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Abstract

Nearly all state-of-the-art deep learning algorithms rely on error backpropagation,
which is generally regarded as biologically implausible. An alternative way of
training an artificial neural network is through treating each unit in the network
as a reinforcement learning agent, and thus the network is considered as a team
of agents. As such, all units can be trained by REINFORCE, a local learning rule
modulated by a global signal that is more consistent with biologically observed
forms of synaptic plasticity. Although this learning rule follows the gradient of
return in expectation, it suffers from high variance and thus the low speed of
learning, rendering it impractical to train deep networks. We therefore propose a
novel algorithm called MAP propagation to reduce this variance significantly while
retaining the local property of the learning rule. Experiments demonstrated that
MAP propagation could solve common reinforcement learning tasks at a similar
speed to backpropagation when applied to an actor-critic network. Our work
thus allows for the broader application of teams of agents in deep reinforcement
learning.

1 Introduction

Error backpropagation algorithm (backprop) [1] efficiently computes the gradient of an objective
function with respect to parameters, by iterating backward from the last layer of a multi-layer
artificial neural network (ANN). However, backprop is generally regarded as being biologically
implausible [2, 3, 4, 5, 6, 7]. First, the learning rule given by backprop is non-local, as it relies on
information other than input and output of a neuron-like unit computed in the feedforward phase;
while biologically-observed synaptic plasticity depends mostly on local information (e.g. spike-timing-
dependent plasticity (STDP) [8]) and possibly some global signals (e.g. reward-modulated spike-
timing-dependent plasticity (R-STDP) [8, 9, 10]). Second, backprop requires precise coordination
between feedforward and feedback connections, because the feedforward value has to be retained
until error signals arrive; while it is unclear how a biological system can coordinate an entire network
to alternate between feedforward and feedback phases precisely. Third, backprop requires synaptic
symmetry in the forward and backward paths, rendering it biologically implausible. Nonetheless,
recent work has demonstrated that this symmetry may not be necessary for backprop due to the
‘feedback alignment’ phenomenon [11, 12, 13].

Alternatively, REINFORCE [14] could be applied to all units in the network to train an ANN as a
more biologically plausible way of learning. It is shown that the learning rule gives an unbiased
estimate of the gradient of return [14]. Another interpretation of this relates to viewing each unit as a
reinforcement learning (RL) agent, with each agent trying to maximize the global reward. Such a
team of agents is also known as a coagent network [15]. However, coagent networks can only solve
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simple tasks due to the high variance associated with the learning rule and thus the low speed of
learning. The high variance stems from the lack of structural credit assignment, i.e. a single scalar
reward is used to evaluate the action of all agents in the network.

To address this high variance associated with REINFORCE, we propose a novel algorithm that
significantly reduces the variance while retaining the local property of the learning rule. We call this
newly proposed algorithm maximum a posteriori (MAP) propagation. Essentially, MAP propagation
replaces the hidden units’ values with their MAP estimates conditioned on the action chosen, or
equivalently, minimizes the energy function of the network, before applying REINFORCE. We prove
that for a network with normally distributed hidden units, by minimizing the energy function of the
network, the parameter update given by REINFORCE and backprop (with the reparametrization
trick) becomes the same, thus establishing a connection between REINFORCE and backprop. Our
experiments show that a team of agents trained with MAP propagation can learn much faster than
REINFORCE, such that the team of agents can solve common RL tasks at a similar (or higher) speed
compared to an ANN trained by backprop, as well as exhibiting sophisticated exploration that differs
from an ANN trained by backprop.

The novel MAP propagation algorithm represents a new class of algorithm to train an ANN that is
more biologically plausible than backprop and maintains a comparable learning speed to backprop at
the same time. Our work also opens the prospect of the broader application of teams of agents, called
coagent networks [15], in deep RL.

2 Background and Notation

We consider a Markov Decision Process (MDP) defined by a tuple (S,A, P,R, γ, d0), where S is
a finite set of states of an agent’s environment (although this work can be extended to the infinite
state case), A is a finite set of actions, P : S × A × S → [0, 1] is a transition function giving
the dynamics of the environment, R : S × A → R is a reward function, γ ∈ [0, 1] is a discount
factor, and d0 : S → [0, 1] is an initial state distribution. Denoting the state, action, and reward
signal at time t by St, At, and Rt respectively, P (s, a, s′) = Pr(St+1 = s′|St = s,At = a),
R(s, a) = E[Rt|St = s,At = a], and d0(s) = Pr(S0 = s), where P and d0 are valid probability
mass functions. An episode is a sequence of states, actions, and rewards, starting from t = 0
and continuing until reaching the terminal state. For any learning methods, we can measure its
performance as it improves with experience over multiple episodes, which makes up a run.

