
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ScaleTraversal: Creating Multi-Scale Biomedical Animation with
Limited Hardware Resources

Anonymous Authors

ABSTRACT
Wedesign ScaleTraversal, an interactive tool for creatingmulti-scale
3D demonstration animations with limited resources for users who
are unavailable to access high performance machines such as clus-
ters or super computers. It is challenging to create 3D demonstra-
tion animations for multi-scale data. First, it is challenging to strike
a balance between flexibility and user friendliness to design the
user interface in customizing demonstration animations. Second,
the multi-scale biomedical data is often characterized as large-size
so that a commonly-used desktop PC is hard to handle. We de-
sign an interactive bi-functional user interface to create multi-scale
biomedical demonstration animations intuitively. It fully utilizes
the strengths of graphical interface’s user friendliness and textual
interface’s flexibility, which enables users to customize demon-
stration animations from macro-scales to meso- and micro-scales.
Furthermore, we design four scale-based memory management
strategies to solve the challenging issues presented in multi-scale
data. They are streaming data processing strategy, scale level data
prefetching strategy, memory utilization strategy, and GPU acceler-
ation strategy for rendering. Finally, we conduct both quantitative
evaluation and qualitative evaluation to demonstrate the efficiency,
expressiveness and usability of ScaleTraversal.

CCS CONCEPTS
• Human-centered computing → User interface program-
ming; User interface toolkits.

KEYWORDS
interactive experience tool, multi-scale multimedia data, story-
telling animation

1 INTRODUCTION
Most of the existing data-driven illustration tools for biomedical
data only provide a visual presentation at a single scale level [18].
For example, tissue scale such as Facetto [29], fiber scale (10−2𝑚)
such as ConnectomeExplorer [5], cell scale (10−4𝑚 ∼ 10−5𝑚) such
as Abstractocyte [39], neuron scale (10−5𝑚) such as NeuroLines [3],
neuronal structure representation [7] and neurobiology data pre-
sentation [48], and DNA scale (10−9𝑚) such as nucleic acids [31]
(RNA and DNA) and interaction predictions of sRNA-mRNA [45].
Biomedical data, however, consists of various scales of data which

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

often range from several orders of magnitude, e.g., a multi-scale
brain data often comprise structures include brain envelop (10−1𝑚),
encephalic region (10−2𝑚), fiber (10−3𝑚), cortical column (10−4𝑚),
neuron (10−5𝑚), chromosome (10−7𝑚), DNA or RNA (10−9𝑚).

The problem thus arises of how to illustrate the multi-scale
biomedical data in multi-angle and multi-aspect. 3D demonstra-
tion animation is an effective approach to reveal the multi-angle
and multi-aspect information presented in the scientific data [32].
It can be used in knowledge popularization, peer-expert sharing,
or peer-expert discussion. There are two motivations as well as
some corresponding challenges in creating and customizing data
animation for multi-scale biomedical data:

First, it is of great significance to help users comprehend and ex-
plore multi-scale information presented in the data [18]. However,
it poses a great challenge for illustrating static visual presentations
for biomedical data, not to mention the intelligent creation and
customization of 3D demonstration animations. It needs to solve
the challenging issues both in 3D visual designs, visual presentation
customizations, and animation customizations [32]. Visual presen-
tation customization includes customizing visual styles of point,
line and surface and other components, while animation customiza-
tion includes the selections of viewpoints, transition styles and shot
change styles. Furthermore, generating data-driven animations and
keeping precise controls are challenging because generating slight,
gentle and elegant transitions within the animation is difficult to
achieve by manual GUI interaction [32]. Besides, as the virtual cam-
era gradually focuses from the cerebral cortex of the brain envelop
scale to the chromosome scale or even DNA scale, macro-scale ob-
jects in the virtual camera will quickly disappear in the viewpoint.
The large difference of orders of magnitude across scales pose a sig-
nificant challenge in smooth transition in the final demonstration
animation.

Second, the multi-scale often results in the data to be large-size.
The animations should cover all the scales of the data they have pro-
vided and the gradual transitions between scales should be smooth.
The “large-size” in this paper refers to the data size is too large
to handle by a hardware equipment with limited resources, e.g., a
desktop PC for common users. It is impossible for the users to han-
dle multiple scales of data simultaneously, especially for the domain
experts who are often unavailable to access high performance ma-
chines such as clusters or super computers. The “limited resource”
in this paper refers to the hardware configuration used in generat-
ing demonstration animations by using the traditional pipelined
animation rendering method [32] will result in application crash
(out of memory).

In this paper, we present a novel interactive data animation
building tool named ScaleTraversal to address the above-mentioned
challenges. ScaleTraversal enables users to customize multi-scale
animations by easy and simple GUI operations like dragging, drop-
ping and scrolling. It adopts simple and embedded domain-specific

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

language (DSL), allowing users to customize complex presenta-
tion styles and animation transitions flexibly. DSLs are languages
that are designed for specific domains and decrease the learning
curves for domain experts compared with general programming lan-
guages [32, 47]. In ScaleTraversal, the customized animation clips
such as camera rotating around a given “encephalic region/object”
within 30 seconds with a constant-speed, achieving gentle and ele-
gant shot changing by transiting and zooming-in simultaneously
when the camera travels from a large “encephalic region” to an-
other smaller one, and specifying an accurate animation time and
transition time for a specific animation clip. All of these clips are
difficult to manually customized by users via the traditional devices
like mouse and keyboard. To strike a balance between flexibility
and user-friendliness, we use GUI primarily for user-friendliness
and combine simple and embedded DSL codes to improve flexi-
bility. All the statements of the DSL codes can be auto-generated
by GUI selections using icon buttons. Users just need to change
the parameters of each statement. The identifiers are not allowed
changed by users if they have chosen a script code unless they
want to choose a new one. Furthermore, we design four scale-based
memory management strategies to address the challenges in the
scenario of limited hardware resources.

The main contributions of this paper can be summarized as
follows:

• We design an interactive bi-functional user interface to cus-
tomize multi-scale biomedical demonstration animations
intuitively. It consists of a graphical (i.e, GUI controls) and
a textual grammar (simple DSL codes). They are fully uti-
lized to strengths of GUI’s user-friendliness and textual
grammar’s flexibility.

• We design four multi-scale data acceleration strategies with
limited hardware resources for users who are unavailable
to access high performance machines, including a stream-
ing data processing strategy, a scale-based data prefetching
strategy, a memory utilization strategy and a GPU render-
ing acceleration strategy.

2 BACKGROUND AND RELATEDWORK
2.1 Muti-scale Data Presentation Tools and

Systems
There are many technique challenges in designing multi-scale tools
or systems due to the significant scale differences between scales.
We summarize and categorize the multi-scale tools into three types
according to the application scenarios, i.e., rendering, interface
design, simulation and analysis, image data processing.

