
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ICL-TSVD: BRIDGING THEORY AND PRACTICE IN
CONTINUAL LEARNING WITH PRE-TRAINED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of continual learning (CL) is to train a model that can solve multiple
tasks presented sequentially. Recent CL approaches have achieved strong perfor-
mance by leveraging large pre-trained models that generalize well to downstream
tasks. However, such methods lack theoretical guarantees, making them prone to
unexpected failures. Conversely, principled CL approaches often fail to achieve
competitive performance. In this work, we bridge this gap between theory and
practice by integrating an empirically strong approach (RanPAC) into a principled
framework, Ideal Continual Learner (ICL), designed to prevent forgetting. Specifi-
cally, we lift pre-trained features into a higher dimensional space and formulate
an over-parametrized minimum-norm least-squares problem. We find that the
lifted features are highly ill-conditioned, potentially leading to large training errors
(numerical instability) and increased generalization errors (double descent). We
address these challenges by continually truncating the singular value decompo-
sition (SVD) of the lifted features. Our approach, termed ICL-TSVD, is stable
with respect to the choice of hyperparameters, can handle hundreds of tasks, and
outperforms state-of-the-art CL methods on multiple datasets. Importantly, our
method satisfies a recurrence relation throughout its continual learning process,
which allows us to prove it maintains small training and generalization errors by
appropriately truncating a fraction of SVD factors. This results in a stable continual
learning method with strong empirical performance and theoretical guarantees.

1 INTRODUCTION

Continual learning (CL) requires training a model that performs well on multiple tasks presented
sequentially. A primary challenge in CL is acquiring new knowledge without causing catastrophic
forgetting (i.e., substantial performance degradation on previously learned tasks). The availability
of large pre-trained models has recently facilitated advances in CL. As their weights are typically
frozen, they provide highly generalizable features that significantly boost performance with little
computational overhead (Wang et al., 2022d;a; McDonnell et al., 2023; Zhou et al., 2024b). Pre-
trained models also simplify network design, as concatenating a pre-trained model with a shallow
trainable network often attains competitive performance (Zhou et al., 2023; McDonnell et al., 2023).

A notable example is RanPAC (McDonnell et al., 2023), which lifts pre-trained features into a higher
dimensional space and then trains a ridge-regularized linear classifier on the lifted features. Despite
its simplicity, RanPAC has established state-of-the-art performance (Zhou et al., 2024a) and, as far
as we know, no subsequent work has been shown to consistently outperform it (Ahrens et al., 2024;
Prabhu et al., 2024). However, as we will analyze in detail, the performance of RanPAC is unstable
and sensitive to the choice of the ridge regularization parameter, which can make it ill-suited for long
task sequences. McDonnell et al. (2023) provides limited theoretical guarantees for RanPAC, and a
principled understanding of the method is thus imperative to overcome its instability.

On the other hand, the theoretically grounded Ideal Continual Learner (ICL) framework (Peng et al.,
2023) prevents catastrophic forgetting by design, as it optimizes the current task under the constraint
that prior tasks are solved to global optimality. Peng et al. (2023) derived generalization guarantees for
ICL, and described possible implementations for linear regression and matrix factorization. Nonethe-
less, the zero-forgetting promise of ICL has yet to be fully realized in practical implementations, and
its applicability in conjunction with pre-trained models remains largely unexplored.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

RanPAC and ICL are prime examples that illustrate the gap that prevails in the CL literature (as we
review in Appendix H): Theoretically grounded CL methods tend to be impractical (Evron et al.,
2022; Peng & Risteski, 2022; Peng et al., 2023; Cai & Diakonikolas, 2024), while highly performant
methods involve solving intricate, non-convex training problems, for which deriving informative
theoretical guarantees is challenging (Wang et al., 2022b;c;a; Smith et al., 2023; Wang et al., 2023;
Jung et al., 2023; Tang et al., 2023; Gao et al., 2024b; Roy et al., 2024; Kim et al., 2024).

Our primary objective is to bridge this gap between theory and practice in the context of CL with
pre-trained models. A natural idea towards this goal is to blend RanPAC and ICL, incorporating the
complementary strengths of both approaches. More specifically, we adopt the random ReLU feature
framework as used by RanPAC, and formulate a minimum-norm least-squares problem based on ICL
to train a linear classifier (cf. Section 2). Yet, random ReLU features are double-edged: while they
tend to boost performance by increasing feature separability (Telgarsky, 2022; Min et al., 2024), they
are also highly ill-conditioned, bringing computational challenges. Indeed, this ill-conditioning makes
RanPAC very sensitive to the choice of the ridge regularization parameter; and a naive combination
of RanPAC and ICL would inherit this instability. Crucially, we identify that the instability is related
to the extremely small singular values that emerge in the spectrum of the pre-trained random ReLU
features as more tasks are observed (Section 3). This intriguing finding motivates our method, termed
ICL-TSVD, which truncates the extremely small singular values (truncated SVD) prior to solving the
minimum-norm ICL problem (Section 4). ICL-TSVD bridges the gap between theory and practice
by delivering stable and strong performance with theoretical guarantees. Concretely:

• We provide a continual implementation of ICL-TSVD to train an over-parameterized linear classifier
with highly ill-conditioned features in a numerically stable fashion (Section 4). We show it stabilizes
RanPAC and ICL (Figs. 3 and 4), and it is both more scalable and efficient than RanPAC (Fig. 5).

• We derive theoretical guarantees for ICL-TSVD, proving that it has small estimation and general-
ization errors when a suitable fraction of SVD factors are truncated (Theorems 1 and 2, Section 5).
These results stem from a non-trivial recurrence relation that allows us to capture the continual
learning dynamics of ICL-TSVD (Lemma 1, Appendix D).

• We conduct extensive experiments on multiple datasets, showing that ICL-TSVD uniformly out-
performs prior works and specifically RanPAC (Section 6). Thanks to our stable implementation,
ICL-TSVD outmatches RanPAC by a significant margin in the CIL setting with one class given at a
time (Inc-1), where hundreds of tasks (classes) are sequentially presented (Table 2).

2 TECHNICAL BACKGROUND

Problem Setting. We consider classification tasks in the class-incremental learning (CIL) setting,
where each incoming task contains only unseen classes. Following conventions (Yan et al., 2021;
Zhou et al., 2023), we write B-q1, Inc-q2 to mean that the model is given q1 classes in the first task
and then q2 classes in each of the subsequent tasks (q1 = 0 means all tasks have q2 distinct classes).
We use vision transformers (ViTs) of Dosovitskiy et al. (2021) as pre-trained models.

Pretrained Features and Labels. Given mt images of task t, we feed them to pre-trained ViTs,
obtaining the output features Xt ∈ Rd×mt . Here, d is the feature dimension (d = 768 in the ViTs
used). Corresponding to Xt is the label matrix Yt ∈ Rct×mt . Every column of Yt is a one-hot vector,
that is some standard basis vector in Rct , where ct is the total number of classes observed so far. We
thus have c1 ≤ · · · ≤ ci ≤ · · · ≤ ct. Let Mt := m1 + · · ·+mt. While Yi ∈ Rci×mt might have a
different number of rows as ci varies, one can pad ct− ci zero rows to Yi when new class information
is revealed; so, with a slight abuse of notation, Yi is viewed as having ct rows. We denote by Y1:t the
label matrix of the first t tasks: Y1:t = [Y1, . . . ,Yt] ∈ Rct×Mt .

Random ReLU Features. Let relu : ξ 7→ max{0, ξ} be a ReLU layer and P ∈ RE×d denote a
random Gaussian matrix with i.i.d. N (0, 1) entries; here we assume E ≫ d. These allow us to
embed Xt into a higher dimensional space and get random ReLU features Ht ∈ RE×mt via

Ht := relu(PXt), H1:t := [H1, . . . ,Ht] ∈ RE×Mt . (1)

Note that relu is a pointwise non-linearity, applied to PXt entry-wise. The goal is to learn a linear
classifier W ∈ Rct×E continually, using features Ht and labels Yt of task t.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ICL and RanPAC Formulations. With random ReLU features Ht and labels Yt of task t, we can
now instantiate the ICL framework of Peng et al. (2023) as a linearly constrained quadratic problem:

min
W∈Rct×E

∥WHt − Yt∥2F s.t. WHi = Yi, i = 1, . . . , t− 1. (ICL)

Since E is assumed to be very large, ICL is always feasible. Moreover, it has infinitely many
global minimizers reaching zero loss, and every such minimizer W satisfies WHi = Yi for every
i = 1, . . . , t. A popular approach is to select the one with minimum norm:

min
W∈Rct×E

∥W ∥2F s.t. WHi = Yi, i = 1, . . . , t. (Min-Norm ICL)

Since the constraints WHi = Yi force previous tasks to be solved to global optimality, both ICL
and Min-Norm ICL prevent forgetting by design. That said, no CL method was implemented for
solving Min-Norm ICL in the work of Peng et al. (2023) in the context of pre-trained models.

The RanPAC formulation of McDonnell et al. (2023) is a ridge regression program (λ > 0):

min
W∈Rct×E

λ · ∥W ∥2F +

t∑
i=1

∥WHi − Yi∥2F. (RanPAC)

The importance of RanPAC lies in its ability to achieve remarkable accuracy across a range of CL
datasets when λ is appropriately chosen, as evidenced in Table 1 of Zhou et al. (2024a). However,
McDonnell et al. (2023) do not provide a formal analysis of ridge regression in this context. Despite
the similarities between the methods, RanPAC does not benefit from the zero-forgetting guarantee
offered by Min-Norm ICL. Moreover, the theoretical justification for the strong empirical performance
of RanPAC remains limited. This lack of theoretical guarantees has critical implications: RanPAC
can exhibit instability and fail unpredictably, as we show in the sequel.
Remark 1. An alternative way to view these formulations is through a two-layer neural network (NN)
model, in which pre-trained features X are fed to a NN

X 7→W · relu(PX),

where P are randomly generated, then fixed, and W are trainable parameters. On a historical note,
networks of this form predate the early work of Schmidt et al. (1992); Pao & Takefuji (1992). The
latter are known as extreme learning machines and random feature models. In Appendix H.2 we
review these lines of research, providing connections to our work.
Remark 2. The MSE loss is used for ICL and RanPAC, and will also be used in our approach
(Section 4). Janocha & Czarnecki (2017); Hui & Belkin (2021) showed that, in many settings, the
MSE and cross-entropy losses yield similar performance. We utilize the MSE loss as it allows for a
closed-form least-squares solution to be rapidly computed and continually updated.
Remark 3. In RanPAC, first-session adaptation is executed before the first CL iteration. That is, the
pre-trained model is fine-tuned with data from the first task in a parameter-efficient way (Panos et al.,
2023). This needs extra hyperparameters and yields different features than H1:t. We study the impact
of this step in Table 1, Section 6, and Table 11, Appendix K.2.

3 EMERGENCE OF INSTABILITY

In this section, we showcase and analyze the instability of Min-Norm ICL and RanPAC.

Instability of Min-Norm ICL. Fig. 1a plots the eigenvalues of H⊤
1:tH1:t, showing that H⊤

1:tH1:t is
highly ill-conditioned and has just a few extremely large and extremely small eigenvalues, outnum-
bered by the eigenvalues in between that decay more slowly. Fig. 1b plots extreme eigenvalues of
H⊤

1:tH1:t, revealing that the minimum eigenvalue drastically drops after a certain number of tasks.
Comparing Fig. 1b and Fig. 1c, we see that the accuracy of solving Min-Norm ICL plummets exactly
when the extremely small eigenvalues emerge and begin to invade the spectrum.

Instability of RanPAC. Fig. 2 shows RanPAC with a small regularization parameter λ can fail to
achieve competitive performance, while it seems to work well with a large enough λ (e.g., λ = 104).
In constrast, Prabhu et al. (2024) finds that small λ (of order 10−5) works better when H1:t is replaced
with random Fourier features. This suggests that the optimal choice of λ depends, among other factors,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(1a) The eigenvalues of H⊤
1:tH1:t arranged in descending order (t fixed).

(1b) Maximum and minimum eigenvalues of H⊤
1:tH1:t as the number t of seen tasks increases.

(1c) Final test accuracy of the incremental SVD solution to Min-Norm ICL (subject to numerical errors).

Figure 1: Spectral analysis of H⊤
1:tH1:t and its impact on test accuracy (see also Appendix K.5).

The matrix H⊤
1:tH1:t is highly ill-conditioned (1a); and test accuracy drops drastically when small

eigenvalues (of order 10−5) invade the spectrum (1b, 1c).

Figure 2: RanPAC is unstable as it breaks down for the small regularization λ. Cross-validation does
not fully stabilize RanPAC (cf. Section 6). See Section 6 for detailed experimental settings.

on the scale of the features and the noise level. McDonnell et al. (2023) selects λ from the pool of
candidates {10−8, 10−7, . . . , 108} via cross-validation on a small faction of training data. Although
this suffices to stabilize RanPAC in some settings, cross-validation can fail when the validation (or
training) set of the current task is small and not representative of test data. Unfortunately, this failure
occurs often in CIL with small increments (cf. Section 6).

The Cause of Instablity. Two types of errors could give rise to instability of Min-Norm ICL and
RanPAC. First of all, the fact that H⊤

1:tH1:t is highly ill-conditioned (Fig. 1a) can lead to numerical
errors. Also, extremely small eigenvalues can account for the double descent phenomenon (Schaeffer
et al., 2024), producing substantial generalization errors. In the case of Min-Norm ICL, the training
MSE loss 1

Mt
∥WH1:t − Y1:t∥2F of the solution to Min-Norm ICL explodes (Fig. 3) precisely when

the extremely small eigenvalues emerge (Fig. 1b). Thus, we argue that numerical errors are the main
cause underlying the instability of Min-Norm ICL. Since RanPAC does not suffer from this training
loss explosion (cf. Appendix K.7.1), its instability is more likely due to generalization errors.

4 ICL-TSVD: STABILIZING ICL VIA TRUNCATED SVD

Offline Description. The numerical evidence collected so far suggests that the instability of Min-
Norm ICL relates to the emergence of extremely small eigenvalues. This motivates a simple remedy,
called ICL-TSVD (offline description), which consists in truncating the smallest singular values
(vectors) of H1:t and then solving Min-Norm ICL using the truncated version of H1:t. More

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: The average training MSE loss 1
Mt
∥WH1:t − Y1:t∥2F of the incremental SVD solution to

Min-Norm ICL explodes when extremely small eigenvalues emerge (Fig. 1b). TSVD (25%) truncates
25% minimum singular values and implements ICL-TSVD online, stabilizing Min-Norm ICL.

Algorithm 1: Continual Solver of ICL-TSVD (detailed version in Algorithm 4)

1 Input (Task t): Features Ht ∈ RE×mt (1), labels Yt ∈ Rct×mt , truncation percentage ζ ∈ [0, 1];
2 For t← 1, 2, . . . :
3 kt ← (1− ζ)Mt; // Mt := m1 + · · ·+mt can be updated online
4 J1:t ← Y1:tH

⊤
1:t; // online update of J1:t detailed in Algorithm 5, Appendix C

5 Form B̃t as per (3);
6 (Ũ1:t, Σ̃1:t)← Top-kt SVD factors of B̃t; // Algorithm 3 if t = 1, or Algorithm 2 if t > 1

7 Compute linear classifier W̃t := J1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t; // cf. (2) and (4)

concretely, write the SVD of H1:t as σ1u1v
⊤
1 + · · · + σMtuMtv

⊤
Mt

with ordered singular values
σ1 ≥ · · · ≥ σMt

. The truncation can then be described with some integer kt ∈ [1,Mt] by a function
τkt

that maps H1:t to σ1u1v
⊤
1 + · · ·+σkt

ukt
v⊤
kt

; here kt is the number of top SVD factors preserved.
Applying this idea to Min-Norm ICL means solving the following program:

W t ∈ argmin
W∈Rct×E

∥W ∥2F s.t. W τkt
(H1:t) = Y1:t. (ICL-TSVD)

It will be useful to write down the closed-form expression of W t. Let U1:tΣ1:tV
⊤
1:t be an SVD of

H1:t, and U1:tΣ1:tV
⊤
1:t an SVD of τkt(H1:t), where Σ1:t,Σ1:t are invertible square matrices. Then

W t = Y1:tV 1:tΣ
−1

1:tU
⊤
1:t = Y1:tV 1:tΣ1:tU

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
(i)
= Y1:tV1:tΣ1:tU

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
= Y1:tH

⊤
1:t

(
U1:tΣ

−2

1:tU
⊤
1:t

)
,

(2)

where equality (i) holds as the column vectors of U1:t not shown in U1:t are orthogonal to U1:t.
Remark 4. ICL-TSVD combines principal component analysis and ordinary least-squares, which is
analogous to principal component regression (PCR) (Xu & Hsu, 2019; Huang et al., 2022; Hucker
& Wahl, 2023; Bach, 2024; Green & Romanov, 2024). While PCR truncates the SVD of H1:t only
once, our implementation of ICL-TSVD performs the truncation continually for each t. Hence, our
approach can be viewed as continual PCR. See also Remark 6.

Continual Implementation. In order to turn (2) into a continual implementation, we need to update
J1:t := Y1:tH

⊤
1:t and U1:tΣ

−2

1:tU
⊤
1:t in an online fashion. This procedure is described in Algorithm 1,

where the following points are considered:

• Since the columns of Y1:t are one-hot vectors, we can compute Y1:tH
⊤
1:t incrementally by matrix

addition rather than (sparse) matrix multiplication.