Letting Gt =
∑∞

k=t γ
k−tRk denote the infinite-horizon discounted return accrued after acting at

time t, we are interested in finding, or approximating, a policy π : S ×A → [0, 1] such that for any
time t ≥ 0, selecting actions according to π(s, a) = Pr(At = a|St = s) maximizes the expected
return E[Gt|π]. The value function for policy π is V π where for all s ∈ S , V π(s) = E[Gt|St = s, π],
which can be shown to be independent of t for the infinite-horizon case we are considering.

Here we restrict attention to policies computed by multi-layer networks consisting of L layers of
stochastic units. Let H l

t ∈ Rn(l) denote the activation values of the units in layer l at time t and
n(l) denote the number of units in layer l. For any t ≥ 0, we also let H0

t = St, HL
t = At, and

Ht = {H1
t , H

2
t , ...,H

L−1
t }. We call any elements in Ht a hidden layer and HL

t the output layer. The
distribution of H l

t conditional on H l−1
t is given by πl : Rn(l−1) × Rn(l) → [0, 1], such that for any

t ≥ 0, πl(h
l−1, hl;W l) = Pr(H l

t = hl|H l−1
t = hl−1;W l), where W l is the parameter of layer l.

We also denote all parameters of the network as W = {W 1,W 2, ...,WL}. To sample an action At

from the network, we iteratively sample H l
t ∼ πl(H

l−1
t , ·;W l) from l = 1 to L.

We say a layer l is normally distributed if πl(H
l−1
t , ·;W l) = N(gl(H l−1

t ;W l), σ2
l ), the normal

distribution with mean gl(H l−1
t ;W l), where gl : Rn(l−1) → Rn(l) is a differentiable function, and a

fixed standard deviation σl. A common choice of g is a linear transformation followed by an activation
function; that is, g(H l−1

t ;W l) = f(W lH l−1
t ) where f is a non-linear activation function such as

softplus or rectified linear unit (ReLU) and W l ∈ Rn(l)×n(l−1). We also define the energy function
E : Rn(1) × Rn(2) × ... × Rn(L−1) → [0,∞) as E(h; s, a) = − log Pr(Ht = h|St = s,At = a),
which can be shown to be independent of t.
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The case we consider here is one in which all the units of the network implement an RL algorithm
and share the same reward signal. These networks can therefore be considered as teams of agents
(agent here refers to an RL agent [16]), which have also been called coagent networks [15].

We denote ∇xf as the gradient of f w.r.t. x, AT as the transpose of matrix A, and ∇Af(Pr(A))
as the shorthand for ∇af(Pr(A = a)). For a random variable X with a distribution that de-
pends on parameter W and a random variable Y , we call h(Z;W,Y ) the re-parameterization of
X by Z conditioned on Y if h(Z;W,Y ) and X have the same conditional distribution; that is,
Pr(h(Z;W,Y ) = x|Y = y) = Pr(X = x|Y = y;W ) for all values of x, y and W , where Z is an
independent random variable with a distribution that does not depend on parameter W and h is an
invertible and differentiable function. In case X has a multi-layer structure, we denote hl(Z;W,Y )
as the lth layer in h(Z;W,Y ) and h−1 as the inverse of h. In general, we use the superscript l to
denote the lth layer in a variable if the variable has a multi-layer structure. Also, for all distributions
discussed in this paper, the probability mass function is replaced by probability density function if
the random variable is continuous.

3 Algorithm

3.1 MAP Propagation

MAP propagation is based on REINFORCE applied to each hidden unit with the same global
reinforcement signal. To reduce the variance associated with the learning rule, we note that this
variance can be reduced by using the expected parameter update conditioned on the state and the
selected action instead. However, this expected parameter update is generally intractable to compute
analytically. Therefore, we propose to use the maximum a posteriori (MAP) estimate to approximate
the expected parameter update. This makes the resulting learning rule biased but reduces the variance
significantly. The details of MAP propagation are as below.

