4, as defined in (3). We
have U1 = Ũ1 and Σ1 = Σ̃1. Moreover, we have

H1:tH
⊤
1:t − Ũ1:tΣ̃

2
1:tŨ

⊤
1:t =

t∑
i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
.

Proof of Lemma 1. It should be clear that U1 = Ũ1 and Σ1 = Σ̃1. For every i = 1, . . . , t we have

Ũ1:iΣ̃
2
1:iŨ

⊤
1:i = τki

(
B̃iB̃

⊤
i

)
.

and therefore

Ũ1:iΣ̃
2
1:iŨ

⊤
1:i − B̃iB̃

⊤
i = τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i .

A key observation is that summing the above equality over i = 2, . . . , t yields
t∑

i=2

(
Ũ1:iΣ̃

2
1:iŨ

⊤
1:i − B̃iB̃

⊤
i

)
=

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔

t∑
i=2

(
Ũ1:iΣ̃

2
1:iŨ

⊤
1:i − Ũ1:i−1Σ̃

2
1:i−1Ũ

⊤
1:i−1 −HiH

⊤
i

)
=

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t − Ũ1Σ̃

2
1Ũ

⊤
1 −H2:tH

⊤
2:t =

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t −H1:tH

⊤
1:t = U1Σ

2

1U
⊤
1 −H1H

⊤
1 +

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t −H1:tH

⊤
1:t =

t∑
i=1

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
.

(12)

The last equality also holds for t = 1. This finishes the proof.

The lemma below is a direct consequence of Von Neumann’s trace inequality, and its proof is omitted.
Lemma 2. Given two square matrices A,B with A positive semidefinite, we have

tr(AB) ≤ tr(A) · ∥B∥.

Lemma 3 presented below is elementary.
Lemma 3. Assume C is a positive semidefinite matrix. Then we have

tr(DACBD⊤) + tr(DB⊤CA⊤D⊤) ≤ tr(DACA⊤D⊤) + tr(DBCB⊤D⊤),

where A,B,C,D are matrices of compatible sizes. Therefore, it holds that

tr
(
D(A+B)C(A+B)D⊤) ≤ 2 tr(DACA⊤D⊤) + 2 tr(DBCB⊤D⊤).
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The following two lemmas provide upper bounds on several terms appearing naturally in our main
results.
Lemma 4. Let B̃t be defined in (3), γt in (5), and at in (6). Define

Dt :=

t∑
i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
. (13)

We have ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥ ≤ t− 1

γt
,∥∥∥Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥ ≤ t− 1

γt
,

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ 1

γt
min {Mt−1 − kt−1, (t− 1)kt} ,

tr
(
DtŨ1:tΣ̃

−4
1:t Ũ

⊤
1:t

)
≤ 1

µkt

(
B̃tB̃⊤

t

) · 1
γt

min {Mt−1 − kt−1, (t− 1)kt} .

Proof of Lemma 4. It follows from definition that(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
Ũ1:t = 0,

hence DtŨ1:t = Dt−1Ũ1:t. This means∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥ =
∥∥∥Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥
≤ ∥Dt−1∥ ·

∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥
= ∥Dt−1∥ ·

1

µkt

(
B̃tB̃⊤

t

) ,
where the last equality follows by definition. On the other hand, we have

∥Dt−1∥ ≤
t−1∑
i=1

µki+1

(
B̃iB̃

⊤
i

)
≤ (t− 1)

γt
µkt

(
B̃tB̃

⊤
t

)
.

Combining the above proves the first required equality. The second inequality follows similarly.

For the final trace inequality, we have (k0 := 0)

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
≤ tr(Dt−1) ·

∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥
=

t−1∑
i=1

mi+ki−1∑
j=ki+1

µj

(
B̃iB̃

⊤
i

) · 1

µkt

(
B̃tB̃⊤

t

)
≤ 1

γt

t−1∑
i=1

(mi + ki−1 − ki)

=
1

γt
(Mt−1 − kt−1),

where (i) holds as Dt−1 is positive semidefinite (cf. Lemma 2).

We can also bound tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
alternatively as follows:

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ ∥Dt−1∥ · tr(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t)

≤ (t− 1)kt
γt
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Combining the two bounds on tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
proves the third inequality. The fourth inequality

follows similarly.

Lemma 5. Using the notations in Lemma 4, we have

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} ,∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥ ≤ at−1 ·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
,∥∥(IE − Ũ1:tŨ

⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)
∥∥ ≤ at,∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F ≤

(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ kt,

tr
(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ 1

µkt

(
B̃tB̃⊤

t

) · (min {Mt−1 − kt−1, (t− 1)kt}
γt

+ kt

)
.

Proof of Lemma 5. Since Dt−1 is positive semidefinite, let Lt−1L
⊤
t−1 be its Cholesky decomposition.

Then we have

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Lt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1

)
(i)
≤ tr

(
L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

)
·
∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
·
∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥
(ii)
≤ 1

γt
min {Mt−1 − kt−1, (t− 1)kt} ·

∥∥∥L⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1

∥∥∥ .
In the above, (i) follows from Lemma 2, and (ii) follows from Lemma 4. Continuing with the above
inequality, we have ∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥ ≤ ∥Lt−1∥2 ·
1

µkt

(
B̃tB̃⊤

t

)
= ∥Dt−1∥ ·

1

µkt

(
B̃tB̃⊤

t

)
≤ t− 1

γt
.

Recall the fact DtŨ1:t = Dt−1Ũ1:t. The second inequality in Lemma 5 can be proved as follows:∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
(i)
=
∥∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

(
Dt + Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
=
∥∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
≤ ∥Dt−1∥ ·

(∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥+ ∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDt

∥∥∥)
≤ at−1 ·

(
(t− 1)2

γ2
t

+
t− 1

γt

)
.

In the above, (i) follows from Lemma 1.
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The third inequality is proved as follows:∥∥(IE − Ũ1:tŨ
⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)
∥∥

=
∥∥(IE − Ũ1:tŨ

⊤
1:t)(H1:tH

⊤
1:t − Ũ1:tΣ̃

2Ũ⊤
1:t)(IE − Ũ1:tŨ

⊤
1:t)
∥∥

=
∥∥(IE − Ũ1:tŨ

⊤
1:t)Dt(IE − Ũ1:tŨ

⊤
1:t)
∥∥

≤ ∥Dt∥ = at.

We now prove the fourth inequality:∥∥∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥∥2
F

= tr
(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
= tr

(
(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)
)

= tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + 2DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+ kt

(ii)
≤
(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ kt.

In the above, (i) follows from Lemma 1, and (ii) follows from Lemma 4 and the first inequality we
just proved for Lemma 5.

The fifth inequality can be proved as follows:

tr
(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
= tr

(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)
)

= tr
(
DtŨ1:tΣ̃

−4
1:t Ũ

⊤
1:t

)
+ tr

(
Σ̃−2

1:t

)
(ii)
≤ 1

µkt

(
B̃tB̃⊤

t

) · 1
γt

min {Mt−1 − kt−1, (t− 1)kt}+
kt

µkt
(B̃tB̃⊤

t

) .
Here, (i) holds as a result of Lemma 1 and (ii) follows from Lemma 4.

Lemma 6. Using the notations in Lemma 4, we have for any W that∥∥W (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F ≤ 2 · ∥W ∥2F

(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

Proof. We have∥∥W (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2

F

= tr
(
W (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:tH

⊤
1:t(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:t − IMt)(W )⊤

)
(i)
≤ tr

(
W (DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t − IE)H1:tH

⊤
1:t(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt + Ũ1:tŨ

⊤
1:t − IE)(W )⊤

)
(ii)
≤ 2 tr

(
W (Ũ1:tŨ

⊤
1:t − IE)H1:tH

⊤
1:t(Ũ1:tŨ

⊤
1:t − IE)(W )⊤

)
+ 2 tr

(
WDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt(W )⊤

)
(iii)
≤ 2 · ∥W ∥2F ·

∥∥(IE − Ũ1:tŨ
⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)

∥∥
+ 2 · ∥W ∥2F ·

∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
(iv)
≤ 2 · ∥W ∥2F · at + 2 · ∥W ∥2F · at−1 ·

(
(t− 1)2

γ2
t

+
t− 1

γt

)
= 2 · ∥W ∥2F

(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

In the above, (i) follows from Lemma 1, (ii) from Lemma 3, (iii) from Lemma 2, and (iv) from
Lemma 5. The proof is complete.
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E PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. Let IMt
be the Mt ×Mt identity matrix. The training loss can be written as

∥∥W̃tH1:t − Y1:t

∥∥2
F

=
∥∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − Y1:t

∥∥2
F

=
∥∥Y1:t(H

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

=
∥∥(W ∗

t H1:t + E1:t)(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

≤ 2 ·
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F + 2 ·

∥∥E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F.