• An exact update of U1:t and Σ1:t would require computing the SVD factors of the full data H1:t.
However, past data H1:t−1 is not available when observing task t. Thus, for each task t, we maintain
two matrices Ũ1:t, Σ̃1:t; which capture the information in U1:t and Σ1:t. Specifically, as shown in
Line 6, we set Ũ1:t, Σ̃1:t to be the top kt SVD factors of B̃t, where B̃t is defined as

B̃t :=

{
H1 if t = 1;[
Ũ1:t−1Σ̃1:t−1, Ht

]
otherwise.

(3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(4a) Test accuracy of TSVD applied to Min-Norm ICL for varying truncation percentage (cf. Fig. 1c).

(4b) Test accuracy of TSVD (25%) applied to RanPAC for varying regularization parameter λ (cf. Fig. 2).

Figure 4: TSVD stabilizes Min-Norm ICL and RanPAC (E = 105).

The top-kt singular values of B̃t and H1:t are close to each other (cf. Fig. 1a, Fig. 10, Fig. 11, and
Theorem 6), which showcases the effectiveness of our continual updating strategy. Then, as shown in
Line 7 and recalling (2) and J1:t := Y1:tH

⊤
1:t, we construct a linear classifier via

W̃t ← J1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t. (4)

• In Algorithm 1, ζ denotes the truncation percentage. Given ζ , we set kt = (1− ζ)Mt, which is the
number of top SVD factors preserved for each task t. Note that the choice of ζ is not sensitive to the
scale of the data, unlike the ridge regularization parameter λ of RanPAC (recall Section 3).
Remark 5. At test time, given a sample, we make a forward pass and obtain its random ReLU feature
h. The predicted class is then set according to the maximum entry of W̃th.

Stability Improvements. Our method stabilizes the training losses (Fig. 3) and stabilizes Min-Norm
ICL for a wide range of truncation percentages (Fig. 4a). Furthermore, we extend the solution of (4)
into J1:tŨ1:t(Σ̃

2
1:t + λIE)

−1Ũ⊤
1:t for ridge regression, where IE is the E × E identity matrix. This

stabilizes RanPAC and is practically immune to changes in the regularization parameter λ (Fig. 4b).
Extensive experimental validation is provided in Section 6 and Appendix K.

5 PROVABLY CONTROLLED ESTIMATION AND GENERALIZATION

In this section, we present Theorems 1 and 2, which bound the estimation and generalization error of
the output (4) of our approach (Algorithm 1).

Notations. Denote by µk(·) the k-th largest eigenvalue of a symmetric matrix. Let

γ1 = 1, γt :=
µkt

(
B̃tB̃

⊤
t

)
maxi=1,...,t−1

{
µki+1

(
B̃iB̃⊤

i

)} , ∀ t > 1. (5)

The quantity γt relates to the stability-plasticity tradeoff, as it is the ratio between the minimum
preserved eigenvalue µkt

(
B̃tB̃

⊤
t

)
at task t and the maximum eigenvalues being truncated in the

past, µki+1

(
B̃iB̃

⊤
i

)
. Clearly γt > 0, as we truncate only non-zero eigenvalues. Furthermore, if we

truncate eigenvalues smaller than a given threshold δ, we have γt ≥ 1. In this case, the threshold δ

implicitly determines ki’s and we have µkt

(
B̃tB̃

⊤
t

)
≥ δ > µki+1

(
B̃iB̃

⊤
i

)
. Finally, as suggested by

Fig. 1a, γt can be as large as 1010. For instance, if we set δ = 10−2, then the maximum truncated
eigenvalue is of order 10−5 and the minimum preserved is of order 105.

Then, the accumulative error at is defined as

a0 = 0, at :=

t∑
i=1

µki+1

(
B̃iB̃

⊤
i

)
, ∀t ≥ 1. (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The term at reflects the information ignored by our algorithm, as µki+1

(
B̃iB̃

⊤
i

)
is the maximum

eigenvalue truncated at task i. Note that, even when observing thousands of tasks (e.g., t ≈ 103), if
we truncate the smallest eigenvalues (of order 10−5), at is in the order of 10−2.

Model Assumption. We consider a noisy linear regression model. Specifically, we assume there is
some ground-truth weight matrix W ∗

t ∈ Rct×E and noise E1:t ∈ Rct×Mt satisfying
Y1:t = W ∗

t H1:t + E1:t. (7)
The quantities W ∗

t and E1:t are colored to reflect the fact that they are unknown and not computable.
The model in (7) is related to probabilistic principal component analysis (PPCA); cf. Tipping &
Bishop (1999) and Chapter 2.2 of Vidal et al. (2016). The two main differences with PPCA are that
we make no probabilistic assumptions on H1:t or E1:t (except in Appendix F); and we consider the
overparameterized case with large E, while PPCA assumes W ∗

t is a tall matrix (i.e., E < ct).

Estimation Guarantee. In the over-parametrized regime E ≫ Mt, a solution to Min-Norm ICL
should, in principle, perfectly fit the data and achieve zero training MSE. However, solving Min-
Norm ICL is numerically unstable and empirically entails huge losses (Fig. 3). As a remedy, our
approach truncates the data spectrum continually, trading-off between perfectly fitting training data
and increasing numerical stability. The following theorem, whose proof can be found in Appendix E,
connects the eigenvalue ratio γt and the accumulative error at with our method’s training loss,
showing that the estimation error is provably under control:

Theorem 1. Let B̃t, γt, at be defined as in (3), (5), and (6) respectively. If Y1:t = W ∗
t H1:t + E1:t

(7), then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤ 4 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
(8)

+ 2 · ∥E1:t∥2
(
(Mt − kt)

Mt
+

(t− 1)min {Mt−1 − kt−1, (t− 1)kt}
γ2
tMt

)
.

One of the main quantities governing the bound in Theorem 1 is at/Mt, which reflects the truncation
process for the current task. When truncating the extremely small eigenvalues (of order 10−5) and
observing hundreds of tasks, at is in the order of 10−3, which makes at/Mt insignificant. Then,
the terms (t− 1)/γt and at−1/Mt capture the continual past truncations and are equal to zero for
t = 1. Similarly to at, when truncating only the smallest eigenvalues, we have at−1 ≈ 10−5(t− 1)
and (t − 1)/γt ≈ 10−10(t − 1). Hence, all terms involving (t − 1)/γt and at−1/Mt are under
control for hundreds- even thousands- of tasks. Finally, although the ground-truth W ∗

t and noise E1:t
are unknown, we empirically verify that the minimum-norm solution to ICL-TSVD achieves high
accuracy (Section 6). This suggests the linear model assumption is adequate, and that ∥E1:t∥2 and
∥W ∗

t ∥2F are reasonably small. In summary, the upper bound (8) shown in Theorem 1 behaves well
and is quite small if we truncate the eigenvalues suitably (which makes γt large and at small).

Generalization Guarantee. Consider a test sample (h,y) satisfying y = W ∗
t h+ ϵ for some noise

vector ϵ. To obtain a generalization guarantee that is widely applicable, we only assume that h is
randomly sampled from some distribution with a finite second-order moment (Λ := E[hh⊤] <∞),
and that ϵ is random, independent of h. Given the output W̃t of our method (4), we bound its test
error Eh,ϵ

[
∥W̃th− y∥2

]
over the randomness of h, ϵ as follows:

Theorem 2. Let B̃t, γt, at be defined as in (3), (5), and (6) respectively. Assume Y1:t = W ∗
t H1:t +

E1:t (7) and y = W ∗
t h+ ϵ with Λ := E[hh⊤]. The output W̃t of Algorithm 1 satisfies

Eh,ϵ

∥∥W̃th− y
∥∥2 ≤ 4 · ∥W ∗

t ∥2F · Bt + 4 · ∥E1:t∥2 · Vt + 2 · Eϵ

[
∥ϵ∥2

]
, (9)

where Bt and Vt are defined as follows:

Bt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥(1 + (t− 1)2

γ2
t

)
+

(
at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)

Vt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(B̃tB̃⊤
t

)
+

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt} .

(10)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

There are two major terms in Bt (10). The term in the right-most large parenthesis also appears in the
estimation bound of Theorem 1; and reflects the fact that training losses impact generalization errors.
Then, the term

∥∥Λ− 1
Mt

H1:tH
⊤
1:t

∥∥ is commonly seen in covariance estimation (Wainwright, 2019),
where h and the columns of H1:t are assumed to be independent i.i.d. Gaussian vectors. In this case,
if Λ furthermore satisfies some boundedness condition, we can show

∥∥Λ− 1
Mt

H1:tH
⊤
1:t

∥∥ converges
to 0 as Mt →∞; cf. Theorem 9 of Koltchinskii & Lounici (2017). Note that Vt is independent of
noise, so the rest of the terms in (9), which are weighted by noise magnitudes ∥E1:t∥2, Eϵ

[
∥ϵ∥2

]
, are

negligible if the noise is sufficiently small (as suggested by Section 6).

Remark 6. There is a comprehensive line of works on the generalization theory of linear models in
the over-parameterized setting, developed to understand the phenomenon known as benign overfitting
or double descent (cf. Appendix H.2). Specifically, our results are related to Xu & Hsu (2019);
Huang et al. (2022); Hucker & Wahl (2023); Bach (2024); Green & Romanov (2024), that analyze
the generalization errors of principal component regression (cf. Remark 4). Nevertheless, these
papers consider the offline setting, where truncation is performed only once. In constrast, we analyze
the continual truncation setting, which is most pertinent for CL. Indeed, for t = 1, B1 is equal to
the corresponding term in Theorem 1 of Huang et al. (2022) up to a constant. More importantly,
these papers make statistical (e.g., Gaussian) assumptions on H1:t, which are potentially violated by
generating H1:t via Ht := relu(PXt), with Xt consisting of features from pre-trained models. In
contrast, Theorems 1 and 2 have few assumptions, and so they apply, at least in principle, to the full
architecture (i.e., a pre-trained model and random ReLU feature model in cascade).

6 NUMERICAL VALIDATION

This section highlights the performance and efficiency of ICL-TSVD in the CIL setting across
a diverse range of datasets and increments. For additional results, see Appendix K, particularly
Appendix K.3 for experimental outcomes in the DIL (domain-incremental learning) setting.

6.1 SETUP

Baselines. The most relevant baseline to compare is RanPAC (McDonnell et al., 2023). Additional
competitive baselines include L2P (Wang et al., 2022d), DualPrompt (Wang et al., 2022c), Co-
daPrompt (Smith et al., 2023), SimpleCIL, ADAM (Zhou et al., 2023) and EASE (Zhou et al., 2024b).
We also compare ICL-TSVD with a joint linear classifier, that is, a linear model trained using either
the pre-trained features X1:T of all T tasks, or the random ReLU features H1:T . We denote these two
methods by LC (X1:T) and LC (H1:T). To ensure a fair comparison, all experiments are conducted
based on the PILOT GitHub repository of Sun et al. (2023). Additional experimental details, as well
as a comprehensive review of relevant baselines is given in Appendix J and Appendix H.

Pre-trained Models. We use ViT models pre-trained on ImageNet-1K; specifically the model
vit_base_patch16_224 from the timm repository (Wightman, 2019). Experiments using ViTs
pre-trained on ImageNet-21K are presented in Appendix K.2.

Datasets. Following prior works (Zhou et al., 2023; McDonnell et al., 2023), we run CIL experiments
with B-q1, Inc-q2 on continual learning versions of the following datasets: CIFAR100 (Krizhevsky
et al., 2009), ImageNet-R (Hendrycks et al., 2021a), ImageNet-A (Hendrycks et al., 2021b), CUB-200
(Wah et al., 2011), ObjectNet (Barbu et al., 2019), OmniBenchmark (Zhang et al., 2022), VTAB
(Zhai et al., 2019), and StanfordCars (Krause et al., 2013). We set q1 = 0 for most cases, but since
StanfordCars and VTAB have 196 and 50 classes, respectively, we take q1 = 16 and q1 = 10 for
them. We let q2 vary in {5, 10, 20}, and also consider the more challenging case q2 = 1.

Metrics. After learning task t we evaluate the top-1 classification accuracyAi,t for every i = 1, . . . , t.
For a total of T tasks, the accuracy matrix A is defined as a T × T upper triangular matrix with its
(i, t)-th entry being Ai,t. Final accuracy is defined as the average 1

T

∑T
i=1Ai,T of the last column

of A. Total accuracy is defined as the average 1
T (T−1)

∑
1≤i≤t≤T Ai,t of all upper triangular entries.

Following common practices, we use total accuracy and final accuracy as our evaluation metrics.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Final accuracy with pre-trained ViTs. Large accuracy gaps between RanPAC and ICL-
TSVD (ours) are shown in bold. †: Methods using first-session adaptation with the corresponding
hyperparameters set as per RanPAC† (cf. Remark 3). ∗: Methods using first-session adaptation with
the hyperparameters set as per EASE∗ (Zhou et al., 2024b). Details are in Appendix J.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.

LC (X1:T) 87.56 72.42 58.85 88.76 76.90
LC (H1:T) 87.76 73.00 59.25 88.72 77.18

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 80.25 83.53 83.57 67.92 71.78 73.42 44.50 48.52 51.28 53.60 59.20 67.81 65.45
DualPrompt 80.85 83.86 84.59 67.12 71.57 72.87 49.70 53.72 56.75 54.79 63.99 69.93 67.48
CodaPrompt 82.93 86.31 87.87 67.80 72.73 74.85 34.43 49.57 59.51 36.39 60.18 71.29 65.32
SimpleCIL 80.48 80.48 80.48 63.47 63.47 63.47 58.72 58.72 58.72 80.45 80.45 80.45 70.78
RanPAC 86.71 87.02 87.10 71.90 71.97 72.50 56.48 62.34 61.75 88.08 87.15 88.13 76.76
ICL-TSVD 88.18 88.18 88.21 73.67 73.72 73.63 62.74 63.20 63.20 89.36 89.27 89.23 78.55

ADAM† 83.55 85.13 85.86 63.73 65.03 71.40 58.72 58.66 58.99 80.49 80.66 81.00 72.77
RanPAC† 88.73 90.04 90.74 70.80 73.37 78.80 62.34 62.08 62.28 88.42 87.57 88.68 78.65
ICL-TSVD† 89.73 90.82 91.44 73.58 74.55 79.13 62.74 62.80 62.94 89.14 89.19 89.27 79.61

EASE∗ 84.43 86.48 88.16 73.53 77.02 77.55 58.26 61.69 62.28 80.66 81.68 81.13 76.07
ICL-TSVD∗ 89.46 90.90 91.67 78.73 80.43 81.45 63.40 64.45 65.64 89.14 89.19 89.44 81.16

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.
LC (X1:T) 59.70 79.55 91.32 74.12 76.17
LC (H1:T) 59.96 80.02 91.17 73.65 76.20

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

L2P 45.53 52.05 55.49 54.50 57.29 60.50 59.32 73.25 78.91 13.70 27.46 43.68 51.81
DualPrompt 47.56 53.68 55.64 56.14 59.18 62.39 64.10 77.78 83.75 11.38 18.84 27.89 51.53
CodaPrompt 46.61 54.44 59.17 60.00 64.98 68.25 68.77 76.81 86.32 7.96 11.29 30.74 52.95
SimpleCIL 51.66 51.66 51.66 70.19 70.19 70.19 82.53 82.53 82.53 35.46 35.46 35.46 59.96
RanPAC 58.77 57.66 57.69 77.63 77.63 77.46 91.15 91.58 91.58 58.03 71.40 71.40 73.50
ICL-TSVD 60.83 60.86 60.77 79.50 79.60 79.70 92.46 92.55 92.56 74.21 74.39 74.39 76.82

ADAM† 52.16 53.94 55.97 70.54 70.53 70.38 82.55 82.55 82.55 35.61 35.61 35.61 60.67
RanPAC† 58.77 57.66 64.59 78.10 78.46 78.86 91.48 91.86 91.86 58.65 72.24 72.24 74.56
ICL-TSVD† 61.78 63.56 66.48 80.07 80.28 80.45 92.55 92.53 92.60 74.87 74.89 75.13 77.93

EASE∗ 49.28 53.88 57.05 70.33 70.68 70.84 89.85 93.48 93.49 32.43 31.77 29.00 61.84
ICL-TSVD∗ 61.57 63.40 66.29 80.02 80.42 80.82 92.68 92.71 92.67 75.91 75.71 75.96 78.18

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1 contains the main results for q2 = 5, 10, 20 on 8 different CIL datasets. First observe that L2P,
DualPrompt, and CodaPrompt are unstable as their accuracy varies significantly in different datasets
for different values of q2. Second, SimpleCIL, ADAM, and EASE are unstable as their performance
is largely compromised on StanfordCars. Then, RanPAC is unstable with respect to q2 as it exhibits a
large performance gap compared to ICL-TSVD for q2 = 5 on ImageNet-A and StanfordCars. Finally,
we see ICL-TSVD has more stable performance across datasets and for varying q2.

Figure 5: Training times for varying embedding dimensions E (in minutes).

