Under review as submission to TMLR

Decentralized Policy Gradients for Optimizing Generalizable
Policies in Multi-Agent Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Parameter Sharing (PS) is a widely used practice in Multi-Agent Reinforcement Learning
(MARL), where a single neural network is shared among all agents. Despite its efficiency and
effectiveness, PS can occasionally result in suboptimal performance. While prior research
has primarily addressed this issue from the perspective of update conflicts among different
agents, we investigate it from an optimization standpoint. Specifically, we point out the
analogy between PS in MARL and Centralized SGD (CSGD) in distributed learning and
hypothesize that PS may inherit similar convergence and generalization issues as CSGD, such
as lower convergence levels of key metrics and larger generalization gaps. To address these
issues, we propose Decentralized Policy Gradients (DecPG), which leverages the principles
of Decentralized SGD. We use an environment with additional perturbations injected into
the observation and action spaces to evaluate the generalization of DecPG. Experiments
are conducted on homogeneous scenarios from MPE Simple Spread and SMAC, using the
vanilla SGD optimizer. Empirical results show that DecPG outperforms its centralized
counterpart, PS, across various aspects—achieving higher rewards, smaller generalization
gaps, and flatter reward landscapes. The results confirm that PS suffers from convergence
and generalization issues similar to those of CSGD, and show that our DSGD-based method,
DecPG, effectively mitigates these problems—offering a new optimization perspective on
MARL algorithm performance.

1 Introduction

In cooperative Multi-Agent Reinforcement Learning (MARL), multiple agents interact cooperatively with
each other and with the environment to achieve a common goal. Each agent has an individual policy, and
together they form a joint policy. MARL algorithms aim to train this joint policy to maximize the return.
A typical practice to optimize the joint policy is Parameter Sharing (PS) (Chu & Ye| 2017; |[Foerster et al.,
2016; |Gupta et al., |2017; |Rashid et al.| |2020; [Yu et al., |2022)). Instead of training a separate neural network
for each agent policy, PS employs a single shared network for all agents. It is simple to implement, and
training one shared policy with data from all agents offers promising sample efficiency. Because of these
advantages, PS has been adopted in various benchmark algorithms, such as MAPPO (Yu et al., |2022)) and
QMix (Rashid et al., [2020).

Interestingly, the PS in MARL shares great similarities with the centralized SGD (CSGD) used in distributed
learning. In particular, distributed learning trains deep neural networks at scale by leveraging parallel
training across multiple nodes. Each node maintains a copy of the initial model and has access to a local
dataset, allowing it to perform gradient descent locally. In CSGD, there is a central parameter server
that aggregates the updates from local nodes and broadcasts the aggregated results back to all nodes,
corresponding exactly to the update style of PS. This approach is essentially equivalent to single-worker
SGD, but its distributed nature allows CSGD to parallelize the computation across multiple nodes, enabling
larger effective batch sizes and significantly improving training efficiency (Dekel et al., 2012).

This analogy between PS and CSGD intrigues us to investigate whether PS inherits similar optimization
issues from CSGD. Particularly, in practice, CSGD often suffers from convergence to suboptimal loss levels

Under review as submission to TMLR

or complete failure to converge with large batches (Jastrzebski et al., [2017; [You et all 2017; Zhang et all
2019), and poorer generalization (Goyal et all [2017; [Keskar et al. 2016). PS has also been found to result
in suboptimal performance in several experiments, including both heterogeneous and homogeneous agent
settings (Kim & Sung] 2023} [Qin et all [2025). Most existing papers address the problem from only one
perspective—by mitigating the conflicting updates among different agents, for instance, via improving the
parameter sharing mechanism, as in SePS (Christianos et al., [2021) and SNP-PS (Kim & Sung, 2023), or
utilizing sequential training, like HAPPO (Zhong et al) 2024) and A2PO (Wang et al. [2023). However,
alternative perspectives, particularly from the connection between PS and CSGD, remain largely underex-
plored.

On the other hand, this connection can offer a novel understanding of the performance limitations of PS
in MARL and provide insights to address them from an optimization standpoint. Crucially, in CSGD,
one effective way to address the aforementioned problems is to shift from a centralized framework to a
decentralized one, i.e., Decentralized SGD (DSGD) (Lian et al.l [2017; |Zhang et al., 2021; [Zhu et al., 2023)).
Unlike in CSGD where parameter averaging is performed on a central server, in DSGD, parameters are
averaged locally at each node within a neighborhood defined by a communication topology. Although the
local models are initialized with identical parameters, partial averaging causes the local models to diverge.
This divergence introduces an intrinsic noise that acts as a regularization, smoothing the loss landscape and
stabilizing training (Zhang et alJ 2021} Zhu et al., 2023). Theoretically and empirically, this noise has been
shown to improve convergence and generalization relative to CSGD (Zhang et al.l [2021} [Zhu et al.| [2023)).

Inspired by these findings, this paper investigates whether incorporating DSGD in MARL could effectively
address these issues caused by PS. To this end, we propose Decentralized Policy Gradient (DecPG),
which incorporates DSGD’s style of update into a policy-based MARL algorithm. Since the original use
case and theoretical analyses of DSGD are based on the assumption of homogeneity across nodes, we aim to
maintain consistency with this setting by (1) focusing on homogeneous MARL tasks, (2) adopting Central-
ized Training Decentralized Execution (CTDE) (Amatol 2024; [Foerster et al., [2018} |Sunehag et al.| 2017) to
mitigate the non-stationarity inherent in MARL, and (3) using MAPPO to constrain policy
updates. We compare PS to DecPG with topologies from sparse to dense in the Multi-Agent Particles (MPE)
Simple Spread (Mordatch & Abbeel, 2017)) and StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al.|
. We analyze how convergence and generalization behavior vary across these settings. Through compre-
hensive experiments, we empirically demonstrate that PS in MARL also suffers from suboptimal convergence
and generalization. The DSGD-based method, DecPG, mitigates these problems and outperforms PS.

Our contributions are as follows.

o We propose DecPG—a policy gradient-based MARL algorithm built on DSGD—to improve conver-
gence and generalization over its centralized counterpart, PS.

o We provide comprehensive empirical results to show that DecPG outperforms PS in training and
test performance in most scenarios.

e We analyze the effect of communication topology sparsity—from sparse to dense—on final gener-
alization performance. We evaluate a series of topologies whose spectral gaps span approximately
linearly from 0 to 1, as defined by k-nearest-neighbor graphs. Our results show that the generaliza-
tion capability tends to improve as the topology becomes sparser.

o We provide a qualitative visualization of the reward and loss landscapes for DecPG under topologies
of varying sparsity, as well as for PS, showing that reward landscape smoothness improves from PS
to DecPG as the topology becomes sparser.

2 Related Work

This paper investigates whether PS in MARL exhibits similar convergence and generalization problems as
CSGD in distributed learning, and whether the proposed DSGD-based method, DecPG, can address these
issues. Accordingly, this section reviews the related work about the characteristics and issues of PS and
CSGD, and the recent developments in DSGD.