Multi-scale interface design. A multi-scale text retrieval in-
terface [26] was presented to provide a detail+context views of
documents information. The interface allows users to compare
small multiples in a detailed view. A 3D geological hazard user
interface [35] was also designed to integrate intuitive interaction
and 3D visual presentations for multi-scale spatially referenced
data. Furthermore, a multi-scale flight presentation interface [41]
was designed to verify whether eye height would affect the user’s
perception of object size.

Recently, some impressive multi-scale data presentation tools
were designed. For example, a multi-scale procedural model [28]

was built to simulate complex characteristics of a biological pro-
cess about microtubule dynamics for measured data. A method
named ScaleTrotter [18] was proposed to bridge several orders
of magnitude in scale, allow observers to gradually and smoothly
observing the DNA composed of atoms from the nucleus. A tool
named Dynamic Scene Graph [4] was designed to address the scal-
ing and navigation issues in multi-scale universe simulation data.
It assigns frame of reference dynamically to achieve the highest
possible numerical precision for objects rendering in a scene graph.

Multi-scale biomedical simulation data analysis. Stochas-
tic multi-scale modeling of biological systems needed the use of
mathematical models that can describe different levels of scales.
A new parallel computational paradigm [16, 23] was proposed to
achieve multi-scale simulations in brain blood flow data. They cou-
pled several parallel codes to form a multi-scale solver and each
code was built based on different mathematical models. Blackett
et al. [6] described some models to simulate a heart ventricle by
solving multi-scale and multi-physics issues. The simulations that
run on peta-scale supercomputers pose a great challenge for scien-
tists to analyze their data remotely. To address this computational
challenge on multi-scale data analysis, Ahrens et al. [2] provided a
prioritized, streaming and multi-resolution architecture. Regarding
the flow simulation in fluid dynamics, Nguyen et al. [40] designed
a data presentation framework to divide large-scale structures into
dense, small-scale structures.

Most of the existing multi-scale data presentation tools focus
on static rendering instead of demonstration animation generation
and customization.

2.2 DSL-Based User Interface Design
DSLs are languages that are designed for specific domains and
decrease the learning curves for domain experts compared with
general programming languages [32, 47]. Compared with high-level
interfaces [43], DSLs provide brevity rather than generality. On the
basis of three fundamental dimensions of DSLs, i.e., abstract syntax,
concrete syntax and semantics, DSL-based interactive tools can be
categorized into tree types according to different perspectives [47],
they are external or internal DSLs, textual or graphical DSLs, and
DS“X"L.

External or Internal DSLs. An external DSL is a language
that’s parsed independently of the host general purpose language:
good examples include regular expressions and CSS. In the do-
main of scientific data processing and image analysis, Kindlmann
et al. [27] proposed Diderot, a typical example of External DSLs,
which decreases obscurity caused by low-level implementation by
providing high-level mathematical notations.

Textual or Graphical DSLs. Concrete syntax map language
structures to some notations categorized into textual and graphical,
which brings about the Textual DSLs and the Graphical DSLs.

DSLit, a method driven by model was proposed by Cosentino et
al. [12] to avoid high-cost while designing Textual DSLs. Halide [42]
introduced an Textual DSLs based on C++, provides high perfor-
mance and optimizes the program. In the domain of volume data
rendering, Delite [9] and Vivaldi [10] were designed for heteroge-
neous systems. Nevertheless, the cost of learning and using is high

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ScaleTraversal: Creating Multi-Scale Biomedical Animation with Limited Hardware Resources ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

for users have to comprehend specific declarations and semantic
rules [46].

DS“X"L. Numerous DSLs provide different glyphs according to
the exact domain. These techniques are named DS“X"L normally.
The related work can be categorized into three types [47], i.e., DSVL
(Domain-specific Visualization Language), DSML (Domain-specific
Modeling Language) [13], DSEL (Domain-specific Embedded Lan-
guage) [22]. (1)DSVL. As the need to satisfy the need in engineering
fields, a set of visualization methods exploring seismic slice and seis-
mic volume data [33, 34] are typical examples of DSVL. (2) DSML.
DSML allows creating behavioral models of 3D objects in a spe-
cific modeling environment. Choi et al. [10] designed Vivaldi with
the help of shape grammar, achieving multiple parallel process-
ing strategies without requiring much knowledge of it. (3) DSEL.
Michael et al. [8] proposed ProtoVis based on JavaScript-based
Embedded DSLs.

2.3 Context and Relationship
There are little literatures on customizing multi-scale 3D demon-
stration animations for biomedical data. The most relevant work
includes a latest work named ScaleTrotter [18], the extension work
named Multiscale Unfolding [17], and a multi-scale procedural
model [28]. ScaleTrotter is a multi-scale data demonstration tool
to present biological meso-scale genome data, which allows gener-
ating visual traversals across scales by roaming between 2D and
3D renderings. Another multi-scale tool named Unfolding [17]
was designed to illustratively render multiple hierarchical scales of
DNA in a single view by spatial folding. The multi-scale procedural
model [28] was designed to simulate complex characteristics of a bi-
ological process about microtubule dynamics for measured data. Dy-
namic Scene Graph [4] focuses more on avoiding precision-related
rendering artifacts and the seamless adaption schemes in stereo-
scopic rendering, while the proposed ScaleTraversal focuses on user
interface design to customize multi-scale biomedical animations,
and data management strategies for accelerations. Additionally, a
framework named multi-scale views [20] was designed to provide
fcocus+context effect and artistic rendering to illustrate multi-scale
data into a single image instead of an animation. The streamline-
based ray generation often produces distortions between scales
and even within a scale in the final image. The main differences
between ScaleTraversal and the most relevant latest work can be
summarized as follows:

(1) Just focusing on animation generation of genome scale
data (i.e., nucleus and DNA scale) v.s. focusing on data-driven
animation generation and customization ranging from en-
velop scale (macro-scale) to DNA scale: Most of the existing
tools are designed to generate multi-scale genome data animation,
ScaleTraversal is to generate and customize multi-scale animations
from macro-scales to meso- and micro-scales by embedding flexible
short DSLs.

(2) Few contributions on data management v.s. Multi-scale
data management and GPU rendering even on desktop PCs:
Multi-scale biological or biomedical data are often characterized
as large-scale data size due to their multiple scales of data. It is
challenging to customize multi-scale 3D data-driven animations of

biomedical data on a desktop PC for users who are unavailable to ac-
cess high performance machine such as cluster or super computer.
Few existing approaches in this aspect involve contribution on
multi-scale data accelerations. ScaleTraversal contributes to several
acceleration strategies such as buffer management, data prefetching
across scales and GPU rendering improvements to address both
multi-scale and large-scale challenges. It enables users to customiz-
ing multi-scale animations with limited hardware resources.

(3) Couple 2D and 3D presentation v.s. Support 3D ani-
mation throughout: ScaleTrotter [18] uses 2D presentation in a
specific data scale and 3D transitions between two scales. How-
ever, ScaleTraversal supports 3D animation throughout due to the
acceleration strategies on data management and GPU rendering.