Why Does ICL-TSVD Uniformly Outperform RanPAC? The first reason is that ICL-TSVD’s high
efficiency and scalability enable the use of a larger embedding dimension. Indeed, ICL-TSVD uses
E = 105, taking advantage of the scaling law (Fig. 8, Appendix K.4), while RanPAC uses its default
choice E = 104. Note that this is a fair comparison since ICL-TSVD’s implementation is more
scalable and more efficient than RanPAC’s. Specifically, ICL-TSVD has O(E(kt−1 +mt)

2) time

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(6a) RanPAC (6b) ICL-TSVD (6c) RanPAC (6d) ICL-TSVD

Figure 6: The upper triangular accuracy matrices for class-incremental learning on ImageNet-A (B-0,
Inc-5) and StanfordCars (B-16, Inc-5), corresponding to the two bold cases in Table 1.

Table 2: Final and total accuracy in CIL datasets with q2 = 1 (Inc-1).

CIFAR100 ImageNet-R ImageNet-A CUB ObjectNet OmniBenchmark VTAB StanfordCars Avg.

Final Accuracy
RanPAC 87.06 71.78 55.43 85.03 58.51 77.89 91.11 1.19 66.00
ICL-TSVD 88.58 73.33 62.94 89.36 60.82 79.30 92.44 74.44 77.65

Total Accuracy
RanPAC 91.58 70.41 38.25 73.22 64.94 85.79 77.06 57.43 69.83
ICL-TSVD 92.88 79.24 71.22 93.28 73.19 87.01 96.22 81.16 84.27

complexity while RanPAC takes O(E3) time for each task t (Remark 8, Appendix C). An alternative
way to make a fair comparison is to set the same embedding dimension E for both methods, in which
case ICL-TSVD can be up to 1000 times faster than RanPAC (e.g., see E = 25000 in Fig. 5).

The second reason is that RanPAC is not stable when using a fixed regularization parameter λ (cf.
Fig. 2), and the cross-validation strategy of McDonnell et al. (2023) does not fully address this
challenge, as it can fail when the validation set is small. This is the case in ImageNet-A (B-0, Inc-5)
and StanfordCars (B-16, Inc-5) (see Table 1), where the validation sets are small and RanPAC’s
performance is severly degraded. A more careful analysis of these two failure cases shows that the
accuracy matrices of RanPAC have multiple columns with nearly zero entries (in blue, Fig. 6a and
Fig. 6c), exposing RanPAC’s instability.

Inc-1: One Class at A Time. In light of the above analysis, we consider the CIL setting, with one
class given at each iteration (Inc-1). In this setting, a new task has much fewer training samples and
CL methods need to cope with hundreds of tasks (classes) on certain datasets. Note that adapter-based
methods such as EASE are infeasible for CIL with Inc-1 (cf. Appendix H.1). In this setting, the
fragility of RanPAC with respect to the choice of λ is amplified (see Table 2), and the method exhibits
a significant performance drop compared to Table 1. In contrast, ICL-TSVD’s performance is stable,
exhibiting high accuracy comparable to the cases of Inc-{5, 10, 20} in Table 1. Accuracy matrices
associated with Table 2 are plotted in Figs. 15 to 19 of Appendix K.7.2, where we present similar
results for Inc-{1, 2, 4, 5}.

7 CONCLUSION

This work puts forward a simple method that bridges the gap between empirical performance and
theoretical guarantees in continual learning with pre-trained models. By integrating the strengths
of RanPAC into the Ideal Continual Learner framework and addressing the ill-conditioning of
lifted features through continual SVD truncation, our approach achieves both stability and strong
performance. Extensive experiments demonstrated that our method outperforms state-of-the-art
methods across multiple datasets and can handle sequences with hundreds of tasks. Theoretically, we
proved that our method maintains small training and generalization errors by appropriately truncating
SVD factors. This work underscores the potential of combining empirical techniques with principled
frameworks to develop robust and scalable continual learning systems, and will encourage follow-up
works to achieve so as well.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kyra Ahrens, Hans Hergen Lehmann, Jae Hee Lee, and Stefan Wermter. Read between the lay-
ers: Leveraging multi-layer representations for rehearsal-free continual learning with pre-trained
models. Transactions on Machine Learning Research, 2024. 1, 32, 33, 34

Anonymous Authors. The official homepage on origins of extreme learning machines (elm). https:
//elmorigin.wixsite.com/originofelm. Accessed: September, 2024. 34

Francis Bach. High-dimensional analysis of double descent for linear regression with random
projections. SIAM Journal on Mathematics of Data Science, 6(1):26–50, 2024. 5, 8, 35

Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
Tenenbaum, and Boris Katz. ObjectNet: A large-scale bias-controlled dataset for pushing the
limits of object recognition models. Advances in Neural Information Processing Systems, 2019. 8,
36

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020. 35

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to understand
kernel learning. In International Conference on Machine Learning, 2018. 35

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019. 35

Matthew Brand. Incremental singular value decomposition of uncertain data with missing values. In
European Conference on Computer Vision, 2002. 19

James R Bunch and Christopher P Nielsen. Updating the singular value decomposition. Numerische
Mathematik, 31(2):111–129, 1978. 19

Xufeng Cai and Jelena Diakonikolas. Last iterate convergence of incremental methods and applica-
tions in continual learning. Technical report, arXiv:2403.06873 [math.OC], 2024. 2

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. Technical report, arXiv:1902.10486v4 [cs.LG], 2019. 32

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
AdaptFormer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 2022. 33

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, et al. Spectral methods for data science: A statistical
perspective. Foundations and Trends® in Machine Learning, 14(5):566–806, 2021. 32

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM
Journal on Numerical Analysis, 7(1):1–46, 1970. 32

Meng Ding, Kaiyi Ji, Di Wang, and Jinhui Xu. Understanding forgetting in continual learning with
linear regression. In International Conference on Machine Learning, 2024. 33

Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
A theoretical analysis of catastrophic forgetting through the NTK overlap matrix. In International
Conference on Artificial Intelligence and Statistics, 2021. 33

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. 2

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. DyTox: Transformers
for continual learning with dynamic token expansion. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022. 32

11

https://elmorigin.wixsite.com/originofelm
https://elmorigin.wixsite.com/originofelm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
can catastrophic forgetting be in linear regression? In Conference on Learning Theory, 2022. 2, 33

Xinyuan Gao, Songlin Dong, Yuhang He, Qiang Wang, and Yihong Gong. Beyond prompt learning:
Continual adapter for efficient rehearsal-free continual learning. In European Conference on
Computer Vision, 2024a. 33

Zhanxin Gao, Jun Cen, and Xiaobin Chang. Consistent prompting for rehearsal-free continual
learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024b. 2, 33

Daniel Goldfarb, Itay Evron, Nir Weinberger, Daniel Soudry, and PAul HAnd. The joint effect of
task similarity and overparameterization on catastrophic forgetting — an analytical model. In
International Conference on Learning Representations, 2024. 33

Alden Green and Elad Romanov. The high-dimensional asymptotics of principal component regres-
sion. Technical report, arXiv:2405.11676 [math.ST], 2024. 5, 8, 35

Etash Kumar Guha and Vihan Lakshman. On the diminishing returns of width for continual learning.
In International Conference on Machine Learning, 2024. 39

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53
(2):217–288, 2011. 21

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of Statistics, 50(2):949, 2022. 35

Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear
discriminant analysis. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, 2020. 33

Reinhard Heckel. Provable continual learning via sketched Jacobian approximations. In International
Conference on Artificial Intelligence and Statistics, 2022. 33

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In IEEE/CVF International Conference on Computer
Vision, 2021a. 8, 36

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial
examples. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021b. 8, 36

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. 34

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, 2019. 33

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022. 33

Hong Hu, Yue M Lu, and Theodor Misiakiewicz. Asymptotics of random feature regression beyond
the linear scaling regime. Technical report, arXiv:2403.08160 [stat.ML], 2024. 39

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: a new learning
scheme of feedforward neural networks. In IEEE International Joint Conference on Neural
Networks, volume 2, pp. 985–990, 2004. 34

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: Theory and
applications. Neurocomputing, 70(1-3):489–501, 2006. 34

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ningyuan Huang, David W Hogg, and Soledad Villar. Dimensionality reduction, regularization, and
generalization in overparameterized regressions. SIAM Journal on Mathematics of Data Science, 4
(1):126–152, 2022. 5, 8, 35

Laura Hucker and Martin Wahl. A note on the prediction error of principal component regression in
high dimensions. Theory of Probability and Mathematical Statistics, 109:37–53, 2023. 5, 8

Like Hui and Mikhail Belkin. Evaluation of neural architectures trained with square loss vs cross-
entropy in classification tasks. In International Conference on Learning Representations, 2021.
3

Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural networks in
classification. Technical report, arXiv:1702.05659 [cs.LG], 2017. 3

Paul Janson, Wenxuan Zhang, Rahaf Aljundi, and Mohamed Elhoseiny. A simple baseline that
questions the use of pretrained-models in continual learning. In NeurIPS 2022 Workshop on
Distribution Shifts: Connecting Methods and Applications, 2022. 32

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision, 2022. 33

Dahuin Jung, Dongyoon Han, Jihwan Bang, and Hwanjun Song. Generating instance-level prompts
for rehearsal-free continual learning. In IEEE/CVF International Conference on Computer Vision,
2023. 2, 33

Doyoung Kim, Susik Yoon, Dongmin Park, Youngjun Lee, Hwanjun Song, Jihwan Bang, and Jae-Gil
Lee. One size fits all for semantic shifts: Adaptive prompt tuning for continual learning. In
International Conference on Machine Learning, 2024. 2, 33

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of The National Academy of Sciences, 114
(13):3521–3526, 2017. 32

Vladimir Koltchinskii and Karim Lounici. Concentration inequalities and moment bounds for sample
covariance operators. Bernoulli, pp. 110–133, 2017. 8

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D object representations for fine-grained
categorization. In IEEE International Conference on Computer Vision (ICCV) Workshops, 2013.
8, 36

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Toronto, ON, Canada, 2009. 8, 36

Avraham Levey and Michael Lindenbaum. Sequential karhunen-loeve basis extraction and its
application to images. IEEE Transactions on Image Processing, 9(8):1371–1374, 2000. 19

Chuqiao Li, Zhiwu Huang, Danda Pani Paudel, Yabin Wang, Mohamad Shahbazi, Xiaopeng Hong,
and Luc Van Gool. A continual deepfake detection benchmark: Dataset, methods, and essentials.
In IEEE/CVF Winter Conference on Applications of Computer Vision, 2023. 36, 38

Qiuwei Li, Zhihui Zhu, and Gongguo Tang. Alternating minimizations converge to second-order
optimal solutions. In International Conference on Machine Learning, 2019. 33

Yan-Shuo Liang and Wu-Jun Li. InfLoRA: Interference-free low-rank adaptation for continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024. 33

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, 2023. 33

Xialei Liu. Awesome incremental learning / lifelong learning. http://https://github.com/
xialeiliu/Awesome-Incremental-Learning, 2024. Accessed: August 2024. 32

13

http://https://github.com/xialeiliu/Awesome-Incremental-Learning
http://https://github.com/xialeiliu/Awesome-Incremental-Learning

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vincenzo Lomonaco and Davide Maltoni. CORe50: a new dataset and benchmark for continuous
object recognition. In Conference on Robot Learning, 2017. 36, 38

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in Neural Information Processing Systems, 2017. 32

Ashwani Kumar Malik, Ruobin Gao, MA Ganaie, Muhammad Tanveer, and Ponnuthurai Nagaratnam
Suganthan. Random vector functional link network: recent developments, applications, and future
directions. Applied Soft Computing, 143:110377, 2023. 34

Mark D McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den Hengel.
RanPAC: Random projections and pre-trained models for continual learning. Advances in Neural
Information Processing Systems, 2023. 1, 3, 4, 8, 10, 34, 36, 37, 38, 39

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 75
(4):667–766, 2022. 35

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2624–2637, 2013. 32

Hancheng Min, Enrique Mallada, and Rene Vidal. Early neuron alignment in two-layer ReLU
networks with small initialization. In International Conference on Learning Representations, 2024.
2

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and
Mehrdad Farajtabar. Wide neural networks forget less catastrophically. In International Conference
on Machine Learning, 2022. 39

Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard E. Turner. First
session adaptation: A strong replay-free baseline for class-incremental learning. In IEEE/CVF
International Conference on Computer Vision, 2023. 3, 32

Y-H Pao and Yoshiyasu Takefuji. Functional-link net computing: theory, system architecture, and
functionalities. Computer, 25(5):76–79, 1992. 3, 32, 34, 35

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019. 32

Binghui Peng and Andrej Risteski. Continual learning: A feature extraction formalization, an efficient
algorithm, and fundamental obstructions. In Advances in Neural Information Processing Systems,
2022. 2, 33

Liangzu Peng, Paris Giampouras, and René Vidal. The ideal continual learner: An agent that never
forgets. In International Conference on Machine Learning, 2023. 1, 2, 3, 19, 39

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In IEEE/CVF International Conference on Computer Vision,
2019. 36, 38

Ameya Prabhu, Shiven Sinha, Ponnurangam Kumaraguru, Philip HS Torr, Ozan Sener, and Puneet K
Dokania. RanDumb: A simple approach that questions the efficacy of continual representation
learning. Technical report, arXiv:2402.08823v2 [cs.CV], 2024. 1, 3, 32, 33

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
Neural Information Processing Systems, 2007. 32, 35

Rahul Ramesh and Pratik Chaudhari. Model zoo: A growing brain that learns continually. In
International Conference on Learning Representations, 2022. 33

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCaRL:
Incremental classifier and representation learning. In IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 32

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning for robust
visual tracking. International Journal of Computer Vision, 77:125–141, 2008. 19

Anurag Roy, Riddhiman Moulick, Vinay K Verma, Saptarshi Ghosh, and Abir Das. Convolutional
prompting meets language models for continual learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024. 2, 33

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. Technical report,
arXiv:1606.04671v3 [cs.LG], 2016. 33

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021. 32

Ali H Sayed. Adaptive Filters. John Wiley & Sons, 2008. 21

Rylan Schaeffer, Zachary Robertson, Akhilan Boopathy, Mikail Khona, Kateryna Pistunova, Ja-
son William Rocks, Ila R Fiete, Andrey Gromov, and Sanmi Koyejo. Double descent demystified:
Identifying, interpreting & ablating the sources of a deep learning puzzle. In Blogpost Track at
ICLR 2024, 2024. 4, 42

Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward neural networks with
random weights. In International Conference on Pattern Recognition, 1992. 3, 34, 35

Khadija Shaheen, Muhammad Abdullah Hanif, Osman Hasan, and Muhammad Shafique. Continual
learning for real-world autonomous systems: Algorithms, challenges and frameworks. Journal of
Intelligent & Robotic Systems, 105(1):1–32, 2022. 32

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, and Hao Wang.
Continual learning of large language models: A comprehensive survey. Technical report,
arXiv:2404.16789 [cs.LG], 2024. 32

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. CODA-Prompt: Continual decomposed
attention-based prompting for rehearsal-free continual learning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023. 2, 8, 33

Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. PILOT: A pre-trained model-based
continual learning toolbox. Technical report, arXiv:2309.07117 [cs.LG], 2023. 8, 36, 38

William Swartworth, Deanna Needell, Rachel Ward, Mark Kong, and Halyun Jeong. Nearly optimal
bounds for cyclic forgetting. Advances in Neural Information Processing Systems, 2023. 33

Yuwen Tan, Qinhao Zhou, Xiang Xiang, Ke Wang, Yuchuan Wu, and Yongbin Li. Semantically-
shifted incremental adapter-tuning is a continual vitransformer. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024. 33

Yu-Ming Tang, Yi-Xing Peng, and Wei-Shi Zheng. When prompt-based incremental learning does
not meet strong pretraining. In IEEE/CVF International Conference on Computer Vision, 2023. 2,
33

Matus Telgarsky. Feature selection with gradient descent on two-layer networks in low-rotation
regimes. Technical report, arXiv:2208.02789 [cs.LG], 2022. 2

Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 61(3):611–622, 1999. 7

Alexander Tsigler and Peter L Bartlett. Benign overfitting in ridge regression. Journal of Machine
Learning Research, 24(123):1–76, 2023. 35, 39

Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022. 32

René Vidal, Yi Ma, and Shankar Sastry. Generalized Principal Component Analysis. Springer, 2016.
7

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech-
UCSD birds-200-2011 dataset. Technical report, California Institute of Technology, 2011. 8,
36

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
University Press, 2019. 8

Lipo P. Wang and Chunru R. Wan. Comments on “the extreme learning machine”. IEEE Transactions
on Neural Networks, 19(8):1494–1495, 2008. 34

Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang, Hang Su, and Jun Zhu. Hierarchical
decomposition of prompt-based continual learning: Rethinking obscured sub-optimality. Advances
in Neural Information Processing Systems, 2023. 2, 33

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(8):5362–5383, 2024. 32

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning. Advances in Neural Information Processing
Systems, 2022a. 1, 2, 33

Zhen Wang, Liu Liu, Yiqun Duan, Yajing Kong, and Dacheng Tao. Continual learning with lifelong
vision transformer. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022b.
2, 33

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. DualPrompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, 2022c. 2, 8, 33

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022d. 1, 8

Andrew R Webb and David Lowe. The optimised internal representation of multilayer classifier
networks performs nonlinear discriminant analysis. Neural Networks, 3(4):367–375, 1990. 34

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. 8

Ji Xu and Daniel J Hsu. On the number of variables to use in principal component regression.
Advances in Neural Information Processing Systems, 2019. 5, 8, 35

Shipeng Yan, Jiangwei Xie, and Xuming He. DER: Dynamically expandable representation for class
incremental learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021. 2, 32