Under review as submission to TMLR

Parameter Sharing (PS) PS employs a single neural network to represent the policies of all agents and
is trained with trajectories collected from all agents, making it particularly efficient and scalable as the
number of agents increases. With the inclusion of agent ID (usually a one-hot encoding) to the input, PS
can handle not only homogeneous but also heterogeneous problems (Rashid et al. 2020; [Yu et al. [2022).
It has been widely used in benchmark algorithms and has demonstrated outstanding empirical performance
(Chu & Yel 2017; |Gupta et al., |2017; Rashid et al., [2020; [Yu et all) 2022). Despite its empirical success,
PS has been found to be suboptimal in certain scenarios, including both homogeneous and heterogeneous
settings (Kim & Sung) [2023; |Qin et all 2025). One direction to address it is by modifying the parameter
sharing strategy, typically by making the neural network partially shared and partially specialized, rather
than fully shared. These methods include SePS (Christianos et al., 2021), SNP-PS (Kim & Sung, 2023),
Kaleidoscope , GradPS (Qin et al., 2025)), etc. The other direction focuses directly on the
MARL algorithm itself, such as HAPPO/HATRPO (Zhong et all 2024) and A2PO (Wang et all, 2023),
utilizing sequential agent updates instead of simultaneous ones. These existing approaches aim to mitigate
conflicts between different agents’ updates through algorithmic-level designs. In contrast, this paper focuses
on improving generalization from an optimization perspective, a relatively unexplored direction in MARL.

Centralized SGD (CSGD) and Decentralized SGD (DSGD). In distributed learning, larger batch
sizes are crucial for enhancing parallelism, but CSGD (or equivalently, single-worker SGD) is found to
suffer from performance problems in large batch settings (Goyal et al., 2017} |Jastrzebski et al., [2017} [You
let all [2017; [Zhang et all, [2019). [Zhang et al| (2019) observe that using CSGD with batch sizes exceeding
a certain threshold significantly deteriorates convergence, resulting in a high and non-decreasing training
loss. This behavior is speculated to stem from a lack of stochasticity in the gradients. On the other hand,
|Goyal et al| (2017) discover an increasing trend in validation error with larger batch sizes, indicating a
decline in generalization performance. Keskar et al.|(2016) analyze this phenomenon from the perspective
of optimization landscape flatness, where it is generally believed that flatter minima correspond to better
generalization (Hochreiter & Schmidhuber} [1997). They empirically demonstrate that larger batch sizes tend
to converge to sharper minima, whereas smaller batch sizes lead to flatter ones. DSGD was once considered
a compromise to CSGD, viewed as useful only under poor bandwidth or high network latency. However, it
has since been shown to outperform CSGD in large-batch training scenarios. Lian et al| (2017) prove that
DSGD can achieve the same convergence rate as CSGD and exhibit a similar asymptotic linear speedup in
computational complexity with respect to the number of nodes. This enables DSGD to converge in less wall-
clock time than CSGD in practice, due to its significantly lower communication overhead on individual nodes.
[Koloskova et al.| (2020]) establish a unified framework that proves convergence guarantees for DSGD under
different scenarios, including changing topologies, i.i.d. and non i.i.d. data distributions. [Zhang et al.|(2021)
show that DSGD can achieve better convergence than CSGD due to the noise arising from differences among
local model weights across nodes, which depends on the optimization landscape. Specifically, larger gradients
tend to cause greater divergence and thus stronger noise, and vice versa. This noise is found to stabilize
convergence and empirically performs better than injecting random Gaussian noise into CSGD.
prove that DSGD is asymptotically equivalent to the average-direction sharpness-aware minimization
algorithm [Wen et all [2022] revealing several important insights into its convergence and generalization
behaviors. First, the decentralization-induced noise arising from partial averaging is landscape-dependent,
implicitly penalizing sharp curvature in the loss surface and thereby encouraging flatter minima that yield
better generalization. Second, this same noise introduces a gradient-smoothing effect, which stabilizes the
optimization trajectory and can improve convergence. Third, unlike the stochastic-sampling noise in CSGD,
the implicit regularization strength of DSGD is independent of batch size, suggesting that its generalization
benefit persists even in large-batch settings. justify an upper bound for the generalization
error in DSGD under data heterogeneity and without the assumption of bounded stochastic gradients. This
upper bound reveals that a good generalization in DSGD is favored by lower stochastic noises and reduced
data heterogeneity, which correspond to larger batch sizes and more i.i.d. data distributions across nodes.
[Deng et al.| (2023)) derive generalization bounds for DSGD that specifically depends on the spectral gap of
the communication topology. They show that generalization errors increase as the spectral gap narrows, i.e.,
as the topology becomes sparser.

Under review as submission to TMLR

3 Decentralized Policy Gradient

Preliminaries We model a cooperative multi-agent reinforcement learning (MARL) problem as a Decen-
tralized Partially Observable Markov Decision Process (Dec-POMDP), defined as

M= (Sv {Ai}?:lv PR, {Oi}?:la {Oi}?:l,’}/a n, pO) .

where n denotes the number of agents, S is the (global) state space, and pg is the initial state distribution.
The joint action space is @ = (a',a?,...,a") € []/_, A;, where A; is the action space of agent i. The
environment transition dynamics are defined by P(s’ | s,a), which gives the probability of transitioning to
state s’ given the current state s and joint action a. The reward function R(s,a) provides a shared scalar
reward r to all agents. The discount factor is v € [0,1). Each agent i receives a local observation o' € O;,
where O; is its observation space. The observation function O;(o | s) defines the probability of agent i
observing o’ given the global state s. Let o = (o,...,0") € [[;_; O; denote the joint observation. Assuming
the joint policy mw(a | 0) =[]\, 7*(a’ | 0'), the objective is to maximize the expected discounted cumulative
reward E [>°;°, v'ry].

Decentralized Policy Gradient (DecPG) We propose a DSGD-based MARL algorithm, DecPG. To
enable that, we simulate MARL as a distributed learning case. Every agent forms a local node with a copy of
the initial model 6y, an independent dataset D;, and a loss function L;. At the beginning of every iteration,
agents use their local models 6; to roll out trajectories, forming the local dataset for training. The dataset
for agent ¢ at mth iteration is defined as:
D:n = {Tlg}szla

where B is the batch size, and each trajectory 7/ of length 7T is defined as: T = {(oé,st,ai)}tho, where
S0 ~ pO(S)v Oi = Oi(st)’ ai ~ ﬂ-i(ai | Oi)a St+1 7~ P(St-‘rl | st)a%)at_z)’ at_l ~ ﬂ-_i(at_l I Ot_l)'

The communication topology P for DecPG is defined by a doubly stochastic k-Nearest Neighbor (kNN)
graph. Figure [I] illustrates an example when n = 10. Intuitively, agents are arranged in a circle, and each
agent is connected to its k nearest neighbors. P is an n X n matrix, where F; ; is the weight of the connection
from agent i to agent j. In a kNN topology, P; ; = 0 if two agents are disconnected and P; ; = 1/(k + 1) if
agent ¢ is connected to agent j. For a scenario with n agents, there are n — 1 possible kNN topologies. The
case k = 0 corresponds to a completely disconnected graph, which is equivalent to non-parameter sharing.
When k£ = n — 1, the graph is fully connected, corresponding to PS. In this paper, we consider values of
k ranging from 1 to n — 2, forming an approximately linear progression of spectral gap values from 0 to 1
(Figure [6] in Appendix [A.2). The spectral gap is defined as 1 — ||, where [A| = max;>5 |A;| is the second-
largest modulus among eigenvalues \; of P. It measures the rate at which information diffuses across the
network. For instance, a smaller spectral gap implies a sparser topology. The spectral gap also influences
the strength of the noise induced by DSGD (Zhu et al. [2023), with a smaller spectral gap corresponding to
stronger noise.