We can now bound the first term by Lemma 6 as follows:

∥∥W ∗
t (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

The second term is bounded above as follows:

2 ·
∥∥E1:t(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

≤ 2 · ∥E1:t∥2 ·
∥∥(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

≤ 2 · ∥E1:t∥2 ·
(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
,

where the first inequality follows from Lemma 2 and the last inequality from Proposition 1.

Proof of Theorem 2. Define Dt :=
∑t

i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
. Note that Dt is a symmetric and

positive semi-definite matrix.

Note that we have

Eh

[∥∥W̃th− y
∥∥2] = Eh

[∥∥W̃th−W ∗
t h− ϵ

∥∥2]
= 2 · Eh

[∥∥W̃th−W ∗
t h
∥∥2]+ 2 · ∥ϵ∥2,

so we next focus on bounding Eh

[∥∥W̃th−W ∗
t h
∥∥2]. With the E × E identity matrix IE and

Λ := E[hh⊤], we have

Eh

[
∥W̃th−W ∗

t h∥2
]

= Eh

[
∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

≤ 2 · Eh

[
∥W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]
+ 2 · Eh

[
∥E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
≤ 2 · Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
+ 2 · ∥E1:t∥2 · Eh

[
∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
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The term Eh∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th∥2 can be bounded above as follows:

Eh∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th∥2

= tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

)
= tr

((
Λ− 1

Mt
H1:tH

⊤
1:t +

1

Mt
H1:tH

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · tr(Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+

1

Mt
tr
(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(ii)
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(B̃tB̃⊤
t

)
+

1

Mtγt

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt}+

kt
Mt

=: Vt

Here, (i) follows from Lemma 2 and (ii) follows from Lemma 5.

The term Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
satisfies:

Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
= tr

(
W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)Λ(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:t − IE)(W

∗
t )

⊤
)

(i)
= tr

(
W ∗

t (DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t − IE)Λ(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt + Ũ1:tŨ

⊤
1:t − IE)(W

∗
t )

⊤
)

(ii)
≤ 2 tr

(
W ∗

t (Ũ1:tŨ
⊤
1:t − IE)Λ(Ũ1:tŨ

⊤
1:t − IE)(W

∗
t )

⊤
)

+ 2 tr
(
W ∗

t DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt(W

∗
t )

⊤
)

(iii)
≤ 2 · ∥W ∗

t (IE − Ũ1:tŨ
⊤
1:t)∥2F ·

∥∥(IE − Ũ1:tŨ
⊤
1:t)Λ(IE − Ũ1:tŨ

⊤
1:t)

∥∥
+ 2 · ∥W ∗

t ∥2F ·
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
where the above three steps, (i), (ii), and (iii), follow from Lemma 1, Lemma 3, and Lemma 2
respectively. To bound Bt1 :=

∥∥(IE − Ũ1:tŨ
⊤
1:t)Λ(IE − Ũ1:tŨ

⊤
1:t)
∥∥, we have

Bt1 =

∥∥∥∥(IE − Ũ1:tŨ
⊤
1:t)
(
Λ− 1

Mt
Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

)
(IE − Ũ1:tŨ

⊤
1:t)

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ 1

Mt
·
∥∥∥H1:tH

⊤
1:t − Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

∥∥∥
=

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ 1

Mt
· ∥Dt∥

=

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ at
Mt

.
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To bound Bt2 :=
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥, we have

Bt2 =
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
=

∥∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

(
Λ− 1

Mt
H1:tH

⊤
1:t +

1

Mt
H1:tH

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · ∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDt

∥∥2
+

1

Mt

∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · (t− 1)2

γ2
t

+ at−1 ·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
,

where the last step follows from Lemma 5. Putting together, we have obtained

Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
2 · ∥W ∗

t ∥2F
≤ Bt1 + Bt2

≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · (1 + (t− 1)2

γ2
t

)
+

at−1

Mt
·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
+

at
Mt

=: Bt.

Combining the above finishes the proof.

F THEORETICAL GUARANTEES UNDER GAUSSIAN ASSUMPTIONS

In this section, we prove slightly tighter results than Theorems 1 and 2 presented in the main paper.
The key idea is to make certain Gaussian assumptions on noise. Specifically, we assume both the
training noise E1:t and test noise ϵ have i.i.d. N (0, ν2) entries. With these, we present and prove
Theorems 3 to 5 below.

Theorem 3. On top of the settings of Theorem 1, furthermore assume E1:t consists of i.i.d. N (0, ν2)

entries. Then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt
EE1:t

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
(14)

+ ctν
2

(
(Mt − kt)

Mt
+

(t− 1)min {Mt−1 − kt−1, (t− 1)kt}
γ2
tMt

)
.

Proof of Theorem 3. Let IMt
be the Mt ×Mt identity matrix. The training loss can be written as

EE1:t

∥∥W̃tH1:t − Y1:t

∥∥2
F

= EE1:t

∥∥Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − Y1:t

∥∥2
F

= EE1:t

∥∥Y1:t(H
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

= EE1:t

∥∥(W ∗
t H1:t + E1:t)(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

=
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F + EE1:t

∥∥E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F.

We can now bound the first term by Lemma 6 as follows:

∥∥W ∗
t (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.
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The second term can be bounded above as follows:
EE
∥∥E1:t(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

= EE tr
(
(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)E1:t⊤E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
)

= ctν
2 ·
∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F

≤ ctν
2 · (Mt − kt) + ctν

2 · t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} .

The last inequality follows from Proposition 1. Combining the above finishes the proof.

While in Theorem 3 bounds the average training MSE loss 1
Mt

EE1:t

∥∥W̃tH1:t−Y1:t

∥∥2
F, an alternative

is to give a bound on 1
Mt

EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F. The latter term evaluates the difference

between the prediction of W̃t and the ground-truth W ∗
t on training data H1:t. The difference between

the two terms is that Y1:t = W ∗
t H1:t+E1:t is contaminated by noise. We bound 1

Mt
EE1:t

∥∥W̃tH1:t−
W ∗

t H1:t

∥∥2
F in the next result.

Theorem 4. On top of the settings of Theorem 1, furthermore assume E1:t consists of i.i.d. N (0, ν2)

entries. Then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt
EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
+ctν

2·
(

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
min {Mt−1 − kt−1, (t− 1)kt}

)
.

Proof of Theorem 4. We have

EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F

= EE1:t

∥∥Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t −W ∗

t H1:t

∥∥2
F

= EE1:t

∥∥W ∗
t H1:t(H

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt) + E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F

=
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F + EE1:t

∥∥E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F.

The first term is identical to that of Theorem 3, and it remains to bound the second term:

EE1:t

∥∥E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F

= EE tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tE1:t⊤E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

)
= ctν

2 ·
∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥∥2
F

≤ ctν
2 ·
(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ ctν

2 · kt.

The last inequality follows from Lemma 5.

Theorem 5. On top of the settings of Theorem 2, furthermore assume both E1:t and ϵ consists of i.i.d.
N (0, ν2) entries. Then the output W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

EE1:t,h,ϵ

∥∥W̃th− y
∥∥2 ≤ 2 · ∥W ∗

t ∥2F · Bt + ctν
2 · Vt + ctν

2. (15)
where Bt and Vt are defined in (10) and also shown below:

Bt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥(1 + (t− 1)2

γ2
t

)
+

(
at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)

Vt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(B̃tB̃⊤
t

)
+

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt} .
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Proof of Theorem 5. Recall the definition of Dt in (13). Note that Dt is a symmetric and positive
semi-definite matrix.

Note that for any W ∈ Rct×E we have

EE1:t,h,ϵ

[
∥Wh− y∥2

]
= EE1:t,h,ϵ

[
∥Wh−W ∗

t h− ϵ∥2
]

= EE1:t,h

[
∥Wh−W ∗

t h∥2
]
+ ctν

2.