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations, 2018. 33

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continual learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 1(8):364–372, 2019. 32

Hongyuan Zha and Horst D Simon. On updating problems in latent semantic indexing. SIAM Journal
on Scientific Computing, 21(2):782–791, 1999. 19

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. Technical
report, arXiv:1910.04867v2 [cs.CV], 2019. 8, 36

Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. SLCA: Slow learner
with classifier alignment for continual learning on a pre-trained model. In IEEE/CVF International
Conference on Computer Vision, 2023. 33

16

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Yuanhan Zhang, Zhenfei Yin, Jing Shao, and Ziwei Liu. Benchmarking omni-vision representation
through the lens of visual realms. In European Conference on Computer Vision, 2022. 8, 36

Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
based continual learning. In International Conference on Machine Learning, 2024. 33

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Revisiting class-incremental learning
with pre-trained models: Generalizability and adaptivity are all you need. Technical report,
arXiv:2303.07338 [cs.LG], 2023. 1, 2, 8, 32, 33, 36

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning with
pre-trained models: A survey. In International Joint Conference on Artificial Intelligence, 2024a.
1, 3

Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, and De-Chuan Zhan. Expandable subspace ensemble for
pre-trained model-based class-incremental learning. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024b. 1, 8, 9, 33, 37, 38

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
incremental learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024c. 32

Huiping Zhuang, Zhenyu Weng, Hongxin Wei, Renchunzi Xie, Kar-Ann Toh, and Zhiping Lin. ACIL:
Analytic class-incremental learning with absolute memorization and privacy protection. Advances
in Neural Information Processing Systems, 2022. 21

Huiping Zhuang, Zhenyu Weng, Run He, Zhiping Lin, and Ziqian Zeng. GKEAL: Gaussian kernel
embedded analytic learning for few-shot class incremental task. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023. 21

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A OVERVIEW OF THE APPENDIX

• In Appendix B, we complie all the mathematical notations used throughout the paper.
• In Appendix C we describe the implementation details of ICL-TSVD. There, we also discuss

other potential implementations and our design choice.
• In Appendix D, we present auxiliary lemmas that are useful for proving our main theorems.
• In Appendix E, we prove the theorems displayed in the main paper (Theorems 1 and 2).
• In Appendix F we present results similar to Appendix E, with the difference that we now

assume the noise is Gaussian, which gives slightly tighter error bounds.
• In Appendix G, we prove some extra theoretical results such as perturbation bounds on

eigenvalues and eigenvectors (Theorem 6).
• In Appendix H we review related works on continual learning, focusing on CL methods

with pretrained models and existing theoretical developments.
• In Appendix I we report the statistics of the datasets we use for experiments.
• In Appendix J we specify the experimental setup.
• In Appendix K we report extra experimental results, figures, and tables.

B NOTATIONS

Here in Table 3 we compile all the notations used in the paper.

Table 3: Notations

d dimension of pre-trained features
E Embedding dimension
mt number of training samples for task t
Mt m1 + · · ·+mt

ct Total number of classes seen in the first t tasks
T Total number of tasks
N (0, 1) Gaussian distribution with mean 0 and variance 1

IE E × E identity matrix
Xt d×mt matrix, whose columns are output features of pre-trained models
P E × d random embedding matrix with N (0, 1) entries
Ht Random ReLU features relu(PXt) as defined in (1)
λ Ridge regularization parameter in RanPAC

B̃t The matrix whose SVDs are truncated by Algorithm 4, defined in (3)
kt The number of singular values and vectors preserved for the first t tasks
τkt

(·) Function that computes the best rank-kt approximation of a matrix
µk(·) the k-th largest eigenvalue of a symmetric matrix

U1:tΣ1:tV
⊤
1:t SVD of H1:t

U1:tΣ1:tV
⊤
1:t SVD of τkt

(H1:t)

Ũ1:t, Σ̃1:t SVD factors of B̃t

at accumulative error defined in (6)
γt the eigengap between the present and past, defined in (5)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS FOR ICL-TSVD

In this section, we give full details of our algorithm for ICL-TSVD. Note that Algorithm 1 of the
main paper is a concise version of our approach, used to illustrate the methodology at high level.

In Appendix C.1, we introduce Algorithm 2, our implementation of the incremental SVD approach.
Note that Algorithm 2 dates back at least to Bunch & Nielsen (1978) and has been applied to
image processing, computer vision, and latent semantic indexing (Zha & Simon, 1999; Levey &
Lindenbaum, 2000; Brand, 2002; Ross et al., 2008). Recently a link between continual learning and
incremental SVD was built (Peng et al., 2023). However, it has not been applied to the context we
consider here to the best of our knowledge, and suitable modifications are needed to incorporate
incremental SVD for solving ICL-TSVD satisfactorily. For example, we truncate the SVD factors
in each continual update as shown Algorithm 2, and the outputs (Ũ1:t, Σ̃1:t) of Algorithm 2 are not
necessarily equal to the top-kt SVD factors of H1:t. It is then our contribution to arm Algorithm 2
with theoretical guarantees (cf. Lemma 1 and Theorem 6).

In Appendix C.2, we introduce Algorithm 4, a continual learning method that stably solves ICL-
TSVD.

In Appendix C.3, we examine other algorithmic options that could be used for solving the least-
squares type problems that we encountered in the main paper (ICL-TSVD, Min-Norm ICL, or
RanPAC).

Our PyTorch code that implements ICL-TSVD will be made available soon.

C.1 INCREMENTAL TRUNCATED SVD

We first explain the design choice as suggested by (2): Should we maintain all SVD factors Ũ1:t, Σ̃1:t,
and Ṽ1:t, or should we just maintain the singular values Σ̃1:t and and left singular vectors Ũ1:t? In
the main paper, we suggested taking the latter choice, as we empirically found continually updating
all SVD factors Ũ1:t, Σ̃1:t, and Ṽ1:t lead to large test errors.

We now describe how to update the top kt SVD factors Ũ1:t, Σ̃1:t from the previous estimates
Ũ1:t, Σ̃1:t and new data Ht. Let QtRt be the QR decomposition of (IE − Ũ1:t−1Ũ

⊤
1:t−1)Ht. Then

we have [
Ũ1:t−1Σ̃1:t−1, Ht

]
=
[
Ũ1:t−1, Qt

] [
Σ̃1:t−1 Ũ⊤

t−1Ht

0 Rt

]
.

Note that [Ũ1:t−1, Qt] is already orthogonal, we can do a truncated SVD on the smaller (kt−1 +
mt)× (kt−1 +mt) matrix of the right-hand side. The full procedure is summarized below:

Algorithm 2: Incremental Truncated Singular Value Decomposition

1 Input: data matrix Ht ∈ RE×mt of task t, desired output rank kt ≤ m, SVD factors
Ũ1:t−1 ∈ RE×kt−1 and Σ̃1:t−1 ∈ Rkt−1×kt−1 of previous t− 1 tasks;

2 Compute the QR decomposition QtRt of (IE − Ũ1:t−1Ũ
⊤
1:t−1)Ht;

3 Set (Σtmp,Utmp) to the top-kt SVD components of // TSVD (Algorithm 3)
4 [

Σ̃1:t−1 Ũ⊤
t−1Ht

0 Rt

]
∈ R(kt−1+mt)×(kt−1+mt); (11)

5 Set Σ̃1:t ← Σtmp and Ũ1:t ← [Ũt−1 Qt]Utmp;
6 Ũ1:t ← The orthogonal factor of QR decomposition of Ũ1:t; // improve numerical stability

7 Output: (Ũ1:t, Σ̃1:t);

Remark 7. Since [Ũ1:t−1 Qt] and Utmp are orthogonal, Ũ1:t is expected to be orthogonal as well.
However, the multiplication Ũ1:t = [Ũt−1 Qt]Utmp might lose orthogonality due to numerical errors,
especially for large t. This is fixed by an extra post-processing step that orthogonalizes Ũ1:t.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 3: Truncated Singular Value Decomposition (TSVD)

1 Input: matrix H ∈ RE×m and desired output rank r ≤ min{E,m};
2 tmp← min{E,m};
3 Compute the SVD σ1u1v

⊤
1 + · · ·+ σtmputmpv

⊤
tmp of H;

4 Set Σ̃← diag(σ1, . . . , σr), Ũ ← [u1, . . . ,ur];
5 Output: (Ũ , Σ̃);

Memory Complexity Analysis. The extra working memory of this approach is roughly:

• O(Emt +m2
t), for the QR factors QtRt;

• O((kt−1 +mt)
2), for the matrix in (11) and its SVD factors;

Hence, for large E, this is less than the O(E(kt−1 +mt)) memory used by the direct SVD method.

Time Complexity Analysis. The major cost is the SVD of (11), which takes O((kt−1 +mt)
3) time.

While in principle the QR orthogonalization for the post-processing of Ũ1:t takes O(E(kt−1 +mt)
2)

time, it is significantly faster than SVD as the constants behind its O(·) is very small. Therefore, one
would expect the SVD on the matrix of (11) in O((kt−1 +mt)

3) time should be much faster than the
SVD on the matrix [Ũ1:t−1Σ̃1:t−1, Ht], which needs O(E(kt−1+mt)

2) time, where E is far larger
than kt−1 +mt (e.g., E = 105 and kt−1 +mt = 104). This is true on a sequential machine, but their
running time difference is not significant for highly parallel GPU implementations in our experience
(e.g., computing the inner product between two E-dimensional vectors has similar running times to
computing the inner product between (kt−1 +mt)-dimensional vectors, due to parallelism). Hence,
for a parallel implementation, the main advantage of doing SVD on the matrix in (11) is that it takes
less working memory than SVD on [Ũ1:t−1Σ̃1:t−1, Ht].
Remark 8. While our method has O(E(kt−1 +mt)

2) time complexity, RanPAC solves the normal
equations W (H1:tH

⊤
1:t + λIE) = Y1:tH

⊤
1:t of the ridge problem in variable W for every task t

using off-the-shelf solvers implemented in PyTorch, which in general takes O(E3) time. This is why
it is slower than our method for the same E, particularly when E is large (Figs. 5 and 7).

C.2 CONTINUAL SOLVER FOR ICL-TSVD

The proposed algorithm is shown in Algorithm 4. Here are a few details that we have not yet
mentioned in the main paper. First, note that Algorithm 4 formally updates Mt ad J1:t continually.
At Line 8 of Algorithm 4 we compute the label-feature covariance matrix J1 := Y1H

⊤
1 ∈ Rc1×E ,

and then at lines 10 and 11 we update J1:t−1 into J1:t via J1:t ← J1:t−1+Jtmp. The attentive reader
might find that J1:t−1 is of size ct−1×E while Jtmp is of size ct×E. But it could be that ct−1 < ct,
so it might not make sense to add J1:t−1 and Jtmp as in Line 11. Note that we wrote Line 11 just for
simplicity. The implementation would pad ct − ct−1 zero rows to J1:t−1 in a similar fashion to how
we extend Yt−1 into Yt when more classes are given, and this is what Line 11 should mean.

Second, we add an extra parameter rmax, to control the maximum allowable rank, that is the maximum
number of columns Ũ1:t is allowed to have. The purpose is to control the time complexity of
Algorithm 4 and allow it to run more efficiently on large datasets such as DomainNet (cf. Tables 7
and 8). We argue both the truncation percentage ζ and maximum allowable rank rmax are needed:
With ζ alone, the method might run slowly or even exceed the memory for large datasets such as
DomainNet (cf. Tables 7 and 8); with rmax alone, truncation is not activated before receiving rmax
samples, and numerical instability if it arises, can not be prevented before truncation is in effect.
Table 4 gives the values of ζ and rmax we use for each dataset.

C.3 ALTERNATIVE APPROACHES FOR ONLINE LEAST-SQUARES OR RIDGE REGRESSION

Here we examine a few alternative options of solving the least-squares or ridge regression problems
that appeared in the main paper (namely, Min-Norm ICL, ICL-TSVD, RanPAC).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Dataset Truncation Percentage ζ Embedding Dimension E Maximum Allowable Rank rmax

CIFAR100 25% 105 10000
ImageNet-R 25% 105 10000
ImageNet-A 25% 105 10000
CUB-200 25% 105 10000
ObjectNet 25% 105 20000
OmniBenchmark 25% 105 20000
VTAB† 25% 105 10000
StanfordCars 25% 105 10000

Table 4: Hyperparameters we use for each dataset.

Algorithm 4: Continual Solver of ICL-TSVD

1 Input of Task t: Random ReLU features Ht ∈ RE×mt , label matrix Yt ∈ Rct×mt ,
truncation percentage ζ ∈ [0, 1], maximum allowable rank rmax;

2 For t← 1, 2, . . . :
3 Mt ←Mt−1 +mt; // update the total number of samples Mt

4 kt ← min(rmax, (1− ζ)Mt); // perserve kt SVD factors for the first t tasks

5 Form B̃t as per (3);
6 (Ũ1:t, Σ̃1:t)← Top-kt SVD factors of B̃t; // use Algorithm 3 if t = 1, or Algorithm 2 if t > 1

7 If t = 1: // Continual update of J1:t := Y1:tH
⊤
1:t

8 J1 ← Output of Algorithm 5 run with inputs H1,Y1; // label-feature covariance of task 1
9 Else:

10 Jtmp ← Output of Algorithm 5 run with inputs Ht,Yt; // label-feature covariance of task t
11 J1:t ← J1:t−1 + Jtmp;

12 Form the linear classifier W̃t := J1:t

(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
; // cf. (2) and (4)

Randomized Linear Algebra Techniques. Algorithm 3 can, in fact, be implemented by randomized
linear algebra techniques (Halko et al., 2011). Some of these techniques compute by design only the
top k SVD factors. Intuitively this could save time and memory if k is extremely small. One such
method is conveniently implemented in PyTorch as well (torch.svd_lowrank). However, in our
rudimentary attempts at using randomized approaches, we found this PyTorch routine does not seem
to be as efficient or accurate as our present implementation (we consistently set truncation percentage
ζ to 25%). This observation aligns with the PyTorch document of torch.svd_lowrank: In
general, use the full-rank SVD implementation torch.linalg.svd() for dense matrices due to its 10-fold
higher performance characteristics. The low-rank SVD will be useful for huge sparse matrices that
torch.linalg.svd() cannot handle. For the moment, we conclude that it needs deeper investigations to
see whether randomized techniques are suitable for the continual learning contexts.

Online Matrix Inversion. A key step in solving Min-Norm ICL or RanPAC would be computing the
inverse (H1:tH

⊤
1:t + λIE)

−1 or (H⊤
1:tH1:t + λIMt

)−1. Their inversion can be continually updated
via the celebrated Woodbury matrix identity or block matrix inversion lemma, and the signature use of
these matrix tools can be found in classic signal processing algorithms such as recursive least-squares
Sayed (2008). They are also used in recent continual learning papers of Zhuang et al. (2022; 2023).
Using them allows the inversion to be computed rapidly, while it is also known that they can be
numerically unstable. Indeed, in our setting, H1:t is extremely ill-conditioned. Our implementation
where (H1:tH

⊤
1:t + λIE)

−1 are continually updated via the Woodbury matrix identity suffers from
numerical errors, and it is unable to maintain strong performance and unable to outperform RanPAC.
Moreover, the numerical errors accumulate over time and can not handle long sequences of tasks.
Finally, even if we know the numerical errors exist, there is no obvious solution to fix them. This is
different from our ICL-TSVD implementation based on robust truncated SVD procedures, which has
an advantage that we could easily reduce numerical errors by re-orthogonalizing Ũ1:t (see Remark 7
and Algorithm 2).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 5: Compute The Label-Feature Covariance Matrix

1 Input: matrix H = [h1, . . . ,hm] ∈ RE×m and label matrix Y ∈ Rc×m;
2 Convert Y into a vector of indices y = [y1, . . . , ym] such that the i-th column of Y is the yi-th

standard basis vector (i.e., one-hot vector with 1 at position yi);
3 Initialize S = [s1, . . . , sc] to be the E × c zero matrix;
4 For i = 1, . . . ,m: // parallel implementation via torch.Tensor.index_add_
5 Syi ← Syi + hi;
6 Output: S⊤; // S is equal to HY ⊤

D AUXILIARY LEMMAS

The following lemma provides an explicit expression for the difference between the continually
truncated factors Ũ1:tΣ̃

2
1:tŨ

⊤
1:t and covariance H1:tH

⊤
1:t.

Lemma 1. Let B̃t be the matrix whose SVDs are truncated by Algorithm 4, as defined in (3). We
have U1 = Ũ1 and Σ1 = Σ̃1. Moreover, we have

H1:tH
⊤
1:t − Ũ1:tΣ̃

2
1:tŨ

⊤
1:t =

t∑
i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
.

Proof of Lemma 1. It should be clear that U1 = Ũ1 and Σ1 = Σ̃1. For every i = 1, . . . , t we have

Ũ1:iΣ̃
2
1:iŨ

⊤
1:i = τki

(
B̃iB̃

⊤
i

)
.

and therefore

Ũ1:iΣ̃
2
1:iŨ

⊤
1:i − B̃iB̃

⊤
i = τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i .