During training, each agent adopts the same loss function but computes it using its own local dataset D},
and the loss is computed as:

where £(-) denotes either the policy or critic loss, and (Oé,tv Sb.t, ai’t) denotes t-th step in b-th trajectory from
Di |

After gradients being computed locally for all agents, the DSGD mixing is performed for every agent, over
itself and its neighbours, defined as:

O =Y Pijth, —n- VL, (65,)
J

For instance, in a scenario with 10 agents and a topology with k& = 2 (Figure , during the DSGD mixing
step, the updated model weights of agent 0 are given by

0,1 =Poo -0, + Poo- 0, + Pox -0y, —n- VL), (6),),

Under review as submission to TMLR

kNN Topologies n=10
k=1 k=2 k=3

4%372\\\\1 4%372%1
) \ AN \
WAl) 7/
N7 N7

Figure 1: kNN communication topologies for n = 10 with £ = 1 to 8. Black edges indicate bidirectional
connections; red edges indicate unidirectional edges.

where P079 = P070 = P071 = %

This makes DecPG contrary to PS, which averages the gradients of all agents, analogous to CSGD. The loss
function of PS is as follows:

O = 03° =0 D VL (0,%)
i=1

In evaluation, the average model 0%'9 = %ZZL 0%, is used to rollout, following standard practice in DSGD
(Lian et all 2017 [Ye et al. [2025} |Zhang et al. [2021)). The theoretical advantages of DSGD established by
Zhu et al.|(2023) are also based on this averaged model.

To better understand the effects of DSGD in MARL, we implement DecPG to align as closely as possible
with the DSGD framework (Zhu et all 2023)). Consequently, we address the key discrepancies between
MARL and the DSGD setting as follows.

Unlike supervised learning, where the local datasets are stationary once defined, the local datasets for agents
in MARL have a changing distribution. Each agent’s experience distribution depends on its local policy as
well as the influence of other agents’ policies. To mitigate the effect of this distribution shift on DSGD, we
use MAPPO as the backbone because it enforces trust-region control via gradient clipping
to make the change in agent policy reasonably small in a local temporal range. Furthermore, we employ the
Centralized Training Decentralized Execution (CTDE) (Amato, 2024; Foerster et al., 2018; |Sunehag et al.,
paradigm to mitigate the non-stationarity caused by inter-agent interaction. With these measures, we
make the local data as reasonably stationary as possible.

The theoretical benefits of DSGD (Zhu et all) 2023)) are established under the assumption of homogeneous
data across nodes. Moreover, |Ye et al| (2025) show that data heterogeneity can slow convergence and
impair generalization, which could obscure the direct effects of DSGD. Therefore, we focus primarily on
homogeneous settings, where agents are identical.

4 Experiments

We use Simple Spread from Multi-Agent Particle Environment (MPE) (Mordatch & Abbeel, [2017) and
StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et all [2019) as the testbeds. Simple Spread is a
straightforward task where agents navigate to reach landmarks while avoiding colliding with each other.
The reward is easy to interpret, consisting of the agents’ distances to landmarks and penalties for collision.
We treat Simple Spread as a toy example for its simplicity and interpretability, and use it to identify

Under review as submission to TMLR

performance patterns across different algorithms. For Simple Spread, we use scenarios with agent counts
ranging from 8 to 12.

On the other hand, SMAC is a widely adopted MARL benchmark featuring challenging micromanagement
tasks, where agents control a team of units to defeat the enemies. The reward structure of SMAC is more
complicated, involving factors such as ally and enemy health, unit losses, and the winning status. Due
to this complexity, we primarily use SMAC to evaluate the overall performance of algorithms rather than
to interpret fine-grained trends. In SMAC, we select the homogeneous maps dm_vs_ 6m, 10m_wvs 11m,
27m__vs_30m, and 6h__vs_ 8z, covering a variety of agent counts. These maps are considered challenging as
they involve more enemies than agents.

DecPG is tested under different kNN communication topologies that approximately evenly span the spectral
gap, ranging from 0 to 1. For instance, we select 4 topologies k = 2,4,6,8 for n = 10, with spectral gaps
around 0.13, 0.35, 0.63 and 0.89 respectively, roughly spanning the entire spectral gap linearly.

We compare DecPG with the standard PS baseline. Additionally, we include a PS variant with entropy
regularization (PS+entropy) for comparison, as we observe that DecPG tends to induce more exploration
reflected by higher policy entropy than standard PS (see Appendix . The PS+entropy baseline is
implemented by adding the average policy entropy to the loss function, scaled by a coefficient specified in

Appendix The implementation follows MAPPO (Yu et al., 2022).

To facilitate the interpretation of results, we adopt vanilla SGD as the optimizer, ensuring consistency with
its theoretical justification in . Following the optimal hyperparameters suggested by
, all experiments are conducted using full batch training. We adopt a neural network architecture
consisting of 3 linear layers, followed by a GRU layer, another linear layer, and finally an output layer, for
both the actor and critic. For details on other hyperparameters, please refer to Appendix

To evaluate DecPG, we consider the following metrics. First, we examine the training performance (average
episode reward), measured as the policy’s performance on the same environment as in training, but evaluated
with different random seeds and using the deterministic average policy. It is important to note that this
evaluation is insufficient for assessing generalization, as the variation introduced by changing random seeds
is often minimal. For example, in Simple Spread, different seeds do not change the distribution for the
initialization of agent and landmark positions.

To test the generalization, we design a modified version of the training environment as the test environment,
in which perturbations are added to agents’ observations and actions. We inject Gaussian noise into the
observation space, with a mean of 0 and a standard deviation equal to ¢ times the sample standard devi-
ation. Since the action space is discrete for SMAC and Simple Spread, we assign a small probability ¢ for
agents’ actions to be replaced with random ones at each timestep. These modifications ensure that the test
environment does not follow the exact same distribution as the training environment, while still preserving
the core task, unlike some prior works that alter the number of agents, effectively turning the evaluation into
a few-shot or zero-shot setting (Tian et al.,|2023). A well-generalized policy is expected to exhibit minimal
performance degradation under such perturbations.