3 DESIGN RATIONALE
In this section, we describe the design rationale in terms of data
characteristics, design goals, design considerations and design de-
tails.

(a)

(b)

(c)

(d)

(f)

(e)

(g)

(h)

(j)

(i)

Figure 1: The interface design of ScaleTraversal, it includes:
a group of controls that can be drag to customize the fade in
or fade out of scales (a), animation transitions (b), and basic
visual styles for different types of objects (c and h); buttons of
loading previously saved scripts or the scripts shared by peer
experts (d); all of the data scales (e); a popped-up text editor
that is mapped to a clickable GUI control, where users are
just allowed to modify the parameters of DSL functions (f);
auto completer that match similar words when users edit the
parameter values (g); a group of scale previews indicatewhich
scale virtual camera enters and where the virtual camera
locates in all the previous scales (i), and the animation view
(j).

3.1 Characteristics of Multi-scale Biomedical
Data

There are two challenges to customize data animations for multi-
scale biomedical data on a desktop PC, as summarized in section
Introduction: i.e., multi-scale challenge and the derived large-size
challenge for desktop PCs. The envelope of the cerebral cortex is
about 1.5 × 10−1𝑚, and the neurons inside the brain are only about
2.0 × 10−3𝑚, while the DNA is only 2.0 × 10−9𝑚. There are eight
orders of magnitude in scale between the brain envelope and DNA.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

When the virtual camera gradually travels from macro-scale to
micro-scale, the errors which are derived from the number limits
of data serialization may cause the camera shake severely when
generating animations. That means the large order difference of
magnitude across scales poses a significant challenge in generating
elegant and smooth data animations automatically.

In addition, there are a huge number of objects in the tissues
at all levels of scales. Regarding the typical biomedical data we
obtained from the domain experts, the number of elements that
should be rendered had exceeded 160,000 at L1 scale of cerebral
cortex (L1: brain envelope), and at the nerve fiber level (L3: fiber),
experts provided more than 10 GB of data on the probability of
connections between different voxels in the brain. Any two of these
voxels can be connected to each other with a line of thickness
corresponding to the connection probability. At the neuron level
(L5: neuron), each neuron contains between 150,000 and 300,000
elements. A normal brain has about 86 billion neurons, and each
neuron has to establish nearly 10,000 links.

3.2 Design Goals and Design Considerations
We consulted four domain experts in biological study about the
requirements, who also provided us with the biomedical data. The
significant issues they are concerned about include three aspects,
we summarized them as three design goals:

• G1: design an interface to create multi-scale biomedical
demonstration animations intuitively.

• G2: enable users to flexibly customize animations from
overview to details.

• G3: enable users to build animations with all the scales of
data under limited hardware resources.

GUI Controls Description

G
e
n
e
r
a
l
-
P
u
r
p
o
s
e

D
e
s
i
g
n

B
a
s
i
c

V
i
s
u
a
l

S
t
y
l
e
s

A
n
i
m
a
t
i
o
n

C
u
s
t
o
m
i
z
a
t
i
o
n

(b) Rotate the camera lens around an interesting object

 or a complete scale

(a) Shift the camera lens across an interesting object

 or a complete scale

(c) Zoom-in/zoom-out the camera lens

(d) A combination of multiple simultaneous camera

 operations

(e) Fade in styles in animation transition

(f) Fade out styles in animation transition

(g) Customize the point style of the rendering

(i) Customize the surface style of the rendering

(h) Customize the line style of the rendering

Figure 2: GUI controls designed for data animation customiza-
tions. Users can click and drag theGUI controls on the control
bar into the animation track.

Users can either directly explore the customized demonstration
animations in real-time by using ScaleTraversal or demonstrate
the output data-driven animation videos in knowledge popu-
larization in their talks, peer-expert sharing, or peer-expert

discussion. All the design details are derived from the three design
goals.

3.3 Design Details
Interface overview. We design a linked view in ScaleTraversal
for domain experts to customize the multi-scale data animations
intuitively with a visual preview (G1), and further design a waterfall-
like customization interface, which follows the design in the video
editing software Adobe Premiere, as shown in Figure 1. The data-
driven demonstration animations will be automatically generated
after the customization is completed by the operations in Figure 1
(a-h).

Animation customization. Users can select and drag differ-
ent GUI controls by simple GUI operations to customize the data
animation across different scales of data. The current animation
progress will be shown in the waterfall-like interface. Different GUI
controls represent different customization operations or animation
styles.

The DSL script codes are easy to be edited because the domain
experts just need to choose the parameters from a UI list instead
of memorizing all the identifiers and parameters (G2). All the GUI
controls in Figure 1 (a-c) can be clicked or dragged to add their
corresponding DSL scripts into the animation track in Figure 1 (e).
To further decrease the learning curve and improve the usability
of ScaleTraversal, all the tissue names related to the animation
presentationwill be listed in a GUI list control, whichwill be popped
up close to the corresponding parameter positions in the interface,
as shown in Figure 1 (f). Users can select them by GUI operations
by visual cues and prefix matching algorithms (G1 and G2).

Memory

Main Thread

(For Rendering)

Child Thread

(For Reading)

load

data#1 data#2 data#3 data#N

all data

the whole scale

delete

D
i
s
k

Figure 3: Illustration of streaming data processing strategy.

In the animation customization stage, users are allowed to trans-
late the camera along a given direction specified by assigning the
parameters of the GUI control as shown in Figure 2 (a). All the GUI
controls would be directly mapped to a short DSL script codes. The
camera rotation around an object in a given scale can be customized
by using the GUI control as shown in Figure 2 (b). For example,
ScaleTraversal allows to customize the animation by rotating the
virtual camera around the frontal lobe or the parietal lobe. Besides,
users can also zoom-in or zoom-out the virtual camera by using the
corresponding GUI control, as shown in Figure 2 (c). Furthermore,
some complex customization requirements in animation genera-
tion can be fulfilled by “parallel” operations, which are designed to
combine multiple single operations like translating, rotating and
zooming into a “parallel” script statement. Our tool will automati-
cally zoom-in the animation when it travels from a large object to

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ScaleTraversal: Creating Multi-Scale Biomedical Animation with Limited Hardware Resources ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

a smaller one. The zoom-in factor depends on the size difference of
them (G1). Finally, users can customize different transition effects
about fade-in and fade-out between two scales. The corresponding
GUI controls are shown in Figure 2 (e) and Figure 2 (f), respectively.

We built a light-weight compiler following the DSL framework
design in IGScript [32]. It is exploited to analyze the script codes and
further mapped them to visual presentation codes and automatic
virtual camera operations. For more details about the design of the
compiler and DSL codes, please refer to the Appendix file.

