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ABSTRACT

Natural actor-critic (NAC) methods have demonstrated remarkable effectiveness
in various reinforcement learning problems. However, there remains a noticeable
gap in the literature regarding the finite-time analysis of this practical algorithm.
Previous theoretical investigations of actor-critic techniques primarily focused on
the double-loop form, involving multiple critic steps per actor step, or the two-
timescale form, which employs an actor step size much slower than that of the critic.
While these approaches were designed for ease of analysis, they are seldom utilized
in practical applications. In this paper, we study a more practical single-loop
single-timescale natural actor-critic algorithm, where step sizes are proportional
and critic updates with only a single sample per actor step. Our analysis establishes
a finite sample complexity of O(ϵ−4), ensuring the attainment of the ϵ-accurate
global optimal point. To the best of our knowledge, we are the first to provide
finite-time convergence with the global optimality guarantee for the single-loop
single-timescale natural actor-critic algorithm with linear function approximation.

1 INTRODUCTION

Actor-Critic (AC) algorithms have achieved significant success and emerged as a popular approach in
various reinforcement learning algorithms since their introduction (Konda & Borkar, 1999; Konda &
Tsitsiklis, 1999). In the AC algorithm, the actor updates the policy by estimating the policy gradient
(PG), a function of the Q-value corresponding to the policy. To accurately evaluate the Q-value,
the AC algorithm employs the critic to track the value function. This design often reduces variance
and accelerates convergence in practice, compared to using the Monte Carlo rollout to estimate the
Q-value in the PG method. The Natural Actor-Critic (NAC) algorithm is a variant of AC, in which
the actor adopts the Natural Policy Gradient (NPG) algorithm. NAC methods are widely used in
practice, such as in trust region policy optimization (TRPO) and proximal policy optimization (PPO),
and they often outperform AC in numerous applications.

Previous theoretical analyses for AC and NAC primarily focus on two variants based on the same
concept. First, numerous studies consider double-loop variants, wherein the inner critic takes multiple
update steps to accurately approximate the Q-value per actor step. The analysis for the actor and
critic can be decoupled, reducing the problem to the policy estimation sub-problem in the inner loop
and the policy gradient with the error sub-problem in the outer loop. It is important to note that this
double-loop design is primarily for simplifying analysis and is seldom used in practice. Generally,
it is sample inefficient compared to single-loop AC (NAC) as it requires accurate estimation of the
Q-value function for the current policy.

The second variant involves two-timescale methods, wherein the actor’s step size decays much slower
than the critic’s, with the ratio of their rates converging to zero as the iteration number approaches
infinity. This design ensures that the actor always has an accurate Q-value estimation. Consequently,
the analysis can be decoupled for the actor and the critic, akin to the double-loop variation analysis.
It is important to note that two-timescale methods are not frequently employed in practice, as they
necessitate artificially slowing down the actor, leading to inefficient sample complexity.

The theoretical analysis for the more practical single-loop single-timescale AC (NAC) presents
a greater challenge. As the actor and the critic diminish at the same timescale, the decoupling
analysis technique becomes inapplicable. It is necessary to control the actor’s and critic’s errors
simultaneously, as they are deeply coupled due to the parallel update rule. Existing works analyze the
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single-timescale Actor-Critic and demonstrate an O
(
ϵ−2
)

sample complexity to reach the stationary
point. These studies treat the two errors as components of an interconnected system. Analyzing the
single-loop single-timescale NAC is more challenging than the Actor-Critic and remains unexplored.
Since NAC employs the Fisher information matrix for the actor update, it is also essential to control
the error of estimating the Fisher information matrix, which depends on the current policy. In the
double-loop NAC, the Fisher information matrix can be approximated using multiple samples in
the inner loop (Xu et al., 2020). However, in the single-loop single-timescale algorithm, only one
sample is induced from the current policy and can be used to approximate the Fisher information
matrix unbiasedly. A potential approach is to compute the Fisher information matrix as a linear
combination of the estimation in the last iteration and the unbiased estimation of the current sample.
Then, the estimating error can be controlled by the estimating error in the last round and the policy
shift between iterations, which is related to the actor’s and critic’s errors. Consequently, it is necessary
to simultaneously control these three estimating errors. This requirement makes the analysis for NAC
more challenging.

1.1 CONTRIBUTION

• In this paper, we provide the first finite time sample complexity guarantee for the single-loop
single-timescale NAC algorithm with linear function approximation, which is O

(
ϵ−2
)

to
find an ϵ-approximate stationary point (∥∇θV (θ)∥22 < ϵ + error) and O

(
ϵ−4
)

to find an
ϵ-global optimal (V ∗ − V (θ) < ϵ+ error), where V (θ) is the value function of policy πθ,
and V ∗ is the value function of the optimal policy.

• To reduce the Fisher information matrix estimation’s variance, we combine the previous
estimation with the unbiased estimation using one sample. This update rule makes the
estimation error related to the actor’s and the critic’s errors. Intuitively, when the actor takes
a step small enough, the Fisher information matrix estimation is accurate since it does not
change much between two iterations.

• The technical challenge in the analysis is that we need to simultaneously control the error
of the actor update, the critic update, and the Fisher information matrix estimation. In the
analysis of AC, Olshevsky & Gharesifard (2022) use the small gain analysis that bounds
the critic error and the actor error with each other. The main difference and challenge in
analyzing NAC is that we also need to bound the error for estimating the Fisher information
matrix. Here we control these three errors together as an interconnected system and derive
the final bound for the sample complexity.

2 RELATED WORK

The AC algorithm was initially proposed by Konda & Borkar (1999), which was later extended to
the NAC algorithm by Kakade (2001). The asymptotic convergence of AC algorithms has been
well-established in various settings (Kakade, 2001; Bhatnagar et al., 2009; Castro & Meir, 2010;
Zhang et al., 2020). Recent research has focused on the finite-time convergence of AC methods. Yang
et al. (2019) established global convergence of AC methods for solving the linear quadratic regulator
(LQR) under the double-loop setting. Wang et al. (2019) investigated the global convergence of AC
methods using neural network parameterization for both the actor and critic. Kumar et al. (2019)
studied the finite-time local convergence of several AC variants with linear function approximation.

For the two-timescale AC algorithm, a study by Wu et al. (2020) demonstrated finite-time local
convergence to a stationary point with a sample complexity of O(ϵ−2.5) for finite action spaces.
Another work by Xu et al. (2020) investigated both local and global convergence for double-loop
AC, achieving sample complexities of O(ϵ−2.5) and O(ϵ−4), respectively, under the discounted
accumulated reward setting. Chen et al. (2022) established global convergence of two-timescale AC
methods for solving LQR, utilizing a single sample to update the critic in each iteration.

For the single-timescale algorithm, Fu et al. (2020) considered the least-squares temporal difference
update for the critic and obtained the optimal policy within the energy-based policy class for both
linear function approximation and nonlinear function approximation using neural networks. Further-
more, Olshevsky & Gharesifard (2022); Chen et al. (2021); Chen & Zhao (2022) investigated the
single-timescale AC in general MDP cases.
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setting paper convergence rate

AC

double-loop
Wang et al. (2019) O(1/ϵ4)
Kumar et al. (2019) O(1/ϵ4)
Xu et al. (2020) O(1/ϵ2)

single-loop
two-timescale

Qiu et al. (2021) O(1/ϵ4)
Wu et al. (2020) O(1/ϵ2.5)

single-loop
single-timescale

Chen et al. (2021) O(1/ϵ2)
Chen & Zhao (2022) O(1/ϵ2)
Olshevsky & Gharesifard (2022) O(1/ϵ2)

NAC
double-loop Xu et al. (2020) O(1/ϵ3)
single-loop
two-timescale Khodadadian et al. (2021) O(1/ϵ6)

single-loop
single-timescale this work O(1/ϵ4)

Table 1: Comparisons of settings and convergence rates with most related works.

3 PRELIMINARIES

This section introduces the basics of the discounted Markov decision process, natural policy gradient
algorithm, and single-timescale NAC.

We consider a discounted Markov Decision Process (MDP) with finite states and actions, where S is
the state space, A is the action space, and P (s′|s, a) denotes the transition kernel that the current state
s transits to s′ after taking action a. Denote r(s, a) ∈ [0, 1] as the reward given the state-action pair
(s, a). We will assume that we parameterize the set of policies by θ ∈ Θ with πθ(a|s) is the probability
of choosing action a in state s. Define the value-function Vθ(s) = Eθ [

∑∞
t=0 γ

trt(st, at) | s0 = s],
where the expectation Eθ is taken over the Markov chain under the policy πθ. Define the Q-value as
Qθ(s, a) = Eθ [

∑∞
t=0 γ

trt(st, at) | s0 = s, a0 = a]. Denote the distribution over the starting state
as ρ, and we ca define the expected value function under policy πθ as

V (θ) = E [Vθ(s)] =
∑
s

ρ(s)Vθ(s) .

Denote pk,θ(s) the probability that the state transits to s at step k if policy πθ is followed. Denote
µθ as the stationary state distribution induced by πθ. Following the policy gradient theorem, we can
differentiate Vθ as:

∇θV (θ) =
∑
s

∑
k=0,1,...