We regard the test performance (test average episode reward) as the primary metric for the generalization
power of a policy (Figure [3). Generalization gap is provided as an additional metric for generalization
(Figure , defined as the difference between test and train performance. This gap reflects the extent to
which performance degrades when transitioning from the training to the test environment. A higher test
performance and a smaller generalization gap indicate stronger generalization.

Additionally, we visualize the reward and loss landscapes of the learned policies in 3D (Figure . This is
done by selecting two orthonormal directions in the policy parameter space and perturbing the policy along
those directions. These visualizations provide qualitative insight into generalization from the perspective of
landscape flatness.

We also conduct supplementary analyses on metrics that quantify the decentralization-induced noise and on
the performance of DecPG policies under different evaluation configurations. The corresponding results are
presented in Appendix and Appendix [A26]

Under review as submission to TMLR

Simple Spread n = 8 Simple Spread n = 9 Simple Spread n = 10

!
8

Train Average Episode Reward
|

Train Average Episode Reward

Train Average Episode Reward

— s —— DecPG k=4 (0.52) 10
— PS + entropy DecPG k=3 (0.35) — s —— DecPG k=5 (0.58) =75 — s —— DecPG k=6 (0.63)
. —— DecPG k=6 (0.86) DecPG k=2 (0.20) _1s —— PS + entropy ~—— DecPG k=3 (0.28) a0 —— PS + entropy —— DecPG k=4 (0.35)
~—— DecPG k=5 (0.69) —— DecPG k=7 (0.87) DecPG k=1 (0.06) —— DecPG k=8 (0.89) DecPG k=2 (0.13)
0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Step 1e7 Step 1e7 Step 1e7
Simple Spread n = 11 Simple Spread n = 12 SMAC 5m_vs_6m

5

< ?— Ps ~—— DecPG k=2 (0.46)

o

e

Train Average Episode Reward
IS

Train Average Episode Reward
Train Average Episode Reward

— s —— DecPG k=5 (0.41) — s —— DecPG k=6 (0.47)
-90 —— PS + entropy DecPG k=3 (0.19) a0 — S + entropy DecPG k=4 (0.25)
—— DecPG k=9 (0.90) DecPG k=1 (0.04) —— DecPG k=10 (0.91) DecPG k=2 (0.09) 2 — PS + entropy —— DecPG k=1(0.19)
—— DecPG k=7 (0.66) —— DecPG k=8 (0.70) —— DecPG k=3 (0.75)
-100 o
0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Step 1e7 Step 1e7 Step 1e7
SMAC 10m_vs_11m SMAC 27m_vs_30m SMAC 6h_vs_8z
14
20
D b ®
B H H
12
&n & ﬂéﬁgﬁg"e g
$ 8 - 3
g1 3 / s
2 a 210
& s §10 = &
o o ~ o
) & &
S 6 c I
E s g8
< 4 z =" —— DecPGk=13(039) | <
< — s —— DecPGk=6(0.63) | £ —— S + entropy DecPG k=7 (0.14) < — s —— DecPG k=3 (0.57)
£ 2 — PS + entropy —— DecPGk=4(035) | £ —— DecPG k=25 (0.96) DecPG k=1 (0.01) g6 —— S + entropy —— DecPG k=2 (0.33)
—— DecPG k=8 (0.89) DecPG k=2 (0.13) 07 | — DecPG k=19 (0.69) —— DecPG k=4 (0.80) DecPG k=1 (0.13)
0.0 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Step 1e7 Step 1e7 Step 1e7

Figure 2: Training average episode rewards on MPE Simple Spread and SMAC, evaluated using deterministic
policies. We compare PS, PS with entropy regularization (PS+entropy), and DecPG with different topologies
(DecPG k=z). For DecPG, the value x in parentheses indicates the spectral gap of the corresponding
topology.

All experiments were run for 5 seeds, on Google TPU v4-8. Results shown in Figures and [are the
median values. Shaded regions in Figure [2] display the 95% confidence zone. Bars in Figure [3| show the
standard deviation.

5 Results and Findings

Through comprehensive empirical evaluation, we have the following findings.

5.1 DecPG achieves better convergence and exploration than the PS baselines during training.

Figure |2 shows the training average episode rewards obtained using the deterministic policy. Across all
scenarios except Simple Spread n=8 and n=9, at least one topology of DecPG outperforms both PS and
PS+entropy, and in the majority of scenarios (except for Simple Spread n=8, n=9, and 27m_vs_30m), all
DecPG algorithms surpass PS and PS+entropy, highlighting the convergence advantage of DecPG over the
PS baselines.

By analyzing the evolution of policy entropy (Figure@, we observe that DecPG’s entropy decreases steadily,
whereas PS exhibits a much faster drop. We deduce that the noise introduced by DecPG slows convergence,
thereby encouraging more exploration. Entropy regularization helps PS achieve a similar level of exploration
in most tasks; however, this effect does not lead to the same improvement in convergence as observed with
DecPG.

5.2 DecPG demonstrates better generalization than PS.

Figure [3| shows the test average episode rewards, evaluated using the final converged policies of the PS and
DecPG baselines. In all scenarios, PS consistently performs the worst. Performing better than PS in most

Under review as submission to TMLR

Simple Spread n = 8 Simple Spread n = 9 Simple Spread n = 10

= N }]H

-38.00

o 1]1

-48
-a4
-38.75 —49 I
-39.00 -
45 Zso

PSS

Test Average Episode Reward
Test Average Episode Reward
Test Average Episode Reward

3 P+

k=6 k=5 k=4 k=3 k=2 e k=7 k=5 k=3 k=1 Ps PS+e
(0.86) (0.69) (0.52) (0.35) (0.20) (0.87) (058) (0.28) (0.06)

k=8 k=6 k=4 k=2
(0.89) (0.63) (0.35) (0.13)
Simple Spread n = 11 Simple Spread n = 12 SMAC 5m_vs_6m

i SR x R
N iR

PSS+

Test Average Episode Reward
Test Average Episode Reward

Test Average Episode Reward
o 5 B
—

SO }

PSs PS+e

PS PSte

e k=9 k=7 k=5 k=3 k=l k=10 k=8 k=6 k=4 k=2 k=3 k=2 k=
(0.90) (0.66) (0.41) (0.19) (0.04) (091) (0.70) (0.47) (0.25) (0.09) (0.75) (0.46) (0.19)

SMAC 10m_vs_11m SMAC 27m_vs_30m SMAC 6h_vs_8z
18 3.0
a
} 25
16 {
: f

Ps pPS+e

{

Test Average Episode Reward
Test Average Episode Reward
B
Test Average Episode Reward

—e—
]
L]

g & 5 @
——o

3 PS+e PS PSte

k=8 k=6 k=4 k=2 k=25 k=19 k=13 k=7 k=1 k=4 k=3 k=2 k=1
(0.89) (0.63) (035) (0.13) (0.96) (0.69) (0.39) (0.14) (0.01) (0.80) (057) (0.33) (0.13)

Figure 3: Test average episode rewards of the final deterministic policies on MPE Simple Spread and SMAC.

tasks, PS+entropy achieves the best test performance in the n = 8 scenario and performs comparably to

DecPG in n = 9 and 27m_wvs_30m. However, in the rest of the tasks, it is outperformed by at least one
DecPG policy.