A key observation is that summing the above equality over i = 2, . . . , t yields
t∑

i=2

(
Ũ1:iΣ̃

2
1:iŨ

⊤
1:i − B̃iB̃

⊤
i

)
=

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔

t∑
i=2

(
Ũ1:iΣ̃

2
1:iŨ

⊤
1:i − Ũ1:i−1Σ̃

2
1:i−1Ũ

⊤
1:i−1 −HiH

⊤
i

)
=

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t − Ũ1Σ̃

2
1Ũ

⊤
1 −H2:tH

⊤
2:t =

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t −H1:tH

⊤
1:t = U1Σ

2

1U
⊤
1 −H1H

⊤
1 +

t∑
i=2

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
⇔ Ũ1:tΣ̃

2
1:tŨ

⊤
1:t −H1:tH

⊤
1:t =

t∑
i=1

(
τki

(
B̃iB̃

⊤
i

)
− B̃iB̃

⊤
i

)
.

(12)

The last equality also holds for t = 1. This finishes the proof.

The lemma below is a direct consequence of Von Neumann’s trace inequality, and its proof is omitted.
Lemma 2. Given two square matrices A,B with A positive semidefinite, we have

tr(AB) ≤ tr(A) · ∥B∥.

Lemma 3 presented below is elementary.
Lemma 3. Assume C is a positive semidefinite matrix. Then we have

tr(DACBD⊤) + tr(DB⊤CA⊤D⊤) ≤ tr(DACA⊤D⊤) + tr(DBCB⊤D⊤),

where A,B,C,D are matrices of compatible sizes. Therefore, it holds that

tr
(
D(A+B)C(A+B)D⊤) ≤ 2 tr(DACA⊤D⊤) + 2 tr(DBCB⊤D⊤).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The following two lemmas provide upper bounds on several terms appearing naturally in our main
results.
Lemma 4. Let B̃t be defined in (3), γt in (5), and at in (6). Define

Dt :=

t∑
i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
. (13)

We have ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥ ≤ t− 1

γt
,∥∥∥Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥ ≤ t− 1

γt
,

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ 1

γt
min {Mt−1 − kt−1, (t− 1)kt} ,

tr
(
DtŨ1:tΣ̃

−4
1:t Ũ

⊤
1:t

)
≤ 1

µkt

(
B̃tB̃⊤

t

) · 1
γt

min {Mt−1 − kt−1, (t− 1)kt} .

Proof of Lemma 4. It follows from definition that(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
Ũ1:t = 0,

hence DtŨ1:t = Dt−1Ũ1:t. This means∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥ =
∥∥∥Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥
≤ ∥Dt−1∥ ·

∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥
= ∥Dt−1∥ ·

1

µkt

(
B̃tB̃⊤

t

) ,
where the last equality follows by definition. On the other hand, we have

∥Dt−1∥ ≤
t−1∑
i=1

µki+1

(
B̃iB̃

⊤
i

)
≤ (t− 1)

γt
µkt

(
B̃tB̃

⊤
t

)
.

Combining the above proves the first required equality. The second inequality follows similarly.

For the final trace inequality, we have (k0 := 0)

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
≤ tr(Dt−1) ·

∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥
=

t−1∑
i=1

mi+ki−1∑
j=ki+1

µj

(
B̃iB̃

⊤
i

) · 1

µkt

(
B̃tB̃⊤

t

)
≤ 1

γt

t−1∑
i=1

(mi + ki−1 − ki)

=
1

γt
(Mt−1 − kt−1),

where (i) holds as Dt−1 is positive semidefinite (cf. Lemma 2).

We can also bound tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
alternatively as follows:

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ ∥Dt−1∥ · tr(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t)

≤ (t− 1)kt
γt

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Combining the two bounds on tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
proves the third inequality. The fourth inequality

follows similarly.

Lemma 5. Using the notations in Lemma 4, we have

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} ,∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥ ≤ at−1 ·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
,∥∥(IE − Ũ1:tŨ

⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)
∥∥ ≤ at,∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F ≤

(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ kt,

tr
(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
≤ 1

µkt

(
B̃tB̃⊤

t

) · (min {Mt−1 − kt−1, (t− 1)kt}
γt

+ kt

)
.

Proof of Lemma 5. Since Dt−1 is positive semidefinite, let Lt−1L
⊤
t−1 be its Cholesky decomposition.

Then we have

tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
Lt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1L

⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1

)
(i)
≤ tr

(
L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

)
·
∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥
= tr

(
Dt−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
·
∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥
(ii)
≤ 1

γt
min {Mt−1 − kt−1, (t− 1)kt} ·

∥∥∥L⊤
t−1Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tLt−1

∥∥∥ .
In the above, (i) follows from Lemma 2, and (ii) follows from Lemma 4. Continuing with the above
inequality, we have ∥∥∥L⊤

t−1Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tLt−1

∥∥∥ ≤ ∥Lt−1∥2 ·
1

µkt

(
B̃tB̃⊤

t

)
= ∥Dt−1∥ ·

1

µkt

(
B̃tB̃⊤

t

)
≤ t− 1

γt
.

Recall the fact DtŨ1:t = Dt−1Ũ1:t. The second inequality in Lemma 5 can be proved as follows:∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
(i)
=
∥∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

(
Dt + Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
=
∥∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
≤ ∥Dt−1∥ ·

(∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥+ ∥∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDt

∥∥∥)
≤ at−1 ·

(
(t− 1)2

γ2
t

+
t− 1

γt

)
.

In the above, (i) follows from Lemma 1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The third inequality is proved as follows:∥∥(IE − Ũ1:tŨ
⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)
∥∥

=
∥∥(IE − Ũ1:tŨ

⊤
1:t)(H1:tH

⊤
1:t − Ũ1:tΣ̃

2Ũ⊤
1:t)(IE − Ũ1:tŨ

⊤
1:t)
∥∥

=
∥∥(IE − Ũ1:tŨ

⊤
1:t)Dt(IE − Ũ1:tŨ

⊤
1:t)
∥∥

≤ ∥Dt∥ = at.

We now prove the fourth inequality:∥∥∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥∥2
F

= tr
(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
= tr

(
(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)
)

= tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + 2DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+ kt

(ii)
≤
(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ kt.

In the above, (i) follows from Lemma 1, and (ii) follows from Lemma 4 and the first inequality we
just proved for Lemma 5.

The fifth inequality can be proved as follows:

tr
(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
= tr

(
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:t(DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t)
)

= tr
(
DtŨ1:tΣ̃

−4
1:t Ũ

⊤
1:t

)
+ tr

(
Σ̃−2

1:t

)
(ii)
≤ 1

µkt

(
B̃tB̃⊤

t

) · 1
γt

min {Mt−1 − kt−1, (t− 1)kt}+
kt

µkt
(B̃tB̃⊤

t

) .
Here, (i) holds as a result of Lemma 1 and (ii) follows from Lemma 4.

Lemma 6. Using the notations in Lemma 4, we have for any W that∥∥W (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F ≤ 2 · ∥W ∥2F

(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

Proof. We have∥∥W (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2

F

= tr
(
W (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:tH

⊤
1:t(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:t − IMt)(W)⊤

)
(i)
≤ tr

(
W (DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t − IE)H1:tH

⊤
1:t(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt + Ũ1:tŨ

⊤
1:t − IE)(W)⊤

)
(ii)
≤ 2 tr

(
W (Ũ1:tŨ

⊤
1:t − IE)H1:tH

⊤
1:t(Ũ1:tŨ

⊤
1:t − IE)(W)⊤

)
+ 2 tr

(
WDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt(W)⊤

)
(iii)
≤ 2 · ∥W ∥2F ·

∥∥(IE − Ũ1:tŨ
⊤
1:t)H1:tH

⊤
1:t(IE − Ũ1:tŨ

⊤
1:t)

∥∥
+ 2 · ∥W ∥2F ·

∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
(iv)
≤ 2 · ∥W ∥2F · at + 2 · ∥W ∥2F · at−1 ·

(
(t− 1)2

γ2
t

+
t− 1

γt

)
= 2 · ∥W ∥2F

(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

In the above, (i) follows from Lemma 1, (ii) from Lemma 3, (iii) from Lemma 2, and (iv) from
Lemma 5. The proof is complete.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. Let IMt
be the Mt ×Mt identity matrix. The training loss can be written as

∥∥W̃tH1:t − Y1:t

∥∥2
F

=
∥∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − Y1:t

∥∥2
F

=
∥∥Y1:t(H

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

=
∥∥(W ∗

t H1:t + E1:t)(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

≤ 2 ·
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F + 2 ·

∥∥E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F.

We can now bound the first term by Lemma 6 as follows:

∥∥W ∗
t (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

The second term is bounded above as follows:

2 ·
∥∥E1:t(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

≤ 2 · ∥E1:t∥2 ·
∥∥(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

≤ 2 · ∥E1:t∥2 ·
(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
,

where the first inequality follows from Lemma 2 and the last inequality from Proposition 1.

Proof of Theorem 2. Define Dt :=
∑t

i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
. Note that Dt is a symmetric and

positive semi-definite matrix.

Note that we have

Eh

[∥∥W̃th− y
∥∥2] = Eh

[∥∥W̃th−W ∗
t h− ϵ

∥∥2]
= 2 · Eh

[∥∥W̃th−W ∗
t h
∥∥2]+ 2 · ∥ϵ∥2,

so we next focus on bounding Eh

[∥∥W̃th−W ∗
t h
∥∥2]. With the E × E identity matrix IE and

Λ := E[hh⊤], we have

Eh

[
∥W̃th−W ∗

t h∥2
]

= Eh

[
∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

≤ 2 · Eh

[
∥W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]
+ 2 · Eh

[
∥E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
≤ 2 · Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
+ 2 · ∥E1:t∥2 · Eh

[
∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The term Eh∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th∥2 can be bounded above as follows:

Eh∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th∥2

= tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

)
= tr

((
Λ− 1

Mt
H1:tH

⊤
1:t +

1

Mt
H1:tH

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(i)
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · tr(Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+

1

Mt
tr
(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
(ii)
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(B̃tB̃⊤
t

)
+

1

Mtγt

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt}+

kt
Mt

=: Vt

Here, (i) follows from Lemma 2 and (ii) follows from Lemma 5.

The term Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
satisfies:

Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
= tr

(
W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)Λ(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:t − IE)(W

∗
t)

⊤
)

(i)
= tr

(
W ∗

t (DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t + Ũ1:tŨ

⊤
1:t − IE)Λ(Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt + Ũ1:tŨ

⊤
1:t − IE)(W

∗
t)

⊤
)

(ii)
≤ 2 tr

(
W ∗

t (Ũ1:tŨ
⊤
1:t − IE)Λ(Ũ1:tŨ

⊤
1:t − IE)(W

∗
t)

⊤
)

+ 2 tr
(
W ∗

t DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt(W

∗
t)

⊤
)

(iii)
≤ 2 · ∥W ∗

t (IE − Ũ1:tŨ
⊤
1:t)∥2F ·

∥∥(IE − Ũ1:tŨ
⊤
1:t)Λ(IE − Ũ1:tŨ

⊤
1:t)

∥∥
+ 2 · ∥W ∗

t ∥2F ·
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
where the above three steps, (i), (ii), and (iii), follow from Lemma 1, Lemma 3, and Lemma 2
respectively. To bound Bt1 :=

∥∥(IE − Ũ1:tŨ
⊤
1:t)Λ(IE − Ũ1:tŨ

⊤
1:t)
∥∥, we have

Bt1 =

∥∥∥∥(IE − Ũ1:tŨ
⊤
1:t)
(
Λ− 1

Mt
Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

)
(IE − Ũ1:tŨ

⊤
1:t)

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ 1

Mt
·
∥∥∥H1:tH

⊤
1:t − Ũ1:tΣ̃

2
1:tŨ

⊤
1:t

∥∥∥
=

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ 1

Mt
· ∥Dt∥

=

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥+ at
Mt

.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

To bound Bt2 :=
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥, we have

Bt2 =
∥∥DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tΛŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥
=

∥∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

(
Λ− 1

Mt
H1:tH

⊤
1:t +

1

Mt
H1:tH

⊤
1:t

)
Ũ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · ∥∥Ũ1:tΣ̃
−2
1:t Ũ

⊤
1:tDt

∥∥2
+

1

Mt

∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDt

∥∥∥
≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · (t− 1)2

γ2
t

+ at−1 ·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
,

where the last step follows from Lemma 5. Putting together, we have obtained

Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
2 · ∥W ∗

t ∥2F
≤ Bt1 + Bt2

≤
∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ · (1 + (t− 1)2

γ2
t

)
+

at−1

Mt
·
(
(t− 1)2

γ2
t

+
t− 1

γt

)
+

at
Mt

=: Bt.

Combining the above finishes the proof.

F THEORETICAL GUARANTEES UNDER GAUSSIAN ASSUMPTIONS

In this section, we prove slightly tighter results than Theorems 1 and 2 presented in the main paper.
The key idea is to make certain Gaussian assumptions on noise. Specifically, we assume both the
training noise E1:t and test noise ϵ have i.i.d. N (0, ν2) entries. With these, we present and prove
Theorems 3 to 5 below.

Theorem 3. On top of the settings of Theorem 1, furthermore assume E1:t consists of i.i.d. N (0, ν2)

entries. Then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt
EE1:t

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
(14)

+ ctν
2

(
(Mt − kt)

Mt
+

(t− 1)min {Mt−1 − kt−1, (t− 1)kt}
γ2
tMt

)
.

Proof of Theorem 3. Let IMt
be the Mt ×Mt identity matrix. The training loss can be written as

EE1:t

∥∥W̃tH1:t − Y1:t

∥∥2
F

= EE1:t

∥∥Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − Y1:t

∥∥2
F

= EE1:t

∥∥Y1:t(H
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F

= EE1:t

∥∥(W ∗
t H1:t + E1:t)(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

=
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt

)H1:t

∥∥2
F + EE1:t

∥∥E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F.

We can now bound the first term by Lemma 6 as follows:

∥∥W ∗
t (H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(
at +

at−1(t− 1)

γt
+

at−1(t− 1)2

γ2
t

)
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

The second term can be bounded above as follows:
EE
∥∥E1:t(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)
∥∥2

F

= EE tr
(
(H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

)E1:t⊤E1:t(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)
)

= ctν
2 ·
∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F

≤ ctν
2 · (Mt − kt) + ctν

2 · t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} .

The last inequality follows from Proposition 1. Combining the above finishes the proof.

While in Theorem 3 bounds the average training MSE loss 1
Mt

EE1:t

∥∥W̃tH1:t−Y1:t

∥∥2
F, an alternative

is to give a bound on 1
Mt

EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F. The latter term evaluates the difference

between the prediction of W̃t and the ground-truth W ∗
t on training data H1:t. The difference between

the two terms is that Y1:t = W ∗
t H1:t+E1:t is contaminated by noise. We bound 1

Mt
EE1:t

∥∥W̃tH1:t−
W ∗

t H1:t

∥∥2
F in the next result.

Theorem 4. On top of the settings of Theorem 1, furthermore assume E1:t consists of i.i.d. N (0, ν2)

entries. Then the output W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

1

Mt
EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F ≤ 2 · ∥W ∗

t ∥2F
(

at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)
+ctν

2·
(

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
min {Mt−1 − kt−1, (t− 1)kt}

)
.

Proof of Theorem 4. We have

EE1:t

∥∥W̃tH1:t −W ∗
t H1:t

∥∥2
F

= EE1:t

∥∥Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t −W ∗

t H1:t

∥∥2
F

= EE1:t

∥∥W ∗
t H1:t(H

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt) + E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F

=
∥∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IMt)H1:t

∥∥2
F + EE1:t

∥∥E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F.

The first term is identical to that of Theorem 3, and it remains to bound the second term:

EE1:t

∥∥E1:tH⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t

∥∥2
F

= EE tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tE1:t⊤E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

)
= ctν

2 ·
∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t

∥∥∥2
F

≤ ctν
2 ·
(
t− 1

γ2
t

+
2

γt

)
min {Mt−1 − kt−1, (t− 1)kt}+ ctν

2 · kt.

The last inequality follows from Lemma 5.

Theorem 5. On top of the settings of Theorem 2, furthermore assume both E1:t and ϵ consists of i.i.d.
N (0, ν2) entries. Then the output W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t of our method (4) satisfies

EE1:t,h,ϵ

∥∥W̃th− y
∥∥2 ≤ 2 · ∥W ∗

t ∥2F · Bt + ctν
2 · Vt + ctν

2. (15)
where Bt and Vt are defined in (10) and also shown below:

Bt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥(1 + (t− 1)2

γ2
t

)
+

(
at
Mt

+
at−1(t− 1)

γtMt
+

at−1(t− 1)2

γ2
tMt

)

Vt =

∥∥∥∥Λ− 1

Mt
H1:tH

⊤
1:t

∥∥∥∥ ·
(

1
γt

min {Mt−1 − kt−1, (t− 1)kt}+ kt

)
µkt

(B̃tB̃⊤
t

)
+

kt
Mt

+

(
t− 1

γ2
tMt

+
2

γtMt

)
·min {Mt−1 − kt−1, (t− 1)kt} .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Proof of Theorem 5. Recall the definition of Dt in (13). Note that Dt is a symmetric and positive
semi-definite matrix.

Note that for any W ∈ Rct×E we have

EE1:t,h,ϵ

[
∥Wh− y∥2

]
= EE1:t,h,ϵ

[
∥Wh−W ∗

t h− ϵ∥2
]

= EE1:t,h

[
∥Wh−W ∗

t h∥2
]
+ ctν

2.