γkpk,θ(s)
∑
a

πθ(a | s)Qθ(s, a)∇θ log πθ(a | s)

=
∑
s,a

µθ(s, a)Qθ(s, a)∇θ log πθ(a | s) .

This form allows us to apply a stochastic version of gradient descent. For the policy πθt estimated at
t, we can generate a random sample (st, at) from the stationary distribution µθt and update as

θt+1 = θt − βtQθt(st, at)∇θ log πθt(at | st) .

For the natural policy gradient, it applies natural gradient descent, which is invariant to the parametriza-
tion of policies. Define F (θt) = Eµθt

[
∇θ log πθt(at|st)∇θ log πθt(at|st)T

]
, the natural policy

gradient method updates as follows:

θt+1 = θt − βtF (θt)
†Qθt(st, at)∇θ log πθt(at | st) ,

where F (θt)
† denotes the Moore-Penrose pseudoinverse of F (θt).

In practice, F (θt) and Qθt(st, at) can be estimated via sampling. Both PG algorithm and NPG
algorithm apply the Monte Carlo method to estimate the Q-value, which might suffer from large
variance and high sample complexity. This motivates us to apply AC and NAC algorithms.
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We consider the single-loop single-timescale NAC method, where the critic is bootstrapping and uses
a single sample to update. The state-value function is approximated by the following linear function

Qθ(s, a) ≈ ϕ(s, a)Tωθ ,

where ϕ(s, a) ∈ Rd is a known feature mapping for state action pair (s, a), ωθ ∈ Ω ⊆ Rd and we
assume Ω is a compact convex set.

It is usually assumed that the best weight ωθ is unknown while a method to compute the features is
available. To compute good weights, the critic will perform a TD(0) update by generating the tuple
(st, at, rt, s

′
t, a

′
t) by following the MDP and the policy πθ and the critic finally performs the update:

ωt+1 = PΩ

[
ωt + αt(rt + γϕ(s′t, a

′
t)
Tωt − ϕ(st, at)

Tωt)ϕ(st, at)
]
,

where αt ∈ (0, 1) is the step size of the critic’s update.

Then the actor can update using the Q-value estimated by the critic. We also need to estimate the
fisher information matrix F (θt) via only one sample for the natural actor-critic method. We update
its estimation Ft at each iteration t as

Ft = (1− ζt)Ft−1 + ζt∇θ log πθt(at|st)∇θ log πθt(at|st)T ,

where ζt ∈ (0, 1) is the step size of the Fisher information matrix’s update.
Remark 1. In the double-loop NAC algorithm (Xu et al., 2020), F (θt) can be approximated by
a sufficient number of samples induced from µθ in the inner loop, while only one sample can be
accessed in the single-loop algorithm. To handle the problem of insufficient samples, we update the
estimated Fisher information matrix Ft using Ft−1 updated in the last iteration. Intuitively, when the
policy’s distribution shift from πθt−1 to πθt is small enough, then F (θt−1) and F (θt) are also close.
Thus it is natural and reasonable to utilize the Fisher information matrix estimated in the previous
iterations.

Thus the actor can update as follows:

θt+1 = θt − βt(Ft + λI)−1ϕ(st, at)
Tωt∇θ log πθt(at | st) ,

where λI is the regularization term to prevent the matrix from being singular, βt ∈ (0, 1) is the step
size.

Algorithm 1 Single-loop single-timescale natural actor critic
1: Initialize at arbitrary θ1, ω1, F0.
2: for time t = 1, 2, · · · do
3: Generate (st, at) from µπθ

, then sample s′t ∼ P (· | st, at), a′t ∼ πθt(· | s′t).
4: Estimated Fisher information matrix update:

Ft = (1− ζt)Ft−1 + ζt∇θ log πθt(at|st)∇θ log πθt(at|st)T .

5: Actor update:

θt+1 = θt − βt(Ft + λI)−1ϕ(st, at)
Tωt∇θ log πθt(at | st) .

6: Critic update:

ωt+1 = PΩ

[
ωt + αt(rt + γϕ(s′t, a

′
t)
Tωt − ϕ(st, at)

Tωt)ϕ(st, at)
]
.

7: end for

Remark 2. The “single-loop” refers to only one sample being used to update the critic per actor
step. The algorithm samples (st, at) from the stationary distribution µθ induced by the policy πθt ,
which is a mild requirement in the analysis of uniformly ergodic Markov chain. Additionally, the
i.i.d. sample is commonly used in the literature of the single-timescale AC analysis (Olshevsky &
Gharesifard, 2022; Chen et al., 2021; 2022). Note that many existing theoretical works all start with
i.i.d samples from the stationary distribution. It is widely recognized as the first important step toward
the analysis of more practical algorithms. In practice, one can run the Markov chain in the simulator
a sufficient number of steps and sample one state from the last step. In addition, “single-timescale”
refers to the fact that the stepsizes for the critic and the actor updates are constantly proportional.
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4 MAIN RESULTS

In this section, we show the finite-time global convergence of the single-loop single-timescale NAC
algorithm.

4.1 ASSUMPTIONS

Before giving the finite-time convergence guarantee for the single-loop single-timescale NAC algo-
rithm, we first present several standard assumptions commonly used in the literature of analyzing AC
(NAC) with linear function approximation.
Assumption 1 (Uniform mixing). Let µt,θ be the distribution over state-action pairs after k transi-
tions following policy πθ in the given MDP. There is a distribution µθ and constants C and ρ such
that

∥µk,θ − µθ∥1 ≤ Cρk

This assumption guarantees the existence of the stationary distribution. It is commonly employed to
address the issues of the noise induced by Markovian sampling and is widely used in the finite-time
analysis of various RL algorithms with Markovian samples (Qiu et al., 2021; Wu et al., 2020; Xu
et al., 2020; Olshevsky & Gharesifard, 2022; Chen et al., 2021; Chen & Zhao, 2022).
Assumption 2 (Smoothness of policy). The function πθ(a|s) is a twice continuously differentiable
function of θ for all state-action pairs s, a. Further, there exist constants K1,K2,K3 such that for
all θ, s, a we have

|∇θ log πθ(a|s)| ≤ K1, |∇θπθ(a|s)| ≤ K2,
∣∣∇2

θ log πθ(a|s)
∣∣ ≤ K3 .

This assumption is also standard in the literature of policy gradient methods (Qiu et al., 2021; Wu
et al., 2020; Xu et al., 2020; Olshevsky & Gharesifard, 2022; Chen et al., 2021; Chen & Zhao, 2022).
It holds for many policy classes, such as tabular softmax policy and Gaussian policy. This assumption
ensures that the quantities throughout the execution of NAC are smooth.
Assumption 3 (Nonredundancy and norm of features). The feature matrix Φ is non-singular and
each of its rows has at most unit norm.

This assumption states that the features are not redundant, ensuring the critic has the unique optimal
solution when approximating the value function. It is standard and assumed in previous work
(Olshevsky & Gharesifard, 2022).
Assumption 4 (Approximation of the Q-value). Define ωθ to be the limit of temporal difference
update when the policy is fixed to πθ. Then for some δ > 0,

sup
θ

Es,a∼µθ

∣∣Qθ(s, a)− ϕ(s, a)Tωθ
∣∣ ≤ δ .

This assumption is standard in the literature of linear function approximation settings (Qiu et al.,
2021; Wu et al., 2020; Xu et al., 2020; Olshevsky & Gharesifard, 2022; Chen et al., 2021; Chen &
Zhao, 2022). Here δ determines how well the Q-value is approximated and δ = 0 when the linear
approximation perfectly describes the Q-value functions.

Before making the next assumption, we introduce some notation. Rewrite the critic update as
ωt+1 = PΩ [(I + αtAt)ωt − αtbt] , (1)

where At, bt are defined as
At = ϕ(st, at)(γϕ(s

′
t, a

′
t)− ϕ(st, at))

T , bt = −rtϕ(st, at) .

Assumption 5 (Exploration). Denote Aθt = E [At] and bθt = E [bt] where the expectation is being
taken by generating the sample from µθt . There exists µ ∈ (0, 1) such that

sup
θ

sup
∥x∥=1

xTAθx ≤ −µ

2
< 0

The assumption is labeled “exploration” because it holds if the policies πθ explore all state-action
pairs. It is standard in the literature of TD learning with linear function approximation. In the same
way, the projected Bellman error is strongly convex, it is known that A is positive definite. Such
an assumption is made to guarantee the problem is solvable Kumar et al. (2023); Qiu et al. (2021);
Olshevsky & Gharesifard (2022); Chen et al. (2021); Chen & Zhao (2022).
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4.2 FINITE-TIME CONVERGENCE

For convenience, we use the shorthand ∆t = ωt − ωθt to denote the critic estimated error, and
denote ∇t = ∇V (θt) as the actor stationary. Further, we use the shorthand et = Ft − F (θt) as the
Fisher information estimated error. We show that these three errors converge to zero on average. It is
convenient to take the average over the last half of the iteration, which is a slight modification.

