Under review as a conference paper at ICLR 2025

ADAPTIVE CURVATURE STEP SIZE: A PATH
GEOMETRY BASED APPROACH TO OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose the Adaptive Curvature Step Size (ACSS) method, which dynami-
cally adjusts the step size based on the local geometry of the optimization path.
Our approach computes the normalized radius of curvature using consecutive gra-
dients along the iterate path and sets the step-size equal to this radius. The ef-
fectiveness of ACSS stems from its ability to adapt to the local landscape of the
optimization problem. In regions of low curvature, where consecutive gradient
steps are nearly identical, ACSS allows for larger steps. Conversely, in areas of
high curvature, where gradient steps differ significantly in direction, ACSS re-
duces the step size. This adaptive behavior enables more efficient navigation of
complex loss landscapes. A key advantage of ACSS is its adaptive behavior based
on local curvature information, which implicitly captures aspects of the function’s
second-order geometry without requiring additional memory. We provide a gen-
eralized framework for incorporating ACSS into various optimization algorithms,
including SGD, Adam, AdaGrad, and RMSProp. Through extensive empirical
evaluation on 20 diverse datasets, we compare ACSS variants against 12 popular
optimization methods. Our results consistently show that ACSS provides perfor-
mance benefits. Our results consistently show that ACSS provides performance
benefits. We provide PyTorch implementations of ACSS versions for popular op-
timizers at our anonymized code repository.

1 INTRODUCTION

Optimization algorithms are the canonical work-horses of machine learning, driving the process of
finding optimal parameters for deep learning models (Soydaner, 2020; Kochenderfer & Wheeler,
2019; Beck, 2017). As model architectures grow in size and complexity, the efficiency of these al-
gorithms becomes paramount. A key challenge is that the objective in many learning problems are
inherently non-convex, often due to structural or data-related constraints that impose non-convexity
(Jain et al., 2017). Such learning problems may induce intricate loss landscapes characterized by
large tracts of low gradients interspersed with areas of steep gradients, presenting significant navi-
gational challenges for optimization algorithms. Effective optimization methods must not only find
good solutions but do so efficiently in terms of computation and memory usage, especially when
dealing with large-scale models and datasets, where navigation on the loss landscape is likely to
follow an intricate path (Anil et al., 2019).

In light of this, we propose a geometric path based solution to optimization: the Adaptive Curvature
Step Size (ACSS) method. Our approach is motivated by the observation that the curvature of the
optimization path itself contains information about the local geometry of the loss landscape. By
utilizing this curvature information, we can incorporate second order information adaptively into
the step size — without the need for explicit computation or storage of second-order derivatives,
and without the need for careful tuning of learning rates.

The intuition behind ACSS is rooted in differential geometry. Specifically, the curvature of a path
provides insight into how rapidly the gradient is changing, which is indicative of the local shape
of the loss surface. In fact, the iterate path can be viewed as a finite-difference approximation to
the gradient flow manifold. We note that the curvature of this manifold is a powerful proxy for the
local geometry of the loss landscape. Our method, ACSS, implicitly captures information about the
changing gradient, which is related to the Hessian. This provides some of the benefits of second-
order methods while maintaining the computational efficiency of first-order approaches.

https://anonymous.4open.science/r/curvatureStep-2a79/README.md

Under review as a conference paper at ICLR 2025

Optimization Paths on the Beale Function

SimpleSGD HeavyBall

7
—8— HeavyBall

X Global Optimum =

—8— NAG
X Global Optimum

—e— NAGCurvature |
X Global Optimum . X Global Optimum

s s s

25 00 25 50 —25 00 25 50 25 00 25 50

—e— SimpleSGDCurvatur
X Global Optimum

Figure 1: We ploty the optimization paths of various optimizers on the Beale fur{ction which is
characterized by steep valleys and a small area containing the global minimum. All optimizers start
at (—1.5,2.5) with a learning rate of 1 x 10~3. The function has a global minimum at (3,0.5); The
ACSS versions of the optimizers converge here, without the use of any additional memory to store
higher order moments.

1.1 RELATED WORKS:

First Order Methods: While first-order methods like Stochastic Gradient Descent (SGD) have low
memory requirements, they converge slowly, particularly in ill-conditioned problems (Tian et al.,
2023). Momentum based methods such as HeavyBall and NAG dampen oscillations to a certain
degree (Sra et al., 2012; Nesterov, 2013), yet have limited ability to adapt when the loss landscape
requires a change in direction of iterate (as seen in Figure 1).