Denote by IE the E×E identity matrix. With W̃t = Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t and Y1:t = W ∗

t H1:t +
E1:t we obtain

EE1:t,h

[
∥W̃th−W ∗

t h∥2
]

= EE1:t,h

[
∥Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= EE1:t,h

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= EE1:t,h

[
∥(W ∗

t H1:t + E1:t)H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]

= Eh

[
∥W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:th−W ∗

t h∥2
]
+ EE1:t,h

[
∥E1:tH⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
= Eh

[
∥W ∗

t (H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − IE)h∥2

]
+ ctν

2Eh

[
∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:th∥2

]
The rest of the proof is identical to that of Theorem 2.

G ADDITIONAL THEORETICAL RESULTS

Given the weight W̃t := Y1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t computed by our continual implementation in

Section 4, here we aim to derive upper bounds on the training MSE losses 1
Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F

without the linear model assumption Y1:t = W ∗
t H1:t + E1:t as used in the main paper.

First observe that∥∥W̃tH1:t − Y1:t

∥∥2
F =

∥∥Y1:t(H
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt)

∥∥2
F,

where we recall IMt
is the Mt × Mt identity matrix. This motivates us to give a bound on

∥(H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

)∥2F:

Proposition 1. It holds for every t ≥ 1 that (M0 := 0, k0 := 0)∥∥∥H⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F
≤Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt} .

Remark 9. The term Mt − kt is inevitable as we truncate Mt − kt eigenvalues. Indeed, Mt −
kt is precisely equal to ∥H⊤

1:tU1:tΣ
−2

1:tU
⊤
1:tH1:t − IMt

∥2F, and it is the minimum of a rank-kt
approximation problem:

Mt − kt = min
L∈RMt×kt

∥LL⊤ − IMt
∥2F.

The term t−1
γ2
t
min {Mt−1 − kt−1, (t− 1)kt} arises as we solve ICL-TSVD continually rather than

offline. With γt = 1, this term is upper bounded by (t − 1)(Mt−1 − kt−1). With γt = 1010 (as
discussed in the main paper), this term is negligible for even hundreds of tasks.

Proof of Proposition 1. From Lemma 1 it follows that

H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t = Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t, (16)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where we recall Dt is defined as Dt =
∑t

i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
in (13). Then we have∥∥∥H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t − IMt

∥∥∥2
F

= tr
(
H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:t − 2H⊤

1:tŨ1:tΣ̃
−2
1:t Ũ

⊤
1:tH1:t + IMt

)
= tr

(
H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tH1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − 2H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+Mt

(16)
= tr

((
Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)(
Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

))
+Mt

− 2
(
Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
= tr

(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t − Ũ1:tŨ

⊤
1:t

)
+Mt

= tr
(
DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:tDtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

)
+Mt − kt

(i)
≤ t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}+Mt − kt

where (i) is due to Lemma 5.

A simple corollary of Proposition 1 now follows:

Corollary 1. The output W̃t of Algorithm 4 satisfies

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤
∥Y ⊤

1:tY1:t∥
Mt

(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
.

Remark 10. In classification, the columns of Y1:t are one-hot vectors. Hence, up to permutation,
Y ⊤
1:tY1:t ∈ RMt×Mt is a block diagonal matrix with ct block, where the i-th diagonal block is a

ni × ni matrix of all ones 1ni ; here ni is the number of labels in class i. In other words, there exists
a permutation matrix Π such that

Y ⊤
1:tY1:t = Πdiag(1n1

,1n2
, . . . ,1nct

)Π⊤.

Since the maximum eigenvalue of 1mi
is mi, we know

∥Y ⊤
1:tY1:t∥ = max

i=1,...,ct
{ni}.

Substitute this into Corollary 1 and we obtain

1

Mt

∥∥W̃tH1:t − Y1:t

∥∥2
F ≤

maxi=1,...,ct{ni}
Mt

(
Mt − kt +

t− 1

γ2
t

min {Mt−1 − kt−1, (t− 1)kt}
)
.

It is also of interest to bound the distances between the SVD factors computed online and offline,
namely the distances between Σ̃1:t,Σ1:t and between Ũ1:t,U1:t. We do so in the next result.
Theorem 6. Let at be defined as in (6). For t ≥ 1 define

gapt := µkt

(
H1:tH

⊤
1:t

)
− µkt+1

(
H1:tH

⊤
1:t

)
. (17)

Then it always holds that ∥∥Σ2

1:t − Σ̃2
1:t

∥∥
∞ ≤ at−1. (18)

Moreover, if at−1 <
(
1− 1/

√
2
)

gapt, then for any t ≥ 1 we have

min
O∈O(k)

∥∥∥U1:t − Ũ1:tO
∥∥∥

F
≤
∥∥U1:tU

⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥ ≤ √2at−1

gapt
, (19)

where O(k) be the set of k × k orthogonal matrices, defined as

O(k) := {O ∈ Rk×k : O⊤O = OO⊤ = Ik}.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof of Theorem 6. It is clear that U1 = Ũ1 and Σ1 = Σ̃1. We now consider the case t ≥ 2.
Note that Ũ1:tΣ̃1:tŨ

⊤
1:t is the eigen decomposition of τkt

(Ũ1:t−1Σ̃
2
1:t−1Ũ

⊤
1:t−1 + HtH

⊤
t), and

U1:tΣ1:tU
⊤
1:t is the eigen decomposition of τkt

(H1:tH
⊤
1:t). We can compute

H1:tH
⊤
1:t −

(
Ũ1:t−1Σ̃

2
1:t−1Ũ

⊤
1:t−1 +HtH

⊤
t

)
= H1:t−1H

⊤
1:t−1 − Ũ1:t−1Σ̃

2
1:t−1Ũ

⊤
1:t−1

(i)
=

t−1∑
i=1

(
B̃iB̃

⊤
i − τki

(
B̃iB̃

⊤
i

))
=: Dt,

where (i) follows from Lemma 1. We can therefore apply Weyl’s inequality to obtain∥∥∥Σ2

1:t − Σ̃2
1:t

∥∥∥
∞
≤ ∥Dt∥ = at−1.

This proves (18). On the other hand, (19) follows from the Davis-Kahan theorem (Davis & Kahan,
1970), or more precisely, from Corollary 2.8 of Chen et al. (2021).

H REVIEW OF RELATED WORKS

In Appendix H.1 we review related work on CL. Recent surveys on CL include Parisi et al. (2019);
van de Ven et al. (2022); Shaheen et al. (2022); Zhou et al. (2024c); Wang et al. (2024); Shi et al.
(2024). See also the GitHub repo of Liu (2024) for an extensive list of CL papers.

In Appendix H.2 we review related work on random feature models.

H.1 MORE RELATED WORK ON CONTINUAL LEARNING

Many CL methods have been proposed without explicitizing the use of pre-trained models (Kirkpatrick
et al., 2017; Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Zeng et al., 2019; Chaudhry et al., 2019;
Yan et al., 2021; Saha et al., 2021; Douillard et al., 2022). An easy way to boost their performance is
to adapt them for the context of pre-trained models. There are two natural approaches to do so: (1)
use the pre-trained model as initialization and run these CL algorithms to fine-tune the pre-trained
model; or (2) train a shallow network with the output features of the pre-trained model and either of
these CL algorithms. We do not explore these directions here. In what follows, we review existing
CL methods designed for leveraging pre-trained models, and we review theoretical developments for
CL as well.

Prior Work on CL with Pre-trained Models. The availability of pre-trained models has motivated
new insights into designing CL methods. CL methods such designed can be roughly divided into
two categories. In one category, the pre-trained model is completely frozen, and their output features
are used as inputs for a tailored CL method. A straightforward method in this category, known as
SimpleCIL (Zhou et al., 2023) or Nearest Mean Classifier (NMC) (Mensink et al., 2013; Rebuffi et al.,
2017; Panos et al., 2023; Janson et al., 2022), is to classify a test image based on the (cosine) distances
of its feature to class means of the training features. While this method is stable, hyperparameter-free,
and can handle long task sequences, to the best of our knowledge, it does not have theoretical
guarantees. Of course, RanPAC and our ICL-TSVD method also belong to this category.1 Other
methods in the category include Ahrens et al. (2024); Prabhu et al. (2024). Both methods make
certain modifications on top of RanPAC:

• The method of Ahrens et al. (2024) replaces the random ReLU features with the concatena-
tion of the output features of intermediate layers. We identify that this generalizes the idea
of Pao & Takefuji (1992)2.

• The method of Prabhu et al. (2024) replaces the random ReLU features with random Fourier
features (which were used by Rahimi & Recht (2007) for learning kernel machines), and

1Note that RanPAC might use first-session adaptation (Remark 3), which modifies the output features of the
pre-trained model, so one might not consider RanPAC as completely freezing the pre-trained model. However,
such strategy of first-session adaptation is applied only before the first task, and is not used during continual
learning of tasks. In other words, the model after first-session adaptation is completely frozen, and we might just
view it as our pre-trained model.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

the ridge regression solver of RanPAC with linear discriminant analysis (LDA) (Hayes &
Kanan, 2020). Note that LDA optimizes an objective that is in general different from the
MSE training loss, for which Prabhu et al. (2024) have not provided theoretical guarantees.

Similarly to RanPAC, the methods of Ahrens et al. (2024); Prabhu et al. (2024) need O(E3) time per
task to invert the (regularized) E × E covariance matrix. Prabhu et al. (2024) uses E = 25000 in
their experiments, which might constitute the current computational limit of performing the inversion
(cf. Figs. 5 and 7). Also, both methods lack theoretical guarantees. In contrast, the running time of
our ICL-TSVD method depends only linearly on E and can handle E ≥ 105 with stable performance
and estimation and generalization guarantees.

In the other category of methods, the weights of the pre-trained models remain fixed, but the output
features of the pre-trained models are changed. The catch is that these methods either change the
input or change the network architecture. Such change could be applied layer-wise, therefore, in order
to describe the idea, it is the simplest to assume the pre-trained model f is a single-layer network.

• If we keep both the input and architecture fixed, then the network would take an input X
and output f(X).

• A popular way to change the input is to stack some trainable parameters Z with input X ,
where Z and X have the same number of columns. The network outputs f([X;Z]). Here,
it is implicitly assumed that f can take input matrices with different number of rows (i.e.,
different number of tokens). For instance, f can be a single-layer vision transformer. In this
case Z is often called (visual) prompts (Jia et al., 2022), and CL methods using this strategy
are often called prompt-based methods; see, e.g., (Wang et al., 2022b;c;a; Smith et al., 2023;
Wang et al., 2023; Jung et al., 2023; Tang et al., 2023; Gao et al., 2024b; Roy et al., 2024;
Kim et al., 2024).

• A popular way to change the architecture is to replace the input-output map X 7→ f(X)
with X 7→ f(X) + g(X), where g is some simple shallow network parametrized by the
extra trainable parameters. For instance, g could be a simple two-layer linear network of the
form g(X) = ABX or g(X) = A relu(BX), where A,B are trainable. In these case,
A,B are called adapters (Houlsby et al., 2019; Hu et al., 2022; Chen et al., 2022), and
CL methods using this strategy are often called adapter-based methods (Zhou et al., 2023;
2024b; Liang & Li, 2024; Tan et al., 2024; Gao et al., 2024a).

Clearly, prompt-based and adapter-based methods can both be viewed as expansion-based methods
that enlarge the capacity of a network in order to learn new tasks (Rusu et al., 2016; Yoon et al., 2018;
Li et al., 2019; Ramesh & Chaudhari, 2022).

Despite their popularity, both prompt-based and adapter-based methods need to solve highly non-
convex training problems, for which deriving informative theoretical guarantees is a significant
challenge. Their lack of theoretical guarantees makes them prone to unexpected failures. For
example, prompt-based methods such as L2P (Wang et al., 2022b), DualPrompt (Wang et al.,
2022c), CodaPrompt (Smith et al., 2023), have their performance highly sensitive to the choice
of hyperparameters and therefore to the pre-trained model in use (Wang et al., 2023), dataset, and
problem setting (cf. Table 1); indeed, a small perturbation in learning rates might change the accuracy
drastically (Zhang et al., 2023). While they are often equipped with dataset-specific hyperparameters
released by authors (cf. Appendix J), their instability still emerges when applied to a long sequence
of tasks. This is because new prompts or adapters are often needed to maintain high accuracy on new
tasks (Zhou et al., 2024b), but doing so eventually becomes infeasible. Indeed, to train on the 100
tasks of the CIFAR100 dataset in the CIL setting with one class given at a time (B-0, Inc-1), running
the adapter-based method of Zhou et al. (2024b), called EASE, with default hyperparameters, would
create more than 117M parameters for its growing number of adapters, while the pre-trained ViTs in
use have less than 87M parameters.

In Table 5 we summarize the conceptual differences of our approach from prior works.

Prior Work on CL Theory. Theoretical developments on CL have been chasing the current CL
practice, with a majority of the theory CL papers limiting themselves to the linear, two-layer, or kernel
setting (Doan et al., 2021; Heckel, 2022; Evron et al., 2022; Peng & Risteski, 2022; Lin et al., 2023;
Swartworth et al., 2023; Goldfarb et al., 2024; Zhao et al., 2024; Ding et al., 2024). While these works
cover various theoretical aspects (e.g., generalization bounds, sample complexity, and convergence

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 5: Conceptual comparison to prior work.

Estimation Guarantees? Generalization Guarantees? Stable? Can Handle Long Task Sequences?

L2P, Dual Prompt, CodaPrompt None None No No
EASE None None No No
SimpleCIL None None Yes Yes
RanPAC None None No No
ICL-TSVD (Ours) Theorem 1 Theorem 2 Yes Yes

rates), there has arguably been a huge gap between their simplified settings and deep networks that
state-of-the-art CL methods use. On the other hand, we have seen that deep pre-trained models in
cascade with shallow trainable networks can provide competitive performance, thus it now makes
sense to revise and extend these theoretical contributions within this cascaded architecture, thereby
providing meaningful guarantees for learning the shallow networks. We believe this viewpoint would
greatly reduce the gap between the theory and practice in the current CL literature.

H.2 RANDOM VECTOR FUNCTIONAL LINK NETWORK AND RANDOM FEATURE MODELS

Here we make elaborations on Remarks 1, 4 and 6 and review related works mentioned therein.
Recall our model is a two-layer network of the form

X 7→W · relu(PX) (20)

where P is randomly generated and fixed, and W consists of trainable parameters.

Random Vector Functional Link Network. In independent efforts, Schmidt et al. (1992) and Pao &
Takefuji (1992) considered models of form (1). Schmidt et al. (1992) used the sigmoid activation
function ξ 7→ 1

1+exp(−ξ) , while Pao & Takefuji (1992) specified an arbitrary activation function as
inspired by Hornik et al. (1989) and stack the features X and H together (see, e.g., Section 2.1 of
Malik et al. (2023)).2 The model Pao & Takefuji (1992) proposed has been known as random vector
functional link (RVFL), and the model of Schmidt et al. (1992) is referred to, according to a recent
review (Malik et al., 2023), as Schmidt neural network (SNN).

Models of form (20) are best combined with MSE losses, as training W with P fixed amounts to
solving a least-squares problem, which admits a closed-form solution as shown by Schmidt et al.
(1992) and even earlier by Webb & Lowe (1990).

The model Schmidt et al. (1992) and Pao & Takefuji (1992) advocated was proposed, again, by
Huang et al. (2004; 2006) under the name extreme learning machine (ELM). While Huang et al.
(2004) claimed ELMs to be a new learning scheme in the paper title, it was criticized by (Wang &
Wan, 2008; Authors) that ELMs are ideas stolen from the last century (Schmidt et al., 1992; Pao &
Takefuji, 1992), which Huang et al. (2004) were aware of yet did not cite. Despite the criticism, and
perhaps because of its “fancy” name, ELMs had once been popular and attracted many follow-up
variants. We shall not review these variants here.

The model we considered, therefore, follows in spirit the framework put forth by Schmidt et al. (1992);
Pao & Takefuji (1992). Crucially, our approach is a modern instantiation of their framework (cf.
Table 6), where we consider larger-scale problems with ill-conditioned data, online solvers with GPU
implementations. But does it make sense to use the random ReLU features Ht := relu(PXt) rather
than the pre-trained features Xt for regression? Would the transformation P ∈ RE×d even harm the
pre-trained knowledge? McDonnell et al. (2023) empirically verified that having the first layer P is
beneficial to performance as long as E ≥ d, and the accuracy tends to be higher for larger E (see
Table A5 of Appendix F.6 of McDonnell et al. (2023)). While RanPAC is limited to E ≈ 104, our
approach is inherently more scalable, allowing us to take E = 105. The pursuit in higher embedding
dimension E brings us into the over-parameterized territory, where the corresponding MSE objective
has infinitely many solutions, and this is different from the classic works on RVFLs or SNNs that
largely focus on the case where there are just a few hundred neurons (e.g., E ≈ 100).

2Hence, the method of Ahrens et al. (2024) can be viewed as a modern variant of Pao & Takefuji (1992) as
Ahrens et al. (2024) stacks the output features of multiple intermediate layers for regression.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 6: Comparison between our approach and classic methods for extreme learning machines.

Problem Scale Solver Data Compute Platform

Schmidt et al. (1992); Pao & Takefuji (1992) small offline well-conditioned CPU
ICL-TSVD (Ours) large online ill-conditioned GPU

Random Feature Models. Model (20) is also studied under the name random feature model (RFM)
with the origin of RFMs often attributed to Rahimi & Recht (2007). The RFM is considered to
be a simple proxy model for understanding the benign overfitting or double descent phenomenon
occurring in deep networks, and hence it has recently been popular (Belkin et al., 2018; 2019; Bartlett
et al., 2020; Hastie et al., 2022; Mei & Montanari, 2022; Tsigler & Bartlett, 2023). Some of these
works make statistical assumptions on Xt and address technical challenges in analyzing the nonlinear
map W · relu(PXt).