Theorem 1. Suppose Assumptions 1 - 5 hold. By choosing step sizes αt = c1/
√
t, βt = c2/

√
t,

ζt = c3/
√
t, where c1, c2, c3 are appropriate constants chosen depending on the problem parameters,

the sequence of iterates produced by single-loop single-timescale NAC satisfies

2

T

T−1∑
t=T/2

E
[
∥et∥2

]
≤O

(
δ2 +

1√
T

)
,

2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
≤O

(
δ2 +

1√
T

)
,

2

T

T−1∑
t=T/2

E
[
∥∆t∥2

]
≤O

(
δ2 +

1√
T

)
,

where all parameters except δ, T are treated as constants in the O(·) notation.

The above results show that if the critic approximation error δ = 0, the Fisher information estimator,
the critic, and the actor all converge at a sub-linear rate of O(T−1/2). Note that O(T−1/2) is the rate
one would obtain from stochastic gradient descent (SGD) on a non-convex function with unbiased
gradient updates. In terms of sample complexity, to obtain an ϵ-approximate stationary point, it takes
a number of O(ϵ−2) samples, which matches the state-of-the-art performance of SGD on the non-
convex optimization problem. This result also matches the state-of-the-art result of single-timescale
AC (Olshevsky & Gharesifard, 2022; Chen & Zhao, 2022; Chen et al., 2021).

Given the finite-time convergence of ∆t,∇t, et, we can further attain the globally optimal solution
in terms of the V-value function convergence. Note that this is due to the parameter invariant
property of the NPG update. We define δ′ = maxθ∈Θ minp

∣∣Eµθ

[
∇θ log πθ(a|s)T p−Aπθ

(s, a)
]∣∣,

where Aπθ
(s, a) = Vθ(s) − Qθ(s, a) is the advantage value function corresponds to πθ. δ′ is the

approximation error caused by the insufficient expressive power of the parameterized policy class Θ.
It can be shown that δ′ is zero or very small when the policy class is sufficient to express all possible
policies, such as the tabular policy or over-parameterized neural policy (Wang et al., 2019). This
error definition is also used in previous work when analyzing the global convergence of the NAC (Xu
et al., 2020).

Theorem 2. Suppose Assumptions 1 - 5 hold. By choosing step sizes αt = c1/
√
t, βt = c2/

√
t,

ζt = c3/
√
t, where c1, c2, c3 are appropriate constants chosen depending on the problem parameters,

the value functions V (θt) produced by single-loop single-timescale NAC satisfies

V ∗ − 2

T

T−1∑
t=T/2

E [V (θt)] ≤O
(
δ2 + δ′ + T−1/4

)
,

where all parameters except δ′, δ, T are treated as constants in the O(·) notation.

The above result shows that if the critic approximation error δ = 0 and the actor approximation error
δ′ = 0, then the value function V (θt) will converge to the globally optimal value function V ∗ at a
sub-linear rate O(T−1/4). Thus we can infer that it takes O(ϵ−4) samples to obtain the ϵ-approximate
globally optimal point. It is essential to note that we are the first to provide the finite time global
convergence for the single-loop single-timescale NAC methods with linear function approximation.

The “two-timescale” step size is primarily considered for the ease of establishing convergence,
wherein the analysis heavily relies on the favorable property of limt→∞ αt/βt = 0. Unlike the
"two-timescale" approach, the single-timescale step size considered in our paper does not possess
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such a property, and our proof does not require it either. It is true that, in practice, we often select an
actor’s step size smaller than the critic’s step size, but they always shrink at the same scale. This is
also the single-timescale setting, while the constants c1, c2 we choose in Theorem 1.

5 PROOF SKETCH

This section gives a proof sketch for the finite time convergence results of the single-loop single-
timescale NAC algorithm. The detailed proof can be found in Appendix A.

The main challenge in the finite-time analysis for single-loop single-timescale NAC algorithm is that
the estimation errors of the Fisher information matrix, critic, and the policy gradient are strongly
coupled. To control these three errors simultaneously, we view the propagation of these errors as an
interconnected system.

5.1 ANALYSIS OF CRITIC UPDATE

Our first step is to obtain a performance error bound on the critic. The final bound we will derive in
this subsection will bound the critic’s performance ∥∆t∥ in terms of the closeness to the stationary
point of the actor, i.e., ∥∇t∥.

We first show that, without noise, a small enough TD learning step starting from ωt makes it
closer to ωθt . Recall that the critic update rule can be rewritten as in Eq. (1). We then denote
∇̃(θt, ωt) := −Aθtωt + bθt , where Aθt and bθt are defined in Assumption 5.
Lemma 1 (Contractivity of the TD update). If αt ≤ µ/(2L2

∇), then∥∥∥ωt − ωθt − αt∇̃(θt, ωt)
∥∥∥ ≤ (1− αtµ/4) ∥∆t∥ .

The definition of L∇ can be found in Appendix A. The above lemma states the fact that following
the expected TD direction can reduce the estimated error ∥∆t∥. With this lemma, we can derive a
recursion relation of the critic update.
Lemma 2 (Recursion relation of the critic update). If αt ≤ µ/(2L2

∇), then

E
[∥∥ωt+1 − ωθt+1

∥∥2] ≤(1− αtµ/4) ∥ωt − ωθt∥
2
+ α2

tσ
2
c

+ 2L2
ωβ

2
t λ

−2(σ2
a + 3L2

gE
[
∥∆t∥2

]
+ 3E

[
∥∇t∥2

]
+ 3δ̄2)

+ βtλ
−1Lω

E
[
∥∇t∥2

]
2

+ βtλ
−1(1/2 + Lg)E

[
∥∆t∥2

]
+

(
β2
t λ

−2λ
′

2
σ2
a′ + βtλ

−1Lω δ̄

)
∥∆t∥ ,

where σc, Lω, σa, Lg, δ̄, σ
′
a, λ

′ are all problem parameters and are treated as constants. Their
definition can be found in the Appendix A.

With the above recursion relation of the critic update, we can take summation over t = T/2, · · · , T−1

and obtain the bound of
∑T−1
t=T/2 E

[
∆2
t

]
in terms of

∑T−1
t=T/2 E

[
∇2
t

]
and other problem parameters.

Lemma 3. Suppose that αt, βt are non-increasing sequences with αt/2 ≤ cααt and βt/2 ≤ cββt for
all t and for some constants cα, cβ . If αt ≤ µ/(2L2

∇), then

2

T

T−1∑
t=T/2

E [∥∆t∥]2 ≤ 1

αT

8

µT

∥∥ωT/2 − ωθT/2

∥∥2 + c2ααT
8

µ
σ2
c

+ 2L2
ω

c2ββ
2
Tλ

−2

αT

8

µ
σ2
a + 2L2

ω

c2ββ
2
Tλ

−2

αT

8

µ
δ2

+
4c2ββ

2
Tσ

2
a′λ

′ + 8cββTλ
−1Lωδ

αTµ

√√√√ 1

T/2

T−1∑
t=T/2

E
[
∥∆t∥2

]
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+
8cββTλ

−1Lω
αTµ

2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
.

5.2 ANALYSIS OF ACTOR UPDATE

Now we analyze the actor’s stationary ∥∇t∥. It depends on the critic estimating error ∥∆t∥ and the
fisher information matrix approximating error ∥Ft − F (θt)∥. Using the actor update rule and the
smoothness property of V (θ), we derive

Lemma 4. Suppose βt ≤ λ2

4(λ+1)LV
for all t ≥ T/2, then

2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
≤
16E

[
V (θT/2)

]
− 16E [V (θT )]

βTT
+

36cβL
2
g

λ2T/2

T−1∑
t=T/2

E
[
∥∆t∥2

]
+

36cβδ
2

λ2

+
18cββTLV σ

2
a

λ2
+

8cβ
λ2(1− γ)2T/2

T−1∑
t=T/2

E
[
∥et∥2

]
.

It can be seen that the actor stationary ∥∇t∥ can be bounded by the actor’s performance difference,
the critic estimated error ∥∆t∥, the Fisher information matrix estimated error ∥et∥, and other related
problem parameters such as the critic’s approximation bias δ and the variance upper bound σa.

5.3 ANALYSIS OF THE FISHER INFORMATION ESTIMATOR

For the Fisher information matrix estimated error ∥et∥, recall that Ft+1 is updated as follows:

Ft = (1− ζt)Ft−1 + ζt∇θ log π(at|st)∇θ log π(at|st)T .

Then we can decompose the difference of Ft and Fθt as

Ft − F (θt) =(1− ζt)Ft−1 + ζt∇θ log π(at|st)∇θ log π(at|st)T − F (θt)

=(1− ζt)(Ft−1 − F (θt−1)) + ζt(∇θ log π(at|st)∇θ log π(at|st)T − F (θt))

+ (1− ζt)(F (θt−1)− F (θt)) .

This leads to a contractive property similar to the critic update. It can be seen that ∥et∥ is controlled
by the ∥et−1∥ in the last iteration, the variance of the unbiased estimator using the current sample,
and the difference between F (θt) and F (θt−1), which is related to ∥∇t∥ and ∥∆t∥.
Lemma 5. Suppose that ζt are non-increasing sequences satisfying ζt/2 ≤ cζζt and for all t and for
constant cζ . For the Fisher information matrix estimator, we have

2

T

T−1∑
t=T/2

E
[
∥et∥2

]
≤ 1

ζTT

∥∥FT/2 − F (θT/2)
∥∥2 + c2ζζTσ

2
F

+ 2L2
F

c2ββ
2
Tλ

−2

ζT
σ2
a + 2L2

F

c2ββ
2
Tλ

−2

ζT
δ̄2

+
cββTλ

−1LF
ζT

2

T

T−1∑
t=T/2

E [∥∇t∥]2

+
cββTλ

−1LgLF
ζT

2

T

T−1∑
t=T/2

E [∥∆t∥]2 ,

where LF , σF is the problem parameter, and its definition can be found in Appendix A.