Across all scenarios except Simple Spread n = 8, DecPG consistently outperforms the PS baselines in terms
of test performance, highlighting the generalization advantage of DSGD-style updates over CSGD.

5.3 Relationship between DecPG performance and topology sparsity.

In terms of training rewards (Figure , we do not observe a consistent trend of performance difference
among DecPG topologies across tasks. In most Simple Spread scenarios, all topologies perform similarly.
While the sparsest topologies in Simple Spread n=11, n=12, and 5m_ vs_6m are the best performing DecPG
policies, these are the worst performing topologies for DecPG in 6h_wvs 8z, 10m_vs_11m and 27m_vs_30m.
Topologies with moderate sparsity generally outperform both PS and PS+entropy across most tasks. In
particular, those with spectral gaps between 0.5 and 0.7 (corresponding to the second densest topology

selected for each task, e.g. k=6 for 10m_vs_11m) outperform PS and PS+entropy in all but Simple Spread
n=8 and n=9.

Regarding the test performance (Figure, we observe three general trends: increasing (n=10, n=11, n=12,
and 6h_vs_8z), leveling (n=8, n=9, and 10m_wvs_11m), and decreasing (27m__vs_30m). It indicates that
the behavior of different topologies of DecPG depends largely on the task itself. For instance, tasks like n=12
favor sparser topologies, implying that the underlying problem benefits more from stronger regularization on
the optimization landscape’s sharpness. In contrast, for 27m_vs 30m, excessive regularization may hinder
optimization, leading to a drop in test performance. Merging the findings from the three trends, a moderate
level of topology sparsity—avoiding the two extremes—appears to be the safer and more robust choice in
practice, aligning with the situation in training performance.

Generalization gaps are shown in Figure[d] Across all Simple Spread scenarios, we observe a decreasing trend
in generalization gaps as topology becomes sparser (i.e., as k decreases), though minor fluctuations exist.
This suggests that generalization improves with increased sparsity. This observation can be explained by

Under review as submission to TMLR

00 Simple Spread n = 8 00 Simple Spread n =9 00 Simple Spread n = 10
B B T
5 5 5
i : :
-4 & -02 & 02
g -0z 2 2
3 2 3
a2 2 2 o4
&2 -0 i
& & &
g-04 g g
s 9 _06 g o
2 -05 2 2
< < c
T s 5 _
06 =08 708
207 7 7
© e © 10
P PSte k=6 k=5 k=4 k=3 k=2 PS PS+e k=7 k=5 k=3 k=1 PS PSte k=B k=6 k=4 k=2
(0.86) (0.69) (0.52) (035) (0.20) (0.87) (058) (0.28) (0.06) (0.89) (063 (035 (0.13)
00 Simple Spread n = 11 00 Simple Spread n = 12 00 SMAC 5m_vs_6m
B B B
5 5 5
H H 3
& -0.2 x -02 « -02
v 9 o
3 g 3
3 2 3
2 2 04 4 -04
& -o0a & &
o o o
3 3 &
e e e
2 -0 goe g-os
7 3 <
< < c
T T - ©
£ £ -8 & 08
. 08 . .
@ © 10 # 10
Ps PSte k=9 k=7 ke5 k=3 k=1 PS PSte k=10 k=8 k=6 k=d k=2 PS Pste k=3 k=2 k=1
(0.90) (0.66) (0.41) (0.19) (0.04) (091) (0.70) (0.47) (0.25) (0.09) (075 (046) (0.19)
SMAC 10m_vs_11m 00 SMAC 27m_vs_30m 000 SMAC 6h_vs_8z
e [R B ’
-0.05
- & -01 &
v 9 o
H H 8 -010
3 -0.4 5 —02 o
& fiy &
g g g-on
£ -06 € -03 e
s g g
H 2 o
£ 08 £ o4]
T T - ©
E & £ -02s
L -10 o 2
ki 8 -os 2 -030

PS PSte k=8 k=6 k=4 k=2 PS PSte k=25 k=19 k=13 k=7 k=1 PS PSte k=4 k=3 k=2 k=1
(0.89) (0.63) (0.35) (0.13) (0.96) (0.69) (039) (0.14) (0.01) (080) (057) (0.33) (0.13)

Figure 4: Generalization gap on MPE Simple Spread and SMAC, computed as the difference between test
and training rewards.

the theoretical findings of [Zhu et al.| (2023)), which show that sparser topologies in DSGD impose stronger
sharpness regularization on the loss landscape. Therefore, they encourage convergence to flatter minima
that are less sensitive to perturbations in the test environment.

However, we do not observe a similar trend in the SMAC scenarios (Figure [d). Instead, we find that
the generalization gaps are more closely correlated with absolute test performance. Specifically, higher
test performance is associated with larger generalization gaps. We attribute this to the nature of the
selected SMAC maps, which involve imbalanced ally and enemy team sizes and demand more fine-grained
coordination among agents to defeat larger numbers of opponents. As a result, perturbations in the test
environment tend to have a more catastrophic impact on well-performing policies than on those that already
perform relatively poorly. Although this effect dominates the generalization gap patterns and obscures the
trend observed in Simple Spread, the test performance results presented earlier remain sufficient to reveal
the generalization capabilities of DecPG under different topologies.

Overall, the comparison across different DecPG topology sparsities reveals that the optimal choice of sparsity
varies significantly across tasks. In general, a small amount of regularization introduced by DSGD (repre-
sented by the densest topology) can already outperform the case without any regularization (represented by
PS). However, to achieve robust training and test performance, a moderate level of topology sparsity tends
to be more reliable. Empirically, we find that a spectral gap between 0.5 and 0.7 provides a robust choice
across the evaluated tasks.

This observation may relate to the optimization—regularization trade-off discussed in|Zhu et al.[(2023, which
suggests that sparser topologies introduce stronger noise and thus stronger regularization, but excessive
regularization can dominate the optimization objective, leading to performance degradation.