Visual style customization. (1) Point style customization. Users
can specify colors and transparencies for point objects and spheri-
cal objects. The color array can be assigned to different clusters of
points. For example, points in an identical cluster will be assigned
with an identical color, or the points in an identical encephalic
region will be assigned with the identical color. The point style
customization script codes can be popped up by clicking the GUI
control as shown in Figure 2 (g). (2) Line style customization. Simi-
larly, the line style can be customized by clicking the GUI control
as shown in Figure 2 (f). Users can modify the parameters of the
script codes in the popped-up DSL script editor like in Figure 1 (h).
Besides, users are allowed to define whether need to bundle the
lines at a given data scale. When there are a large number of lines in
a local region, it often induces severe visual clutter or 3D occlusion.
If the bundling effect is turned on, all the lines will be bundled by
an edge bundling algorithm named FDEB [19]. All the line bundling
should make sense according to the domain knowledge. (3) Surface
style customization. To help users distinguish materials of different
tissue faces and enhance their realism, we provide functions to
customize the glossiness and metallicity of the surface (Figure 2 (i)).
ScaleTraversal uses different lighting models or different lighting
parameters to achieve the effects.

last scale current scale next scale

last scale current scale next scale

Memory

the scale

after the next

load

Fade in to the next scale

delete

D
i
s
k

Figure 4: We design a prefetching and a dynamic dealloca-
tion strategy to read and render data during the animation
generation, and release the least recently used scale of data
from the memory.

4 SCALE-BASED ACCELERATION
STRATEGIES

We design four scale-based acceleration strategies under limited
hardware resources for users who are unavailable to access high
performance machines, including a streaming data processing strat-
egy, a scale-based data prefetching strategy, a memory utilization
strategy and a GPU rendering acceleration strategy (G3).

Streaming data processing strategy. We design a read-render
data processing strategy to avoid long-time blankwhen ScaleTraver-
sal starts to read data, because it often takes too much time to initial-
ize the data loader and renderer, load all scales of data, and render
the first scale of data specified by users (G3). Generally, when faced
with a large amount of data regarding limited hardware resources,
e.g., a common desktop PC, reading and rendering all at once leads
to a dramatic increase in memory consumption, and rendering all
the data in a short period of time leads to extremely low FPS. Our
approach supports the synchronization of data reading and render-
ing in different threads. First, the data reading thread reads a small
amount of data from the first scale into the buffer. When the data
in the buffer accumulates to a certain size, the rendering thread
will fetch that data from the buffer and render it promptly, while
the reading thread is still reading the data and pushing them into
the buffer, as shown in Figure 3. The streaming data processing
strategy makes the rendered objects appear in the animation one
by one to avoid long-time blank and further increases the FPS of
the animation.

Scale-based prefetching and dynamic memory dealloca-
tion. The streaming read-render data processing strategy is useful
to increase the FPS when starting an animation. However, we still
need better data management strategies to further increase the
overall FPS. We design a scale-based prefetching strategy and a
dynamic memory deallocation strategy (G3). For example, we can
customize an animation from the scale of encephalic region to the
scale of fiber. When the animation of encephalic region starts, the
fiber visualizations are completely invisible for us. At this time, a
prefetching thread will start to read the next scale of data. It can
effectively accelerate the scale-based data reading. When the an-
imations enter the fiber scale, the prefetching thread will start to
load the data of the next scale, e.g., the cortical column scale. Fur-
thermore, we can release the first scale of data (encephalic region)
when the animation starts to enter the third scale level (cortical
column), as shown in Figure 4. The scale-based prefetching strategy
and the dynamic memory deallocation strategy can further help to
increase the FPS of the overall animation.

Super object bundling. We created a super object combination
strategy to save the data and state information of multiple objects
in batch, while the CPU only needs to push the super object each
time (G3). The strategy reduces the number of “Draw Calls" and
further increases the FPS of animation rendering (G3). For more
details about the super object design, please refer to the Appendix
file.

5 ANIMATION EXAMPLES
We designed a light weight compiler following the compiler design
(see Appendix) in IGScript [32]. It is used to translate the whole
animation flowcharts (GUI controls and the embedded short DSL
scripts) into DSL script codes. The whole script codes for an ani-
mation customized by users can be saved to disk and reused and
re-edited in future. Meanwhile we develop a hub which acts as a
data transfer station between the waterfall interface and the cus-
tomized data animations. It is used to transfer script commands
to the animation generation renderer, ensuring that the animation
and the flowchart time are in tune when the animation is presented.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Brain Envelop
(L1: 10-1m)

Encephalic Region
(L2: 10-2)

Fiber
(L3: 10-3m)

①

Cortical Column
(L4: 10-4m)

Neuron
(L5: 10-5m)

Chromosome
(L6: 10-7m)

DNA
(L7: 10-9m)

②③④

L1 L3

L5L6L7

Figure 5: The first demonstration animation generated by
five data scales. They are brain envelop scale (L1), fiber scale
(L3), neuron scale (L5), chromosome scale (L6) and DNA scale
(L7). Top row: the icons indicating which scale and where the
current position the virtual camera are locating. Bottom row:
animation snapshots for each customized data scale. The
current animation progress is indicted in the waterfall-like
interface simultaneously.

ScaleTraversal was built on a desktop PC with limited hard-
ware resources, e.g., Windows 10 Home with an Intel i7-10875H
2.30 GHz CPU, 16 GB RAM, and NVIDIA RTX 2060 Graphics card.
The waterfall-like flowchart is developed on Qt5, and the rendering
system of ScaleTraversal is built using GPU programming. The com-
piled results will be transferred to the rendering system to generate
data animations automatically. The rendering system is designed
similar to an API library, which can be flexibly changed. More addi-
tional rendering functions can be added afterwards, which improve
the scalability of the rendering system.

In our experiments, we have conducted three case examples
to evaluate the expressiveness and usability of the customization
feature of ScaleTraversal. The third case study is moved to the
Appendix.

The first case demonstrates the ScaleTraversal which allows
users to customize the data animation across several selected scales
they are interested in instead of all of the scales. Five scales the user
is interested in are selected, as shown in Figure 5. They are brain
envelop scale (L1), fiber scale (L3), neuron scale (L5), chromosome
scale (L6) and DNA scale (L7). The animation building will skip two
scales, encephalic region scale (L2) and cortical column scale (L4),
because they are not customized to present in the final animation
in this case, as shown in the two grey icons with red crosses in Fig-
ure 5. The top icons in the animation space indicating which scale
and where the current position the virtual camera is locating. The
bottom sub-figures are the corresponding snapshots of the whole
customization interface. The detailed animation progress will be
updated in real-time in the waterfall-like customization interface.

The second case consists of nine scales including a scheme of
scale return, as shown in Figure 6. The animation flowchart includes
two parts, the first part is to demonstrate the left-brain from brain

envelop scale (L1) to fiber scale (L3), while the second part is to
demonstrate the detailed process in the right-brain from brain
envelop scale (L1) to DNA scale (L7).