Denote by IE the E×E identity matrix. With W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t and Y1:t = W ∗

t H1:t +
E1:t we obtain

EE1:t,h

[
∥W̃th−W ∗

t h∥2
]

= EE1:t,h

[
∥Y1:tH

⊤
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−2
1:t Ũ

⊤
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t h∥2
]

= EE1:t,h

[
∥(W ∗

t H1:t + E1:t)H⊤
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−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= EE1:t,h

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]
+ EE1:t,h

[
∥E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
= Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
+ ctν

2Eh

[
∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
The rest of the proof is identical to that of Theorem 2.

G ADDITIONAL THEORETICAL RESULTS

Given the weight W̃t := Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t computed by our continual implementation in

Section 4, here we aim to derive upper bounds on the training MSE losses 1
Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F

without the linear model assumption Y1:t = W ∗
t H1:t + E1:t as used in the main paper.

First observe that∥∥W̃tH1:t − Y1:t

∥∥2
F =

∥∥Y1:t(H
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F,

where we recall IMt
is the Mt × Mt identity matrix. This motivates us to give a bound on

∥(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)∥2F:

Proposition 1. It holds for every t ≥ 1 that (M0 := 0, k0 := 0)∥∥∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F
≤Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} .

Remark 9. The term Mt − kt is inevitable as we truncate Mt − kt eigenvalues. Indeed, Mt −
kt is precisely equal to ∥H⊤

1:tU1:tΣ
−2

1:tU
⊤
1:tH1:t − IMt

∥2F, and it is the minimum of a rank-kt
approximation problem:

Mt − kt = min
L∈RMt×kt

∥LL⊤ − IMt
∥2F.

The term t−1
γ2
t
min {Mt−1 − kt−1, (t− 1)kt} arises as we solve ICL-TSVD continually rather than

offline. With γt = 1, this term is upper bounded by (t − 1)(Mt−1 − kt−1). With γt = 1010 (as
discussed in the main paper), this term is negligible for even hundreds of tasks.

Proof of Proposition 1. From Lemma 1 it follows that

H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t = Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t, (16)
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where we recall Dt is defined as Dt =
∑t

i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
in (13). Then we have∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F

= tr
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−2
1:t Ũ

⊤
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⊤
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−2
1:t Ũ

⊤
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)
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(
H1:tH

⊤
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−2
1:t Ũ

⊤
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⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − 2H1:tH

⊤
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−2
1:t Ũ

⊤
1:t

)
+Mt

(16)
= tr
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Ũ1:tŨ

⊤
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⊤
1:t
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Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
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+Mt

− 2
(
Ũ1:tŨ

⊤
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−2
1:t Ũ

⊤
1:t

)
= tr

(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − Ũ1:tŨ

⊤
1:t

)
+Mt

= tr
(
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−2
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⊤
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⊤
1:t

)
+Mt − kt

(i)
≤ t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}+Mt − kt

where (i) is due to Lemma 5.

A simple corollary of Proposition 1 now follows:

Corollary 1. The output W̃t of Algorithm 4 satisfies

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤
∥Y ⊤

1:tY1:t∥
Mt

(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
.

Remark 10. In classification, the columns of Y1:t are one-hot vectors. Hence, up to permutation,
Y ⊤
1:tY1:t ∈ RMt×Mt is a block diagonal matrix with ct block, where the i-th diagonal block is a

ni × ni matrix of all ones 1ni ; here ni is the number of labels in class i. In other words, there exists
a permutation matrix Π such that

Y ⊤
1:tY1:t = Πdiag(1n1

,1n2
, . . . ,1nct

)Π⊤.

Since the maximum eigenvalue of 1mi
is mi, we know

∥Y ⊤
1:tY1:t∥ = max

i=1,...,ct
{ni}.

Substitute this into Corollary 1 and we obtain

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤

maxi=1,...,ct{ni}
Mt

(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
.

It is also of interest to bound the distances between the SVD factors computed online and offline,
namely the distances between Σ̃1:t,Σ1:t and between Ũ1:t,U1:t. We do so in the next result.
Theorem 6. Let at be defined as in (6). For t ≥ 1 define

gapt := µkt

(
H1:tH

⊤
1:t

)
− µkt+1

(
H1:tH

⊤
1:t

)
. (17)

Then it always holds that ∥∥Σ2

1:t − Σ̃2
1:t

∥∥
∞ ≤ at−1. (18)

Moreover, if at−1 <
(
1− 1/

√
2
)

gapt, then for any t ≥ 1 we have

min
O∈O(k)

∥∥∥U1:t − Ũ1:tO
∥∥∥

F
≤
∥∥U1:tU

⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥ ≤ √2at−1

gapt
, (19)

where O(k) be the set of k × k orthogonal matrices, defined as

O(k) := {O ∈ Rk×k : O⊤O = OO⊤ = Ik}.
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Proof of Theorem 6. It is clear that U1 = Ũ1 and Σ1 = Σ̃1. We now consider the case t ≥ 2.
Note that Ũ1:tΣ̃1:tŨ

⊤
1:t is the eigen decomposition of τkt

(Ũ1:t−1Σ̃
2
1:t−1Ũ

⊤
1:t−1 + HtH

⊤
t ), and

U1:tΣ1:tU
⊤
1:t is the eigen decomposition of τkt

(H1:tH
⊤
1:t). We can compute

H1:tH
⊤
1:t −

(
Ũ1:t−1Σ̃

2
1:t−1Ũ

⊤
1:t−1 +HtH

⊤
t

)
= H1:t−1H

⊤
1:t−1 − Ũ1:t−1Σ̃

2
1:t−1Ũ

⊤
1:t−1

(i)
=

t−1∑
i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
=: Dt,

where (i) follows from Lemma 1. We can therefore apply Weyl’s inequality to obtain∥∥∥Σ2

1:t − Σ̃2
1:t

∥∥∥
∞
≤ ∥Dt∥ = at−1.

This proves (18). On the other hand, (19) follows from the Davis-Kahan theorem (Davis & Kahan,
1970), or more precisely, from Corollary 2.8 of Chen et al. (2021).

H REVIEW OF RELATED WORKS

In Appendix H.1 we review related work on CL. Recent surveys on CL include Parisi et al. (2019);
van de Ven et al. (2022); Shaheen et al. (2022); Zhou et al. (2024c); Wang et al. (2024); Shi et al.
(2024). See also the GitHub repo of Liu (2024) for an extensive list of CL papers.

In Appendix H.2 we review related work on random feature models.

H.1 MORE RELATED WORK ON CONTINUAL LEARNING

Many CL methods have been proposed without explicitizing the use of pre-trained models (Kirkpatrick
et al., 2017; Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Zeng et al., 2019; Chaudhry et al., 2019;
Yan et al., 2021; Saha et al., 2021; Douillard et al., 2022). An easy way to boost their performance is
to adapt them for the context of pre-trained models. There are two natural approaches to do so: (1)
use the pre-trained model as initialization and run these CL algorithms to fine-tune the pre-trained
model; or (2) train a shallow network with the output features of the pre-trained model and either of
these CL algorithms. We do not explore these directions here. In what follows, we review existing
CL methods designed for leveraging pre-trained models, and we review theoretical developments for
CL as well.

Prior Work on CL with Pre-trained Models. The availability of pre-trained models has motivated
new insights into designing CL methods. CL methods such designed can be roughly divided into
two categories. In one category, the pre-trained model is completely frozen, and their output features
are used as inputs for a tailored CL method. A straightforward method in this category, known as
SimpleCIL (Zhou et al., 2023) or Nearest Mean Classifier (NMC) (Mensink et al., 2013; Rebuffi et al.,
2017; Panos et al., 2023; Janson et al., 2022), is to classify a test image based on the (cosine) distances
of its feature to class means of the training features. While this method is stable, hyperparameter-free,
and can handle long task sequences, to the best of our knowledge, it does not have theoretical
guarantees. Of course, RanPAC and our ICL-TSVD method also belong to this category.1 Other
methods in the category include Ahrens et al. (2024); Prabhu et al. (2024). Both methods make
certain modifications on top of RanPAC:

• The method of Ahrens et al. (2024) replaces the random ReLU features with the concatena-
tion of the output features of intermediate layers. We identify that this generalizes the idea
of Pao & Takefuji (1992)2.