5.4 DecPG achieves flatter reward landscapes as topology becomes sparser.

In (Zhu et al) [2023), loss landscapes are provided as a qualitative demonstration for generalization by
reflecting the relationship between the loss and perturbations around the converged parameters. However,

Under review as submission to TMLR

PS + entropy DecPG k = 8 DecPG k = 6 DecPG k =4 DecPG k = 2

£
‘ s
o
™ &
STy iy
Orectoy 04 4

(a) Average episode reward landscape surface

Figure 5: Visualization of reward landscapes in MPE Simple Spread n = 10, for PS, PS with entropy
regularization (PS+entropy), and DecPG with different topologies (DecPG k=x). The figures show 3D
surfaces of the reward with respect to perturbations in two orthonormal directions of the parameter space.

in MARL, it is not feasible to compare loss landscapes directly across algorithms due to the dynamic nature
of training data (Appendix Figure . Therefore, we employ the return landscape as a proxy for
analyzing landscape flatness, shown in Figure We also provide the corresponding return histograms (see
Appendix Figure 7 offering an alternative perspective on the flatness of the return landscapes.

Visually, the reward landscapes for the PS and PS with entropy regularization baselines show a significant
drop along the negative § direction, indicating that these policies are highly sensitive to perturbations. In
contrast, for DecPG, this drop gradually vanishes as k decreases from 8 to 2, eventually resulting in an
almost flat landscape. This observation suggests that DecPG with sparser topologies produces more robust
policies, as their performance is less sensitive to parameter perturbations.

To sum up, the train and test performance gaps between DecPG and PS confirm that PS suffers from
suboptimal convergence and generalization, just like CSGD. In contrast, DecPG, based on DSGD, exhibits
clear improvements in exploration, convergence, and generalization over the PS baselines, proving itself as an
effective solution to these problems. The noise inherent in DSGD implicitly encourages exploration, which
is more effective than entropy regularization in most scenarios. This noise guides the policy toward flatter
and more robust optima (as evidenced by the generalization gaps and return landscapes), leading to better
convergence and generalization. Regarding the choice of topology sparsity, although no universal pattern
exists, the results suggest that a moderate level is generally more reliable, with a spectral gap between 0.5
and 0.7 serving as an empirical guideline.

6 Conclusion

In conclusion, this paper proposed a DSGD-based MARL algorithm, DecPG, which leverages decentralized
updates to improve generalization and convergence. We conducted an empirical analysis comparing DecPG
with its CSGD counterpart, PS, in the MPE Simple Spread and SMAC environments across homogeneous
tasks. Our results show that DecPG outperforms PS in both training and test environments in most scenarios,
including PS with entropy regularization. This supports our conclusion that PS inherits convergence and
generalization issues from CSGD, and that DecPG (DSGD) offers an effective solution.

To further assess generalization, we presented generalization gaps and return landscapes for DecPG and PS
baselines. These results illustrate that the regularization effect of DecPG promotes flatter return landscapes,
a qualitative illustration of better generalization.

Future work includes extending this research by incorporating more advanced optimizers, such as momentum-
based methods like AdamW, which are critical for training modern neural networks like Transformers. Ad-
ditionally, this paper simulates decentralized training under a single-worker CTDE framework. Therefore,
future studies should explore fully distributed training setups to assess the practical training efficiency ad-
vantages of DecPG. Finally, since this paper primarily focused on empirical analysis, theoretical justifications
are also desirable to better understand the optimization behavior in MARL.

10

Under review as submission to TMLR

References

Christopher Amato. An introduction to centralized training for decentralized execution in cooperative multi-
agent reinforcement learning. arXiv preprint arXiv:2409.03052, 2024.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scaling multi-
agent reinforcement learning with selective parameter sharing. In International Conference on Machine
Learning, pp. 1989-1998. PMLR, 2021.

Xiangxiang Chu and Hangjun Ye. Parameter sharing deep deterministic policy gradient for cooperative
multi-agent reinforcement learning. arXiv preprint arXiv:1710.00336, 2017.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction using
mini-batches. The Journal of Machine Learning Research, 13(1):165-202, 2012.

Xiaoge Deng, Tao Sun, Shengwei Li, and Dongsheng Li. Stability-based generalization analysis of the
asynchronous decentralized sgd. In Proceedings of the AAAI conference on artificial intelligence, volume 37,
pp. 7340-7348, 2023.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to commu-
nicate with deep multi-agent reinforcement learning. Advances in neural information processing systems,
29, 2016.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Coun-
terfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using deep
reinforcement learning. In International conference on autonomous agents and multiagent systems, pp.

66—83. Springer, 2017.
Sepp Hochreiter and Jirgen Schmidhuber. Flat minima. Neural computation, 9(1):1-42, 1997.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and
Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

Woojun Kim and Youngchul Sung. Parameter sharing with network pruning for scalable multi-agent deep
reinforcement learning. arXiv preprint arXiv:2303.00912, 2023.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified theory
of decentralized sgd with changing topology and local updates. In International conference on machine
learning, pp. 5381-5393. PMLR, 2020.

Xinran Li, Ling Pan, and Jun Zhang. Kaleidoscope: Learnable masks for heterogeneous multi-agent rein-
forcement learning. Advances in Neural Information Processing Systems, 37:22081-22106, 2024.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent.
Advances in neural information processing systems, 30, 2017.

Tgor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations.
arXiv preprint arXiv:1703.04908, 2017.

11

Under review as submission to TMLR

Haoyuan Qin, Zhengzhu Liu, Chenxing Lin, Chennan Ma, Songzhu Mei, Siqi Shen, and Cheng Wang.
Gradps: Resolving futile neurons in parameter sharing network for multi-agent reinforcement learning. In
Forty-second International Conference on Machine Learning, 2025.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning.
Journal of Machine Learning Research, 21(178):1-51, 2020.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli, Tim
G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The StarCraft
Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jader-
berg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for
cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Zikang Tian, Ruizhi Chen, Xing Hu, Ling Li, Rui Zhang, Fan Wu, Shaohui Peng, Jiaming Guo, Zidong
Du, Qi Guo, et al. Decompose a task into generalizable subtasks in multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 36:78514-78532, 2023.

Xihuai Wang, Zheng Tian, Ziyu Wan, Ying Wen, Jun Wang, and Weinan Zhang. Order matters: Agent-by-
agent policy optimization. arXiv preprint arXiv:2302.06205, 2023.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization minimizes sharpness? In The
Eleventh International Conference on Learning Representations, 2022.

Haoxiang Ye, Tao Sun, and Qing Ling. Generalization guarantee of decentralized learning with heterogeneous
data. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1-5. IEEE, 2025.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative multi-agent games. Advances in neural information processing systems,
35:24611-24624, 2022.

Wei Zhang, Xiaodong Cui, Ulrich Finkler, George Saon, Abdullah Kayi, Alper Buyuktosunoglu, Brian
Kingsbury, David Kung, and Michael Picheny. A highly efficient distributed deep learning system for
automatic speech recognition. arXiv preprint arXiv:1907.05701, 2019.

Wei Zhang, Mingrui Liu, Yu Feng, Xiaodong Cui, Brian Kingsbury, and Yuhai Tu. Loss landscape dependent
self-adjusting learning rates in decentralized stochastic gradient descent. arXiv preprint arXiv:2112.01433,
2021.