Variance of Gradient: To address the limitations of basic SGD, several adaptive methods that ad-
just learning rates based on gradient statistics have been proposed. Adagrad accumulates squared
gradients to adaptively tune learning rates, but it suffers from an ever-decreasing learning rate (Duchi
et al., 2011). RMSProp improves upon this by using an exponentially decaying average of squared
gradients, maintaining a more stable learning rate over time (Hinton et al., 2012). Adam and its
variants (Kingma & Ba, 2014) further incorporate momentum, combining the benefits of adaptive
learning rates and momentum to achieve better performance in various scenarios. AdamW en-
ables better generalization through through weight decay regularization [Loshchilov & Hutter (2017).
AMSGrad addresses the convergence issues of Adam by ensuring that the learning rate does not
increase, thereby providing better theoretical guarantees and more stable convergence in practice
(Reddi et al., 2019). Nadam, and its weight decay variant NAdamW, integrate Nesterov momen-
tum into the Adam framework, leading to faster convergence by anticipating the future position of

Accumulated Exp. Ay Exp. Avg. of

Optimizer Weights | Gradients | Momentum Squared p- AVE. Squared
. of Gradients .

Gradients Gradients
SimpleSGD v v X X X X
HeavyBall v v v X X X
NAG v v v X X X
Adagrad v v X v X X
RMSProp v v X v X X
Adadelta v v X X X v
Adam v v X X v v
AdamW v v X X v v
AMSGrad v v X X v v
NAdam v v X X v v
NAdamW v v X X v v
RMSPropMomentum v v v v X X

Table 1: Memory requirements for different optimizers during backpropagation

Under review as a conference paper at ICLR 2025

the parameters (Dozat, 2016). However, these adaptive methods are not without drawbacks. They
can sometimes lead to poor generalization (Wilson et al., 2017), and the implicit learning rate de-
cay inherent in their designs can cause convergence issues in some scenarios (Reddi et al., 2019).
Moreover, lack the ability to fully capture and utilize the local geometric information of the loss
landscape, and often require careful tuning of hyper-parameters. We provide a study on the memory
requirements of various optimizers in terms of the number of parameters in the model, in Table 1.

Second Order Methods: Second-order optimization methods typically offer better convergence
properties, but Hessian based methods can get prohibitively expensive (Anil et al., 2020). Works
like Gupta et al. (2018); Goldfarb et al. (2020); Singh et al. (2023) exploit the structure of the neural
architecture that is being optimized (using factoring over layers) to reduce the computational cost,
but these can face numerical instabilities. Subsequent works like Sophia (Liu et al., 2023) and AGD
(Yue et al., 2023) address these issues, and yet have memory overhead. Recent works like Feinberg
et al. (2024); Yen et al. (2024) address the memory issue to a certain degree, but they are essentially
approximating the preconditioning tensor, which has a computation cost. Still other methods like
VeLO (Metz et al., 2022) are frameworks that decide the optimization parameters using a small
neural network — which has a wall-clock time overhead.

1.2 OUR CONTRIBUTIONS

1. Novel Optimization Approach: We introduce the Adaptive Curvature Step Size (ACSS) method,
a new optimization algorithm that leverages the geometric properties of the optimization path to dy-
namically adjust step sizes. ACSS incorporates local curvature information derived from consecutive
gradients, providing benefits typically associated with higher-order methods while maintaining the
computational efficiency of first-order approaches. This approach allows ACSS to adapt to the local
landscape of the optimization problem automatically, eliminating the need for careful manual tuning
of step sizes typically required in traditional optimization methods.

2. Low Memory Footprint with Performance Benefits: Unlike many optimization methods that
require significant additional memory for storing pre-conditioners or momentum terms, ACSS of-
fers second-order benefits while maintaining the memory footprint of the base optimizer. Our ex-
periments demonstrate that ACSS variants, particularly for optimizers like SGD, HeavyBall, and
NAG that do not store squared gradients, show significant performance improvements across diverse
datasets. For instance, SimpleSGD-ACSS often outperforms more complex methods like AdamW
and AMSGrad, despite its lower memory requirements. This makes ACSS particularly suitable for
large-scale optimization problems, where the reduced memory footprint can be leveraged to increase
the number of parameters being optimized.

3. Theoretical Foundation: We provide a comprehensive theoretical analysis of ACSS, proving
bounds on effective step size, stability under perturbations, convergence rates for strongly convex
functions, and scale invariance properties. This analysis demonstrates ACSS’s adaptive behavior
to local curvature and offers insights into its relationship with both first-order and second-order
optimization techniques.

4. PyTorch Implementation: To facilitate adoption and further research, we provide efficient
PyTorch implementations of the ACSS variants for popular optimizers, at our anonymized GitHub
repository, making it easy to incorporate our method into existing machine learning workflows and
reproduce our results.