The gradient of return with respect to W l (where l ∈ {1, 2, ..., L} in all discussion below unless
stated otherwise) can be estimated by REINFORCE, also known as likelihood ratio estimators:

∇W l E[Gt] =

∞∑
k=t

γ(k−t) E[Gk∇W l log Pr(Ak|Sk)]. (1)

We can show that the terms in the summation of (1) also equal E[Gk∇W l log πl(H
l−1
k , H l

k;W
l)],

which is the REINFORCE learning rule applied to each hidden unit with the same global reinforce-
ment signal Gk:
Theorem 1. Let the policy be a multi-layer network of stochastic units as defined in Section 2. For
any t ≥ 0 and l ∈ {1, 2, ..., L},

E[Gt∇W l logPr(At|St;W )] = E[Gt∇W l log πl(H
l−1
t , H l

t ;W
l)]. (2)

The proof is in Appendix B.1. Note that this theorem is also proved by Williams [14]. This shows
that we can apply REINFORCE to each unit of the network, and the learning rule still gives an
unbiased estimate of the gradient of the return. Therefore, denoting α as the step size, we can update
parameters by the following stochastic gradient ascent rule:

W l ←W l + αGt∇W l log πl(H
l−1
t , H l

t ;W
l). (3)

However, this learning rule suffers from high variance since a single reward, which results from
the exploration of all units, is used to evaluate actions of all units, making the learning rule scale
poorly with the number of units in the network. To reduce the variance, we notice that we can replace
∇W l log πl(H

l−1
t , H l

t ;W
l) in learning rule (3) by E[∇W l log πl(H

l−1
t , H l

t ;W
l)|St, At], noting that

(see Appendix B.1 for the details; at the R.H.S., the outer expectation is taken over St, At and Gt,
while the inner expectaion is taken over H l−1

t and H l
t):

E[Gt∇W l log πl(H
l−1
t , H l

t ;W
l)] = E[Gt E[∇W l log πl(H

l−1
t , H l

t ;W
l)|St, At]]. (4)

This can reduce variance since the variance associated with the stochastic noise of hidden units is
removed in the learning rule (see Appendix B.6 for the proof). The learning rule now becomes:

W l ←W l + αGt E[∇W l log πl(H
l−1
t , H l

t ;W
l)|St, At]. (5)
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Since (3) is following gradient of return in expectation, and the expected update value of (3) and
(5) is the same, we conclude that (5) is also a valid learning rule as it follows the gradient of
return in expectation. However, we note that E[∇W l log πl(H

l−1
t , H l

t ;W
l)|St, At] in (5) is generally

intractable to compute analytically. Instead, we propose to use the MAP estimate to approximate this
term:1

E[∇W l log πl(H
l−1
t , H l

t ;W
l)|St, At] ≈ ∇W l log πl(Ĥ

l−1
t , Ĥ l

t ;W
l), (6)

where Ĥt = argmaxht
Pr(Ht = ht|St, At). There are many methods to approximate Ĥt, such as

hill-climbing methods. In case of hidden units being continuous, we can approximate Ĥt by running
gradient ascent on log Pr(Ht|St, At) as a function of Ht for fixed St and At, such that Ht approaches
Ĥt. Ht can be initialized as the value sampled from the network when sampling action At. To be
concrete, before applying learning rule (3), we first run gradient ascent on Ht for N steps:

Ht ← Ht + α∇Ht
log Pr(Ht|St, At). (7)

For l ∈ {1, 2, ..., L− 1}, this is equivalent to (see Appendix B.4 for the details):

H l
t ← H l

t + α(∇Hl
t
log πl+1(H

l
t , H

l+1
t ;W l+1) +∇Hl

t
log πl(H

l−1
t , H l

t ;W
l)). (8)

This update rule maximizes the probability of hidden units’ value given the state and the action with
respect to hidden units’ value. Based on the definition of energy functions in Section 2, the update
rule of hidden units can also be seen as minimizing the energy function E(Ht;St, At) [17].

After updating Ht for N steps by (8), we obtain an estimate of Ĥt, denoted as H̃t, and apply the
following learning rule to learn the parameters of network:

W l ←W l + αGt∇W l log πl(H̃
l−1
t , H̃ l

t ;W
l). (9)

We call the algorithm that applies REINFORCE after replacing the value of hidden units by their
approximated MAP estimate MAP propagation. The pseudo-code of MAP propagation with gradient
ascent to approximate Ĥt can be found in Algorithm 1 in Appendix A. Note that N = 0 recovers the
special case of pure REINFORCE.