5.4 INTERCONNECTED ITERATION SYSTEM ANALYSIS

Now we have already controlled the approximating errors of the Fisher information matrix, critic,
and the policy gradient. We define XT , YT , and ZT as the expectation of the critic error, the square

8
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norm of the policy gradient, and the Fisher information estimated error, respectively:

XT =
2

T

T−1∑
t=T/2

E
[
∥∆t∥2

]
, YT =

2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
, ZT =

2

T

T−1∑
t=T/2

E
[
∥et∥2

]
.

By choosing αt, βt, γt = O(1/
√
t) We can get the following inequalities:

XT ≤O

(
1√
T

)
+ C1

√
XT + C2YT ,

YT ≤O

(
1√
T

)
+ C3XT + C4ZT + C5 ,

ZT ≤O

(
1√
T

)
+ C6XT + C7YT ,

where C1 to C7 are all positive constants. by solving the above three inequalities, we show that when
the above constants satisfy 1− C4C7 > 0 and 1− 2C2

C3+C4C6

1−C4C7
> 0, XT , YT , ZT all converge at a

rate of O(1/
√
T + δ2). This condition can be satisfied by tuning the step sizes αt, βt, ζt. Thus, it

completes the proof of convergence to a stationary point.

Given the convergence results of these three errors, we can further derive the convergence to the
globally optimal point, which leverages the parameter invariant property of the NPG update. The
algorithm needs O(ϵ−4) number of samples to attain the ϵ-accurate global optimality, i.e., V ∗ −
V (θt) ≤ ϵ. Due to the page limit, we defer to Appendix A for detailed proof.

6 CONCLUSION

In this paper, we provide the first finite-time sample complexity guarantee for the single-loop single-
timescale NAC algorithm, which needs O

(
ϵ−2
)

samples to find an ϵ-approximate stationary point
and O

(
ϵ−4
)

to find an ϵ-global optimal value function.

The novelty of this work stems from the design of the Fisher information matrix estimator. To decrease
the variance of the Fisher information matrix estimation, we combine the previous estimation with the
unbiased estimation using a single sample. This update rule links the estimation error to the actor’s
and critic’s errors. Intuitively, when the actor takes a sufficiently small step, the Fisher information
matrix estimation is accurate as it does not change substantially between two iterations. In our
theoretical analysis, we derive the recursion relation for this estimator and control the error with the
critic error and the norm of the policy gradient.

Future Work Our work assumes that at each iteration, we can draw a sample from the stationary
distribution µθt , which may not be so easy to obtain in practice. It will be more practical if the sample
is Markovian, which means the sample is taken from the state of the last iteration and the action taken
by following πθt . The analysis is more complicated for Markovian samples, and we leave it as an
interesting future work.

Note that our result builds on the finite-time analysis, which may not imply the asymptotic conver-
gence. This finite-time objective is commonly used in the optimization literature, and we leave it as a
future work to further show the asymptotic guarantee.

Moreover, there still remains a gap between our globally optimal O(ϵ−4) sample complexity and
the state-of-the-art O(ϵ−3) complexity obtained when analyzing double-loop NAC method Xu et al.
(2020). This is because in single-loop single-timescale NAC, the actor and the critic both use O(1/

√
t)

step sizes and thus we are unable to balance the terms in the global optimality analysis. It should be
noted that the convergence result of attaining a stationary point matches the state-of-the-art sample
complexity when analyzing AC (NAC). Thus our result is still comparable, and we leave it as future
work to derive a tighter sample complexity for globally optimal convergence.

9
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A PROOF OF MAIN RESULTS

A.1 REFORMULATING NAC AND PROPERTIES OF UPDATES

Rewrite the critic update rule as

ωt+1 = PΩ

[
ωt − αt

(
∇̃(θt, ωt) + wc(t)

)]
.

wc(t) is a random variable with zero expectation conditioned on the entire history. ∇̃(θt, ωt) :=
−Aθtωt + bθt is the expected TD direction. Note that ωθ is the limiting point of TD learning. Thus
we have

∇̃(θ, ωθ) = 0 .

Further, it can be implied that

∇̃(θ, ω)T (ω − ωθ) = (−Aθω + bθ)
T (ω − ωθ)

= (−Aθω + bθ)
T (ω − ωθ)− (−Aθωθ + bθ)

T (ω − ωθ)

≥ µ

2
∥ω − ωθ∥2

Then we turn to the actor update. We can rewrite the actor update as

θt+1 = θt − βt(Ft + λI)−1

(∑
s,a

µθt(s, a)Qt(s, a)∇θ log πθt(a|s) + wa(t)

)
,

where wa(t) is a random variable with zero expectation conditional on the past trajectory, Qt(s, a) =
ϕ(s, a)Tωt.

Then we define ĝ(θ,Q) =
∑
s,a µθ(s, a)Q(s, a)∇θπθ(a|s), and define g(θ, ω) = ĝ(θ,Φω), where

Φ is the feature matrix. Then the actor’s update can be rewritten as

θt+1 = θt − βt(Ft + λI)−1 (g(θt, ωt) + wa(t)) .

By Assumption 2 we have

∥g(θ, ωθ)− ĝ(θ,Qθ)∥ ≤
∑
s,a

∣∣ϕ(s, a)Tωθ −Qθ

∣∣K1

≤K1δ .

To analyze gradient descent, one typically needs some assumptions on the underlying functions.
These tend to involve the continuity of various gradients and updates, boundedness and finite variance
of the noise.
Lemma 6 (Lipschitz of critic update (Lemma 5.2 in Olshevsky & Gharesifard (2022))). There exists
a constant L∇ < ∞ such that for all θ, ω1, ω2,∥∥∥∇̃(θ, ω1)− ∇̃(θ, ω2)

∥∥∥ ≤ L∇ ∥ω1 − ω2∥ .

Lemma 7 (Lipschitz of actor update (Lemma 5.5 in Olshevsky & Gharesifard (2022))). There exists
a constant Lg < ∞. For all θ, ω1, ω2, we have that

∥g(θ, ω1)− g(θ, ω2)∥ ≤ Lg ∥ω1 − ω2∥ .

Lemma 8 (Lipschitz of the TD fixed point (Lemma 5.10 in Olshevsky & Gharesifard (2022))). There
exists a constant Lω < ∞ such that

∥ωθ1 − ωθ2∥ ≤ Lω ∥θ1 − θ2∥ .

Lemma 9 (Lipschitz gradient for value function (Proposition 5.7 in Olshevsky & Gharesifard (2022))).
There exists some LV < ∞ such that the function V (θ) has LV -Lipschitz gradient

∥∇θV (θ1)−∇θV (θ2)∥ ≤ LV ∥θ1 − θ2∥ .

12



Under review as a conference paper at ICLR 2024

Lemma 10 (Lipschitz of the Fisher information matrix). There exists a constant LF < ∞ such that

∥F (θ1)− F (θ2)∥ ≤ LF ∥θ1 − θ2∥ .

Proof.

∥F (θ1)− F (θ2)∥
=
∥∥Eθ1 [∇θ log πθ1(a|s)∇θ log πθ1(a|s)T

]
− Eθ2

[
∇θ log πθ2(a|s)∇θ log πθ2(a|s)T

]∥∥
≤max

s,a

∥∥∇θ log πθ1(a|s)∇θ log πθ1(a|s)T −∇θ log πθ2(a|s)∇θ log πθ2(a|s)T
∥∥

≤|S||A|K2
1 .

Lemma 11 (Bounded support for critic noise (Lemma 5.3 in Olshevsky & Gharesifard (2022))). The
support of the random vector wc(t) belongs to some compact set. And then there exist constants
σc < ∞ and σc′ < ∞ such that for all t,

E
[
∥wc(t)∥2 |Ft

]
≤σ2

c√
E
[
∥wc(t)∥4 |Ft

]
≤σ2

c′ .

Lemma 12 (Bounded support for actor noise (Lemma 5.4 in Olshevsky & Gharesifard (2022))). The
support of the random vector wa(t) belongs to some compact set. And then there exist constants
σa < ∞ and σa′ < ∞ such that for all t,

E
[
∥wa(t)∥2 |Ft

]
≤σ2

a√
E
[
∥wa(t)∥4 |Ft

]
≤σ2

a′ .

Lemma 13 (Bounded curvature of the TD fixed point (Lemma 5.11 in Olshevsky & Gharesifard
(2022))). There is some quantity λi independent of θ such that

sup
θ

λmax(∇2
θωθ(i)) ≤ λi .

We can further define λ′ =
√∑

i λ
2
i .

A.2 ANALYSIS OF CRITIC UPDATE

Our first step is to obtain a performance error bound on the critic. The final bound we will derive in
this subsection will bound the critic’s performance in terms of the closeness to the stationary point of
the actor.
Lemma 14 (Contractivity of the TD update). If αt ≤ µ/(2L2

∇), then∥∥∥ωt − ωθt − αt∇̃(θt, ωt)
∥∥∥ ≤ (1− αtµ/4) ∥∆t∥ .