In the next section, we provide the necessary notations and theoretical machinery for ACSS.
2 NOTATIONS AND METHOD

Consider a function f : R” x D — R that we wish to minimize with respect to its first argument
w € R™. The optimization path traced by iterates {w;} can be viewed as a discrete approximation
of a continuous curve in parameter space. Let w; € R™ be the parameter at iteration ¢, and ¢, =
V. f(wy, By) be the gradient computed using a batch B; C D.

In differential geometry, the curvature x(s) of a curve w(s) parameterized by arc length s is defined
as:

-]

‘, (1)

https://anonymous.4open.science/r/curvatureStep-2a79/README.md
https://anonymous.4open.science/r/curvatureStep-2a79/README.md

Under review as a conference paper at ICLR 2025

where T'(s) = dlégs) is the unit tangent vector. The radius of curvature is given by p(s) = ﬁ

To relate this to our discrete optimization steps, we approximate the curvature using finite differ-
ences. Let) be the base learning rate, and g; = V,, f (w; — ngy, B;) be the gradient at a rentative
next point. We define the normalized radius of curvature as:

- gl .)
llge — g;ll

This approximation allows us to estimate the local curvature of the loss landscape without explicitly
computing second-order derivatives.

To ensure numerical stability, we introduce a cap on the normalized radius of curvature:

7y := min{rmax, 14 }, 3)

where rmax 1S the maximum allowed curvature.

Update Rule: Incorporating this adaptive curvature step size, we define the update rule as:

wepp = wy — X X —— (Eq. 1))

gt
el

This update can be interpreted as moving in the direction of the negative gradient ﬁ with a step

size dynamically adjusted by 1 x 7; based on the local curvature of the loss landscape.

The proposed Adaptive Curvature Step Size (ACSS) method aims to balance the trade-off between
convergence speed and stability by adapting the step size according to the geometry of the opti-
mization path. In regions of low curvature, it allows for larger steps to accelerate progress, while in
highly curved areas, it reduces the step size to maintain stability.

2.1 ALGORITHM

We now provide this update rule in the form of an Algorithm.

Algorithm 1: Stochastic gradient descent with adaptive curvature step size (SGD-ACSS)

Input: Function f,, : D — R, initial parameters wy € R", base learning rate n, maximum
radius 7,42, number of iterations T', batch size B

QOutput: Optimized parameters wr

fort =0to7T — 1do

Sample a mini-batch B; from D;

Compute gradient g; = V f,, (we; By);

Compute tentative next point gradient g, = V fo, (w; — ngs; By);

Compute normalized radius of curvature r, = %;
t

Compute capped radius 7#; = min{rmyaz, 7t };
Update parameters w; 1 = wy — 1 X 7y X ﬁ;

end
return wr

3 THEORETICAL ANALYSIS

We provide theoretical guarantees for the Adaptive Curvature Step Size (ACSS) method. Our anal-
ysis focuses on the method’s convergence properties, step size bounds, and adaptive behavior. De-
tailed proofs for all theorems can be found in the Appendix Section B.

Under review as a conference paper at ICLR 2025

3.1 STEP S1ZE BOUNDS AND CONVERGENCE

We begin by establishing bounds on the effective step size of ACSS and proving its convergence for
strongly convex functions.

Theorem 1 (Bounded Step Size of ACSS). Let f : R® — R be an L-smooth and p-strongly
convex function. Consider the ACSS update rule with 7,5 < Then, the effective step size
Nef = N7 1S bounded as follows:

2
n(p+L)"

1< < 2
L_T/eff_‘quL

for all iterations t.

This theorem ensures that ACSS maintains step sizes within a range that promotes stable conver-
gence. Building on this result, we establish the convergence rate for ACSS:

Theorem 2 (Convergence Rate for ACSS on Strongly Convex Functions). Let f : R" — R be an
L-smooth and p-strongly convex function. Under the ACSS update rule, for all ¢ > 0:

2\ t
fur = w1 < (1=) oo = w P

This theorem indicates that ACSS achieves linear convergence for strongly convex functions, with a
rate comparable to standard gradient descent methods.

It is important to note that while the theoretical results presented in this section are derived for the
deterministic gradient setting, the empirical results of ACSS, as discussed in Section 4, involves its
use in stochastic settings with mini-batch optimization. The extension of these theoretical guarantees
to the stochastic case is a potential area for future work. Nevertheless, our analysis does extend to
scenarios involving bounded gradient perturbations, as detailed in the following subsection.

3.2 STABILITY UNDER PERTURBATION

Next, we present results on the stability of ACSS under gradient perturbations and its convergence
guarantees for L-smooth and p-strongly convex functions.