Similar to actor-critic networks [16], we can also train a critic network to estimate the state-value,
V π(St), so Gt in (9) can be replaced by TD error δt = Rt + γV π(St+1)− V π(St) and the whole
algorithm can be implemented online. To better facilitate temporal credit assignment, we can also
use eligibility traces to replace the gradient in (9), using the same idea of actor-critic networks with
eligibility trace [16]. The pseudo-code of it can be found in Algorithm 2 in Appendix A.

A team of agents can be trained by MAP propagation to estimate the state-value, such that a separate
team of agents can fulfill the role of a critic network, and the whole actor-critic network can be trained
without backprop. A simple way to achieve this is to convert the estimation of state-value to an RL
task, but this conversion is inefficient since the information of optimal actions is lost (the agent only
knows a scalar reward but not the target output). Appendix C proposes a new learning rule to train a
team of agents to estimate the state-value by MAP propagation efficiently based on the information
of optimal actions.

Essentially, MAP propagation is equivalent to applying REINFORCE after minimizing the energy
function. As there are many studies on the biological plausibility of REINFORCE, we refer readers
to the book of Sutton and Barto [16] for a review and discussion of the connection between REIN-
FORCE and neuroscience. The main difference between MAP propagation and REINFORCE is the
minimization of the energy function given by the update rule (8). This update rule is local as it only
depends on the units one layer above and below based on feedforward and feedback connections.
There is much evidence that feedback signals in brains alter neural activity [7, 18], supporting
the use of feedback connections in MAP propagation. The update rule can also be performed in
parallel for all layers, removing the need for precise coordination between feedforward and feedback
connections as in backprop. However, the update rule requires the feedback weight to be symmetric
of the feedforward weight and different values to be propagated through feedforward and feedback
connections.

MAP propagation fits well into the recently proposed NGRAD hypothesis [7], which hypothesizes that
the cortex uses differences in activity states to drive learning. The main idea of NGRAD is that “higher-
level activities can nudge lower-level activities towards values that are more consistent with the

1We let Ĥ0
t = H0

t = St, Ĥl
t denote the lth layer in Ĥt for l ∈ {1, 2, ..., L− 1}, and ĤL

t = HL
t = At.

4



higher-level activity”, which also describes the process of energy minimization in MAP propagation.
A detailed discussion of the biological plausibility of MAP propagation and its relationship with the
NGRAD hypothesis can be found in Appendix F.

3.2 Relationship with Backpropagation

A network of stochastic units cannot be directly trained by backprop. However, assuming that there
exists a re-parameterization of Ht by Zt conditioned on St, denoted by h(Zt;W,St), then we can
update parameters using backprop with the re-parameterization trick [19]; that is, for l ∈ {1, 2, ..., L}:

W l ←W l + αGt∇W l log πL(h
L−1(Zt;W,St), At;W

L). (10)
It can be shown that this learning rule follows the gradient of return in expectation (See Appendix
B.5 for the proof). Using a similar argument as in MAP propagation, we can reduce the variance
associated with the learning rule by minimizing the energy function before applying the learning rule.

Interestingly, for a network with all hidden layers being normally distributed, when the values of
hidden layers are settled to a stationary point of the energy function, the parameter update given
by backprop with the reparametrization trick in (10) is equivalent to the parameter update given by
REINFORCE in (3):2

Theorem 2. Let the policy be a multi-layer network of stochastic units with all hidden layers normally
distributed as defined in Section 2. There exists a re-parameterization of Ht by Zt conditioned on
St that is independent of t, denoted by h(Zt;W,St), such that for any l ∈ {1, 2, ..., L}, s ∈ S,
ĥ ∈ Rn(1)×Rn(2)×...×Rn(L−1), ẑ ∈ Rn(1)×Rn(2)×...×Rn(L−1) and a ∈ A, if∇hE(ĥ; s, a) = 0

and ẑ = h−1(ĥ;W, s), then

∇W l log πl(ĥ
l−1, ĥl;W l) = ∇W l log πL(h

L−1(ẑ;W, s), a;WL). (11)

The proof is in Appendix B.2. In other words, by nudging the values of units in lower layers towards
values that are more consistent with the value of units in the final layer, the parameter update given
by REINFORCE becomes the same as backprop with the reparametrization trick. With N →∞ and
α sufficiently small, under the update rule (7), Ht will converge to the stationary point of the energy
function. Therefore, the parameter update given by MAP propagation converges to the parameter
update given by backprop with the reparametrization trick after minimizing the energy function.