Proof. ∥∥∥ωt − ωθt − αt∇̃(θt, ωt)
∥∥∥2 = ∥ωt − ωθt∥

2 − 2αt∇̃(θt, ωt) + α2
t

∥∥∥∇̃(θt, ωt)
∥∥∥2

≤ ∥ωt − ωθt∥
2 − 2αt

µ

2
∥ωt − ωθt∥

2
+ α2

t

∥∥∥∇̃(θt, ωt)
∥∥∥2

≤ (1− αtµ+ L2
∇α2

t ) ∥ωt − ωθt∥
2

≤ (1− αtµ/2) ∥ωt − ωθt∥
2

13
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Proof of Lemma 2 Recall that the critic update can be rewritten as

ωt+1 = ωt − αt

(
∇̃(θt, ωt) + wc(t)

)
,

where ∇̃(θt, ωt) = −Aθtωt + bθt and wc(t) = −(At −Aθt)ωt + (bt − bθt).

From the critic update rule, we have that∥∥ωt+1 − ωθt+1

∥∥2 =
∥∥∥ωt − αt∇̃(θt, ωt)− αtwc(t)− ωθt+1

∥∥∥2
=
∥∥∥(ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)) + (ωθt − ωθt+1

)
∥∥∥2

Taking the expectation of both sides, we obtain

E
[∥∥ωt+1 − ωθt+1

∥∥2 |Ft] ≤E
[∥∥∥ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

∥∥∥2 |Ft]
+ E

[∥∥ωθt − ωθt+1

∥∥2 |Ft]
+ 2E

[(
ωθt − ωθt+1

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

≤E
[∥∥∥ωt − ωθt − αt∇̃(θt, ωt)

∥∥∥2 |Ft]+ E
[
∥αtwc(t)∥2 |Ft

]
− 2⟨ωt − ωθt − αt∇̃(θt, ωt), αtwc(t)⟩

+ E
[∥∥ωθt − ωθt+1

∥∥2 |Ft]
+ 2E

[(
ωθt − ωθt+1

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

≤(1− αtµ/4) ∥ωt − ωθt∥
2
+ α2

tσ
2
c

+ E
[∥∥ωθt − ωθt+1

∥∥2 |Ft]
+ 2E

[(
ωθt − ωθt+1

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

≤(1− αtµ/4) ∥ωt − ωθt∥
2
+ α2

tσ
2
c

+ 2L2
ωβ

2
t λ

−2(σ2
a + ∥g(θt, ωt)∥2)

+ βtλ
−1Lω ∥g(θt, ωt)∥

∥∥∥ωt − ωθt − αt∇̃(θt, ωt)
∥∥∥

+ β2
t λ

−2λ
′

2
σ2
a′ ∥∆t∥

≤(1− αtµ/4) ∥ωt − ωθt∥
2
+ α2

tσ
2
c

+ 2L2
ωβ

2
t λ

−2(σ2
a + ∥g(θt, ωt)∥2)

+ βtλ
−1Lω ∥g(θt, ωt)∥ ∥∆t∥

+ β2
t λ

−2λ
′

2
σ2
a′ ∥∆t∥ .

For term E
[∥∥ωθt − ωθt+1

∥∥2 |Ft], we have

E
[∥∥ωθt − ωθt+1

∥∥2 |Ft] ≤L2
ωE
[
∥θt+1 − θt∥2 |Ft

]
≤L2

ωE
[∥∥βt(Ft + λI)−1(g(θt, ωt) + wa(t))

∥∥2 |Ft]
≤L2

ωβ
2
t λ

−2E
[
∥(g(θt, ωt) + wa(t))∥2 |Ft

]
≤2L2

ωβ
2
t λ

−2(E
[
∥(g(θt, ωt)∥2 |Ft

]
+ σ2

a) .
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For the term E
[(
ωθt − ωθt+1

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]
, we further define

θt+1/2 := θt − βtg(θt, ωt) and thus θt+1 = θt+1/2 − βtwa(t). Then we have

E
[(
ωθt − ωθt+1

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

=E
[(
ωθt − ωθt+1/2

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

+ E
[(
ωθt+1/2

− ωθt+1/2

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

≤LωE [∥g(θt, ωt)∥ |Ft]E
[∥∥∥ωt − ωθt − αt∇̃(θt, ωt)

∥∥∥ |Ft]
+ E

[(
ωθt+1/2

− ωθt+1/2

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]

≤LωE [∥g(θt, ωt)∥ |Ft] ∥∆t∥

+ E
[(
ωθt+1/2

− ωθt+1/2

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]
.

For the term ∥g(θt, ωt)∥, we have

∥g(θt, ωt)∥ = ∥g(θt, ωt) + g(θt, ωθt)− g(θt, ωθt)∥
≤Lg ∥ωt − ωθt∥+ ∥g(θt, ωθt)∥
=Lg ∥∆t∥+ ∥g(θt, ωθt)− g(θt, Qθt) + g(θt, Qθt)∥
≤Lg ∥∆t∥+ ∥∇t∥+ δ̄ .

Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we further get

∥g(θt, ωt)∥2 ≤ 3L2
g ∥∆t∥2 + 3 ∥∇t∥2 + 3δ̄2 .

For the term E
[(
ωθt+1/2

− ωθt+1/2

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]
, from lemma 5.13

in Olshevsky & Gharesifard (2022), we have that

E
[(
ωθt+1/2

− ωθt+1/2

)T (
ωt − ωθt − αt∇̃(θt, ωt)− αtwc(t)

)
|Ft
]
≤ β2

t λ
′σ2
a′ ∥∆t∥ .

Thus we can conclude the proof.

Proof of Lemma 3 If we have the recursion form

xt+1 ≤ (1− ζ)xt + ϵt ,

for 0 < ζ < 1, then we have

b∑
t=a

xt ≤
xa
ζ

+

b∑
t=a

ϵt
ζ
.

Applying this with ζ = αTµ/4 since sequence at is non-increasing and αtµ ≤ 1 by assumption.

T−1∑
t=T/2

E [∥ωt − ωθt∥]
2 ≤ 1

αT

4

µ

∥∥ωT/2 − ωθT/2

∥∥2 + c2ααT
T

2

4

µ
σ2
c

+ 2L2
ω

c2ββ
2
T

αT

T

2

4

µ
σ2
a + 6L2

ω

c2ββ
2
Tλ

−2

αT

8

µ

T−1∑
t=T/2

E ∥∇t∥2 + 6L2
ω

c2ββ
2
Tλ

−2

αT

T

2

4

µ
δ̄2

+ 6L2
ω

c2ββ
2
Tλ

−2

αT

8

µ
L2
g

T−1∑
t=T/2

E ∥∆t∥2
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+ 4
c2ββ

2
Tλ

−2σ2
a′(λ

′/2) + cββTLω δ̄

αTµ

√
T/2

√√√√E

T−1∑
t=T/2

∥∆t∥2

+
cββTλ

−1

αT

2Lω
µ

T−1∑
t=T/2

E ∥∇t∥2 +
cββTλ

−1

αT

2Lω
µ

T−1∑
t=T/2

E ∥∆t∥2

+
cββTλ

−1

αT

4

µ
LgLω

T−1∑
t=T/2

E ∥∆t∥22

Let us observe that the coefficient of
∑T−1
t=T/2 ∥∆t∥2 on the right-hand side is

6L2
ω

c2ββ
2
Tλ

−2

αT

8

µ
L2
g +

cββTλ
−1

αT

2Lω
µ

+
cββTλ

−1

αT

4

µ
LωLg ≤

1

2

Then we can have

2

T

T−1∑
t=T/2

E [∥∆t∥]2 ≤ 1

αT

8

µT

∥∥ωT/2 − ωθT/2

∥∥2 + c2ααT
8

µ
σ2
c

+ 2L2
ω

c2ββ
2
Tλ

−2

αT

8

µ
σ2
a + 2L2

ω

c2ββ
2
Tλ

−2

αT

8

µ
δ2

+
4c2ββ

2
Tσ

2
a′λ

′ + 8cββTλ
−1Lωδ

αTµ

√√√√ 1

T/2

T−1∑
t=T/2

E [∥∆t∥]2

+
8cββTλ

−1Lω
αTµ

2

T

T−1∑
t=T/2

E [∥∇t∥]2 .

A.3 ANALYSIS OF ACTOR UPDATE

Proof of Lemma 4 Now we analyze the actor stationary ∥∇t∥, it depends on the critic estimated
error ∥∆t∥ and the fisher information matrix estimated error ∥Ft − F (θt)∥.