• The method of Prabhu et al. (2024) replaces the random ReLU features with random Fourier
features (which were used by Rahimi & Recht (2007) for learning kernel machines), and

1Note that RanPAC might use first-session adaptation (Remark 3), which modifies the output features of the
pre-trained model, so one might not consider RanPAC as completely freezing the pre-trained model. However,
such strategy of first-session adaptation is applied only before the first task, and is not used during continual
learning of tasks. In other words, the model after first-session adaptation is completely frozen, and we might just
view it as our pre-trained model.
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the ridge regression solver of RanPAC with linear discriminant analysis (LDA) (Hayes &
Kanan, 2020). Note that LDA optimizes an objective that is in general different from the
MSE training loss, for which Prabhu et al. (2024) have not provided theoretical guarantees.

Similarly to RanPAC, the methods of Ahrens et al. (2024); Prabhu et al. (2024) need O(E3) time per
task to invert the (regularized) E × E covariance matrix. Prabhu et al. (2024) uses E = 25000 in
their experiments, which might constitute the current computational limit of performing the inversion
(cf. Figs. 5 and 7). Also, both methods lack theoretical guarantees. In contrast, the running time of
our ICL-TSVD method depends only linearly on E and can handle E ≥ 105 with stable performance
and estimation and generalization guarantees.

In the other category of methods, the weights of the pre-trained models remain fixed, but the output
features of the pre-trained models are changed. The catch is that these methods either change the
input or change the network architecture. Such change could be applied layer-wise, therefore, in order
to describe the idea, it is the simplest to assume the pre-trained model f is a single-layer network.

• If we keep both the input and architecture fixed, then the network would take an input X
and output f(X).

• A popular way to change the input is to stack some trainable parameters Z with input X ,
where Z and X have the same number of columns. The network outputs f([X;Z]). Here,
it is implicitly assumed that f can take input matrices with different number of rows (i.e.,
different number of tokens). For instance, f can be a single-layer vision transformer. In this
case Z is often called (visual) prompts (Jia et al., 2022), and CL methods using this strategy
are often called prompt-based methods; see, e.g., (Wang et al., 2022b;c;a; Smith et al., 2023;
Wang et al., 2023; Jung et al., 2023; Tang et al., 2023; Gao et al., 2024b; Roy et al., 2024;
Kim et al., 2024).

• A popular way to change the architecture is to replace the input-output map X 7→ f(X)
with X 7→ f(X) + g(X), where g is some simple shallow network parametrized by the
extra trainable parameters. For instance, g could be a simple two-layer linear network of the
form g(X) = ABX or g(X) = A relu(BX), where A,B are trainable. In these case,
A,B are called adapters (Houlsby et al., 2019; Hu et al., 2022; Chen et al., 2022), and
CL methods using this strategy are often called adapter-based methods (Zhou et al., 2023;
2024b; Liang & Li, 2024; Tan et al., 2024; Gao et al., 2024a).

Clearly, prompt-based and adapter-based methods can both be viewed as expansion-based methods
that enlarge the capacity of a network in order to learn new tasks (Rusu et al., 2016; Yoon et al., 2018;
Li et al., 2019; Ramesh & Chaudhari, 2022).

Despite their popularity, both prompt-based and adapter-based methods need to solve highly non-
convex training problems, for which deriving informative theoretical guarantees is a significant
challenge. Their lack of theoretical guarantees makes them prone to unexpected failures. For
example, prompt-based methods such as L2P (Wang et al., 2022b), DualPrompt (Wang et al.,
2022c), CodaPrompt (Smith et al., 2023), have their performance highly sensitive to the choice
of hyperparameters and therefore to the pre-trained model in use (Wang et al., 2023), dataset, and
problem setting (cf. Table 1); indeed, a small perturbation in learning rates might change the accuracy
drastically (Zhang et al., 2023). While they are often equipped with dataset-specific hyperparameters
released by authors (cf. Appendix J), their instability still emerges when applied to a long sequence
of tasks. This is because new prompts or adapters are often needed to maintain high accuracy on new
tasks (Zhou et al., 2024b), but doing so eventually becomes infeasible. Indeed, to train on the 100
tasks of the CIFAR100 dataset in the CIL setting with one class given at a time (B-0, Inc-1), running
the adapter-based method of Zhou et al. (2024b), called EASE, with default hyperparameters, would
create more than 117M parameters for its growing number of adapters, while the pre-trained ViTs in
use have less than 87M parameters.

In Table 5 we summarize the conceptual differences of our approach from prior works.

Prior Work on CL Theory. Theoretical developments on CL have been chasing the current CL
practice, with a majority of the theory CL papers limiting themselves to the linear, two-layer, or kernel
setting (Doan et al., 2021; Heckel, 2022; Evron et al., 2022; Peng & Risteski, 2022; Lin et al., 2023;
Swartworth et al., 2023; Goldfarb et al., 2024; Zhao et al., 2024; Ding et al., 2024). While these works
cover various theoretical aspects (e.g., generalization bounds, sample complexity, and convergence
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Table 5: Conceptual comparison to prior work.

Estimation Guarantees? Generalization Guarantees? Stable? Can Handle Long Task Sequences?

L2P, Dual Prompt, CodaPrompt None None No No
EASE None None No No
SimpleCIL None None Yes Yes
RanPAC None None No No
ICL-TSVD (Ours) Theorem 1 Theorem 2 Yes Yes

rates), there has arguably been a huge gap between their simplified settings and deep networks that
state-of-the-art CL methods use. On the other hand, we have seen that deep pre-trained models in
cascade with shallow trainable networks can provide competitive performance, thus it now makes
sense to revise and extend these theoretical contributions within this cascaded architecture, thereby
providing meaningful guarantees for learning the shallow networks. We believe this viewpoint would
greatly reduce the gap between the theory and practice in the current CL literature.

H.2 RANDOM VECTOR FUNCTIONAL LINK NETWORK AND RANDOM FEATURE MODELS

Here we make elaborations on Remarks 1, 4 and 6 and review related works mentioned therein.
Recall our model is a two-layer network of the form

X 7→W · relu(PX) (20)

where P is randomly generated and fixed, and W consists of trainable parameters.

Random Vector Functional Link Network. In independent efforts, Schmidt et al. (1992) and Pao &
Takefuji (1992) considered models of form (1). Schmidt et al. (1992) used the sigmoid activation
function ξ 7→ 1

1+exp(−ξ) , while Pao & Takefuji (1992) specified an arbitrary activation function as
inspired by Hornik et al. (1989) and stack the features X and H together (see, e.g., Section 2.1 of
Malik et al. (2023)).2 The model Pao & Takefuji (1992) proposed has been known as random vector
functional link (RVFL), and the model of Schmidt et al. (1992) is referred to, according to a recent
review (Malik et al., 2023), as Schmidt neural network (SNN).

Models of form (20) are best combined with MSE losses, as training W with P fixed amounts to
solving a least-squares problem, which admits a closed-form solution as shown by Schmidt et al.
(1992) and even earlier by Webb & Lowe (1990).

The model Schmidt et al. (1992) and Pao & Takefuji (1992) advocated was proposed, again, by
Huang et al. (2004; 2006) under the name extreme learning machine (ELM). While Huang et al.
(2004) claimed ELMs to be a new learning scheme in the paper title, it was criticized by (Wang &
Wan, 2008; Authors) that ELMs are ideas stolen from the last century (Schmidt et al., 1992; Pao &
Takefuji, 1992), which Huang et al. (2004) were aware of yet did not cite. Despite the criticism, and
perhaps because of its “fancy” name, ELMs had once been popular and attracted many follow-up
variants. We shall not review these variants here.

The model we considered, therefore, follows in spirit the framework put forth by Schmidt et al. (1992);
Pao & Takefuji (1992). Crucially, our approach is a modern instantiation of their framework (cf.
Table 6), where we consider larger-scale problems with ill-conditioned data, online solvers with GPU
implementations. But does it make sense to use the random ReLU features Ht := relu(PXt) rather
than the pre-trained features Xt for regression? Would the transformation P ∈ RE×d even harm the
pre-trained knowledge? McDonnell et al. (2023) empirically verified that having the first layer P is
beneficial to performance as long as E ≥ d, and the accuracy tends to be higher for larger E (see
Table A5 of Appendix F.6 of McDonnell et al. (2023)). While RanPAC is limited to E ≈ 104, our
approach is inherently more scalable, allowing us to take E = 105. The pursuit in higher embedding
dimension E brings us into the over-parameterized territory, where the corresponding MSE objective
has infinitely many solutions, and this is different from the classic works on RVFLs or SNNs that
largely focus on the case where there are just a few hundred neurons (e.g., E ≈ 100).