It is simple and easy for domain experts to customize data anima-
tions by dragging the GUI control for each scale into the animation
customization track, as shown in the left part of each snapshot
in Figure 5. All the GUI controls about animation transition cus-
tomization and animation duration customization can be added
into the animation track of each scale. Besides, the scale-based
even the object-based visual styles can be also customized by short
DSL script codes in a popped up window close the corresponding
GUI control in the animation track. Domain experts do not need
to memorize the identifies. They are just required to change the
parameter values for each statement or choose the parameter val-
ues from a GUI list. For more details about how to customize the
three animation cases, please see the supplementary video of the
submission.

6 EVALUATION
The results are evaluated on the above-mentioned desktop PC with
limited resources.

Metrics Pipelined [32] The proposed
Raw Data Size 3.24 GB 3.24 GB

Memory Consumption Out-of-memory 7.7 GB
#Mesh Triangles 239.1 M 239.1 M
Minimum FPS Out-of-memory 22.3

Table 1: The overall performance metrics of the proposed
ScaleTraversal compared with the traditional scientific data
animation generation approach [32], which use traditional
pipelined mode to process all the data and result in applica-
tion crash due to out-of-memory. The actually used memory
size during the animation is much larger than the original
data size due to a large number of objects will be produced
and rendered.

6.1 Performance Evaluation
Overall quantitative performance. The overall performance re-
sults of ScaleTraversal are shown in Table 1. It can be found that
the minimum FPS of ScaleTraversal is 22.3. The baseline method is
a recent work on scientific data animation generation [32], which
uses traditional pipelined mode to process all the data. It should
be noted that the actually used memory size during the animation
rendering is much larger than the original data size on the exper-
imental equipment, because there are a large number of objects
will be produced and then a large number of mesh triangles with
various lighting effects should be rendered, which usually takes a
large number of memory consumption. The baseline method ends
with application crash due to the gap between its resource intensive
requirement and the limited resource on the identical experimental
equipment (the desktop PC).

Qualitative evaluation of streaming data processing strat-
egy. We evaluated the streaming data processing strategy by com-
paring it with the traditional non-streaming scheme. The experi-
mental conditions are totally identical for the two methods. In this
control group test, we just used a subset of the data (918.9 MB)

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ScaleTraversal: Creating Multi-Scale Biomedical Animation with Limited Hardware Resources ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

③

Brain EnvelopEncephalic Region (L) Encephalic Region (R)
(L1: 10-1m) (L2: 10-2m)(L2: 10-2m)

①

④ ⑤

②

Fiber
(L3: 10-3m)

Fiber
(L3: 10-3m)

⑥

Cortical Column
(L4: 10-4m)

⑦

Neuron
(L5: 10-5m)

⑧

Chromosome
(L6: 10-7m)

DNA
(L7: 10-9m)

⑨

L3 L1 L2L2 L3

L6 L5L7 L4

Figure 6: The second demonstration animation is customized by using “scale return”. The animation includes the demonstrations
to show the “left-brain” and then the “right-brain”. Top row: the icons indicating which scale and where the current position
the virtual camera are locating. Bottom row: animation snapshots for each customized data scale.

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 7: The animation effect of streaming data processing
strategy. Part of objects are displayed in the animation im-
mediately after the corresponding data are loaded.

to test the streaming strategy because the traditional method will
crash if it loads all the scales of data. The traditional non-streaming
scheme will take 25.49 seconds to show something in the animation
due to the time-consuming data loading, object creating and object

rendering. The qualitative result of the streaming strategy is shown
in Figure 7.

Quantitative evaluation of data prefetching strategy. Sim-
ilarly, we used two scales of data to test the prefetching strategy.
The results are shown in Table 2. It can be found that the FPS with
prefetching strategy up to 170 while the control group without
prefetching strategy is just 25 FPS.

Methods No prefetching Prefetching
Mesh Triangles 215.9 M 215.9 M

FPS 25 170
Table 2: Two scales of data are used to test the prefetching
strategy, because the control method is out of memory and
then crash if it loads all the data.

Quantitative evaluation of animation acceleration strate-
gies. We designed a super object combination strategy and a mem-
ory utilization strategy to accelerate the GPU rendering. The FPS
with acceleration strategies is much larger than that without accel-
eration strategies (Table 3). We just used one scale of the data to
evaluate the strategies due to the application of the control group
will crash soon due to out-of-memory if loading all scales of the
data.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Mesh triangles 271.3 K 11.4 M
Method No Acc GPU Acc No Acc GPU Acc

Draw calls 22603 94 9748 422
FPS 14.7 272 47 269

Mem utilization × √ × √

Table 3: Quantitative evaluation on two strategies including
a GPU acceleration strategy (GPU Acc) by super object com-
bination and a memory utilization strategy.

6.2 Domain Expert Feedback
We asked for feedback from domain experts to further evaluate
ScaleTraversal. Four domain experts who have engaged in brain
study or neurology study are involved in the evaluation. They can
either directly explore the customized demonstration animations in
real-time on a desktop PC by using ScaleTraversal or demonstrate
animation videos in knowledge popularization in their talks,
peer-expert sharing, or peer-expert discussion. We received
many feedback and suggestions. “The animation is quite impressive
actually”, a feedback received from a well-known brain scientist
when he first viewed the customized animation. We have been
communicating with his team members for a long time about their
requirements and new suggestions. After many iterations, the brain
scientist said “the biological side is quite reasonable”. He really ap-
preciates the flexible animations customized by our tool from the
perspective of multi-scale and the smooth animation transitions
between scales by providing context.

To get a more complete evaluation, we provide a questionnaire
after their long-term use and back-and-forth improvements, where
five point Likert scale is used (total scale 𝑡 = 5.00). We received
the questionnaire results: “The waterfall-like interface is intuitive
and easy to customize animations” (Q1: 𝜇 = 4.00, 𝑡 = 5.00) and
“the ScaleTraversal is efficient to customize animations” (Q2: 𝜇 =

3.67). They said “the animation from macro-scale to micro-scale
was helpful and effective” for them to understand the multi-scale
biomedical data (Q4: 𝜇 = 4.00). They pretty appreciated the GUI
design embeddedwith textual codes, and they said the UI designwas
helpful and effective in animation generation and customization
(Q5: 𝜇 = 4.33).

Regarding the acceleration strategy effects, the domain experts
said the streaming strategy (Q6: 𝜇 = 4.33, Q7: 𝜇 = 4.00) and the
prefetching strategy (Q8: 𝜇 = 4.33) are capable of improving the
animation smoothness and fluency, after we showed the individual
performance evaluation. We also consulted them about the overall
feedback and the suggestions after the questionnaire. They said
they like the documentary photography effect which is applied
into the animation customization. Among the feedback, one of the
senior experts who have studied multi-scale brain data for five
years said “I really appreciate the scale preview group on the top of
the animation, which provides the overview progress and the current
position of the camera in the macro perspective.” The overall feedback
received from domain experts does not cover too much about the
back-end acceleration strategies, because they pay more attention
to the usability and expressiveness of the front-end interface and
the customized animations.