Theorem 3 (Stability of ACSS Under Gradient Perturbations). Let f : R™ — R be an L-smooth
and p-strongly convex function. Assume the gradients are perturbed such that g; = ¢: + d; and
g, = gi + 0;, where ||6:]] < € and ||6;|| < € for some € > 0. Then, the difference between the
updates using exact and perturbed gradients satisfies:

s — wnga | < T

t4+1 — Wt =

+ + m—¢)
where Nmax = —2_ and m is a lower bound on the gradient norm.

L+p

While this theoretical result provides partial insights under specific assumptions, it may not fully
capture ACSS’s behavior in complex, non-convex landscapes. However, our extensive experiments
in Section 4 may provide further evidence of ACSS stability properties across several difficult-to-
optimize problems and diverse common machine learning datasets.

3.3 ADAPTIVE BEHAVIOR AND SCALE INVARIANCE

Finally, we examine the scale invariance property of ACSS.

Theorem 4 (Scale Invariance of ACSS Effective Step Size). For any scalar o > 0, scaling the base
step size 1) by « results in the same parameter updates for quadratic functions and approximately the
same updates for general L-smooth and p-strongly convex functions, assuming 7} < 7pax.

This scale invariance property suggests that ACSS is not sensitive to the choice of base step size
— a significant practical advantage. ACSS automatically adapts its effective step size to the lo-
cal geometry of the loss landscape, taking larger steps in low-curvature regions and smaller steps
in high-curvature areas. This behavior mitigates the need for manual step size tuning and allows
ACSS to maintain near-optimal convergence rates across varying landscapes without requiring prior
knowledge of function-specific parameters. In contrast, SGD often requires careful manual tuning
of step sizes to achieve similar convergence rate guarantees, which is challenging, particularly when
optimizing functions with varying curvature across the parameter space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 CROSS-DATASET PERFORMANCE ANALYSIS OF ACSS

Effectiveness of ACSS Across Optimizers and Datasets

1.0
SimpleSGD
HeavyBall
Adadelta 0.8
RMSProp
[0 a
= NAG o
1] 065
N Adagrad =
IS]
— NAdam g
3 NAdamW 048
o <
Adam
AdamwW 0.2
AMSGrad
RMSPropMomentum
0.0

> > > & & Qv O QS » RS S & @
& d,\Y @Q\e & &S & (@«x &S ¢ <° @Q & \@(\u @Q\«, sz &
S R S S O O > & P9 &R
< & <@ S W I 2 < RS &
& N S S < o
& Q o & &
A C 3
& K3
& &
g
&
K2
Datasets

Figure 2: Binary representation of ACSS effectiveness across datasets and optimizers. Values indi-

cate improvement (1) or no improvement (0) in training loss after a fixed number of epochs.
Figures 2 and 3 present a comprehensive evaluation of ACSS across 12 optimizers and 20 diverse

datasets. ACSS demonstrates consistent performance improvements for most optimizer-dataset
combinations. Significantly, SimpleSGD exhibits the most robust improvement across all datasets.

Optimizers that do not inherently use second-order information show the highest improvements, sug-
gesting that ACSS effectively incorporates second-order information through loss landscape topol-
ogy. SGD, HeavyBall, and NAG demonstrated mean training loss improvements of approximately
0.5 across 20 datasets using their respective ACSS versions.

Vision-related benchmarks, including Caltech 101, CIFAR-100, Flowers102, and STL10, showed
the most significant improvements. The 18-layer ResNet variant exhibited the best performance,
while the MNIST dataset with a simple neural network showed less pronounced improvements,
likely due to the inherent effectiveness of most optimizers on simpler models.

Key Takeaways: ACSS provides improvements for most optimizers across various datasets. In
cases where regular versions outperform ACSS, the difference in training loss is typically minimal.