Denote ut(ωt) = (Ft + λI)−1ϕ(st, at)
Tωt∇θ log πθt(at | st)

E [V (θt+1)] ≥E [V (θt)] + E [⟨∇θV (θt), θt+1 − θt⟩]−
LV
2

E
[
∥θt+1 − θt∥2

]
=E [V (θt)] + βtE [⟨∇θV (θt), ut(ωt)⟩]−

LV β
2
t

2
E
[
∥ut(ωt)∥2

]
=E [V (θt)] + βtE

[
⟨∇θV (θt), (F (θt) + λI)−1∇θV (θt)⟩

]
+ βtE

[
⟨∇θV (θt), ut(ωt)− (F (θt) + λI)−1∇θV (θt)⟩

]
− LV β

2
t

2
E
[∥∥ut(ωt)− (F (θt) + λI)−1∇θV (θt) + (F (θt) + λI)−1∇θV (θt)

∥∥2]
≥E [V (θt)] +

βt
1 + λ

E
[
∥∇θV (θt)∥2

]
+ βtE

[
⟨∇θV (θt), ut(ωt)− (F (θt) + λI)−1∇θV (θt)⟩

]
− LV β

2
tE
[∥∥ut(ωt)− (F (θt) + λI)−1∇θV (θt)

∥∥2]− LV β
2
tE
[∥∥(F (θt) + λI)−1∇θV (θt)

∥∥2]
≥E [V (θt)] +

βt
1 + λ

E
[
∥∇θV (θt)∥2

]
− βt

(
1

2(1 + λ)
E
[
∥∇θV (θt)∥2

]
+

1 + λ

2

∥∥E [ut(ωt)− (F (θt) + λI)−1∇θV (θt)
]∥∥2)

− LV β
2
tE
[∥∥ut(ωt)− (F (θt) + λI)−1∇θV (θt)

∥∥2]− LV β
2
t

λ2
E
[
∥∇θV (θt)∥2

]
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=E [V (θt)] +

(
βt

2(1 + λ)
− LV β

2
t

λ2

)
E
[
∥∇θV (θt)∥2

]
−
(
βt(1 + λ)

2

)∥∥E [ut(ωt)− (F (θt) + λI)−1∇θV (θt)
]∥∥2

− LV β
2
tE
[∥∥ut(ωt)− (F (θt) + λI)−1∇θV (θt)

∥∥2] .
Denote vt(ωt) = ϕ(st, at)

Tωt
d
dθ log πθt(at | st).

For the term
∥∥ut(ωt)− (F (θt) + λI)−1∇θV (θt)

∥∥2, we have that∥∥ut(ωt)− (F (θt) + λI)−1∇θV (θt)
∥∥2

=
∥∥ut(ωt)− (F (θt) + λI)−1vt(ωt) + (F (θt) + λI)−1vt(ωt)− (F (θt) + λI)−1∇θV (θt)

∥∥2
≤2
∥∥ut(ωt)− (F (θt) + λI)−1vt(ωt)

∥∥2 + 2
∥∥(F (θt) + λI)−1vt(ωt)− (F (θt) + λI)−1∇θV (θt)

∥∥2
=2
∥∥[(Ft + λI)−1 − (F (θt) + λI)−1

]
vt(ωt)

∥∥2 + 2
∥∥(F (θt) + λI)−1(vt(ωt)−∇θV (θt))

∥∥2
=2
∥∥[(Ft + λI)−1 − (F (θt) + λI)−1

]
(vt(ωt)−∇θV (θt) +∇θV (θt))

∥∥2
+ 2

∥∥(F (θt) + λI)−1(vt(ωt)−∇θV (θt))
∥∥2

≤4
∥∥[(Ft + λI)−1 − (F (θt) + λI)−1

]
(vt(ωt)−∇θV (θt))

∥∥2
+ 4

∥∥[(Ft + λI)−1 − (F (θt) + λI)−1
]
∇θV (θt)

∥∥2
+ 2

∥∥(F (θt) + λI)−1(vt(ωt)−∇θV (θt))
∥∥2

≤
[
4
∥∥(Ft + λI)−1 − (F (θt) + λI)−1

∥∥2 + 2
∥∥(F (θt) + λI)−1

∥∥2] ∥vt(ωt)−∇θV (θt)∥2

+ 4
∥∥(Ft + λI)−1 − (F (θt) + λI)−1

∥∥2 ∥∇θV (θt)∥2

≤
[
8
∥∥(Ft + λI)−1

∥∥2 + 10
∥∥(F (θt) + λI)−1

∥∥2] ∥vt(ωt)−∇θV (θt)∥2

+ 4
∥∥(Ft + λI)−1 − (F (θt) + λI)−1

∥∥2 ∥∇θV (θt)∥2

≤18

λ2
∥vt(ωt)−∇θV (θt)∥2 + 4

∥∥(Ft + λI)−1 − (F (θt) + λI)−1
∥∥2 ∥∇θV (θt)∥2

=
18

λ2
∥vt(ωt)−∇θV (θt)∥2 + 4

∥∥(Ft + λI)−1(Ft − F (θt))(F (θt) + λI)−1
∥∥2 ∥∇θV (θt)∥2

≤18

λ2
∥vt(ωt)−∇θV (θt)∥2 + 4

∥∥(Ft + λI)−1
∥∥2 ∥(Ft − F (θt))∥2

∥∥(F (θt) + λI)−1
∥∥2 ∥∇θV (θt)∥2

≤18

λ2
∥vt(ωt)−∇θV (θt)∥2 +

4

λ2(1− γ)2
∥Ft − F (θt)∥2 .

For the term ∥vt(ωt)−∇θV (θt)∥2, we have that

∥vt(ωt)−∇θV (θt)∥2 ≤ 3L2
g ∥∆t∥2 + 3δ2 + 3σ2

a .

Rearranging the term, we then have(
βt

2(1 + λ)
− LV β

2
t

λ2

)
∥∇θV (θt)∥2

≤V (θt)− V (θt+1)

+

(
βt(1 + λ)

2

)(
18

λ2

(
2L2

g ∥∆t∥2 + 2δ2
)
+

4

λ2(1− γ)2
∥Ft − F (θt)∥2

)
+ LV β

2
t

(
18

λ2

(
3L2

g ∥∆t∥2 + 3δ2 + 3σ2
a

)
+

4

λ2(1− γ)2
∥Ft − F (θt)∥2

)
.
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Using the assumption that LV β
2
t

λ2 < βt

4(λ+1) and summing over t = T/2, · · · , T − 1, we have that

T−1∑
t=T/2

βt
4(λ+ 1)

E
[
∥∇t∥2

]
≤E

[
V (θT/2)

]
− E [V (θT )] +

36L2
g

λ2

T−1∑
t=T/2

βtE
[
∥∆t∥2

]

+
36δ2

λ2

T−1∑
t=T/2

βt +
18LV σ

2
a

λ2

T−1∑
t=T/2

βt

+
8

λ2(1− γ)2

T−1∑
t=T/2

βtE
[
∥Ft − F (θt)∥2

]
.

Dividing by (βT /4(λ+ 1))(T/2) we get

2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
≤
16E

[
V (θT/2)

]
− 16E [V (θT )]

βTT
+

36cβL
2
g

λ2T/2

T−1∑
t=T/2

E
[
∥∆t∥2

]
+

36cβδ
2

λ2

+
18cββTLV σ

2
a

λ2
+

8cβ
λ2(1− γ)2T/2

T−1∑
t=T/2

E
[
∥Ft − F (θt)∥2

]
.

A.4 ANALYSIS FOR FISHER INFORMATION UPDATE

Proof of Lemma 5 Recall the update of the estimated fisher information matrix: Ft+1 = (1 −
ζt)Ft + ζt∇ log π(at|st)∇ log π(at|st)T , then we have

E
[
∥Ft+1 − F (θt+1)∥2

]
=E

[∥∥(1− ζt)Ft + ζt∇ log π(at|st)∇ log π(at|st)T − F (θt+1)
∥∥2]

=E
[∥∥(1− ζt) (Ft − F (θt)) + ζt

(
∇ log π(at|st)∇ log π(at|st)T − F (θt+1)

)
− (1− ζt) (F (θt+1)− F (θt))

∥∥2]
≤(1− ζt)

2E
[
∥Ft − F (θt)∥2

]
+ ζ2t E

[∥∥∇ log π(at|st)∇ log π(at|st)T − F (θt+1)
∥∥2]+ (1− ζt)

2E
[
∥F (θt+1)− F (θt)∥2

]
+ 2(1− ζt)

2E [⟨Ft − F (θt), F (θt+1)− F (θt)⟩] + 2ζt(1− ζt)E
[
⟨Ft − F (θt),∇ log π(at|st)∇ log π(at|st)T − F (θt+1)⟩

]
+ 2ζt(1− ζt)E

[
⟨F (θt+1)− F (θt),∇ log π(at|st)∇ log π(at|st)T − F (θt+1)⟩

]
≤(1− ζt)E

[
∥Ft − F (θt)∥2

]
+ ζ2t σ

2
F + LFE

[
∥θt+1 − θt∥2

]
+ 2(1− ζt)

2E [⟨Ft − F (θt), F (θt+1)− F (θt)⟩] .

For term ⟨Ft − F (θt), F (θt+1) − F (θt)⟩, we adopt the same analysis as the critic update and can
derive the upper bound:

⟨Ft − F (θt), F (θt+1)− F (θt)⟩
≤LFβtλ

−1 ∥g(θt, ωt)∥ ∥Ft − F (θt)∥+ β2
t λ

−2λ′σ2
a′ ∥Ft − F (θt)∥

≤LFβtλ
−1 ∥g(θt, ωt)∥ ∥Ft − F (θt)∥+ β2

t λ
−2λ′σ2

a′σF .

Similar to the critic update, we use the recursion form to derive the final bound of the estimated fisher
information matrix error.