2Hence, the method of Ahrens et al. (2024) can be viewed as a modern variant of Pao & Takefuji (1992) as
Ahrens et al. (2024) stacks the output features of multiple intermediate layers for regression.
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Table 6: Comparison between our approach and classic methods for extreme learning machines.

Problem Scale Solver Data Compute Platform

Schmidt et al. (1992); Pao & Takefuji (1992) small offline well-conditioned CPU
ICL-TSVD (Ours) large online ill-conditioned GPU

Random Feature Models. Model (20) is also studied under the name random feature model (RFM)
with the origin of RFMs often attributed to Rahimi & Recht (2007). The RFM is considered to
be a simple proxy model for understanding the benign overfitting or double descent phenomenon
occurring in deep networks, and hence it has recently been popular (Belkin et al., 2018; 2019; Bartlett
et al., 2020; Hastie et al., 2022; Mei & Montanari, 2022; Tsigler & Bartlett, 2023). Some of these
works make statistical assumptions on Xt and address technical challenges in analyzing the nonlinear
map W · relu(PXt).

Alternatively, one could conduct analysis conditioned on Ht := relu(PXt), which would be more
manageable as it reduces to linear models. For example, the work of Xu & Hsu (2019); Huang
et al. (2022); Bach (2024); Green & Romanov (2024) truncates the SVD factors of the features
before applying least-squares. This is similar to ours, with an important difference that they apply
TSVD only once, while we apply it continually. Also, their results make statistical (e.g., Gaussian)
assumptions on H1:t, which could violate our context that H1:t is generated via Ht := relu(PXt).
In contrast, our results in the main paper, namely Theorems 1 and 2, make no assumptions on H1:t

and are therefore applicable to random feature models and to the pre-trained models bridged with a
random feature model.
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I DATASET DETAILS

For convenience and completeness, we collect some details about the datasets in Tables 7 and 8.

Table 7: Datasets used for class-incremental learning experiments. †: ObjectNet, OmniBenchmark,
and VTAB contain a large number of classes, and we use a subset of these datasets delivered by Zhou
et al. (2023); see their Table 4 and also Table A2 of McDonnell et al. (2023).

Dataset Name Origin Training Set Size Test Set Size # of Classes Link

CIFAR100 (Krizhevsky et al., 2009) 50,000 10,000 100 Here
ImageNet-R (Hendrycks et al., 2021a) 24,000 6,000 200 Here
ImageNet-A (Hendrycks et al., 2021b) 5,981 5,985 200 Here
CUB-200 (Wah et al., 2011) 9,430 2,358 200 Here
ObjectNet† (Barbu et al., 2019) 26,509 6,628 200 Here
OmniBenchmark† (Zhang et al., 2022) 89,697 5,985 300 Here
VTAB† (Zhai et al., 2019) 1,796 8,619 50 Here
StanfordCars (Krause et al., 2013) 8,144 8,041 196 Here

Table 8: Datasets used for domain-incremental learning. See Table A3 of McDonnell et al. (2023) for
even more details.

Dataset Name Origin Training Set Size Test Set Size # of Classes Link

CORe50 (Lomonaco & Maltoni, 2017) 119,894 44,972 50 Here
CDDB-Hard (Li et al., 2023) 16,068 5,353 2 Here
DomainNet (Peng et al., 2019) 409,832 176,743 345 Here

J EXPERIMENTAL SETUP DETAILS

The details of how we run each of the methods are specified as follows. For L2P, DualPrompt,
CodaPrompt, we use the hyperparameters available in the PILOT repo (Sun et al., 2023) for the
CIFAR100 and ImageNet-R datasets. Since no official hyperparameters are released for other datasets,
we simply use their respective hyperparameters of CIFAR100 for other datasets. One might notice
that these methods have large accuracy drops on other datasets, suggesting that they are sensitive to
hyperparameters and the good and dataset-specific hyperparameters, if they exist, are to be found
for these methods to perform well. This is an inherent drawback as they involve minimizing a
highly non-convex training objective. On the other hand, many other methods, including SimpleCIL,
RanPAC, and ours, are almost parameter-free. Specifically, the only hyperparameter of our approach
is the truncation threshold and its role is clearly explained in the main paper.

For joint linear classifiers, that is LC (X1:T ) or LC (H1:T ), we train for 20 epochs using the cross-
entropy loss, batch size 48, weight decay 0.0005, and SGD with the cosine annealing schedule. We
run LC (X1:T ) and LC (H1:T ) with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03},
and take report the maximum accuracy (Table 9). Note that LC (X1:T ) and LC (H1:T ) are trained
using the cross-entropy loss, not the MSE loss. The reason is that the features H1:t are highly
ill-conditioned (Fig. 1), which makes SGD converge very slowly with the MSE loss. Comparing this
to Remark 2, we conclude that the MSE loss in our setting is useful when the objective is minimized
via robust numerical computation techniques (e.g., our TSVD implementation in Appendix C) instead
of SGD.

We also consider the idea of first-session adaptation (cf. Remark 3). This idea introduces a few
hyperparameters such as the learning rate and schedule. We run experiments with two sets of
hyperparameters, given respectively by RanPAC and EASE. We attach the symbol † to the method
name when we use the hyperparameters of RanPAC (e.g., ADAM†, ICL-TSVD†, RanPAC†). We
attach the symbol ∗ when we use the hyperparamters of EASE (e.g., ICL-TSVD∗, EASE∗).

For RanPAC, the official hyperparameters given by McDonnell et al. (2023) vary for different datasets.
We try to unify the setup by keeping using the hyperparameters most frequently used by McDonnell
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Table 9: Accuracy of training joint linear classifiers given all data with different initial learning rates
{0.001, 0.005, 0.01, 0.02, 0.03} and the corresponding maximum accuracy. LC (X1:T ) trains a linear
classifier using all pre-trained features X1:T and LC (H1:T ) uses all embedded features.

LC (X1:T ) LC (H1:T )

0.001 0.005 0.01 0.02 0.03 Max 0.001 0.005 0.01 0.02 0.03 Max

ViTs pre-trained on ImageNet-1K (vit_base_patch16_224):
CIFAR100 86.39 87.56 87.47 87.09 86.99 87.56 87.76 86.68 86.36 86.75 86.46 87.76
ImageNet-R 70.25 72.42 72.22 72.02 71.52 72.42 73.00 71.08 71.18 70.70 71.15 73.00
ImageNet-A 54.64 58.85 58.46 57.67 56.55 58.85 59.25 56.16 56.09 56.48 56.42 59.25
CUB-200 82.32 87.62 88.59 88.63 88.76 88.76 88.72 88.13 88.08 88.17 87.83 88.72
ObjectNet 57.53 59.70 59.22 58.68 58.43 59.70 59.96 56.14 55.63 55.48 55.34 59.96
Omnibenchmark 76.11 79.00 79.55 79.43 79.50 79.55 80.02 79.62 79.57 79.62 79.43 80.02
VTAB 86.40 90.89 91.32 91.23 90.89 91.32 91.17 89.86 89.99 90.16 89.99 91.17
StanfordCars 39.56 62.54 69.29 72.86 74.12 74.12 72.43 73.65 73.54 72.81 72.49 73.65

ViTs pre-trained on ImageNet-21K (vit_base_patch16_224_in21k):
CIFAR100 86.15 86.78 86.33 85.86 85.17 86.78 85.80 85.16 85.05 85.31 85.4 85.80
ImageNet-R 67.22 68.63 67.12 65.90 65.28 68.63 68.65 68.00 68.17 68.23 67.78 68.65
ImageNet-A 46.68 51.42 50.03 49.24 48.58 51.42 51.15 50.16 49.44 48.98 49.64 51.15
CUB-200 85.58 88.89 89.06 88.72 88.21 89.06 89.31 88.17 88.63 88.46 88.51 89.31
ObjectNet 58.01 58.39 57.50 55.87 54.42 58.39 56.93 53.33 54.44 54.47 54.54 56.93
Omnibenchmark 78.95 79.67 79.73 79.45 79.33 79.73 79.62 79.26 79.11 78.91 79.05 79.62
VTAB 87.71 90.78 90.97 90.71 90.11 90.97 90.78 91.03 90.42 90.44 90.27 91.03
StanfordCars 44.80 64.22 68.06 68.92 68.71 68.92 69.38 67.64 67.65 67.79 67.39 69.38

et al. (2023). Specifically, we set the embedding dimension E to 10000 for RanPAC; note the
exception that McDonnell et al. (2023) run the CDDB experiments with E = 5000, even though
their Table A5 showed that larger E in general leads to higher accuracy on CIFAR100. The main
hyperparameters of RanPAC used for first-session adaptation are as follows:

{"tuned_epoch":20,
"init_lr":0.01,
"batch_size":48,
"weight_decay":0.0005}

We run ADAM†, ICL-TSVD†, RanPAC† where first-session adaptation uses these hyperparameters
consistently for all datasets.