Optimizer Improvement by Using ACSS Across Datasets

BlglJENesl 3.30 3.16 2.05 2.01 2.77 1.76 1.71/0.40 0.18 0.02 0.83 0.47 2.30 0.40 0.29 0.08 0.47 0.17 0.15 0.07 0.27 20
GECWYEETE 2.33 1.37 1.81 1.840.95 0.87 0.89 0.45 0.27 0.03 0.39 0.29 0.22-0.05 0.08 -0.09 0.06 0.01 0.14 0.13 1.5
(el 2.32 1.40 1.77 1.90 0.96 0.87 0.89 0.44 0.29 0.03 0.33 0.29 0.22 -0.06 0.08 -0.15-0.08 0.01 0.14 QE:Z
WLEELNWE 0.02 0.01 -0.00-0.00-0.01-0.02 0.00 -0.31 1.40 0.28 0.00 0.00 0.17 -0.00-0.03 0.95 0.03 -0.00 0.00 -0.00 0.00 1.0
g LCEREIER 0.27 0.02 0.05 0.06 0.03 0.14 0.11 0.14 0.13-0.04 0.17 0.10 -0.01 0.01 0.10 -0.14 0.17 0.01 0.07 -0.29 0.13 05 g
N .GELICLE-0.46 0.26 0.00 -0.02 0.26 0.24 -0.00 0.25 -0.00-0.04-0.01 0.07 0.01 0.00 0.22 0.02 0.02 0.08 0.00 0.00 0.23 é
é AUUSIZGTE 0.06 0.01 0.04 0.01 0.01 0.09 0.01 0.25 0.19 0.36 -0.01-0.03-0.00 0.00 -0.00 0.02 0.00 0.05 0.00 0.00 0.01 0.0 g
8‘ LCELWE-0.01-0.00 0.04 0.03 0.01 -0.01 0.00 0.78 -0.13 0.26 -0.01 0.00 -0.01 0.00 0.05 -0.02-0.01 0.04 -0.00-0.00-0.06 _os &
USTGTIGINERTTTGE -0.01-0.01 0.01 -0.02-0.00 0.10 -0.00-0.17-0.02 0.36 -0.02 0.00 0.00 0.00 0.09 -0.00-0.03-0.06-0.00 0.00 0.13
LLELLR-0.02-0.01-0.01-0.12 0.01 -0.01-0.00 0.05 -0.00 0.26 0.00 0.00 -0.05-0.00 0.06 0.02 0.02 0.09 0.00 -0.00-0.01 -1.0
0.01 -0.02-0.03-0.04-0.00-0.01 0.00 -0.10 0.16 0.26 0.02 0.00 -0.03-0.00-0.05-0.03 0.01 0.01 0.00 -0.00-0.01 15

0.01 0.04 -0.01-0.02 0.06 -0.00 0.00 0.35 0.08 0.28 0.02 0.01-0.14 0.00 0.03 0.01-0.000.01 -0.00-0.10]

NEFSEFESEI RS @ & O & & s & & & &
& & L @ S C & & FE &S V& & ©
& (;\ 4‘ .;S° & [o &S S & o
~ ¢ o 2 S &S & o
& & K
e @
& =
&’b
)
Datasets

Figure 3: Quantitative improvement in training loss using ACSS across datasets and optimizers after
a fixed number of epochs.

Under review as a conference paper at ICLR 2025

Table 2: Training Loss over 5 Epochs for Yelp Reviews Polarity Dataset (560,000 reviews) using a
Simplified RNN Model. The model consists of embedding, RNN, and fully connected layers. ACSS
versions of optimizers generally outperform their traditional counterparts.

Optimizer Name Regular Optimizer ACSS Version of Optimizer
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Adadelta 0.680 x000 0.674 z000 0.671 x000 0.669 000 0.668 000 0.679 001 0.670 z000 0.666 000 0.663 x0.00 0.659 0.00
Adagrad 0.558 x001 0.521 =001 0.510 %001 0.501 z0.01 0.493 z0.01 0.569 z0.07 0.498 007 0.452 2006 0.429 006 0.410 =0.07
Adam 0.627 x001 0.584 z001 0.587 z000 0.568 004 0.575 2002 0.542 004 0.541 016 0.530z0.17 0.457 2020 0.489 z0.14
AdamW 0.581 002 0.567 =003 0.478 z0.01 0.499 z0.08 0.419 z0.11 0.599 2004 0.589 z0.12 0.555 z0.10 0.413 2005 0.376 =0.12
AMSGrad 0.537 000 0.548 001 0.569 0.1 0.481 z005 0.589 007 0.616 z004 0.596 002 0.625 z0.08 0.625 2003 0.578 +0.03
HeavyBall 0.666 000 0.652 000 0.604 x001 0.529 z001 0.512:001 0.572=x001 0.517 z001 0.491=z001 0.474 001 0.455 x0.01
NAdam 0.637 <001 0.612 000 0.589 000 0.580 2004 0.537 2009 0.609 2002 0.543 2005 0.543 z001 0.531 2004 0.538 z0.02
NAdamW 0.601 001 0.531 2000 0.495 2005 0.498 005 0.523 2003 0.632 000 0.594 2002 0.585 =002 0.541 004 0.528 x0.02
NAG 0.666 =000 0.652 000 0.604 001 0.529 z0.01 0.510 002 0.630 2002 0.616 2000 0.604 001 0.604 003 0.591 =0.02
RMSProp 0.650 =004 0.538 2007 0.495x0.13 0.425 2009 0.447 z003 0.624 z002 0.493 2005 0.432 2005 0.407 2006 0.394 x0.06
RMSPropMomentum ~ 0.652 002 0.578 004 0.561 003 0.491 005 0.467 003 0.633 x006 0.601 x0.03 0.581 2000 0.551 z0.04 0.524 z0.04
SimpleSGD 0.676 =000 0.671 =000 0.669 x0.00 0.667 z0.00 0.665 000 0.596 001 0.535 001 0.519 2001 0.506 001 0.493 =0.02