Actually, the domain experts gave us many suggestions during
the whole developing process of ScaleTraversal. For example, one
of the experts said “the flowchart in the waterfall-like interface is too

long”. Regarding this suggestion, we have improved the waterfall-
like interface by adding an automatical slide bar to track the current
progress. Besides, the flowchart can be zoom-in and zoom-out
to make users better view the overview customization from the
waterfall-like interface.

7 DISCUSSION AND CONCLUSION
We design a bi-functional user interface to customize multi-scale
biomedical demonstration animations in this paper. Actually, there
are another two alternative designs: (1) Pure textual script in-
terface. It is a good option to obtain flexibility while sacrificing
user-friendliness. At the start-up of this work, we have inquired
many experts in various domains such as biologists, doctors, geolo-
gists, etc. Most of them said it is important to avoid them writing
too many codes because they have gotten accustomed to or even
relies strongly upon graphical interface like Mac OS, iOS, Windows,
etc. We noticed the fact that the learning curves for them to study
a new script language are really steep. (2) Pure graphical inter-
face. In multi-scale data animation, it is hard for users to manually
perform complex customizations as mentioned-above. For example,
camera rotating around a given “encephalic region/object” within
10 seconds with a constant-speed, shot changing by transiting and
zooming-in/zooming-out simultaneously when the camera travels
across two biomedical objects with different sizes, and specifying
an accurate time for fade-in and fade-out. Therefore, we use GUI
primarily for user-friendliness and combine simple and embedded
DSL codes to improve flexibility in ScaleTraversal.

It is impossible to process the large-size multi-scale data and
render them simultaneously on a desktop PC. An alternative design
to address the challenge is to re-sample the data at a much lower
resolution. However, the down-sampling would result in data in-
formation loss in one/multiple of scales, and then would probably
generate artifacts or distortions in the surface rendering for some
objects.

Although ScaleTraversal is designed to customize multi-scale
biomedical data animation, it is not tedious to extend it to other
data with several orders of magnitude in scale, if given the cor-
responding scales of data. Because the customization interface is
scalable to bind new 3D objects in the data, and the animation gen-
erator is extendable to use new 3D objects which the virtual camera
will rotate around. Another significant step of the extension is to
design the application-specific visualizations according to users’
requirements.

In this paper, we introduce ScaleTraversal, an interactive tool
for customizing multi-scale 3D demonstration animations (from
macro-scales to meso- and micro-scales) with limited hardware
resources. The target users are the domain experts who are un-
available to access high performance machines. It fully utilizes
the strengths of graphical interface’s user-friendliness and textual
interface’s flexibility. Furthermore, we designed four multi-scale
data management strategies to make the animation as smooth as
possible. Finally, we demonstrate the efficiency, expressiveness and
usability of ScaleTraversal by performance test, case study and
domain experts’ feedback, respectively.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ScaleTraversal: Creating Multi-Scale Biomedical Animation with Limited Hardware Resources ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Asan Agibetov, Ricardo Manuel Millan Vaquero, Karl-Ingo Friese, Giuseppe

Patane, Michela Spagnuolo, and Franz-Erich Wolter. 2014. Integrated Visual-
ization and Analysis of a Multi-scale Biomedical Knowledge Space. In EuroVis
Workshop on Visual Analytics, AJonathan Roberts Margit Pohl (Ed.), Vol. 1. Euro-
graphics Association, Swansea, UK, 1–5.

[2] James P. Ahrens, Jonathan Woodring, David E. DeMarle, John Patchett, and
Mathew Maltrud. 2009. Interactive Remote Large-Scale Data Visualization via
Prioritized Multi-Resolution Streaming. InWorkshop on Ultrascale Visualization
(Portland, Oregon) (UltraVis ’09, Vol. 1), Michael E. Papka Kwan-Liu Ma (Ed.).
ACM, New York, NY, USA, 1–10.

[3] Ali K. Al-Awami, Johanna Beyer, Hendrik Strobelt, Narayanan Kasthuri, Jeff W.
Lichtman, Hanspeter Pfister, and Markus Hadwiger. 2014. NeuroLines: A Subway
Map Metaphor forVisualizing Nanoscale Neuronal Connectivity. IEEE Transac-
tions on Visualization and Computer Graphics 20, 12 (2014), 2369–2378.

[4] Emil Axelsson, Jonathas Costa, Cláudio Silva, Carter Emmart, Alexander Bock,
and Anders Ynnerman. 2017. Dynamic Scene Graph: Enabling Scaling, Posi-
tioning, and Navigation in the Universe. Computer Graphics Forum 36, 3 (2017),
459–468.

[5] Johanna Beyer, Ali Al-Awami, Narayanan Kasthuri, Jeff W. Lichtman, Hanspeter
Pfister, and Markus Hadwiger. 2013. ConnectomeExplorer: Query-Guided Vi-
sual Analysis of Large Volumetric Neuroscience Data. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (2013), 2868 –2877.

[6] Shane Blackett, David Bullivant, David Nickerson, and Peter Hunter. 2005. Multi-
Scale and Multi-Physics Visualization. In ACM SIGGRAPH 2005 Posters (Los
Angeles, California) (SIGGRAPH ’05, Vol. 1), Juan Buhler (Ed.). Association for
Computing Machinery, New York, NY, USA, 136–es.

[7] Saeed Boorboor, Shreeraj Jadhav, Mala Ananth, David Talmage, Lorna Role,
and Arie Kaufman. 2018. Visualization of Neuronal Structures in Wide-Field
Microscopy Brain Images. IEEE Transactions on Visualization and Computer
Graphics 25, 1 (2018), 1018–1028.

[8] Michael Bostock and Jeffrey Heer. 2009. Protovis: A Graphical Toolkit for Visu-
alization. IEEE Transactions on Visualization and Computer Graphics 15, 6 (2009),
1121–1128.

[9] Kevin J Brown, Arvind K Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. 2011. A heterogeneous parallel frame-
work for domain-specific languages. In 2011 International Conference on Parallel
Architectures and Compilation Techniques, Lawrence Rauchwerger (Ed.), Vol. 1.
IEEE, CPS, Galveston, Texas, USA, 89–100.

[10] Hyungsuk Choi, Woohyuk Choi, Tran Minh Quan, David Hildebrand, Hanspeter
Pfister, and Won-Ki Jeong. 2014. Vivaldi: A Domain-Specific Language for
Volume Processing and Visualization on Distributed Heterogeneous Systems.
IEEE Transactions on Visualization and Computer Graphics 20, 12 (2014), 2407–
2416.

[11] Gregory Cipriano, George N. Phillips Jr., and Michael Gleicher. 2009. Multi-Scale
Surface Descriptors. IEEE Transactions on Visualization and Computer Graphics
15, 6 (Nov 2009), 1201–1208.

[12] Valerio Cosentino, Massimo Tisi, and Javier Luis Cánovas Izquierdo. 2015. A
model-driven approach to generate external DSLs from object-oriented apis. In
International Conference on Current Trends in Theory and Practice of Informatics,
Giuseppe F. Italiano, Tiziana Margaria-Steffen, Jaroslav Pokorny, Jean-Jacques
Quisquater, and Roger Wattenhofer (Eds.), Vol. 1. Springer, 423–435.

