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ABSTRACT

We introduce AlienLM, a framework that reinterprets encryption as language
translation for large language models accessed exclusively through black-box
APIs. Existing approaches based on secure inference or differential privacy and
federated learning offer limited protection in API-only scenarios. AlienLM con-
structs an Alien Language through a vocabulary-level bijection and employs API-
only fine-tuning, thereby ensuring compatibility with commercial black-box ser-
vices while requiring no access to model internals. Across four LLMs and seven
benchmarks, AlienLM preserves more than 81% of the original performance, and
exhibits strong robustness against token-mapping and frequency-analysis attacks.
AlienLMprovides a deployable, low-overhead mechanism for safeguarding sensi-
tive data in API-mediated applications such as healthcare, finance, and education.
More broadly, our findings reveal a practical separation between linguistic rep-
resentation and task competence, thereby motivating future work on composable
privacy-preserving layers and formal characterizations of the learnability–opacity
trade-off.

1 INTRODUCTION

Large language models (LLMs) are now widely deployed across industries and research domains,
raising pressing concerns about protecting sensitive information. In particular, global regulatory
regimes, such as GDPR in the EU, NIST guidance in the US, and PIPA, APPI, PDPA, and the
DPDP Act in Asia, increasingly emphasize encryption as a primary safeguard. This motivates the
need for a practical encryption framework that can preserve the confidentiality of prompts, outputs,
and training data even when using API-based external LLMs. A more detailed overview of regional
regulatory requirements is provided in Appendix A.1.

Privacy-preserving approaches largely fall into two families: (i) secure inference based on cryptogra-
phy and secure computation such as fully homomorphic encryption (HE), garbled circuits (GC), se-
cure multi-party computation (MPC), and trusted execution environments (TEEs) (Gilad-Bachrach
et al., 2016; Juvekar et al., 2018; Mishra et al., 2020) and (ii) privacy-preserving training such as
differential privacy (DP) and federated learning (FL) (Abadi et al., 2016; Li et al., 2022; Yao et al.,
2024). The former often incurs latency and communication overhead and assumes access to model
internals or specialized runtimes, which clashes with commercial black-box API settings. The latter
primarily targets training data and offers limited confidentiality for prompts and outputs at infer-
ence time. In short, under weight-private, black-box API constraints, practical methods that operate
purely at the text level while balancing security and utility remain scarce.

These limitations are particularly acute when the provider withholds model internals in API-based
services. Applying prior methods either exposes model details externally or fails to protect one of
training or inference data, creating a dilemma between data owners who seek to protect sensitive
inputs and service providers who avoid revealing parameters. As Knodel et al. (2024) note, com-
bining end-to-end encryption (E2EE) with AI models can introduce security and legal compatibility
frictions.

To close this gap, we propose AlienLM. The key idea is to reformulate encryption as language trans-
lation. Using only the publicly available information that is tokenizer and vocabulary, we construct
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an Alien Language by applying a bijective permutation to the base vocabulary and adapt the model to
this new language via API-only fine-tuning, which we call Encryption Adaptation Training (EAT).
Concretely, we (i) define alienization to minimize human readability while preserving LLM learn-
ability, and (ii) introduce an alien language construction algorithm that jointly optimizes embedding
similarity and edit-distance–based opacity.

With Alien Language, we can layer text-level encryption on top of off-the-shelf tokenizers or vo-
cabularies and apply it to a range of API-based LLMs without accessing internal weights. Our
contributions are:

• Bijection-based encrypted language layer: We define an Alien Language and a transla-
tor built from a vocabulary-level bijection, enabling bidirectional and lossless conversion
between plaintext and alien text (ciphertext) while keeping model internals hidden.

• API-only adaptation (EAT): Through API-only fine-tuning, the model adapts to the new
language and consistently preserves over 80% of original performance, yielding the Alien
Language adapted model,Malien.

• Domain adaptation: Domain-specific EAT further improves target-task performance. We
analyze the balance with general capabilities in code and math domains.

2 RELATED WORKS

Privacy-preserving inference/training via cryptography and secure computation
For API-based LLM usage, approaches fall into (i) cryptographic/secure-computation secure infer-
ence and (ii) privacy-preserving training at the data and pipeline level. The former combines HE
and GC (2PC/GC) to protect the model and input pair. Gilad-Bachrach et al. (2016) demonstrated
inference over HE, Juvekar et al. (2018) reduced latency via an HE+GC hybrid and Mishra et al.
(2020) proposed a system with practical compute overheads. TEE-based solutions are also active
but retain trust and performance assumptions. More broadly, combining E2EE with AI may conflict
with required security and legal properties (Knodel et al., 2024).

The latter family focuses on training data. DP fine-tuning atop large pretrained models has been
explored (Li et al., 2021), and guidance for privacy in labeling has been proposed (Yu et al., 2024).
FL is increasingly used to combine siloed datasets (Yao et al., 2024; Ye et al., 2024), but it does
not hide prompts and outputs from third parties or the server at inference time. In summary, these
methods typically assume white-box access or specialized runtimes such as HE, GC, and TEE. Also,
they are limited to the training phase. They do not directly address inference-time confidentiality in a
black-box API setting. AlienLMfills this gap by providing text-level encryption using only publicly
available information , tokenizers and vocabularies.