4.2 PERFORMANCE ON THE YELP REVIEWS DATASET

We evaluated various optimizers with and without ACSS on the Yelp Reviews Polarity Dataset
(560,000 reviews) using a simplified RNN model. The ACSS variants generally outperformed their
standard counterparts over five epochs. AdamW-ACSS showed the most significant improvement,
with loss decreasing from 0.5994 to 0.3756 across epochs, outperforming the traditional AdamW’s
final loss. SimpleSGD-ACSS demonstrated remarkable improvement, matching top performers like
AdamW-ACSS by the first epoch.

Key Takeaways: The best performing non-ACSS optimizer after Epoch 5 reaches a training loss
of only 0.419 (AdamW), which is reached at Epoch 4 for two of the ACSS versions. All the best-
performing optimizers after Epoch 2 are ACSS versions of the optimizers.

4.3 TRAINING LOSS IMPROVEMENTS AVERAGED OVER ALL DATASETS

We evaluated the performance of Adaptive Curvature Step Size (ACSS) variants of SimpleSGD,
HeavyBall, and NAG (Nesterov Accelerated Gradient) across diverse datasets in vision and lan-
guage domains. Our evaluation encompassed various model architectures, including CNNs (such as
ResNet), RNNs, and simple neural networks. The results, as illustrated in Figure 4, demonstrate
consistent improvements in training performance for ACSS variants compared to their standard
counterparts. These improvements were observed across all five epochs and increased over time,
indicating that ACSS provides sustained benefits throughout the training process.

Key Takeaways: Optimizers that do not store square-gradient terms (SGD, HeavyBall, NAG) ex-
hibit significant outperformance through the use of ACSS. The improvement in mean training loss,
averaged across all datasets, is evident across all the epochs.

4.4 PERFORMANCE ON VISION BENCHMARKS

Figure 5 presents a heatmap of optimizer rankings across five vision datasets: Caltech101, CIFAR10,
Flowers102, MNIST, and STL10. The analysis reveals that Adadelta and RMSProp variants con-
sistently underperform, with ACSS showing minimal impact on their effectiveness. In contrast,
Adam, AdamW, and AMSGrad perform well initially, with ACSS offering marginal improvements.
Adagrad demonstrates high performance variance across datasets.

SGD HeavyBall NAG

—e— SimpleSGD —e— HeavyBall —e— NAG
—=— SimpleSGDCurvature —=— HeavyBallCurvature —=— NAGCurvature

B

&

S

Mean Training Loss

Mean Training Loss
Mean Training Loss

IS
IS
S

3 3 3
Epoch Epoch Epoch

Figure 4: Mean training loss across epochs for different optimizers.

7

Under review as a conference paper at ICLR 2025

Optimizer Rankings Across Datasets and Epochs

Adadelta-ACSS - 23 22 22 23 23 23 24 24 22 22

Adagrad-ACSS

Adam-ACSS
AdamW-ACSS
AMSGrad-ACSS
HeavyBall-ACSS
NAdam-ACSS.

NAdamW-ACSS.
NAG-ACSS
RMSProp-ACSS
RMSProp-mom-ACSS
SimpleSGD-ACSS.
Adadelta - 24 24 24 24 24 24 23 23 24 24

Optimizer

RMSProp-mom

SimpleSGD -
5.0

€101 epoch5 €101 epoch1l0 C-10 epoch5 C-10 epochl0 F102 epoch5 F102 epochl0 MNIepoch5 MNIepochl0 STL10 epoch5 STL10 epochl0
Dataset and Epoch

Figure 5: Heatmap of optimizer rankings across various computer vision datasets. The heatmap
displays the performance ranks of 24 optimizers, including both standard versions and their Adaptive
Curvature Step Size (ACSS) variants, on five different datasets (Caltech101, CIFAR10, Flowers102,
MNIST, and STL10) at epochs 5 and 10. Rankings range from 1 (best performing) to 24 (worst
performing), with lower numbers and cooler colors indicating better performance. This visualization
highlights the impact of ACSS on various optimizers across different datasets.

Notably, optimizers that do not incorporate squared gradients (SimpleSGD, HeavyBall, NAG) ben-
efit most from ACSS. These optimizers achieve performance boosts comparable to methods using
squared gradients, but without the associated memory overhead.