[13] Romuald Deshayes. 2013. A Domain-Specific Modeling Approach for Gestural
Interaction. In IEEE Symposium on Visual Languages and Human-Centric Com-
puting, Stefan Sauer Caitlin Kelleher, Margaret Burnett (Ed.), Vol. 1. 181–182.
https://doi.org/10.1109/VLHCC.2013.6645275

[14] Michael J. Doyle, Ciarán Tuohy, and Michael Manzke. 2018. Evaluation of a BVH
Construction Accelerator Architecture for High-Quality Visualization. IEEE
Transactions on Multi-Scale Computing Systems 4, 1 (Jan 2018), 83–94.

[15] Shiaofen Fang and Marwan Adada. 2004. Multi-Scale Iso-Surface Extraction for
Volume Visualization. In Proceedings of the 2004 ACM SIGGRAPH International
Conference on Virtual Reality Continuum and Its Applications in Industry (Singa-
pore) (VRCAI ’04, Vol. 1), Yiyu Cai Judith Brown (Ed.). Association for Computing
Machinery, New York, NY, USA, 390–394.

[16] Leopold Grinberg, Joseph A. Insley, Vitali Morozov, Michael E. Papka, George Em
Karniadakis, Dmitry Fedosov, and Kalyan Kumaran. 2011. A New Computational
Paradigm in Multiscale Simulations: Application to Brain Blood Flow. In Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Scott Lathrop (Ed.), Vol. 1. IEEE, Seattle, WA, USA, 1–12.

[17] Sarkis Halladjian, David Kouril, Haichao Miao, Eduard Groeller, Ivan Viola, and
Tobias Isenberg. 2021. Multiscale Unfolding: Illustratively Visualizing the Whole
Genome at a Glance. IEEE Transactions on Visualization and Computer Graphics
(2021), Early Access.

[18] Sarkis Halladjian, Haichao Miao, David Kouřil, M. Eduard Gröller, Ivan Viola, and
Tobias Isenberg. 2020. Scale Trotter: Illustrative Visual Travels Across Negative
Scales. IEEE Transactions on Visualization and Computer Graphics 26, 1 (2020),
654–664.

[19] Danny Holten and Jarke J. Van Wijk. 2009. Force-Directed Edge Bundling for
Graph Visualization. Computer Graphics Forum 28, 3 (2009), 983–990.

[20] Wei-Hsien Hsu, Kwan-Liu Ma, and Carlos Correa. 2011. A Rendering Framework
for Multiscale Views of 3D Models. ACM Transactions Graphics 30, 6 (dec 2011),
1–10.

[21] Runzhen Huang, Eric Lum, and Kwan-liu Ma. 2007. Multi-scale morphological
volume segmentation and visualization. In 2007 6th International Asia-Pacific
Symposium on Visualization, Kwan-Liu Ma Seok-Hee Hong (Ed.), Vol. 1. IEEE,
Sydney, NSW, Australia, 121–128.

[22] Paul Hudak and Mark P Jones. 1994. Haskell vs. Ada vs. C++ vs. awk vs.... an
experiment in software prototyping productivity. Contract 14, 92-C (1994), 0153.

[23] Joseph A. Insley, Leopold Grinberg, Dmitry A. Fedosov, Vitali Morozov, Bruce
Caswell, Michael E. Papka, and Geroge Em Karniadakis. 2011. Blood Flow: Multi-
Scale Modeling and Visualization. In Proceedings of the 2011 Companion on High
Performance Computing Networking, Storage and Analysis Companion (Seattle,
Washington, USA) (SC ’11 Companion, Vol. 1), Scott Lathrop (Ed.). Association
for Computing Machinery, New York, NY, USA, 139–140.

[24] Yani Ioannou, Babak Taati, Robin Harrap, and Michael Greenspan. 2012. Differ-
ence of Normals as a Multi-scale Operator in Unorganized Point Clouds. In 2012
Second International Conference on 3D Imaging, Modeling, Processing, Visualization
Transmission, Marc Pollefeys (Ed.), Vol. 1. 501–508.

[25] Zhengjian Kang and Edward K. Wong. 2014. Learning multi-scale sparse repre-
sentation for visual tracking. , 4897–4901 pages.

[26] Karlis Kaugars. 1998. Integrated Multi Scale Text Retrieval Visualization. In
CHI 98 Conference Summary on Human Factors in Computing Systems (Los An-
geles, California, USA) (CHI ’98, Vol. 1), Arnold Lund Clare-Marie Karat (Ed.).
Association for Computing Machinery, New York, NY, USA, 307–308.

[27] Gordon L. Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont Samuels, and
John H. Reppy. 2016. Diderot: a Domain-Specific Language for Portable Parallel
Scientific Visualization and Image Analysis. IEEE Transactions on Visualization
and Computer Graphics 22, 1 (2016), 867–876.

[28] Tobias Klein, Ivan Viola, Eduard Gröller, and Peter Mindek. 2020. Multi-Scale
Procedural Animations of Microtubule Dynamics Based on Measured Data. IEEE
Transactions on Visualization and Computer Graphics 26, 1 (2020), 622–632.

[29] Robert Krueger, Johanna Beyer, Won-Dong Jang, NamWook Kim, Artem Sokolov,
Peter K. Sorger, and Hanspeter Pfister. 2020. Facetto: Combining Unsupervised
and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel
Image Data. IEEE Transactions on Visualization and Computer Graphics 26, 1
(2020), 227–237.

[30] Mingzhao Li, Zhifeng Bao, Farhana Choudhury, and Timos Sellis. 2018. Sup-
porting Large-Scale Geographical Visualization in a Multi-Granularity Way. In
Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining (Marina Del Rey, CA, USA) (WSDM ’18, Vol. 1), Chengxiang Zhai
Yi Chang (Ed.). Association for Computing Machinery, New York, NY, USA,
767–770.

[31] Norbert Lindow, Daniel Baum, Morgan Leborgne, and Hans-Christian Hege.
2018. Interactive Visualization of RNA and DNA Structures. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (2018), 967–976.

[32] Richen Liu, Min Gao, Shunlong Ye, and Jiang Zhang. 2021. IGScript: An Interac-
tion Grammar for Scientific Data Presentation. , 13 pages.

[33] Richen Liu, Genlin Ji, and Mingjun Su. 2020. Domain-Specific Visualization Sys-
tem Based on Automatic Multi-Seed Recommendations: Extracting Stratigraphic
Structures. Software: Practice and Experience 50, 2 (2020), 98–115.

[34] Richen Liu, Liming Shen, Xueyi Chen, Genlin Ji, Bin Zhao, Chao Tan, andMingjun
Su. 2019. Sketch-based slice interpretative visualization for stratigraphic data.
Journal of Imaging Science and Technology 63, 6 (2019), 60505–1.