Despite the close relationship between MAP propagation and backprop, there are key differences
between the two algorithms. Compared to backprop, one major limitation of MAP propagation is that
it can only be applied to RL tasks. MAP propagation is also more computationally expensive than
backprop due to the minimization of the energy function in every step. However, MAP propagation
can be applied to a network of discrete units. Moreover, MAP propagation does not require non-local
feedback signals or precise coordination between feedforward and feedback pathways, which makes
it more biologically plausible than backprop.

To see that MAP propagation is more computationally expensive than backprop, denote L as the
number of layers in the network and N as the number of steps in the energy minimization (the inner
loop). MAP propagation requires LN layer updates during each step of energy minimization, while
backprop requires L layer updates to compute the feedback signals (iterating from the top layers).
Therefore, MAP propagation takes N times more layer updates than backprop. However, the LN
layer updates in MAP propagation can be done in parallel for all layers, so the time complexity
for a single step of MAP propagation can be reduced to O(N) from O(LN) if the update is done
in parallel. For backprop, parallel computation of feedback signals is not possible, so the time
complexity for a single step of backprop remains O(L).

4 Related Work

Local learning rules based on MAP estimates of latent variables have been proposed in both unsu-
pervised and supervised learning tasks. For unsupervised learning tasks, Bengio et al. [5] proposed
training a deep generative model by using MAP estimate to infer the value of latent variables, condi-
tioned on observed variables; in the same work, they also proposed to learn the feedback weights

2We let ĥ0 = s, ĥl denote the lth layer in ĥ for l ∈ {1, 2, ..., L− 1}, and ĥL = a.
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such that the constraint of symmetric weight can be removed. This idea can also possibly be applied
to our algorithm. For supervised learning tasks, Whittington and Bogacz [20] proposed training a
deep network with local learning rules based on MAP inference and clipping the output value of the
network to the target value. In contrast to these works, MAP propagation applies to RL tasks and
does not require clipping any units’ values.

Besides algorithms based on MAP estimates, many biologically plausible alternatives to backprop
have been proposed. Biologically plausible learning rules based on reward prediction errors and
attentional feedback have also been studied [21, 22, 23]; but these learning rules mostly require a
non-local feedback signal. Moreover, there have been efforts to study local learning rules based on
contrastive divergence or nudging the values of output units towards the target value [24, 25, 26]. See
the work of Lillicrap et al. [7] for a comprehensive review of algorithms that approximate backprop
with local learning rules based on the differences in units’ values. Contrary to these works, MAP
propagation requires neither the temporal difference in units’ value nor multiple phases of learning.

Another perspective of training a multi-level network of stochastic units relates to viewing each
unit as an RL agent, forming a hierarchy of agents. In hierarchical RL, Levy et al. [27] proposed
learning a multi-level hierarchy with hindsight actions, which is similar to our idea of replacing the
values of hidden layers with the MAP estimates. The special case of a team of agents forming a
network to solve a task in a cooperative way was first proposed by Tsetlin [28] and later by Barto
[29], and a comprehensive review can be found in chapter 15.10 of the book of Sutton and Barto
[16]. Such a team of agents is recently called coagent networks [15] and theories relating to training
coagent networks have been studied [15, 30, 31]. However, coagent networks learn much slower
than an ANN trained by backprop due to the high variance associated with the learning rule. A few
methods have been proposed to reduce this variance. Thomas [15] proposed to disable exploration
of units randomly, but the learning speed is still not comparable to backprop. Chung [32] proposed
the Weight Maximization algorithm, which replaces the global reward in the learning rule with a new
local reward signal, and showed that this change of reward signal can reduce the variance effectively.

In addition, there is a large amount of literature on methods for training a network of stochastic units.
A review can be found in the work of Weber et al. [33], which includes the re-parametrization trick
[34] and REINFORCE [14]. They introduced methods to reduce the variance of the estimate, such as
baseline and critic. These ideas are orthogonal to the use of MAP estimate to reduce the variance
associated with REINFORCE.

5 Experiments

To test the algorithm, we first consider a single-time-step MDP that is similar to the multiplexer task
[29]. This is to test the performance of the algorithm as an actor. Then we consider a scalar regression
task to test the performance of the algorithm as a critic. Finally, we consider some standard RL tasks
to test the performance of the algorithm as both an actor and a critic.