The EASE approach of Zhou et al. (2024b) performs fine-tuning, not just for the first session, but for
every session, in an interesting way. The hyperparameters in their released code vary for different
sessions and different datasets, and we refer the reader to the official GitHub repo of EASE for details.
We also run ICL-TSVD∗ with the hyperparameters of EASE for first-session adaptation. Note that
since EASE does not show experiments on StanfordCars, or does not release hyperparameters on this
dataset, we run EASE with its CIFAR100 hyperparameters for StanfordCars; see also Table 10 of
Appendix K.1 where we tune the initial learning rates of EASE on StanfordCars, showing that the
accuracy is still low.

Finally, we note that in all tables, some approaches are marked in gray; they are not directly
comparable to our approach as the methodology can be very different and it is in fact possible to
combine one with another for even better performance. On the other hand, RanPAC is the most
related to our method, hence we highlight the comparison with the purple background.

K EXTRA EXPERIMENTS, FIGURES, AND TABLES

K.1 PERFORMANCE ON STANFORDCARS

It is observed in Table 1 that many methods exhibit significant performance drops on StanfordCars.
Are these methods inherently unable to handle this dataset, or is it our taking inappropriate hyper-
parameters that lead to poor performance? Note that the authors of these works did not test their
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Table 10: Accuracy of EASE with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03} on
StanfordCars.

0.001 0.005 0.01 0.02 0.03

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

33.42 32.27 19.38 33.48 32.33 19.46 33.39 32.65 20.06 32.58 32.11 24.96 32.41 31.77 29.76

Table 11: Final accuracy of different methods using ViTs pre-trained on ImageNet-21K
(vit_base_patch16_224_in21k). Compare this with Table 1 of the main paper.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.
LC (X1:T ) 86.78 68.63 51.42 89.06 73.97
LC (H1:T ) 85.80 68.65 51.15 89.31 73.73

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 87.58 87.65 87.75 68.18 70.03 70.13 37.59 52.01 52.73 89.48 89.65 89.44 73.52
ICL-TSVD 88.62 88.63 88.67 70.85 70.93 70.72 54.71 54.71 55.10 90.33 90.33 90.46 76.17

EASE∗ 85.85 87.67 89.47 70.27 74.53 75.88 43.05 47.53 54.51 86.77 86.81 85.50 73.99
RanPAC∗ 90.26 91.39 91.97 75.47 76.10 77.33 47.60 58.00 62.74 83.21 89.57 89.69 77.78
ICL-TSVD∗ 90.55 91.88 92.39 76.48 76.82 77.25 56.95 58.85 62.74 90.63 90.71 90.67 79.66

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.
LC (X1:T ) 58.39 79.73 90.97 68.92 74.50
LC (H1:T ) 56.93 79.62 91.03 69.38 74.24

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 59.14 59.23 59.29 78.38 78.40 78.06 92.37 92.84 92.84 43.60 65.78 65.78 72.14
ICL-TSVD 61.35 61.36 61.33 80.12 80.03 80.13 92.90 92.76 92.92 68.96 68.76 68.95 75.80

EASE∗ 54.98 57.50 60.35 72.88 73.50 73.87 88.24 93.46 93.43 35.43 34.62 37.32 64.63
RanPAC∗ 64.56 66.55 66.05 78.55 79.15 79.23 92.77 92.84 93.72 2.31 69.11 69.11 71.16
ICL-TSVD∗ 66.76 66.67 66.93 80.55 80.82 81.55 93.85 93.79 93.76 71.46 71.58 71.71 78.29

methods on StanfordCars, nor they released the corresponding hyperparameters. To rule out the case
of hyperparameter misspecification, we take the EASE∗ method of Zhou et al. (2024b) for example,
and we run it with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03} for the first task
(this hyperparameter is called init_lr in the JSON file of the code repo of Sun et al. (2023); all
other hyperparameters are set to the corresponding hyperparamters Zhou et al. (2024b) gave for
CIFAR100. The results are in Table 10. It shows that different initial learning rates for EASE do
not improve the performance on StanfordCars too much, suggesting that StanfordCars is perhaps
inherently difficult for these types of methods.

K.2 EXPERIMENTS WITH VIT FEATURES PRE-TRAINED ON IMAGENET-21K

Note that by default we use ViTs pre-trained on ImageNet-1K (vit_base_patch16_224). Here
in Table 11 we show experiments with ViTs pre-trained on ImageNet-21K. Comparing this with
Table 1, we obtain a similar conclusion that ICL-TSVD is more stable than and outperforms RanPAC.

K.3 EXPERIMENTS ON DOMAIN-INCREMENTAL LEARNING (DIL)

Here we consider domain-incremental learning (DIL), where each task has images of all objects
collected from different sources or domains, e.g., objects in the images of task 1 could be hand-written
sketches of cars, and images of task 2 could be colored cars.

We follow the work of McDonnell et al. (2023) to run domain-incremental learning experiments on
3 datasets, CORe50 (Lomonaco & Maltoni, 2017), CDDB-Hard (Li et al., 2023), and DomainNet
(Peng et al., 2019). The corresponding experimental results are shown in Table 12, from which we
observe a similar phenomenon: ICL-TSVD is more stable and has higher accuracy.
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Table 12: Final accuracies of RanPAC and ICL-TSVD with pre-trained ViTs for domain incremental
learning.

CORe50 CDDB-Hard DomainNet Avg.

RanPAC 94.98 75.14 64.20 78.11
ICL-TSVD 96.06 79.21 67.18 80.82

Figure 7: Training times of ICL-TSVD and RanPAC for different embedding dimensions E (in
minutes). See also Fig. 5 in the main paper for similar results on the other four datasets.

K.4 SCALING LAWS OF THE EMBEDDING DIMENSION

Fig. 8 exhibits a scaling law where the accuracy of ICL-TSVD grows with the embedding dimension
E. A similar phenomenon is also shown for RanPAC in Table A5 of Appendix F.6 of McDonnell
et al. (2023). However, the experiments of McDonnell et al. (2023) are limited to E = 15000 as
RanPAC is not scalable (cf. Figs. 5 and 7), and also limited to only the CIFAR100 dataset. Here,
since our ICL-TSVD implementation is more stable and scalable, we can run it with E as large as
105, therefore visualizing the scaling phenomenon for eight different datasets in Fig. 8.

It is clearly tempting to scale the embedding dimension even more, but we have not found any
significant performance gain with even larger E (e.g., E = 150000 or E = 200000), which is why
we stopped at dimension E = 105. Note that enlarging E amounts to increasing the width of the
corresponding layer. It was suggested that increasing the width is beneficial, theoretically (Peng
et al., 2023) and empirically (Mirzadeh et al., 2022). On the other hand, Fig. 8 suggests the benefit of
increasing the width empirically diminishes, e.g., the accuracies for E = 50K and E = 100K are
comparable on ImageNet-A, CUB-200, VTAB, and StanfordCars. This is empirically corroborated
by Guha & Lakshman (2024) and theoretically confirmed by Hu et al. (2024).

K.5 MORE FIGURES FOR DATA ANALYSIS

Recall µk(·) denotes the k-th largest eigenvalue of a matrix and Mt := m1 + · · ·mt. Define the
notion of effective rank, as by Tsigler & Bartlett (2023):

rk
(
H⊤

1:tH1:t

)
:=

∑
j≥k µj

(
H⊤

1:tH1:t

)
µk

(
H⊤

1:tH1:t

) , ∀k = 1, . . . ,Mt (21)

Note that r1(·) is the standard definition of effective rank (sometimes called stable rank), while rk(·)
generalizes it by only considering the eigenvalues starting from the k largest.