[35] Weifeng Ma, Qianggen Yang, Xiangdan Tang, and Shengshan Hou. 2010. A 3D
visualization and management framework for geological disaster monitoring
and early warning based on virtual globes. In The 18th International Conference
on Geoinformatics, Aijun Chen Yu Liu (Ed.), Vol. 1. IEEE, Beijing, China, 1–5.

[36] Philipp Meschenmoser, Juri F. Buchmüller, Daniel Seebacher, Martin Wikelski,
and Daniel A. Keim. 2021. MultiSegVA: Using Visual Analytics to Segment
Biologging Time Series on Multiple Scales. IEEE Transactions on Visualization
and Computer Graphics 27, 2 (2021), 1623–1633.

[37] Ricardo Manuel Millan Vaquero, Asan Agibetov, Jan Rzepecki, Marta Ondresik,
Alexander Vais, Joaquim Miguel Oliveira, Giuseppe Patane, Karl-Ingo Friese,
Rui Luis Reis, Michela Spagnuolo, and Franz-Erich Wolter. 2015. A Semanti-
cally Adaptable Integrated Visualization and Natural Exploration of Multi-scale
Biomedical Data. In The 19th International Conference on Information Visualisa-
tion, Ebad Banissi, MarkW. McK. Bannatyne, Fatma Bouali, Remo Burkhard, John
Counsell, Urska Cvek, Martin J. Eppler, Georges Grinstein, Wei Dong Huang, Se-
bastian Kernbach, Chun-Cheng Lin, Feng Lin, Francis T. Marchese, Chi Man Pun,
Muhammad Sarfraz, Marjan Trutschl, Anna Ursyn, Gilles Venturini, Theodor G.
Wyeld, and Jian J. Zhang (Eds.), Vol. 1. IEEE, Barcelona, Spain, 543–552.

[38] Robert Miller, Vadim Mozhayskiy, Llias Tagkopoulos, and Kwan-Liu Ma. 2011.
EVEVis: A multi-scale visualization system for dense evolutionary data. In
2011 IEEE Symposium on Biological Data Visualization (BioVis)., Jos Roerdink
Jessie Kennedy (Ed.), Vol. 1. IEEE, Providence, RI, USA, 143–150.

9

https://doi.org/10.1109/VLHCC.2013.6645275

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[39] Haneen Mohammed, Ali K. Al-Awami, Johanna Beyer, Corrado Cali, Pierre
Magistretti, Hanspeter Pfister, and Markus Hadwiger. 2018. Abstractocyte: A
Visual Tool for Exploring Nanoscale Astroglial Cells. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2018), 853–861.

[40] Duong B. Nguyen, Rodolfo Ostilla Monico, and Guoning Chen. 2021. A Vi-
sualization Framework for Multi-scale Coherent Structures in Taylor-Couette
Turbulence. IEEE Transactions on Visualization and Computer Graphics 27, 2
(2021), 902–912.

[41] Thammathip Piumsomboon, Gun A. Lee, Barrett Ens, Bruce H. Thomas, and
Mark Billinghurst. 2018. Superman vs Giant: A Study on Spatial Perception for a
Multi-Scale Mixed Reality Flying Telepresence Interface. IEEE Transactions on
Visualization and Computer Graphics 24, 11 (Nov 2018), 2974–2982.

[42] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman P.
Amarasinghe, and Frédo Durand. 2012. Decoupling algorithms from schedules for
easy optimization of image processing pipelines. ACM Transactions on Graphics
31, 4 (2012), 32:1–32:12.

[43] Peter Rautek, Stefan Bruckner, Eduard Gröller, and Markus Hadwiger. 2014.
ViSlang: A System for Interpreted Domain-Specific Languages for Scientific
Visualization. IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2388–2396.

[44] Jan Rzepecki, Ricardo Manuel Millán Vaquero, Alexander Vais, Karl-Ingo Friese,
and Franz-Erich Wolter. 2014. Multimodal Approach for Natural Biomedical
Multi-scale Exploration. In Advances in Visual Computing, George Bebis, Richard
Boyle, Bahram Parvin, Darko Koracin, Ryan McMahan, Jason Jerald, Hui Zhang,

Steven M. Drucker, Chandra Kambhamettu, Maha Choubassi, Zhigang Deng,
and Mark Carlson (Eds.), Vol. 1. Springer, Las Vegas, NV, USA, 620–631.

[45] Joris Sansen, Patricia Thébault, Isabelle Dutour, and Romain Bourqui. 2016. Vi-
sualization of sRNA-mRNA Interaction Predictions. In The 20th International
Conference Information Visualisation (IV), Ebad Banissi, Mark W. McK. Ban-
natyne, Fatma Bouali, Remo Burkhard, John Counsell, Urska Cvek, Martin J.
Eppler, Georges G. Grinstein, Weidong Huang, Sebastian Kernbach, Chun-Cheng
Lin, Feng Lin, Francis T. Marchese, Chi Man Pun, Muhammad Sarfraz, Marjan
Trutschl, Anna Ursyn, Gilles Venturini, Theodor G. Wyeld, and Jian J. Zhang
(Eds.), Vol. 1. IEEE, Lisbon, Portugal, 342–347.

[46] Max Schlee and Jean Vanderdonckt. 2004. Generative programming of graphical
user interfaces. In Proceedings of the working conference on Advanced visual
interfaces, Maria Francesca Costabile (Ed.), Vol. 1. 403–406.

[47] Liming Shen, Xueyi Chen, Richen Liu, Hailong Wang, and GenLin Ji. 2021.
Domain-Specific Language Techniques for Visual Computing: A Comprehensive
Study. Archives of Computational Methods in Engineering 28, 4 (2021), 3113–3134.

[48] Yong Wan, Hideo Otsuna, Chi-Bin Chien, and Charles Hansen. 2009. An interac-
tive visualization tool for multi-channel confocal microscopy data in neurobiol-
ogy research. IEEE Transactions on Visualization and Computer Graphics 15, 6
(2009), 1489–1496.

[49] Chao Xu, Rui Wang, Shuang Zhao, and Hujun Bao. 2021. Multi-Scale Hybrid
Micro-Appearance Modeling and Realtime Rendering of Thin Fabrics. IEEE
Transactions on Visualization and Computer Graphics 27, 4 (April 2021), 2409–
2420.

10

	Abstract
	1 Introduction
	2 Background And Related Work
	2.1 Muti-scale Data Presentation Tools and Systems
	2.2 DSL-Based User Interface Design
	2.3 Context and Relationship

	3 Design Rationale
	3.1 Characteristics of Multi-scale Biomedical Data
	3.2 Design Goals and Design Considerations
	3.3 Design Details

	4 Scale-Based Acceleration Strategies
	5 Animation Examples
	6 Evaluation
	6.1 Performance Evaluation
	6.2 Domain Expert Feedback

	7 Discussion and Conclusion
	References