In the below tasks, all the teams of agents (or coagent networks) have the same architecture: a
two-hidden-layer network, with the first hidden layer having 64 units, the second hidden layer having
32 units, and the output layer having one unit. All hidden layers are normally distributed with
πl(H

l−1
t , ·;W l) = N(f(W lH l−1

t ), σ2
l ) for l = 1, 2, and f(x) = log(1 + exp(x)), the softplus

function. For the network in multiplexer task and the actor network with discrete output, the output
unit’s distribution is given by the softmax function on the previous layer, i.e. πL(H

L−1, a;WL) =
softmaxa(WLHL−1/T ), where T > 0 is a scalar hyperparameter representing the temperature. For
the network in the scalar regression task, the critic network and the actor network with continuous
output, the output unit’s distribution is normally distributed with mean given by a linear transformation
of the previous layer’s value and a fixed variance, i.e. πL(H

L−1, ·;WL) = N(WLHL−1, σ2
L). We

used N = 20 in MAP propagation. Other hyperparameters and details of experiments can be found
in Appendix D.

5.1 Multiplexer Task

We consider a single-time-step MDP that is similar to the k-bit multiplexer task. In our single-time-
step MDP, the state is sampled from all possible values of a binary vector of size k + 2k with equal
probability. The action set is {−1, 1}, and we give a reward of 1 if the action of the agent is the
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Figure 1: Running average rewards over the last 10 episodes in multiplexer task and scalar regression
task. Results are averaged over 10 independent runs, and shaded area represents standard deviation
over the runs.

100 150 200 250 300 350 400 450 500
Episode

−300

−250

−200

−150

−100

Ep
iso

de
 R
et
ur
n

MAP Propagation
REINFORCE
REINFORCE with [15]
Backprop

(a) Acrobot

200 400 600 800 1000
Episode

0

100

200

300

400

500

Ep
iso

de
 R
et
ur
n

MAP Pro agation
REINFORCE
REINFORCE with [15]
Back ro 

(b) CartPole

0 500 1000 1500 2000 2500
Episode

−200

−100

0

100

200

Ep
iso

de
 R
et
 r
n

MAP Propagation
REINFORCE
REINFORCE with [15]
Backprop

(c) LunarLander

100 150 200 250 300 350 400 450 500
Episode

−100

−75

−50

−25

0

25

50

75

Ep
iso

de
 R

et
u 

n

MAP P opagation
REINFORCE
REINFORCE with [15]
Backp op

(d) MountainCar

Figure 2: Running average returns over the last 100 episodes in Acrobot, CartPole, LunarLander and
MountainCar. Results are averaged over 10 independent runs, and shaded area represents standard
deviation over the runs.
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Table 1: Average return over all episodes.
Acrobot CartPole LunarLander MountainCar

Mean Std. Mean Std. Mean Std. Mean Std.

MAP Propagation -100.29 5.40 459.70 13.89 127.88 24.57 39.45 30.48
REINFORCE -148.42 47.65 47.29 8.22 -62.05 16.16 -35.52 0.65
REINFORCE with [15] -149.11 33.50 112.58 42.54 -54.61 23.47 -4.65 0.21
Backprop -106.29 15.00 458.96 9.44 104.92 31.98 4.30 59.28

desired action and -1 otherwise. The desired action is given by the output of a multiplexer, with the
input of the multiplexer being the state. We consider k = 5 here, so the dimension of the state space
is 37.

We used Algorithm 1 for training a team of agents by MAP propagation. We consider three baselines:
1. REINFORCE - A team of agents trained entirely by REINFORCE; 2. REINFORCE with [15] - A
team of agents trained entirely by REINFORCE but with the variance reduction method considered
by Thomas [15]; 3. Backprop - An ANN with a similar architecture where the output unit is trained
by REINFORCE and hidden units are trained by backprop.

The results are shown in Fig 1. We observe that MAP propagation performs much better than the two
REINFORCE baselines. The result suggests that MAP propagation can improve the learning speed
of REINFORCE significantly, such that its learning speed is comparable to backprop.

5.2 Scalar Regression Task

In the following, we consider a scalar regression task. The dimension of input is 8 and follows the
standard normal distribution. The target output (a real scalar) is computed by a one-hidden-layer
ANN with weights chosen randomly. The goal of the task is to predict the target output given the
input.