2

T

T−1∑
t=T/2

E
[
∥Ft − F (θt)∥2

]
≤ 1

ζTT

∥∥FT/2 − F (θT/2)
∥∥2 + c2ζζTσ

2
F

+ 2L2
F

c2ββ
2
Tλ

−2

ζT
σ2
a + 2L2

F

c2ββ
2
Tλ

−2

ζT
δ̄2 +

c2ββ
2
Tλ

2λ′σ2
a′σF

ζT

+
cββTλ

−1LF
ζT

2

T

T−1∑
t=T/2

E [∥∇t∥]2
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+
cββTλ

−1LgLF
ζT

2

T

T−1∑
t=T/2

E [∥∆t∥]2 .

∥Ft+1 − F (θt+1)∥2

=
∥∥(1− ζt)Ft + ζt∇ log π(at|st)∇ log π(at|st)T − F (θt+1)

∥∥2
=
∥∥(1− ζt) (Ft − F (θt)) + ζt

(
∇ log π(at|st)∇ log π(at|st)T − F (θt+1)

)
− (1− ζt) (F (θt+1)− F (θt))

∥∥2
≤(1− ζt) ∥Ft − F (θt)∥2 + ζ2t

∥∥∇ log π(at|st)∇ log π(at|st)T − F (θt+1)
∥∥2 + (1− ζt) ∥F (θt+1)− F (θt)∥2

≤(1− ζt) ∥Ft − F (θt)∥2 + ζ2t σ
2
F + L2

F ∥θt+1 − θt∥2

≤(1− ζt) ∥Ft − F (θt)∥2 + ζ2t σ
2
F

+ 2L2
Fβ

2
t λ

−2(σ2
a + 3L2

g ∥∆t∥2 + 3 ∥∇t∥2 + 3δ̄2) .

Similar to the critic update, we can use this recursion form to derive the final bound of the estimated
fisher information matrix error

2

T

T−1∑
t=T/2

E
[
∥Ft − F (θt)∥2

]
≤ 1

ζTT

∥∥FT/2 − F (θT/2)
∥∥2 + c2ζζTσ

2
F

+ 2L2
F

c2ββ
2
Tλ

−2

ζT
σ2
a + 2L2

F

c2ββ
2
Tλ

−2

ζT
δ̄2

+
cββTλ

−1LF
ζT

2

T

T−1∑
t=T/2

E [∥∇t∥]2

+
cββTλ

−1LgLF
ζT

2

T

T−1∑
t=T/2

E [∥∆t∥]2 .

A.5 ATTAIN STATIONARY POINT CONVERGENCE

Proof of Theorem 1. We perform an interconnected iteration system analysis. We choose αt =
O(1/

√
t), βt = O(1/

√
t), ζt = O(1/

√
t), and denote c′ = βt/αt, c′′ = βt/γt. We define XT , YT

and ZT , which denote the expectation of the critic error, the square norm of the policy gradient, and
the Fisher information estimated error, respectively:

XT =
2

T

T−1∑
t=T/2

E
[
∥∆t∥2

]
, YT =

2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
, ZT =

2

T

T−1∑
t=T/2

E
[
∥et∥2

]
.

Then we have that

XT ≤O

(
1√
T

)
+ C1

√
XT + C2YT ,

YT ≤O

(
1√
T

)
+ C3XT + C4ZT + C5 ,

ZT ≤O

(
1√
T

)
+ C6XT + C7YT ,

where C1 =
8cβc

′λ−1Lωδ
µ , C2 =

8cβc
′λ−1Lω

µ , C3 =
36cβL

2
g

λ2 , C4 =
8cβ

λ2(1−γ)2 , C5 =
36cβδ

2

λ2 , C6 =

c′′cβλ
−1LgLF , C7 = c′′cβλ

−1LF .

For YT , we can further imply that

YT ≤ O

(
1√
T

)
+ C3XT + C4C6XT + C4C7YT + C5 .
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Rearranging the term we have if 1− C4C7 > 0, then

YT ≤ O

(
1√
T

)
+

C3 + C4C6

1− C4C7
XT +

C5

1− C4C7
.

Denote C ′
3 = C3+C4C6

1−C4C7
, C ′

5 = C5

1−C4C7
. Let us substitute XT = x2, then

x2 ≤ O

(
1√
T

)
+ C1x+ C2YT .

We can upper bound x by the largest root of this quadratic:

x ≤
C1 +

√
C2

1 + 4(O(1/
√
T ) + C2YT )

2
.

Squaring both sides and using the inequality (x+ y)2 ≤ 2x2 + 2y2, we have

x2 ≤ 2C2
1 + 2(C2

1 + 4(O(1/
√
T ) + C2YT ))

4
,

and then using Xt = x2 we obtain

XT ≤ O

(
1√
T

)
+ 2C2YT + C2

1 .

Now use the bound of YT we have

XT ≤ O

(
1√
T

)
+ 2C2C

′
3XT + C2C

′
5 .

Rearranging the term, if 1− 2C2C
′
3 > 0, we have

XT ≤ O

(
1√
T

)
+

C2C
′
5

1− 2C2C ′
3

,

where C2C
′
5

1−2C2C′
3
= O(δ2). We can then get the final result by using this bound to control YT and ZT .

At last, we need to select appropriate step sizes such that 1 − C4C7 > 0 and 1 − 2C2C
′
3 > 0

hold. These two conditions can be satisfied by selecting c′, c′′ small enough. More specifically, to
guarantee 1 − C4C7 > 1/2, we can let c′′ < λ3(1−γ)2

16c2βLgLF
. To guarantee 1 − 2C2C

′
3 > 0, we can

let c′ ≤ min{ λ4(1−γ)2µ
128c3βLgLFLω

, λ3µ
288c2βL

2
gLω

}. This can be ensured by making the step size of the actor
update small enough.

A.6 ATTAIN GLOBAL OPTIMALITY CONVERGENCE

Proof of Theorem 2 Given the above convergence result on the gradient norm, we proceed to prove
the convergence of NAC in terms of the function value. Denote D(θ) = DKL (π∗(·|s), π(·|s)), and
denote Lψ = K1. Then we proceed as follows:

D(θt)−D(θt+1)

=E∗
[
log(πθt+1

(a|s))− log πθt(a|s)
]

≥E∗ [∇θ log πθt(a|s)]
T
(θt+1 − θt)−

Lψ
2

∥θt+1 − θt∥2

=βtE∗ [∇θ log πθt(a|s)]
T
ut(ωt)−

Lψβ
2
t

2
∥ut(ωt)∥2

=βtE∗ [∇θ log πθt(a|s)]
T
uθt,λ + βtE∗ [∇θ log πθt(a|s)]

T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2

=βtE∗ [∇θ log πθt(a|s)]
T
u†
θt
+ βtE∗ [∇θ log πθt(a|s)]

T
(uθt,λ − u†

θt
)

+ βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2
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=βtE∗

[
Aπθt (s,a)

]
+ βtE∗ [∇θ log πθt(a|s)]

T
(uθt,λ − u†

θt
)

+ βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2

+ βtE∗

[
∇θ log πθt(a|s)

T
u†
θt
−Aπθt (s,a)

]
=(1− γ)βt (V

∗ − V πθt ) + βtE∗ [∇θ log πθt(a|s)]
T
(uθt,λ − u†

θt
)

+ βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2

+ βtE∗

[
∇θ log πθt(a|s)

T
u†
θt
−Aπθt (s,a)

]
≥(1− γ)βt (V

∗ − V πθt ) + βtE∗ [∇θ log πθt(a|s)]
T
(uθt,λ − u†

θt
)

+ βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2

− βt

√
E∗

[
∇θ log πθt(a|s)

T
u†
θt
−Aπθt (s,a)

]2
≥(1− γ)βt (V

∗ − V πθt ) + βtE∗ [∇θ log πθt(a|s)]
T
(uθt,λ − u†

θt
)

+ βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2

−

√∥∥∥∥ µπ∗

µπθt

∥∥∥∥
∞
βt

√
Eπθt

[
∇θ log πθt(a|s)

T
u†
θt
−Aπθt (s,a)

]2
≥(1− γ)βt (V

∗ − V πθt ) + βtE∗ [∇θ log πθt(a|s)]
T
(uθt,λ − u†

θt
)

+ βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)−

Lψβ
2
t

2
∥ut(ωt)∥2

−

√√√√ 1

1− γ

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

βt

√
Eπθt

[
∇θ log πθt(a|s)

T
u†
θt
−Aπθt (s,a)

]2
≥(1− γ)βt (V

∗ − V πθt )− βtCrλ− βtE∗ [∇θ log πθt(a|s)]
T
(ut(ωt)− uθt,λ)

−

√√√√ 1

1− γ

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

βt

√
Eπθt

[
∇θ log πθt(a|s)

T
u†
θt
−Aπθt (s,a)

]2
− Lψβ

2
t

2
∥ut(ωt)∥2

≥(1− γ)βt (V
∗ − V πθt )− βtCrλ− βtE∗ [∇θ log πθt(a|s)]

T
(ut(ωt)− uθt,λ)

−

√√√√ 1

1− γ

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

βtδ
′ − Lψβ

2
t

2
∥ut(ωt)∥2

≥(1− γ)βt (V
∗ − V πθt )− βtCrλ− βtE∗ [∇θ log πθt(a|s)]

T
(ut(ωt)− uθt,λ)

−

√√√√ 1

1− γ

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

βtδ
′ − Lψβ

2
t ∥ut(ωt)− uθt,λ∥

2 − Lψβ
2
t ∥uθt,λ∥

2

≥(1− γ)βt (V
∗ − V πθt )− βtCrλ− βtE∗ [∇θ log πθt(a|s)]

T
(ut(ωt)− uθt,λ)

−

√√√√ 1

1− γ

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

βtδ
′ − Lψβ

2
t ∥ut(ωt)− uθt,λ∥

2 − Lψβ
2
t

λ2
∥uθt,λ∥

2
.