Key Takeaways: ACSS versions generally outperform their traditional counterparts on these vision
benchmarks for both ResNet-18 and simple CNN architectures. The most significant improvements
are observed in optimizers that do not initially use squared gradients.

4.5 OVERALL RANK IMPROVEMENTS FOR DIFFERENT OPTIMIZERS

Figure 6 illustrates the performance improvement of optimizers with ACSS across multiple datasets.
Optimizers with lower memory requirements benefit most from ACSS. SimpleSGD, with the small-
est memory footprint, shows the highest average rank improvement of 12.5. HeavyBall and NAG
also demonstrate significant enhancements, with average improvements of 7.9 and 6.7 respectively.

Improvement in Rank of Optimizers on using ACSS across Datasets

SGD 10111111866 1263 20
K 7 6

7 |9 EEEENE 6 I 5 35 -3.5 6

NAG - 6.7 10 9.5 -4 9 10 11 6 8 -10 7 7 45 -4.5 15

RMSProp - 2.9 b 1 -1 2 9 1 -1 1 gEsm 3 1 4 iooE
" Adagrad-15 1 -7 -1 1 3 3 -1 3 -1 7 E 2 1 -1 1 3 6 6 1 3 1 1 10
— o
3
g NAdam-1.3 5 6 1 - 3 1 2 N -1 16 6 3 -1 3 3 2 -1 i -1 -2 -3 2 s
IS -5 £
prar NAdamw - 0.8 1 6 -1 1 3 2 6 1 2 1 6 1 1 1 2 1 1 9 3 5 2 £
Q. 7]
a
o Adadelta-0.8 1 ' -9 2 -1 1 2 1 B 2 5 B -1 1 2 1 2 2 2 1 2 16 -2

RMSProp-Mom. - 0.5 »4—1 1 -1 -2 -1 -3 -1 NAEEEEEA 1 -3 -1 58 EsiN 1 4 -1 1 -4

AMSGrad-03 2 5 7 -1 -15 1 1 -3 -2 5 4 9 -2 4 -1 -7 1 -1 -3 -2 -1 3 - -5

w
-
e
=
o
&
&
IS
~
~
&

Adam-02 6 7 -15 -1 2 4 -1 3 6 5 -3 -1

Adamw--0.1 -5 6 -7.5 -1 3 2. 1 BSH 2 BEEEIE -1 a2 -1 2 B8 1 222
d d U U d " U d " " U " d U U d " " d " " " U =
z o = =z = o o (=] o a w o p} o o o 2] o = o [G) -9 o
I = O @ © o4 = 41 O &€& € L o oS S 4 g 4 5 @ S
2 2 0 < = 23 0 = < < e g5 gL > 2 £ o o o
O I‘; w0

Datasets

Figure 6: Heatmap of optimizer rank improvements when using ACSS across datasets. Green in-
dicates better performance, red indicates worse. The datasets are listed on the X-axis, and the
optimizers on the Y-axis. Color intensity represents the degree of improvement.

8

Under review as a conference paper at ICLR 2025

Optimization Paths on Himmelblau Function Optimization Paths on the Goldstein Price Function
SimpleSGD HeavyBall SimpleSGD L HeavyBall) NAG

—e— SimpleSGD
% Global Optimum

—e— HeavyBall —— NAG

% Global Optimum - Global Optimum

/

|
IS

—+— SimpleSGD
% Global Optima

-4 2 0 2 4 -4 2 0 2 4
y y

y
SimpleSGD-ACSS HeavyBall-ACSS NAG-ACSS . SimpleSGD-ACSS N HeavyBall-ACSS N NAG-ACSS
a4 05 —e— SimpleSGDCurvature | 0.5 —e— HeavyBallCurvature 05 —e— NAGCurvature
% Global Optimum % Global Optimum % Global Optimum
0 -0.5 2 -05 7 -05 2 7
e (M)a M) - N | G

@+ SimpleSGDCurvature | G+ HeavyBallCurvature —e— NAGCurvature

% Global Optima . % Global Optima % Global Optima

4 2 0 2 a4 -4 2 0 2z a4 -4 2 0 2 a 1o 1 2 1o 1 2 T 6 1 2
y y y y y y

IS

Figure 7: Optimization paths on the Goldstein-Price (left) and Himmelblau (right) functions. These
functions present challenges due to their complex landscapes with multiple optima and flat regions.
More complex optimizers like Adam, AdamW, and AMSGrad, which already incorporate adaptive
learning rate mechanisms, show lower benefits. This suggests ACSS is particularly effective in
enhancing simpler optimization algorithms, offering a memory-efficient alternative to more complex
adaptive methods.

Key Takeaways: Except for AdamW, all optimizers show positive mean performance improvement
with ACSS, indicating benefits in incorporating ACSS into existing optimization pipelines.