For MAP propagation, we used Algorithm 1 and tested two variants. In the first variant that is labeled
as ‘MAP Prop (RL)’, we treated the task as a single-time-step MDP with the negative L2 loss as the
reward and trained the network using Algorithm 1. In the second variant that is labeled as ‘MAP Prop
(SL)’, we replaced the learning rule in Algorithm 1 with the learning rule proposed in Appendix C,
which incorporates the value of target output. For the baseline, we trained an ANN with a similar
architecture by gradient descent on the L2 loss.

The results are shown in Fig 1. We observe that if we directly use the negative L2 loss as the reward,
then the learning speed of MAP propagation is significantly lower than backprop since the information
of target output is not incorporated. On the other hand, if we use the learning rule in Appendix
C to incorporate the information of target output, then the learning speed of MAP propagation is
comparable to backprop. However, the asymptotic performance of MAP propagation is slightly worse
than backprop, which is due to the stochastic property of teams of agents. Nonetheless, this may not
be a problem when applying MAP propagation to train a critic network, since the value function to
be estimated is also constantly changing with the policy function.

5.3 Reinforcement Learning Task

In the following, we consider four standard RL tasks: Acrobot, CartPole, LunarLander, and continuous
MountainCar in OpenAI’s Gym. For MAP propagation, we use the actor-critic network with eligibility
traces given by Algorithm 2, and the critic network is trained by the learning rule proposed in
Appendix C. We consider three baselines. For the first and second baseline, the actor network is
a team of agents trained entirely by REINFORCE. However, since REINFORCE cannot train a
critic network directly and it is inefficient to convert the state-value estimation task to an RL task,
we used an ANN with a similar architecture trained by backprop as the critic network. We also
used the variance reduction method considered by Thomas [15] in the second baseline. We used
eligibility traces in the training of both the actor and the critic network. For the third baseline, we
used actor-critic with eligibility traces (episodic) [16] trained by backprop. Both actor and critic
networks are ANNs with an architecture similar to the team of agents.
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The average return over ten independent runs is shown in Fig 2. Let Ḡ denote the average return of
all episodes. The mean and standard deviation of Ḡ over the ten runs can be found in Table 1. For all
RL tasks, we observe that MAP propagation has a better performance than the baselines in terms of
the average return Ḡ. The result demonstrates that a team of agents trained with MAP propagation
can learn much faster than a team of agents trained with REINFORCE, such that the team of agents
can solve common RL tasks at a similar (or higher) speed compared to an ANN trained by backprop.

Although there are other algorithms besides actor-critic networks that can solve RL tasks more
efficiently, the present work aims to compare different training methods for hidden units in an actor-
critic network. Teams of agents trained by MAP propagation can also be applied to algorithms besides
actor-critic networks, such as variants of actor-critic networks like Proximal Policy Optimization [35]
and action-value based methods like Q-Learning [16].

We also notice that MAP Prop performs better than backprop on tasks where a high degree of
exploration is required. For example, MAP propagation performs slightly worse than backprop on
the multiplexer task but much better than backprop on the MountainCar task. This may suggest that
teams of agents trained with MAP propagation can have better exploration than an ANN trained
with backprop. This is further corroborated by the analysis of agents’ behaviors on MountainCar,
a task where an agent can easily be stuck in the local optima. For backprop, we found that agents
in most of the runs are stuck in early episodes even with the use of entropy regularization [36]. In
contrast, a team of agents trained by MAP propagation can reach the goal of the task successfully in
all runs. A detailed analysis of this can be found in Appendix E. One possible explanation for the
better exploration is that actions of agents in lower layers can be considered as abstract actions, and
the exploration of these agents corresponds to exploration beyond the primitive actions.

6 Future Work and Conclusion

The ability to train teams of agents efficiently leads to many possible future directions. First, the
local property of the learning rule points to the possibility of implementing MAP propagation
asynchronously, such that it can be implemented efficiently with neuromorphic circuits [37]. Second,
agents in the team can have a different temporal resolution, such that the actions of agents can be
extended temporally and become options [38], yielding better exploration and learning behavior.

In conclusion, we propose a new algorithm that reduces the variance associated with REINFORCE
and thus significantly increases the learning speed in the training of a team of agents. The proposed
algorithm is also more biologically plausible than backprop while maintaining a comparable learning
speed to backprop. Our work opens the prospect of the broader application of teams of agents in
deep RL. Our experiments also suggest a team of agents trained by MAP propagation can have more
sophisticated exploration compared to an ANN trained by backprop.
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