Alternatively, one could conduct analysis conditioned on Ht := relu(PXt), which would be more
manageable as it reduces to linear models. For example, the work of Xu & Hsu (2019); Huang
et al. (2022); Bach (2024); Green & Romanov (2024) truncates the SVD factors of the features
before applying least-squares. This is similar to ours, with an important difference that they apply
TSVD only once, while we apply it continually. Also, their results make statistical (e.g., Gaussian)
assumptions on H1:t, which could violate our context that H1:t is generated via Ht := relu(PXt).
In contrast, our results in the main paper, namely Theorems 1 and 2, make no assumptions on H1:t

and are therefore applicable to random feature models and to the pre-trained models bridged with a
random feature model.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

I DATASET DETAILS

For convenience and completeness, we collect some details about the datasets in Tables 7 and 8.

Table 7: Datasets used for class-incremental learning experiments. †: ObjectNet, OmniBenchmark,
and VTAB contain a large number of classes, and we use a subset of these datasets delivered by Zhou
et al. (2023); see their Table 4 and also Table A2 of McDonnell et al. (2023).

Dataset Name Origin Training Set Size Test Set Size # of Classes Link

CIFAR100 (Krizhevsky et al., 2009) 50,000 10,000 100 Here
ImageNet-R (Hendrycks et al., 2021a) 24,000 6,000 200 Here
ImageNet-A (Hendrycks et al., 2021b) 5,981 5,985 200 Here
CUB-200 (Wah et al., 2011) 9,430 2,358 200 Here
ObjectNet† (Barbu et al., 2019) 26,509 6,628 200 Here
OmniBenchmark† (Zhang et al., 2022) 89,697 5,985 300 Here
VTAB† (Zhai et al., 2019) 1,796 8,619 50 Here
StanfordCars (Krause et al., 2013) 8,144 8,041 196 Here

Table 8: Datasets used for domain-incremental learning. See Table A3 of McDonnell et al. (2023) for
even more details.

Dataset Name Origin Training Set Size Test Set Size # of Classes Link

CORe50 (Lomonaco & Maltoni, 2017) 119,894 44,972 50 Here
CDDB-Hard (Li et al., 2023) 16,068 5,353 2 Here
DomainNet (Peng et al., 2019) 409,832 176,743 345 Here

J EXPERIMENTAL SETUP DETAILS

The details of how we run each of the methods are specified as follows. For L2P, DualPrompt,
CodaPrompt, we use the hyperparameters available in the PILOT repo (Sun et al., 2023) for the
CIFAR100 and ImageNet-R datasets. Since no official hyperparameters are released for other datasets,
we simply use their respective hyperparameters of CIFAR100 for other datasets. One might notice
that these methods have large accuracy drops on other datasets, suggesting that they are sensitive to
hyperparameters and the good and dataset-specific hyperparameters, if they exist, are to be found
for these methods to perform well. This is an inherent drawback as they involve minimizing a
highly non-convex training objective. On the other hand, many other methods, including SimpleCIL,
RanPAC, and ours, are almost parameter-free. Specifically, the only hyperparameter of our approach
is the truncation threshold and its role is clearly explained in the main paper.

For joint linear classifiers, that is LC (X1:T) or LC (H1:T), we train for 20 epochs using the cross-
entropy loss, batch size 48, weight decay 0.0005, and SGD with the cosine annealing schedule. We
run LC (X1:T) and LC (H1:T) with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03},
and take report the maximum accuracy (Table 9). Note that LC (X1:T) and LC (H1:T) are trained
using the cross-entropy loss, not the MSE loss. The reason is that the features H1:t are highly
ill-conditioned (Fig. 1), which makes SGD converge very slowly with the MSE loss. Comparing this
to Remark 2, we conclude that the MSE loss in our setting is useful when the objective is minimized
via robust numerical computation techniques (e.g., our TSVD implementation in Appendix C) instead
of SGD.

We also consider the idea of first-session adaptation (cf. Remark 3). This idea introduces a few
hyperparameters such as the learning rate and schedule. We run experiments with two sets of
hyperparameters, given respectively by RanPAC and EASE. We attach the symbol † to the method
name when we use the hyperparameters of RanPAC (e.g., ADAM†, ICL-TSVD†, RanPAC†). We
attach the symbol ∗ when we use the hyperparamters of EASE (e.g., ICL-TSVD∗, EASE∗).

For RanPAC, the official hyperparameters given by McDonnell et al. (2023) vary for different datasets.
We try to unify the setup by keeping using the hyperparameters most frequently used by McDonnell

36

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/hendrycks/imagenet-r
https://github.com/hendrycks/natural-adv-examples
https://www.vision.caltech.edu/datasets/cub_200_2011/
https://objectnet.dev/
https://github.com/ZhangYuanhan-AI/OmniBenchmark
https://google-research.github.io/task_adaptation/
https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset
http://bias.csr.unibo.it/maltoni/download/core50/core50_imgs.npz
https://coral79.github.io/CDDB_web/
http://ai.bu.edu/M3SDA/#dataset

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 9: Accuracy of training joint linear classifiers given all data with different initial learning rates
{0.001, 0.005, 0.01, 0.02, 0.03} and the corresponding maximum accuracy. LC (X1:T) trains a linear
classifier using all pre-trained features X1:T and LC (H1:T) uses all embedded features.

LC (X1:T) LC (H1:T)

0.001 0.005 0.01 0.02 0.03 Max 0.001 0.005 0.01 0.02 0.03 Max

ViTs pre-trained on ImageNet-1K (vit_base_patch16_224):
CIFAR100 86.39 87.56 87.47 87.09 86.99 87.56 87.76 86.68 86.36 86.75 86.46 87.76
ImageNet-R 70.25 72.42 72.22 72.02 71.52 72.42 73.00 71.08 71.18 70.70 71.15 73.00
ImageNet-A 54.64 58.85 58.46 57.67 56.55 58.85 59.25 56.16 56.09 56.48 56.42 59.25
CUB-200 82.32 87.62 88.59 88.63 88.76 88.76 88.72 88.13 88.08 88.17 87.83 88.72
ObjectNet 57.53 59.70 59.22 58.68 58.43 59.70 59.96 56.14 55.63 55.48 55.34 59.96
Omnibenchmark 76.11 79.00 79.55 79.43 79.50 79.55 80.02 79.62 79.57 79.62 79.43 80.02
VTAB 86.40 90.89 91.32 91.23 90.89 91.32 91.17 89.86 89.99 90.16 89.99 91.17
StanfordCars 39.56 62.54 69.29 72.86 74.12 74.12 72.43 73.65 73.54 72.81 72.49 73.65

ViTs pre-trained on ImageNet-21K (vit_base_patch16_224_in21k):
CIFAR100 86.15 86.78 86.33 85.86 85.17 86.78 85.80 85.16 85.05 85.31 85.4 85.80
ImageNet-R 67.22 68.63 67.12 65.90 65.28 68.63 68.65 68.00 68.17 68.23 67.78 68.65
ImageNet-A 46.68 51.42 50.03 49.24 48.58 51.42 51.15 50.16 49.44 48.98 49.64 51.15
CUB-200 85.58 88.89 89.06 88.72 88.21 89.06 89.31 88.17 88.63 88.46 88.51 89.31
ObjectNet 58.01 58.39 57.50 55.87 54.42 58.39 56.93 53.33 54.44 54.47 54.54 56.93
Omnibenchmark 78.95 79.67 79.73 79.45 79.33 79.73 79.62 79.26 79.11 78.91 79.05 79.62
VTAB 87.71 90.78 90.97 90.71 90.11 90.97 90.78 91.03 90.42 90.44 90.27 91.03
StanfordCars 44.80 64.22 68.06 68.92 68.71 68.92 69.38 67.64 67.65 67.79 67.39 69.38

et al. (2023). Specifically, we set the embedding dimension E to 10000 for RanPAC; note the
exception that McDonnell et al. (2023) run the CDDB experiments with E = 5000, even though
their Table A5 showed that larger E in general leads to higher accuracy on CIFAR100. The main
hyperparameters of RanPAC used for first-session adaptation are as follows:

{"tuned_epoch":20,
"init_lr":0.01,
"batch_size":48,
"weight_decay":0.0005}

We run ADAM†, ICL-TSVD†, RanPAC† where first-session adaptation uses these hyperparameters
consistently for all datasets.

The EASE approach of Zhou et al. (2024b) performs fine-tuning, not just for the first session, but for
every session, in an interesting way. The hyperparameters in their released code vary for different
sessions and different datasets, and we refer the reader to the official GitHub repo of EASE for details.
We also run ICL-TSVD∗ with the hyperparameters of EASE for first-session adaptation. Note that
since EASE does not show experiments on StanfordCars, or does not release hyperparameters on this
dataset, we run EASE with its CIFAR100 hyperparameters for StanfordCars; see also Table 10 of
Appendix K.1 where we tune the initial learning rates of EASE on StanfordCars, showing that the
accuracy is still low.

Finally, we note that in all tables, some approaches are marked in gray; they are not directly
comparable to our approach as the methodology can be very different and it is in fact possible to
combine one with another for even better performance. On the other hand, RanPAC is the most
related to our method, hence we highlight the comparison with the purple background.

K EXTRA EXPERIMENTS, FIGURES, AND TABLES

K.1 PERFORMANCE ON STANFORDCARS

It is observed in Table 1 that many methods exhibit significant performance drops on StanfordCars.
Are these methods inherently unable to handle this dataset, or is it our taking inappropriate hyper-
parameters that lead to poor performance? Note that the authors of these works did not test their

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 10: Accuracy of EASE with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03} on
StanfordCars.

0.001 0.005 0.01 0.02 0.03

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

33.42 32.27 19.38 33.48 32.33 19.46 33.39 32.65 20.06 32.58 32.11 24.96 32.41 31.77 29.76

Table 11: Final accuracy of different methods using ViTs pre-trained on ImageNet-21K
(vit_base_patch16_224_in21k). Compare this with Table 1 of the main paper.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.
LC (X1:T) 86.78 68.63 51.42 89.06 73.97
LC (H1:T) 85.80 68.65 51.15 89.31 73.73

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 87.58 87.65 87.75 68.18 70.03 70.13 37.59 52.01 52.73 89.48 89.65 89.44 73.52
ICL-TSVD 88.62 88.63 88.67 70.85 70.93 70.72 54.71 54.71 55.10 90.33 90.33 90.46 76.17

EASE∗ 85.85 87.67 89.47 70.27 74.53 75.88 43.05 47.53 54.51 86.77 86.81 85.50 73.99
RanPAC∗ 90.26 91.39 91.97 75.47 76.10 77.33 47.60 58.00 62.74 83.21 89.57 89.69 77.78
ICL-TSVD∗ 90.55 91.88 92.39 76.48 76.82 77.25 56.95 58.85 62.74 90.63 90.71 90.67 79.66

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.
LC (X1:T) 58.39 79.73 90.97 68.92 74.50
LC (H1:T) 56.93 79.62 91.03 69.38 74.24

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 59.14 59.23 59.29 78.38 78.40 78.06 92.37 92.84 92.84 43.60 65.78 65.78 72.14
ICL-TSVD 61.35 61.36 61.33 80.12 80.03 80.13 92.90 92.76 92.92 68.96 68.76 68.95 75.80

EASE∗ 54.98 57.50 60.35 72.88 73.50 73.87 88.24 93.46 93.43 35.43 34.62 37.32 64.63
RanPAC∗ 64.56 66.55 66.05 78.55 79.15 79.23 92.77 92.84 93.72 2.31 69.11 69.11 71.16
ICL-TSVD∗ 66.76 66.67 66.93 80.55 80.82 81.55 93.85 93.79 93.76 71.46 71.58 71.71 78.29

methods on StanfordCars, nor they released the corresponding hyperparameters. To rule out the case
of hyperparameter misspecification, we take the EASE∗ method of Zhou et al. (2024b) for example,
and we run it with different initial learning rates {0.001, 0.005, 0.01, 0.02, 0.03} for the first task
(this hyperparameter is called init_lr in the JSON file of the code repo of Sun et al. (2023); all
other hyperparameters are set to the corresponding hyperparamters Zhou et al. (2024b) gave for
CIFAR100. The results are in Table 10. It shows that different initial learning rates for EASE do
not improve the performance on StanfordCars too much, suggesting that StanfordCars is perhaps
inherently difficult for these types of methods.

K.2 EXPERIMENTS WITH VIT FEATURES PRE-TRAINED ON IMAGENET-21K

Note that by default we use ViTs pre-trained on ImageNet-1K (vit_base_patch16_224). Here
in Table 11 we show experiments with ViTs pre-trained on ImageNet-21K. Comparing this with
Table 1, we obtain a similar conclusion that ICL-TSVD is more stable than and outperforms RanPAC.

K.3 EXPERIMENTS ON DOMAIN-INCREMENTAL LEARNING (DIL)

Here we consider domain-incremental learning (DIL), where each task has images of all objects
collected from different sources or domains, e.g., objects in the images of task 1 could be hand-written
sketches of cars, and images of task 2 could be colored cars.

We follow the work of McDonnell et al. (2023) to run domain-incremental learning experiments on
3 datasets, CORe50 (Lomonaco & Maltoni, 2017), CDDB-Hard (Li et al., 2023), and DomainNet
(Peng et al., 2019). The corresponding experimental results are shown in Table 12, from which we
observe a similar phenomenon: ICL-TSVD is more stable and has higher accuracy.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 12: Final accuracies of RanPAC and ICL-TSVD with pre-trained ViTs for domain incremental
learning.

CORe50 CDDB-Hard DomainNet Avg.

RanPAC 94.98 75.14 64.20 78.11
ICL-TSVD 96.06 79.21 67.18 80.82

Figure 7: Training times of ICL-TSVD and RanPAC for different embedding dimensions E (in
minutes). See also Fig. 5 in the main paper for similar results on the other four datasets.

K.4 SCALING LAWS OF THE EMBEDDING DIMENSION

Fig. 8 exhibits a scaling law where the accuracy of ICL-TSVD grows with the embedding dimension
E. A similar phenomenon is also shown for RanPAC in Table A5 of Appendix F.6 of McDonnell
et al. (2023). However, the experiments of McDonnell et al. (2023) are limited to E = 15000 as
RanPAC is not scalable (cf. Figs. 5 and 7), and also limited to only the CIFAR100 dataset. Here,
since our ICL-TSVD implementation is more stable and scalable, we can run it with E as large as
105, therefore visualizing the scaling phenomenon for eight different datasets in Fig. 8.

It is clearly tempting to scale the embedding dimension even more, but we have not found any
significant performance gain with even larger E (e.g., E = 150000 or E = 200000), which is why
we stopped at dimension E = 105. Note that enlarging E amounts to increasing the width of the
corresponding layer. It was suggested that increasing the width is beneficial, theoretically (Peng
et al., 2023) and empirically (Mirzadeh et al., 2022). On the other hand, Fig. 8 suggests the benefit of
increasing the width empirically diminishes, e.g., the accuracies for E = 50K and E = 100K are
comparable on ImageNet-A, CUB-200, VTAB, and StanfordCars. This is empirically corroborated
by Guha & Lakshman (2024) and theoretically confirmed by Hu et al. (2024).

K.5 MORE FIGURES FOR DATA ANALYSIS

Recall µk(·) denotes the k-th largest eigenvalue of a matrix and Mt := m1 + · · ·mt. Define the
notion of effective rank, as by Tsigler & Bartlett (2023):

rk
(
H⊤

1:tH1:t

)
:=

∑
j≥k µj

(
H⊤

1:tH1:t

)
µk

(
H⊤

1:tH1:t

) , ∀k = 1, . . . ,Mt (21)

Note that r1(·) is the standard definition of effective rank (sometimes called stable rank), while rk(·)
generalizes it by only considering the eigenvalues starting from the k largest.

Fig. 9a plots the effective rank r1(H
⊤
1:tH1:t) as the number of tasks increases and Fig. 9b plots

rk(H
⊤
1:tH1:t) for different values of k. We observe similar curves on different datasets: r1(H⊤

1:tH1:t)
is smaller than 3, and rk(H

⊤
1:tH1:t) first increases and then decreases as a function of k.

Fig. 10 plots the top kt eigenvalues of B̃tB̃
⊤
t (recall that we only preserve top kt singular values of

B̃t). It shows that the condition number is now of order 105 (1011/106), which is much smaller than
the condition number of H⊤

1:tH1:t.

Fig. 11 plots the normalized differences ∥Σ1:t − Σ̃1:t∥∞/∥Σ1:t∥∞ between the eigenvalues given
by ICL-TSVD and its continual implementation (Algorithm 4). This empirically verifies that the
differences between the two are insignificant compared to the largest eigenvalue ∥Σ1:t∥∞ (just of
order 10−3). This experiment assists understanding Theorem 6.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Figure 8: Final accuracy of ICL-TSVD for varying embedding dimensions E. See also Table 13 in
comparison to RanPAC.

Table 13: Final accuracies of RanPAC and ICL-TSVD with pre-trained ViTs. RanPAC takes its
default choice E = 10K, while for ICL-TSVD we set three different values for E: E = 10K,
E = 50K, and E = 100K.