Rearranging the equation, we have

V ∗ − E [V (θt)]
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≤E [D(θt)]− E [D(θt+1)]

(1− γ)βt
+

√√√√ 1

(1− γ)3

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

δ′

+
LψβtE

[
∥ut(ωt)− uθt,λ∥

2
]

1− γ
+

Lψβt
(1− γ)λ2

E
[
∥∇θV (θt)∥2

]
+

Crλ

1− γ

+
E
[
E∗ [∇θ log πθt(a|s)]

T
(ut(ωt)− uθt,λ)

]
1− γ

≤E [D(θt)]− E [D(θt+1)]

(1− γ)βt
+

√√√√ 1

(1− γ)3

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

δ′

+
LψβtE

[
∥ut(ωt)− uθt,λ∥

2
]

1− γ
+

Lψβt
(1− γ)λ2

E
[
∥∇θV (θt)∥2

]
+

Crλ

1− γ

+
∥E [ut(ωt)− uθt,λ]∥

1− γ
.

Recall that for E
[
∥ut(ωt)− uθt,λ∥

2
]
, we have the bound

E
[
∥ut(ωt)− uθt,λ∥

2
]
≤ 18

λ2

(
3L2

gE
[
∥∆t∥2

]
+ 3δ2 + 3σ2

a

)
+

4

λ2(1− γ)2
E
[
∥Ft − F (θt)∥2

]
.

We also have the bound

∥E [ut(ωt)− uθt,λ]∥
2 ≤ 18

λ2

(
3L2

gE
[
∥∆t∥2

]
+ 3δ2

)
+

4

λ2(1− γ)2
E
[
∥Ft − F (θt)∥2

]
.

Summing over T/2, T/2 + 1, · · · , T − 1 yields

V ∗ − 2

T

T−1∑
t=T/2

E [V (θt)]

≤ Dmax

(1− γ)βT
+

√√√√ 1

(1− γ)3

∥∥∥∥∥ µπ∗

µπθ0

∥∥∥∥∥
∞

δ′ +
LψβT/2

2
T

∑T−1
t=T/2 E

[
∥ut(ωt)− uθt,λ∥

2
]

1− γ

+
LψβT/2

2
T

∑T−1
t=T/2 E

[
∥∇t∥2

]
(1− γ)λ2

+
Crλ

1− γ
+

2
√
T
√∑T−1

t=T/2 ∥E [ut(ωt)− uθt,λ]∥
2

(1− γ)T

≤O
(
δ2 + δ′ + T−1/4 + λ

)
.

The first inequality is due to the Cauchy-Schwarz inequality. In the last inequality, we use the results
in Theorem 1 to obtain the final bound. If we set λ = O(δ2 + δ′), then the result is what we desire,
and thus the proof is completed.

B ANALYSIS FOR MARKOVIAN SAMPLE

Indeed the i.i.d assumption in the update is too strong and needs a simulator to output a stationary
(s, a) sample at each step, a more natural approach is to use the Markovian sampling at each step.
The major difference of Markovian from i.i.d. sampling is that at the t-th iteration, the state st is
evolving the Markov chain instead of sampling from the stationary distribution. More specifically, at
time t, the state st is induced by the distribution P (· | st−1, at−1), where (st−1, at−1) are samples
used in the t − 1 step. Then we follow policy πθt and take an action at. Then we use (st, at) to
update the actor, critic, and estimated Fisher information matrix. Then the next state st+1 is induced
from P (· | st, at) and will be used in the next update.
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The main challenge in applying the Markovian sample is that the estimated gradient ∇θ log πθt(st, at),
the feature ϕ(st, at) which use (st, at) sample are no longer the unbiased estimation of the true
gradient and feature. Thus we need to control the distance between the distribution of the Markovian
sample and the distribution of the stationary sample. More specifically, we need to bound the total
variant distance between those two distributions.

Similar to Chen & Zhao (2022), We make use of the following auxiliary Markov chain to deal with
the Markovian noise.

Auxiliary Markov Chain:

st−τ
θt−τ→ at−τ

P→ st−τ+1
θt−τ→ ãt−τ+1

P→ s̃t−τ+2
θt−τ→ ãt−τ+2 · · ·

P→ s̃t
θt−τ→ ãt

Original Markov Chain:

st−τ
θt−τ→ at−τ

P→ st−τ+1
θt−τ+1→ at−τ+1

P→ st−τ+2
θt−τ+2→ at−τ+2 · · ·

P→ st
θt→ at

We denote that the auxiliary Markov chain (s̃t, ãt) is induced from the distribution µ̃t, the original
Markov chain (st, at) is induced from the distribution µt, and recall that the stationary distribution is
µθt.

We then show the total variant distance between these distributions, conditioned on st−τ+1, θt−τ .

dTV (µt, µ̃t)

=dTV (P (st, at ∈ ·|st−τ+1, θt−τ ) ,P (s̃t, ãt ∈ ·|st−τ+1, θt−τ ))

≤dTV (P (st ∈ ·|st−τ+1, θt−τ ) ,P (s̃t ∈ ·|st−τ+1, θt−τ )) +
1

2
LπE [∥θt − θt−τ∥]

≤dTV (P (st−1, at−1 ∈ ·|st−τ+1, θt−τ ) ,P (s̃t−1, ãt−1 ∈ ·|st−τ+1, θt−τ )) +
1

2
LπE [∥θt − θt−τ∥]

Here Lπ is the constant that satisfies ∥πθ − πθ′∥ ≤ Lπ ∥θ − θ′∥. Repeat the above argument from t
to t− τ + 1, we have

dTV (µt, µ̃t) ≤
1

2
Lπ

t∑
k=t−τ

E [∥θk − θt−τ∥]

≤ (LπLg) τ(τ + 1)βt−τ .

Then we turn to bound dTV (µ̃t, µθt) conditioned on st−τ+1, θt−τ . By the uniform ergodicity
Assumption 1, it shows that

dTV (µ̃t, µθt) ≤ mρτ−1 .

Thus we can conclude the distance between the Markovian sample and i.i.d, sample is bounded by

dTV (µt, µθt) ≤ (LπLg) τ(τ + 1)βt−τ +mρτ−1 .

We can choose τT := min i ≥ 0 | mρi−1 ≤ 1√
T

. Therefore, we choose τT = logmρ−1

log ρ−1 + log T
2 log ρ−1 =

O(log T ).

Thus the total variant can be bounded by O(log2(T )/
√
T ) if we select the step size O(1/

√
T ). This

associates with the upper bound of the norm of ∥∆t∥ , ∥∇t∥ , ∥F (θt)∥ is the unique term that we
need to control, which adds additional O(log2 T/

√
T ) term in the error term.

We can then give the new theorem for attaining stationary point and global optimum:

Theorem 3. Suppose Assumptions 1 - 5 hold. By choosing step sizes αt = c1/
√
t, βt = c2/

√
t,

ζt = c3/
√
t, where c1, c2, c3 are appropriate constants chosen depending on the problem parameters,

the sequence of iterates produced by single-loop single-timescale NAC satisfies

2

T

T−1∑
t=T/2

E
[
∥et∥2

]
≤O

(
δ2 +

log2 T√
T

)
,
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2

T

T−1∑
t=T/2

E
[
∥∇t∥2

]
≤O

(
δ2 +

log2 T√
T

)
,

2

T

T−1∑
t=T/2

E
[
∥∆t∥2

]
≤O

(
δ2 +

log2 T√
T

)
,

where all parameters except δ, T are treated as constants in the O(·) notation.

Theorem 4. Suppose Assumptions 1 - 5 hold. By choosing step sizes αt = c1/
√
t, βt = c2/

√
t,

ζt = c3/
√
t, where c1, c2, c3 are appropriate constants chosen depending on the problem parameters,

the value functions V (θt) produced by single-loop single-timescale NAC satisfies

V ∗ − 2

T

T−1∑
t=T/2

E [V (θt)] ≤O
(
δ2 + δ′ + log T/T 1/4

)
,

where all parameters except δ′, δ, T are treated as constants in the O(·) notation.

The analysis for these two theorems is both similar with the i.i.d. sampling algorithm except
that additional term ∥·∥ dTV (µt, µθt) appears, where ∥·∥ varies from ∥∆t∥ , ∥∇t∥ , ∥F (θt)∥ when
controlling these three terms, and these three norms are all bounded by some constants. Then we can
get the above two theorems, which state the Õ(ϵ−2) sample complexity to attain the stationary point
and Õ(ϵ−4) sample complexity to attain the global optimum.
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