Yifan Zhong, Jakub Grudzien Kuba, Xidong Feng, Siyi Hu, Jiaming Ji, and Yaodong Yang. Heterogeneous-
agent reinforcement learning. Journal of Machine Learning Research, 25(32):1-67, 2024.

Tongtian Zhu, Fengxiang He, Kaixuan Chen, Mingli Song, and Dacheng Tao. Decentralized sgd and average-
direction sam are asymptotically equivalent. In International Conference on Machine Learning, pp. 43005—
43036. PMLR, 2023.

12

Under review as submission to TMLR

A Appendix

A.1 Hyper-parameters

This section provides the hyperparameter configurations used for training the PS, PS+entropy, and DecPG
policies across the MPE Simple Spread and SMAC environments. Table [T] summarizes the hyperparame-
ters that are shared across all tasks and methods. Table [2] details the task-specific and algorithm-specific
hyperparameters used in SMAC for each method.

For learning rates, we primarily tune over magnitudes [5e-1, le-1, 5e-2, le-2, 5e-3, 1e-3]. For the 6h_vs_ 8z
and 27m_ vs_30m tasks, we additionally test [de-1, 3e-1, 2e-1, 4e-2, 3e-2, 2e-2], as the default range either
led to underfitting or unstable convergence.

Table 1: Shared hyperparameter configurations for MPE Simple Spread and SMAC environments.

Hyperparameter MPE Simple Spread SMAC
Learning rate (Ir) le-2 —
Minimum Ir le-3 —
Ir decay Linear Linear
Number of mini-batches 1 1
Batch size 800 3200
PPO epochs 10 —
Clipping parameter 0.2 —
Entropy coefficient le-3 5e-3
Max gradient norm 10 10
Hidden layer size 64 64
Test Environment o 0.2 0.1
Test Environment c 0.2 0.01

Table 2: Hyperparameter configurations used for SMAC environments across PS, PS+entropy, and DecPG.

5m_vs_6m 10m_vs_ 11lm 27m_ vs_30m 6h_vs_ 8z
PS PS+entropy DecPG PS PS+entropy DecPG PS PS+entropy DecPG PS PS+entropy DecPG
Ir le-2 le-2 le-1 le-2 le-2 le-1 le-1 le-1 3e-1 le-1 le-1 3e-1
min Ir le-3 le-3 le-2 le-3 le-3 le-2 le-2 le-2 3e-2 le-2 le-2 3e-2
clip param 0.05 0.2 0.2 0.2
ppo epoch 10 10 5 5

A.2 Spectral Gap

The spectral gap of a doubly stochastic matrix P is defined as the difference between its largest eigenvalue
(which is 1) and the second-largest eigenvalue in modulus. The formula is given by

Spectral Gap :=1 — max [\

where \; are the eigenvalues of P. An example of the spectral gap values for kNN topologies with 11 agents
is shown in Figure [0]

A.3 Policy Entropy

Figure [7] shows the policy entropy of DecPG with different topologies and the PS baselines during training.
In the majority of scenarios, DecPG policies maintain higher entropy levels than PS, indicating greater
exploration. In contrast, PS with entropy regularization successfully increases exploration, often reaching
entropy levels comparable to or higher than those of DecPG.

13

Under review as submission to TMLR

Figure 7: Policy entropy for PS, PS with entropy regularization

11

Figure 6: Spectral gaps for n =11 with k=11t0 9

Simple Spread n = 8

Simple Spread n = 9

Simple Spread n = 10

Ps —— DecPG k=4 (0.52) 164 t—— PS —— DecPG k=5 (0.58) 175 — P ~—— DecPG k=6 (0.63)
—— S + entropy DecPG k=3 (0.35) — S + entropy —— DecPG k=3 (0.28) L — PS+entropy —— DecPG k=4 (0.35)
—— DecPG k=6 (0.86) DecPG k=2 (0.20) 14 —— DecPG k=7 (0.87) DecPG k=1 (0.06) 1.50 —— DecPG k=8 (0.89) DecPG k=2 (0.13)
~—— DecPG k=5 (0.69) 3
\\\t\/“\/*’\,\.ﬁ . .
>10 >
g 8100
Zos8 =
u Wors
06
~— 050
Y 04
025
02
0.00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Step 1e7 Step 1e7 Step 1e7
Simple Spread n = 11 Simple Spread n = 12 SMAC 5m_vs_6m
_— s —— DecPG k=5 (0.41) 175 — ps —— DecPG k=6 (0.47) 200 — P ~—— DecPG k=2 (0.46)
—— S + entropy DecPG k=3 (0.19) 10 |~ Ps+entropy DecPG k=4 (0.25) 175 — S + entropy —— DecPG k=1(0.19)
—— DecPG k=9 (0.90) DecPG k=1 (0.04) g DecPG k=2 (0.09) —— DecPG k=3 (0.75)
—— DecPG k=7 (0.66)
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Step 1e7 Step 1e7 Step 1e7
SMAC 10m_vs_11m SMAC 27m_vs_30m SMAC 6h_vs_8z
18 25
— P ~—— DecPG k=6 (0.63) |— Ps —— DecPG k=13 (0.39) — P ~— DecPG k=3 (0.57)
—— S + entropy —— DecPG k=4 (0.35) 164| — Ps +entropy DecPG k=7 (0.14) — S + entropy —— DecPG k=2 (0.33)
—— DecPG k=8 (0.89) DecPG k=2 (0.13) —— DecPG k=25 (0.96) DecPG k=1 (0.01) 20 —— DecPG k=4 (0.80) DecPG k=1 (0.13)
144 — DecPG k=19 (0.69)
»12 15
2 2
g10 I3
2 2
“os “ 1o
0.6
05
04
02 00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 06 08 10
Step 1e7 Step 1e7 Step 1e7

14

and DecPG with different topologies.

Under review as submission to TMLR

(a) Policy loss landscape surface

Figure 8: Visualization of loss landscapes in MPE Simple Spread n = 10, for PS, PS with entropy regular-
ization (PS+entropy), and DecPG with different topologies (DecPG k=x). The figures show 3D surfaces of
the loss with respect to perturbations in two orthonormal directions of the parameter space.

PS PS + entropy DecPG k = 8 DecPG k = 6 DecPG k = 4 DecPG k = 2

494 492 —49.0 488 —4B6 -4B4 492 490 488 486 B4 482 446 404 442 —44.0 —438 436 408 446 —a4.4 432 440 —438 436 444 —442 —430 438 -436 448 446 -a4.4 482 440 —438
Average Episode Reward Average Episode Reward Average Episode Reward ‘Average Episode Reward Average Episode Reward Average Episode Reward

(a) Average episode reward histogram

PS PS + entropy DecPG k = 8 DecPG k = 6 DecPG k = 4 DecPG k = 2

~0002 0000 0002 0004 0.006 0002 0004 0006 0008 0010 0000 0002 0004 0006 0008 0000 0002 0004 0006 0.008 0002 0004 0006 0008 0010 ~0002 0000 0002 0004 0.006
Policy Loss. Policy Loss Policy Loss. Policy Loss Policy Loss Policy Loss

(b) Policy loss landscape histogram

Figure 9: Visualization of reward and loss landscapes in MPE Simple Spread n = 10, for PS, PS with entropy
regularization (PS+entropy), and DecPG with different topologies (DecPG k=x). Subfigures (a) and (b)
present the histograms of the same landscape values.