(Part 1) CIFAR100 (B-0) ImageNet-R (B-0) ImageNet-A (B-0) CUB-200 (B-0) Avg.

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 86.71 87.02 87.10 71.90 71.97 72.50 56.48 62.34 61.75 88.08 87.15 88.13 76.76

Ours (E = 10K) 87.48 87.49 87.42 70.77 70.85 70.48 58.85 58.46 59.38 86.73 86.85 87.19 76.00
Ours (E = 50K) 88.13 88.05 88.04 73.05 73.07 73.05 62.80 62.80 62.48 89.23 89.23 89.19 78.26
Ours (E = 100K) 88.18 88.18 88.21 73.67 73.72 73.63 62.74 63.20 63.20 89.36 89.27 89.23 78.55

(Part 2) ObjectNet (B-0) OmniBenchmark (B-0) VTAB (B-10) StanfordCars (B-16) Avg.

Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20 Inc-5 Inc-10 Inc-20

RanPAC 58.77 57.66 57.69 77.63 77.63 77.46 91.15 91.58 91.58 58.03 71.40 71.40 73.50

Ours (E = 10K) 57.97 57.82 58.06 76.79 76.96 76.91 91.89 91.81 91.91 64.03 64.43 64.72 72.78
Ours (E = 50K) 59.41 59.4 59.54 79.33 79.35 79.43 92.48 92.47 92.54 73.32 73.66 73.47 76.20
Ours (E = 100K) 60.83 60.86 60.77 79.50 79.60 79.70 92.46 92.55 92.56 74.21 74.39 74.39 76.82

Fig. 12 plots the eigenvalues of H⊤
1:tH1:t ∈ RMt×Mt (Mt ≤ 104) with the embedding dimension E

varying in {10000, 25000, 50000, 75000}. It shows that the “shape” of the spectrum is similar for
different values of E and on different datasets (see also Fig. 1a for the case E = 105).

Fig. 13 depicts how the random embedding P ∈ RE×d and ReLU layer affect the spectrum of
the features. In Fig. 13a we plot the output features X ∈ Rd×M of the ImageNet-A dataset from
pre-trained ViTs (d = 768,M = 5981, E = 105). We see X is relatively well-conditioned: Its
maximum eignvalue is of order 105 and minimum eigenvalue of order 10. Fig. 13b shows that
PX ∈ RE×M has extremely small eigenvalues. This is because PX has rank at most d, and the
smallest M − d eigenvalues of X⊤P⊤PX should be zero, while we get these small and non-zero
eigenvalues in Fig. 13b due to numerical errors in (incremental) SVD; these eigenvalues should be
truncated (set to zero), in order to solve Min-Norm ICL accurately. Fig. 13c shows that relu(PX)
also has these small and non-zero eigenvalues. While the rank of relu(PX) is unclear, its smallest
yet non-zero eigenvalues are likely inherent from PX , and we suggest truncating them as well. See
also Table 14.

K.6 ABLATION STUDY ON RANDOM RELU FEATURES

In Table 14 we study the effects of the random ReLU model. Recall that, given the output features Xt

of the data of task t from a pre-trained model, we use the random ReLU features Ht := relu(PXt)
and labels Yt to train a linear classifier via continually solving Min-Norm ICL or ICL-TSVD. We
could instead use Xt or PXt or relu(Xt) as the features to train the linear classifier. To see the
effects of these alternative choices, we make Table 14 from which we have the following observations:

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

(9a) The effective rank r1(H
⊤
1:tH1:t) as the number t of seen tasks increases.

(9b) The eigenvalues of H⊤
1:tH1:t arranged in descending order (t fixed).

Figure 9: The effective ranks of H⊤
1:tH1:t.

Figure 10: The eigenvalues of Σ̃1:t for t = 1, . . . , 9. These are by definition the top kt eigenvalues
of B̃tB̃

⊤
t . It shows that our continual implementation (Algorithm 4) prunes the extremely small

eigenvalues of order 10−5 so that the condition number is now of order 105 (1011/106); compare
this figure with Fig. 1a. In this experiment we truncate 25% of the eigenvalues; that is, given Mt, we
select kt such that kt/Mt = 75%.

• The random ReLU features Ht gives the highest accuracy, while using the ReLU layer
alone or random embedding alone does not make improvements over the original pre-trained
features Xt.

• Solving Min-Norm ICL via Incremental SVD exhibits numerical failures as soon as we use
random embedding P . This is because PX ∈ RE×M has rank at most d and we would
get some M − d small yet non-zero eigenvalues accounting for the numerical errors of
(incremental) SVD solvers (see, e.g., Fig. 13). While they damage the accuracy, truncating
these singular values and the corresponding singular vectors restores the performance.

K.7 EXTRA EMPIRICAL STUDY OF RANPAC

In Appendix K.7.1, we analyze the training losses of RanPAC. In Appendix K.7.2 we show RanPAC
is unstable with respect to small increments, while ICL-TSVD is more stable.

K.7.1 TRAINING LOSSES OF RANPAC

Fig. 14 plots the training loss of RanPAC for different ridge regularization parameters λ ∈
{0, 1, 10, 100, 1000}. We make the following observations:

• In the case of λ = 0, the training loss of RanPAC is smaller than 1. Fig. 3 shows that
the incremental SVD implementation of Min-Norm ICL could have its training loss larger
than 1010. This difference is because the incremental SVD implementation (without trunca-
tion) can be unstable and accumulates errors over time, while RanPAC is implemented by
solving the normal equations W (H1:tH

⊤
1:t + λIE) = Y1:tH

⊤
1:t in variable W (the covari-

ances H1:tH
⊤
1:t and Y1:tH

⊤
1:t are updated continually). The advantage is that maintaining

H1:tH
⊤
1:t and Y1:tH

⊤
1:t is easy and does not entail numerical errors, so solving the normal

equations W (H1:tH
⊤
1:t + λIE) = Y1:tH

⊤
1:t directly is expected to be stable, as long as the

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 11: Normalized differences ∥Σ1:t− Σ̃1:t∥∞/∥Σ1:t∥∞ between the eigenvalues given by ICL-
TSVD and its continual implementation (Algorithm 4). This empirically verifies that the differences
between the two are insignificant compared to the largest eigenvalue ∥Σ1:t∥∞ (just of order 10−3).
See Fig. 10 and Fig. 1a. See also Theorem 6 where we formally bound the distances ∥Σ1:t− Σ̃1:t∥∞
for every t.

Figure 12: Eigenvalues of H⊤
1:tH1:t ∈ RMt×Mt (Mt ≤ 104) with the embedding dimension E

varying in {10000, 25000, 50000, 75000}. We find that the “shape” of the spectrum is similar for
different E and on different datasets (see also Fig. 1a for the case E = 105).

solver invoked is numerically stable (the built-in PyTorch solver is used). This appears to be
the case, as RanPAC maintains small training errors.

• On the other hand, the corresponding test accuracy can be nearly zero with small λ (e.g.,
when λ = 0, 1 as shown in Fig. 2). This might be partially justified by the so-called double
descent phenomenon where the training error is zero and the test error explodes up; see, e.g.,
Schaeffer et al. (2024) for an intuitive explanation.

K.7.2 RANPAC IS UNSTABLE FOR CIL WITH THE SMALLEST INCREMENTS

In the experiments of the main paper (e.g., Fig. 6), we see that RanPAC is unstable for small
increments (e.g., Inc-5). Moreover, its instability is exacerbated in the extreme case Inc-1 (Table 2).

Here, we show similar experimental results in Figs. 15 to 18, suggesting that RanPAC is significantly
more unstable for Inc-1, Inc-2, and Inc-4. In particular, in the extreme case of Inc-1, RanPAC presents
failures on all datasets except CIFAR100 (as indicated by the verticle blue line in Figs. 15 to 18. On
the contrary, these figures, including Fig. 19, show that our ICL-TSVD method is stable for different
small increments (1, 2, 4, 5).

Figure 13: Feeding M data samples to a pre-trained model gives its d-dimensional output features
X ∈ Rd×M . Passing it through a random embedding layer P and a ReLU layer yields the ran-
dom ReLU features H ∈ RE×M . Plotted in (a), (b), (c), respectively, are eigenvalues of XX⊤,
X⊤P⊤PX , and H⊤H in descending order, where X consists of pre-trained ViT features of
the ImageNet-A dataset (d = 768,M = 5981, E = 105). It is seen that PX and ,H are more
ill-conditioned than X . See also Table 14.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 14: Final accuracy of Min-Norm ICL and ICL-TSVD when using different features, Xt ∈
Rd×mt , relu(Xt),PXt, and Ht := relu(PXt). Here P ∈ RE×d is a random Gaussian matrix
with N (0, 1) entries and E = 105, and Ht consists of random ReLU features we use by default.
Note that both Min-Norm ICL and ICL-TSVD are solved by the incremental SVD method, with a
difference that the latter truncates the SVDs. Incremental SVD without truncation is not scalable
enough to handle all 50000 data samples of CIFAR100, so we mark “N.A.” in the table for Min-Norm
ICL.

CIFAR100 (B-0, Inc-10) ImageNet-R (B-0, Inc-20) ImageNet-A (B-0, Inc-20) CUB (B-0, Inc-20) Avg.

Final Accuracy of Min-Norm ICL
Xt 85.11 69.22 58.92 84.90 74.54
relu(Xt) 84.07 66.43 55.23 84.14 72.47
PXt N.A. 1.35 2.37 0.55 N.A.
Ht N.A. 0.42 0.92 0.72 N.A.

Final Accuracy of ICL-TSVD
Xt 84.61 68.23 59.45 84.14 74.11
relu(Xt) 83.51 66.20 56.62 84.01 72.59
PXt 78.96 48.50 42.73 63.15 58.33
Ht (default) 88.18 73.65 63.20 89.23 78.57

Figure 14: The average training MSE loss 1
Mt
∥WH1:t − Y1:t∥2F of RanPAC for different ridge

regularization parameters λ ∈ {0, 1, 10, 100, 1000}. Compare this with Fig. 2 and Fig. 3.

(15a) RanPAC (15b) ICL-TSVD (15c) RanPAC (15d) ICL-TSVD

Figure 15: Upper triangular accuracy matrices on CIFAR100 and ImageNet-R (Inc-1, 2, 4, 5).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

(16a) RanPAC (16b) ICL-TSVD (16c) RanPAC (16d) ICL-TSVD

Figure 16: Upper triangular accuracy matrices on ImageNet-A and CUB-200 (Inc-1, 2, 4, 5).

(17a) RanPAC (17b) ICL-TSVD (17c) RanPAC (17d) ICL-TSVD

Figure 17: Upper triangular accuracy matrices on ObjectNet and OmniBenchmark (Inc-1, 2, 4, 5).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

(18a) RanPAC (18b) ICL-TSVD (18c) RanPAC (18d) ICL-TSVD

Figure 18: Upper triangular accuracy matrices on VTAB and StanfordCars (Inc-1, 2, 4, 5).

Figure 19: Our ICL-TSVD method is stable with respect to class increments of each task (Inc-1, 2, 4,
5), while the accuracy of RanPAC drops for smaller increments. The first two rows plots the total
accuracy. Tthe last two rows plots the final accuracy. The figures here essentially plot the averages of
the upper triangular accuracy matrices (total accuracy) or its last column (final accuracy) of Figs. 15
to 18. The numerical values of the total and final accuracy for Inc-1 are shown in Table 2.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

L EXTRA RESULTS FOR REBUTTAL

L.1 THEORY FOR THE RELATION BETWEEN THE OFFLINE AND ONLINE SOLUTIONS
(REVIEWER IVYO)

Recall the definitions of the offline solution W t in (2) and the output W̃t of ICL-TSVD in (4):

W t = Y1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t, W̃t = Y1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t.

Reviewer iVyo had a question: Can we bound the distance ∥W t − W̃t∥F?

To address this question, we consider the model Y1:t = W ∗
t H1:t; this is the Y1:t = W ∗

t H1:t + E1:t
with E1:t. Here we make this assumption for simplicity for purpose of the rebuttal, the result here
can be extended to the case with noise, and we will include such a result in our next revision (even
though the corresponding theorem will be much more complicated).

Recall the definition of gapt in (17):

gapt := µkt

(
H1:tH

⊤
1:t

)
− µkt+1

(
H1:tH

⊤
1:t

)
.

The following result addresses the question of Reviewer iVyo and it relies on Theorem 6.

Theorem 7. Let at be defined as in (6) and gapt as in (17). Assume at−1 <
(
1− 1/

√
2
)

gapt.
Suppose Y1:t = W ∗

t H1:t. Then we have∥∥∥W t − W̃t

∥∥∥
F
≤ ∥W ∗

t ∥F ·

(√
2at−1

gapt

+
t− 1

γt

)
. (22)

Proof. Note that

H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t = U1:tU

⊤
1:t

H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t = Ũ1:tŨ

⊤
1:t +DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t,

where Dt is defined in (13) and the second equality follows from Lemma 1. So we have∥∥∥W t − W̃t

∥∥∥
F
=
∥∥∥W ∗

t H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t −W ∗

t H1:tH
⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥
F

(23)

≤ ∥W ∗
t ∥F ·

∥∥∥H1:tH
⊤
1:tU1:tΣ

−2

1:tU
⊤
1:t −H1:tH

⊤
1:tŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥ (24)

= ∥W ∗
t ∥F ·

∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t −DtŨ1:tΣ̃

−2
1:t Ũ

⊤
1:t

∥∥∥ (25)

≤ ∥W ∗
t ∥F ·

(∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥∥+ ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥) (26)

≤ ∥W ∗
t ∥F ·

(∥∥∥U1:tU
⊤
1:t − Ũ1:tŨ

⊤
1:t

∥∥∥+ ∥∥∥DtŨ1:tΣ̃
−2
1:t Ũ

⊤
1:t

∥∥∥) (27)

≤ ∥W ∗
t ∥F ·

(√
2at−1

gapt
+

t− 1

γt

)
(28)

where the last inequality is due to Theorem 6 and Lemma 4. The proof is complete.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

L.2 RUNNING TIMES COMPARED TO OTHER BASELINES (REVIEWER IVYO)

Table 15: Running times (in minutes) of various methods on CIL datasets with q2 = 5 (Inc-5). This
is the same setting as Fig. 5.

CIFAR100 ImageNet-R ImageNet-A CUB

L2P 52.09 72.31 26.96 17.62
CodaPrompt 174.9 246.94 27.28 39.91
EASE 139.74 128.35 54.0 66.23
ICL-TSVD (E = 100K) 31.24 27.0 1.29 3.73

L.3 MULTIPLE RUNS OF THE EXPERIMENTS (REVIEWER XHQX, REVIEWER P9VJ)

Table 16: Final and total accuracy of RanPAC and our method (ICL-TSVD) on CIL datasets with
q2 = 1 (Inc-1). Reported results are mean and standard deviations over 3 random seeds. See also
Table 2 for similar results.

CIFAR100 ImageNet-R ImageNet-A CUB ObjectNet OmniBenchmark VTAB StanfordCars

Final Accuracy
RanPAC 86.99 ± 0.06 70.12 ± 0.39 36.6 ± 25.35 55.15 ± 37.14 57.14 ± 0.24 77.9 ± 0.04 91.47 ± 0.3 35.56 ± 24.75
Ours 88.19 ± 0.05 73.66 ± 0.07 62.76 ± 0.16 89.19 ± 0.06 60.82 ± 0.15 79.3 ± 0.06 92.51 ± 0.05 74.32 ± 0.11

Total Accuracy
RanPAC 90.46 ± 0.73 69.1 ± 0.37 44.23 ± 0.46 74.67 ± 2.87 62.37 ± 2.1 85.23 ± 0.56 74.67 ± 3.07 56.27 ± 0.78
Ours 92.18 ± 0.56 78.87 ± 0.34 70.08 ± 0.86 92.89 ± 0.59 70.54 ± 1.94 86.51 ± 0.59 96.41 ± 0.31 81.18 ± 0.68

47

	Introduction
	Technical Background
	Emergence of Instability
	ICL-TSVD: Stabilizing ICL via Truncated SVD
	Provably Controlled Estimation and Generalization
	Numerical Validation
	Setup
	Experimental Results and Analysis

	Conclusion
	Overview of The Appendix
	Notations
	Implementation Details for ICL-TSVD
	Incremental Truncated SVD
	Continual Solver for ICL-TSVD
	Alternative approaches for online Least-Squares or Ridge Regression

	Auxiliary Lemmas
	Proofs of Theorem 1 and Theorem 2
	Theoretical Guarantees under Gaussian Assumptions
	Additional Theoretical Results
	Review of Related Works
	More Related Work on Continual Learning
	Random Vector Functional Link Network and Random Feature Models

	Dataset Details
	Experimental Setup Details
	Extra Experiments, Figures, and Tables
	Performance on StanfordCars
	Experiments with ViT features Pre-trained on ImageNet-21K
	Experiments on Domain-Incremental Learning (DIL)
	Scaling Laws of the Embedding Dimension
	More Figures for Data Analysis
	Ablation Study on Random ReLU Features
	Extra Empirical Study of RanPAC
	Training losses of RanPAC
	RanPAC is Unstable for CIL with The Smallest Increments

	Extra Results for Rebuttal
	Theory for the relation between the offline and online solutions (Reviewer iVyo)
	Running times compared to other baselines (Reviewer iVyo)
	Multiple runs of the experiments (Reviewer XHQX, Reviewer P9vj)