4.6 OPTIMIZATION ON CHALLENGING FUNCTIONS

‘We now plot the performance of our optimizers on two challenging functions: the Himmelblau and
Goldstein-Price functions. Additional functions are analyzed in Appendix F.

The Himmelblau Function: The Himmelblau function has four global minima. ACSS versions
converge to the nearest minimum from the starting point (-4,4), while other versions overshoot at a
learning rate of 1.5 x 1072, At higher rates, non-ACSS versions diverge, whereas ACSS versions
maintain convergence.

The Goldstein-Price Function: The Goldstein-Price function, with its complex landscape of mul-
tiple local minima and one global minimum at (0, -1), challenges gradient-based methods. ACSS
optimizers dynamically adjust step sizes based on local curvature, enabling precise convergence to
the global minimum. In contrast, standard Heavyball and NAG optimizers overshoot, moving toward
different local minima. We plot 5000 iterations from (0.5, 0) with a learning rate of 2.5 x 1072,

Key Takeaways: In Figures 1, 7 in the main paper, and Figure 8 in Appendix F, we plot the ACSS
performance as compared with the regular versions for challenging optimization benchmark func-
tions. In all the cases, the ACSS versions showed better stability and convergence properties com-
pared to the traditional algorithms.

4.7 LIMITATIONS:

It is important to acknowledge that ACSS introduces additional computational overhead per iter-
ation, with theoretical analysis suggesting up to twice the cost and experimental wall-clock time
measurements showing an average increase of 1.37 times for the ACSS optimizers over their tra-
ditional counterparts, which is balanced against its memory efficiency benefits and lower time to
convergence (see Section D for detailed theoretical and experimental analyses).

5 CONCLUSIONS

This work introduced the Adaptive Curvature Step Size (ACSS) method, a novel optimization ap-
proach that leverages the geometric properties of the optimization path to dynamically adjust step
sizes. Our comprehensive empirical evaluation across diverse datasets and challenging functions
demonstrates that ACSS consistently outperforms traditional optimization methods. The method’s
ability to incorporate second-order-like information without explicit computation of the Hessian is
a key benefit, as we show through our theoretical guarantees. Furthermore, ACSS’s low memory
footprint makes it particularly suitable for large-scale optimization setups and low-resource set-
tings. The generalized framework we provide for incorporating ACSS into various optimization
algorithms, along with our PyTorch implementations, facilitates further research in this direction.

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Amir Beck. First-order methods in optimization. SIAM, 2017.
Timothy Dozat. Incorporating nesterov momentum into adam. Stanford CS 229 Project, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. Advances in Neural Information Processing Systems, 33:2386-2396, 2020.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842—-1850. PMLR, 2018.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Foundations
and Trends® in Machine Learning, 10(3-4):142-363, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mykel J Kochenderfer and Tim A Wheeler. Algorithms for optimization. Mit Press, 2019.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile learned
optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Siddharth Singh, Zachary Sating, and Abhinav Bhatele. Jorge: Approximate preconditioning for
gpu-efficient second-order optimization. arXiv preprint arXiv:2310.12298, 2023.

Derya Soydaner. A comparison of optimization algorithms for deep learning. International Journal
of Pattern Recognition and Artificial Intelligence, 34(13):2052013, 2020.

Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine learning. Mit
Press, 2012.

Yingjie Tian, Yuqi Zhang, and Haibin Zhang. Recent advances in stochastic gradient descent in
deep learning. Mathematics, 11(3):682, 2023.

10

Under review as a conference paper at ICLR 2025

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. Advances in neural information process-
ing systems, 30, 2017.

Jui-Nan Yen, Sai Surya Duvvuri, Inderjit Dhillon, and Cho-Jui Hsieh. Block low-rank precondi-
tioner with shared basis for stochastic optimization. Advances in Neural Information Processing
Systems, 36, 2024.

Yun Yue, Zhiling Ye, Jiadi Jiang, Yongchao Liu, and Ke Zhang. Agd: an auto-switchable optimizer
using stepwise gradient difference for preconditioning matrix. Advances in Neural Information
Processing Systems, 36:45812-45832, 2023.

11

	Introduction
	Related Works:
	Our Contributions

	Notations and Method
	Algorithm

	Theoretical Analysis
	Step Size Bounds and Convergence
	Stability under Perturbation
	Adaptive Behavior and Scale Invariance

	Experiments
	Cross-Dataset Performance Analysis of ACSS
	Performance on the Yelp Reviews Dataset
	Training Loss Improvements Averaged over all Datasets
	Performance on vision benchmarks
	Overall rank improvements for different optimizers
	Optimization on challenging functions
	Limitations:

	Conclusions