Fig. 9a plots the effective rank r1(H
⊤
1:tH1:t) as the number of tasks increases and Fig. 9b plots

rk(H
⊤
1:tH1:t) for different values of k. We observe similar curves on different datasets: r1(H⊤

1:tH1:t)
is smaller than 3, and rk(H

⊤
1:tH1:t) first increases and then decreases as a function of k.

Fig. 10 plots the top kt eigenvalues of B̃tB̃
⊤
t (recall that we only preserve top kt singular values of

B̃t). It shows that the condition number is now of order 105 (1011/106), which is much smaller than
the condition number of H⊤

1:tH1:t.

Fig. 11 plots the normalized differences ∥Σ1:t − Σ̃1:t∥∞/∥Σ1:t∥∞ between the eigenvalues given
by ICL-TSVD and its continual implementation (Algorithm 4). This empirically verifies that the
differences between the two are insignificant compared to the largest eigenvalue ∥Σ1:t∥∞ (just of
order 10−3). This experiment assists understanding Theorem 6.
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Figure 8: Final accuracy of ICL-TSVD for varying embedding dimensions E. See also Table 13 in
comparison to RanPAC.

Table 13: Final accuracies of RanPAC and ICL-TSVD with pre-trained ViTs. RanPAC takes its
default choice E = 10K, while for ICL-TSVD we set three different values for E: E = 10K,
E = 50K, and E = 100K.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 86.71 87.02 87.10 71.90 71.97 72.50 56.48 62.34 61.75 88.08 87.15 88.13 76.76

Ours (E = 10K) 87.48 87.49 87.42 70.77 70.85 70.48 58.85 58.46 59.38 86.73 86.85 87.19 76.00
Ours (E = 50K) 88.13 88.05 88.04 73.05 73.07 73.05 62.80 62.80 62.48 89.23 89.23 89.19 78.26
Ours (E = 100K) 88.18 88.18 88.21 73.67 73.72 73.63 62.74 63.20 63.20 89.36 89.27 89.23 78.55

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 58.77 57.66 57.69 77.63 77.63 77.46 91.15 91.58 91.58 58.03 71.40 71.40 73.50

Ours (E = 10K) 57.97 57.82 58.06 76.79 76.96 76.91 91.89 91.81 91.91 64.03 64.43 64.72 72.78
Ours (E = 50K) 59.41 59.4 59.54 79.33 79.35 79.43 92.48 92.47 92.54 73.32 73.66 73.47 76.20
Ours (E = 100K) 60.83 60.86 60.77 79.50 79.60 79.70 92.46 92.55 92.56 74.21 74.39 74.39 76.82

Fig. 12 plots the eigenvalues of H⊤
1:tH1:t ∈ RMt×Mt (Mt ≤ 104) with the embedding dimension E

varying in {10000, 25000, 50000, 75000}. It shows that the “shape” of the spectrum is similar for
different values of E and on different datasets (see also Fig. 1a for the case E = 105).

Fig. 13 depicts how the random embedding P ∈ RE×d and ReLU layer affect the spectrum of
the features. In Fig. 13a we plot the output features X ∈ Rd×M of the ImageNet-A dataset from
pre-trained ViTs (d = 768,M = 5981, E = 105). We see X is relatively well-conditioned: Its
maximum eignvalue is of order 105 and minimum eigenvalue of order 10. Fig. 13b shows that
PX ∈ RE×M has extremely small eigenvalues. This is because PX has rank at most d, and the
smallest M − d eigenvalues of X⊤P⊤PX should be zero, while we get these small and non-zero
eigenvalues in Fig. 13b due to numerical errors in (incremental) SVD; these eigenvalues should be
truncated (set to zero), in order to solve Min-Norm ICL accurately. Fig. 13c shows that relu(PX)
also has these small and non-zero eigenvalues. While the rank of relu(PX) is unclear, its smallest
yet non-zero eigenvalues are likely inherent from PX , and we suggest truncating them as well. See
also Table 14.

K.6 ABLATION STUDY ON RANDOM RELU FEATURES

In Table 14 we study the effects of the random ReLU model. Recall that, given the output features Xt

of the data of task t from a pre-trained model, we use the random ReLU features Ht := relu(PXt)
and labels Yt to train a linear classifier via continually solving Min-Norm ICL or ICL-TSVD. We
could instead use Xt or PXt or relu(Xt) as the features to train the linear classifier. To see the
effects of these alternative choices, we make Table 14 from which we have the following observations:
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(9a) The effective rank r1(H
⊤
1:tH1:t) as the number t of seen tasks increases.

(9b) The eigenvalues of H⊤
1:tH1:t arranged in descending order (t fixed).

Figure 9: The effective ranks of H⊤
1:tH1:t.

Figure 10: The eigenvalues of Σ̃1:t for t = 1, . . . , 9. These are by definition the top kt eigenvalues
of B̃tB̃

⊤
t . It shows that our continual implementation (Algorithm 4) prunes the extremely small

eigenvalues of order 10−5 so that the condition number is now of order 105 (1011/106); compare
this figure with Fig. 1a. In this experiment we truncate 25% of the eigenvalues; that is, given Mt, we
select kt such that kt/Mt = 75%.

• The random ReLU features Ht gives the highest accuracy, while using the ReLU layer
alone or random embedding alone does not make improvements over the original pre-trained
features Xt.

• Solving Min-Norm ICL via Incremental SVD exhibits numerical failures as soon as we use
random embedding P . This is because PX ∈ RE×M has rank at most d and we would
get some M − d small yet non-zero eigenvalues accounting for the numerical errors of
(incremental) SVD solvers (see, e.g., Fig. 13). While they damage the accuracy, truncating
these singular values and the corresponding singular vectors restores the performance.

K.7 EXTRA EMPIRICAL STUDY OF RANPAC

In Appendix K.7.1, we analyze the training losses of RanPAC. In Appendix K.7.2 we show RanPAC
is unstable with respect to small increments, while ICL-TSVD is more stable.

K.7.1 TRAINING LOSSES OF RANPAC

Fig. 14 plots the training loss of RanPAC for different ridge regularization parameters λ ∈
{0, 1, 10, 100, 1000}. We make the following observations:

• In the case of λ = 0, the training loss of RanPAC is smaller than 1. Fig. 3 shows that
the incremental SVD implementation of Min-Norm ICL could have its training loss larger
than 1010. This difference is because the incremental SVD implementation (without trunca-
tion) can be unstable and accumulates errors over time, while RanPAC is implemented by
solving the normal equations W (H1:tH

⊤
1:t + λIE) = Y1:tH

⊤
1:t in variable W (the covari-

ances H1:tH
⊤
1:t and Y1:tH

⊤
1:t are updated continually). The advantage is that maintaining

H1:tH
⊤
1:t and Y1:tH

⊤
1:t is easy and does not entail numerical errors, so solving the normal

equations W (H1:tH
⊤
1:t + λIE) = Y1:tH

⊤
1:t directly is expected to be stable, as long as the
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Figure 11: Normalized differences ∥Σ1:t− Σ̃1:t∥∞/∥Σ1:t∥∞ between the eigenvalues given by ICL-
TSVD and its continual implementation (Algorithm 4). This empirically verifies that the differences
between the two are insignificant compared to the largest eigenvalue ∥Σ1:t∥∞ (just of order 10−3).
See Fig. 10 and Fig. 1a. See also Theorem 6 where we formally bound the distances ∥Σ1:t− Σ̃1:t∥∞
for every t.

Figure 12: Eigenvalues of H⊤
1:tH1:t ∈ RMt×Mt (Mt ≤ 104) with the embedding dimension E

varying in {10000, 25000, 50000, 75000}. We find that the “shape” of the spectrum is similar for
different E and on different datasets (see also Fig. 1a for the case E = 105).

solver invoked is numerically stable (the built-in PyTorch solver is used). This appears to be
the case, as RanPAC maintains small training errors.

• On the other hand, the corresponding test accuracy can be nearly zero with small λ (e.g.,
when λ = 0, 1 as shown in Fig. 2). This might be partially justified by the so-called double
descent phenomenon where the training error is zero and the test error explodes up; see, e.g.,
Schaeffer et al. (2024) for an intuitive explanation.

K.7.2 RANPAC IS UNSTABLE FOR CIL WITH THE SMALLEST INCREMENTS

In the experiments of the main paper (e.g., Fig. 6), we see that RanPAC is unstable for small
increments (e.g., Inc-5). Moreover, its instability is exacerbated in the extreme case Inc-1 (Table 2).