A.4 Landscapes and Histograms

Figure [8a] demonstrates the loss landscapes of PS, PS+entropy, and DecPG with various topologies in Simple

Spread n=10. Figure [9] shows the histograms of the reward and loss landscapes corresponding to Figure
Longer tails indicate sharper landscapes, while shorter tails suggest flatter ones.

A.5 Inter-Agent Gradient Disagreement and Update Variance

To verify whether the theoretically predicted decentralization-induced noise actually arises during DecPG
training and how it varies across different topology sparsity, we measure the following metrics to quantify
and visualize this noise.

We define the inter-agent gradient disagreement D at a given iteration step m as below:
Dpn=—> g0 —Gml, where gm =—3 g, (1)
i=1 i=1

and g¢, = VL (0¢,) denotes the local gradient of agent i on its local loss L; at iteration m.

We define the inter-agent update variance) at iteration step m as

]_ - i X 2)]' . %
Vo= 0 B where 30, = 300 @

15

Under review as submission to TMLR

Simple Spread n = 10 le—6 Simple Spread n = 10

~
s

—— DecPG k=8 (0.89)
—— DecPG k=6 (0.63)
—— DecPG k=4 (0.35)

DecPG k=2 (0.13)

I o o g I I
- o o o N B
Inter-Agent Update Variance
N w B w o

Inter-Agent Gradient Disagreement
o o
o N

o =

T T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Step 1e7 Step 1e7

SMAC 10m_vs_11m SMAC 10m_vs_11m

0.012 —— DecPG k=8 (0.89)
—— DecPG k=6 (0.63)
—— DecPG k=4 (0.35)

DecPG k=2 (0.13)

0.7 4

o
o
=
o

0.6 1

0.51 0.008

0.4 4
0.006 -

0.3 1
0.004 -
0.2 1

011 " 0.002

Inter-Agent Gradient Disagreement
Inter-Agent Update Variance

0.0 1 0.000 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Step le7 Step le7

Figure 10: Inter-agent gradient disagreement (left) and inter-agent update variance (right) for DecPG in
Simple Spread n=10 (top) and SMAC 10m_vs_11m (bottom).

and A9!, = 0! ., — 0%, denotes the local parameter update of agent i at iteration m.

Figure[L0[shows the inter-agent gradient disagreement (left) and update variance (right) of DecPG of different
topologies for Simple Spread n = 10 (top) and 10m_ vs_11m (bottom) during training. For Simple Spread
n = 10, both metrics exhibit clear magnitude differences across topologies. In particular, the topology with
k = 2 shows the highest levels of inter-agent gradient disagreement and update variance, followed by k = 4
and k = 6, with £ = 8 being the smallest. Similarly, in 10m_vs_11m, the £ = 2 topology yields the largest
gradient disagreement and update variance, while £ = 8 yields the lowest, and k¥ = 4 and k = 6 remain at
comparable intermediate levels. These observations align with theoretical predictions that sparser topologies

induce stronger regularization effects (Zhu et al.| [2023)).

For both tasks, the inter-agent update variance first increases and then decreases toward zero. This trend
is partly due to the linear learning rate decay and partly to the gradual diffusion of local parameters across
the network, where sparser topologies (smaller k) diffuse more slowly, while denser ones (larger k) diffuse
faster. However, the inter-agent gradient disagreement does not converge to zero by the end of training,
particularly in Simple Spread n = 10. This is likely due to the inevitable data heterogeneity across agents.
For instance, as training progresses, each agent tends to specialize to some degree, leading to divergent
trajectory distributions and consequently greater gradient disagreement than at the start of training.

A.6 Performance under Different DecPG Evaluation Settings

To understand the characteristics of the final converged DSGD policy, we conduct additional evaluations be-
yond the standard evaluation using the average policy (denoted as Average Model (deterministic)in Table|3)),
as described in Section [3] First, we evaluate the non-averaged policy, i.e., using each agent’s local policy to
sample actions for its corresponding agent (denoted as Local Models in Table . Second, we evaluate each
individual agent’s policy independently, i.e., using one local policy for the decision-making of all agents. We
perform this for every agent and report the mean and standard deviation of performance (denoted as Indi-

16

Under review as submission to TMLR

Table 3: Training and test performance of the four DecPG policy settings for 10m_ws 11m and
27m_vs_30m. Average Model (deterministic) refers to the standard evaluation setting adopted in this
paper. Average Model (stochastic) samples actions from the policy distribution. Local Models use each
agent’s local policy to sample actions deterministically. Individual Local Models evaluate each local policy
deterministically and independently for all agents. For Individual Local Models, we report the mean perfor-
mance and standard deviation across all agents.

Average Model Average Model
(deterministic) (stochastic) Local Models Individual Local Models

10m_vs_11m k=2 (train) 12.341 11.952 12.336 12.313(0.073)
10m_vs_ 11m k=2 (test) 11.878 11.617 11.772 11.783(0.142)
27m_vs_30m k=1 (train) 14.309 13.032 14.241 14.234(0.332)
27m_vs_30m k=1 (test) 14.075 12.509 14.029 13.986(0.317)

vidual Local Models in Table . Third, we evaluate the averaged policy stochastically by sampling actions
from its distribution (denoted as Average Model (stochastic) in Table [3)).

We assess both training and test performance for these settings on 10m_wvs_11m (a regular-sized task) and
27m__vs_30m (a larger-scale task). For both tasks, we use one of the sparsest topologies. Note that it is more
difficult for the local models in 27m__vs_30m to reach consensus than in 10m_vs 11m, because the sparsest
topology in the former is even sparser than in the latter. The results, shown in Table [3| are consistent
across all scenarios. The average model performs best, while the local models and individual local models
perform slightly lower and at comparable levels. This indicates that the local models remain very close to the
averaged model by the end of DecPG training, even when the topology is extremely sparse, suggesting that
DecPG behaves similarly to DSGD rather than leading to strong specialization among agents. As expected,
the stochastic average model performs worse than its deterministic counterpart in both training and test
evaluations.

17

	Introduction
	Related Work
	Decentralized Policy Gradient
	Experiments
	Results and Findings
	DecPG achieves better convergence and exploration than the PS baselines during training.
	DecPG demonstrates better generalization than PS.
	Relationship between DecPG performance and topology sparsity.
	DecPG achieves flatter reward landscapes as topology becomes sparser.

	Conclusion
	Appendix
	Hyper-parameters
	Spectral Gap
	Policy Entropy
	Landscapes and Histograms
	Inter-Agent Gradient Disagreement and Update Variance
	Performance under Different DecPG Evaluation Settings