Here, we show similar experimental results in Figs. 15 to 18, suggesting that RanPAC is significantly
more unstable for Inc-1, Inc-2, and Inc-4. In particular, in the extreme case of Inc-1, RanPAC presents
failures on all datasets except CIFAR100 (as indicated by the verticle blue line in Figs. 15 to 18. On
the contrary, these figures, including Fig. 19, show that our ICL-TSVD method is stable for different
small increments (1, 2, 4, 5).

Figure 13: Feeding M data samples to a pre-trained model gives its d-dimensional output features
X ∈ Rd×M . Passing it through a random embedding layer P and a ReLU layer yields the ran-
dom ReLU features H ∈ RE×M . Plotted in (a), (b), (c), respectively, are eigenvalues of XX⊤,
X⊤P⊤PX , and H⊤H in descending order, where X consists of pre-trained ViT features of
the ImageNet-A dataset (d = 768,M = 5981, E = 105). It is seen that PX and ,H are more
ill-conditioned than X . See also Table 14.
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Table 14: Final accuracy of Min-Norm ICL and ICL-TSVD when using different features, Xt ∈
Rd×mt , relu(Xt),PXt, and Ht := relu(PXt). Here P ∈ RE×d is a random Gaussian matrix
with N (0, 1) entries and E = 105, and Ht consists of random ReLU features we use by default.
Note that both Min-Norm ICL and ICL-TSVD are solved by the incremental SVD method, with a
difference that the latter truncates the SVDs. Incremental SVD without truncation is not scalable
enough to handle all 50000 data samples of CIFAR100, so we mark “N.A.” in the table for Min-Norm
ICL.

CIFAR100 (B-0, Inc-10) ImageNet-R (B-0, Inc-20) ImageNet-A (B-0, Inc-20) CUB (B-0, Inc-20) Avg.

Final Accuracy of Min-Norm ICL
Xt 85.11 69.22 58.92 84.90 74.54
relu(Xt) 84.07 66.43 55.23 84.14 72.47
PXt N.A. 1.35 2.37 0.55 N.A.
Ht N.A. 0.42 0.92 0.72 N.A.

Final Accuracy of ICL-TSVD
Xt 84.61 68.23 59.45 84.14 74.11
relu(Xt) 83.51 66.20 56.62 84.01 72.59
PXt 78.96 48.50 42.73 63.15 58.33
Ht (default) 88.18 73.65 63.20 89.23 78.57

Figure 14: The average training MSE loss 1
Mt
∥WH1:t − Y1:t∥2F of RanPAC for different ridge

regularization parameters λ ∈ {0, 1, 10, 100, 1000}. Compare this with Fig. 2 and Fig. 3.

(15a) RanPAC (15b) ICL-TSVD (15c) RanPAC (15d) ICL-TSVD

Figure 15: Upper triangular accuracy matrices on CIFAR100 and ImageNet-R (Inc-1, 2, 4, 5).
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(16a) RanPAC (16b) ICL-TSVD (16c) RanPAC (16d) ICL-TSVD

Figure 16: Upper triangular accuracy matrices on ImageNet-A and CUB-200 (Inc-1, 2, 4, 5).

(17a) RanPAC (17b) ICL-TSVD (17c) RanPAC (17d) ICL-TSVD

Figure 17: Upper triangular accuracy matrices on ObjectNet and OmniBenchmark (Inc-1, 2, 4, 5).
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(18a) RanPAC (18b) ICL-TSVD (18c) RanPAC (18d) ICL-TSVD

Figure 18: Upper triangular accuracy matrices on VTAB and StanfordCars (Inc-1, 2, 4, 5).

Figure 19: Our ICL-TSVD method is stable with respect to class increments of each task (Inc-1, 2, 4,
5), while the accuracy of RanPAC drops for smaller increments. The first two rows plots the total
accuracy. Tthe last two rows plots the final accuracy. The figures here essentially plot the averages of
the upper triangular accuracy matrices (total accuracy) or its last column (final accuracy) of Figs. 15
to 18. The numerical values of the total and final accuracy for Inc-1 are shown in Table 2.
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L EXTRA RESULTS FOR REBUTTAL

L.1 THEORY FOR THE RELATION BETWEEN THE OFFLINE AND ONLINE SOLUTIONS
(REVIEWER IVYO)

Recall the definitions of the offline solution W t in (2) and the output W̃t of ICL-TSVD in (4):

W t = Y1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t, W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t.

Reviewer iVyo had a question: Can we bound the distance ∥W t − W̃t∥F?

To address this question, we consider the model Y1:t = W ∗
t H1:t; this is the Y1:t = W ∗

t H1:t + E1:t
with E1:t. Here we make this assumption for simplicity for purpose of the rebuttal, the result here
can be extended to the case with noise, and we will include such a result in our next revision (even
though the corresponding theorem will be much more complicated).

Recall the definition of gapt in (17):

gapt := µkt

(
H1:tH

⊤
1:t

)
− µkt+1

(
H1:tH

⊤
1:t

)
.

The following result addresses the question of Reviewer iVyo and it relies on Theorem 6.

Theorem 7. Let at be defined as in (6) and gapt as in (17). Assume at−1 <
(
1− 1/

√
2
)

gapt.
Suppose Y1:t = W ∗

t H1:t. Then we have∥∥∥W t − W̃t

∥∥∥
F
≤ ∥W ∗

t ∥F ·

(√
2at−1

gapt

+
t− 1

γt

)
. (22)

Proof. Note that

H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t = U1:tU

⊤
1:t

H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t = Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t,

where Dt is defined in (13) and the second equality follows from Lemma 1. So we have∥∥∥W t − W̃t

∥∥∥
F
=
∥∥∥W ∗

t H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t −W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥
F

(23)

≤ ∥W ∗
t ∥F ·

∥∥∥H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t −H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥ (24)

= ∥W ∗
t ∥F ·

∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t −DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥ (25)

≤ ∥W ∗
t ∥F ·

(∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥∥+ ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥) (26)

≤ ∥W ∗
t ∥F ·

(∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥∥+ ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥) (27)

≤ ∥W ∗
t ∥F ·

(√
2at−1

gapt
+

t− 1

γt

)
(28)

where the last inequality is due to Theorem 6 and Lemma 4. The proof is complete.
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L.2 RUNNING TIMES COMPARED TO OTHER BASELINES (REVIEWER IVYO)

Table 15: Running times (in minutes) of various methods on CIL datasets with q2 = 5 (Inc-5). This
is the same setting as Fig. 5.

CIFAR100 ImageNet-R ImageNet-A CUB

L2P 52.09 72.31 26.96 17.62
CodaPrompt 174.9 246.94 27.28 39.91
EASE 139.74 128.35 54.0 66.23
ICL-TSVD (E = 100K) 31.24 27.0 1.29 3.73

L.3 MULTIPLE RUNS OF THE EXPERIMENTS (REVIEWER XHQX, REVIEWER P9VJ)

Table 16: Final and total accuracy of RanPAC and our method (ICL-TSVD) on CIL datasets with
q2 = 1 (Inc-1). Reported results are mean and standard deviations over 3 random seeds. See also
Table 2 for similar results.

CIFAR100 ImageNet-R ImageNet-A CUB ObjectNet OmniBenchmark VTAB StanfordCars

Final Accuracy
RanPAC 86.99 ± 0.06 70.12 ± 0.39 36.6 ± 25.35 55.15 ± 37.14 57.14 ± 0.24 77.9 ± 0.04 91.47 ± 0.3 35.56 ± 24.75
Ours 88.19 ± 0.05 73.66 ± 0.07 62.76 ± 0.16 89.19 ± 0.06 60.82 ± 0.15 79.3 ± 0.06 92.51 ± 0.05 74.32 ± 0.11

Total Accuracy
RanPAC 90.46 ± 0.73 69.1 ± 0.37 44.23 ± 0.46 74.67 ± 2.87 62.37 ± 2.1 85.23 ± 0.56 74.67 ± 3.07 56.27 ± 0.78
Ours 92.18 ± 0.56 78.87 ± 0.34 70.08 ± 0.86 92.89 ± 0.59 70.54 ± 1.94 86.51 ± 0.59 96.41 ± 0.31 81.18 ± 0.68
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