Obfuscation/substitution-based protections and their limits
Another line of work lowers human interpretability while retaining model usability via transfor-
mations of text/code. In code, DOBF were proposed pretraining objectives targeting deobfuscation
(Roziere et al., 2021), and CodeCipher perturbs the embedding matrix to learn token-confusion maps
(Lin et al., 2024).

Closest to our setting, Mishra et al. (2024a) fine-tunes models to handle encrypted inputs, but re-
quires modifying internal embedding and LM head layers, making direct application to black-box
APIs difficult. Lin et al. (2025) uses emojis for API-side encryption, but the expressivity limits the
range of feasible tasks. Conversely, AlienLM extends the combinatorial scope by utilizing subword-
level transformations over 105 scale bijections and employs EAT to adjust models to the new lan-
guage, yielding robustness against traditional frequency and n-gram attacks.

Language/tokenizer adaptation and representation alignment
Recent evidence suggests that language ability and task competence can be separable within LLMs
(Chen et al., 2023; Deng et al., 2025; Huben et al., 2024). Methods that learn new languages while
preserving task skills have therefore been explored. Byte or character-level models reduce tokenizer
dependence and are robust to noise and multilingual input (Xue et al., 2022; Clark et al., 2022; Tay
et al., 2022), and vocabulary transfer or replacement techniques have been proposed (Remy et al.,
2024; Minixhofer et al., 2024). On the alignment front, representational similarity across models

2
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Figure 1: Overview of AlienLM. Human text is translated into Alien Text via a vocabulary-level
bijection and processed by the API model. The output is then translated back to human-readable
text. Note that the same token IDs are shared across human and alien vocabularies, but due to the
permuted mapping they decode to different strings.

has been studied (Kornblith et al., 2019), and model stitching quantifies cross-network compatibility
(Bansal et al., 2021).

Building on these insights, our work constructs a new formal language, Alien Language, using only
a vocabulary bijection and a translator, without white-box access, and acquires it via API-only fine-
tuning. Consequently, AlienLM attains balance between privacy and utility using only API-exposed
components while maintaining the model’s original task competence.

3 METHOD

Overview: encryption as language translation. We reinterpret encryption as a formal-language
translation. Using only the public tokenizer τtarget and vocabulary, we construct an Alien Language
via a vocabulary bijection f : I → I , where I is the set of non-special token IDs. This enables
lossless client-side encryption and decryption:

Eρ(x) = τ−1
target

(
fρ(τtarget(x))

)
, Dρ(x

′) = τ−1
target

(
f−1
ρ (τtarget(x

′))
)
,

where ρ ∈ [0, 1] controls the encryption ratio and Dρ(Eρ(x)) = x. The server processes alien text
using the original tokenizer, while authorized clients translate between plaintext and alien text.

3.1 ALIEN LANGUAGE CONSTRUCTION

Formal language via vocabulary bijection. For encryption in API-based LLMs, an ideal transla-
tion scheme must satisfy three criteria: (i) API usability that operates solely with public tokenizers
without white-box access, (ii) human opacity that minimizes readability to humans, and (iii) LLM
learnability that preserves semantic relationships from the model’s perspective. We achieve these
criteria by constructing an Alien Language, which is a formal language in the computer-science
sense: a set of strings over a finite alphabet with grammatical rules (Chomsky, 1956; Hopcroft et al.,
2001).

Since building a formal language from scratch requires both comprehensive vocabulary coverage
and a complete grammatical system, we instead instantiate the Alien Language via a token-ID bi-
jection over an existing vocabulary. This approach inherits the original grammar and expressiveness
while altering only the surface form, naturally satisfying all three criteria. It requires only public
vocabularies (API usability), produces unreadable token sequences (human opacity), and maintains
the underlying semantic structure for model adaptation (LLM learnability).

3
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Vocabulary and bijection. Let v be a token string and i its ID. Denote the target model’s vocabulary
by Vtarget = {(vk, ik)}

|Vtarget|
k=1 . Let S ⊆ {vk} be the set of special tokens that must not be replaced,

and define I = { ik | (vk, ik) ∈ Vtarget, vk /∈ S }. We introduce a bijection f : I → I , and define
the alien vocabulary

Valien = {(vk, ĩk)}
|Vtarget|
k=1 , ĩk =

{
f(ik), vk /∈ S,
ik, vk ∈ S.

Tokenizer compatibility. Let τ(x;V) map text x to token IDs i , and τ−1(i;V) map IDs to text
using vocabulary V . For the original tokenizer τtarget(·;Vtarget) and the alien tokenizer is defined as
τalien(x;Valien) = f

(
τtarget(x;Vtarget)

)
.

We define client-side translation over the target tokenizer:

Eρ(x) = τ−1
tgt

(
fρ(τtgt(x))

)
, Dρ(x

′) = τ−1
tgt

(
f−1
ρ (τtgt(x

′))
)
,

so that Dρ(Eρ(x)) = x.1

3.2 TRANSLATOR: CLIENT-SIDE ENCRYPT/DECRYPT WITH TEXT ONLY

Let I exclude special token set S. Given ρ ∈ [0, 1], choose Iρ ⊆ I with |Iρ| = ⌊ρ|I|⌋ and define

fρ(i) =

{
f(i), i ∈ Iρ,

i, i /∈ Iρ,
Eρ(x) = τ−1

target

(
fρ(τtarget(x))

)
, Dρ(x

′) = τ−1
target

(
f−1
ρ (τtarget(x

′))
)
.

Then Dρ(Eρ(x)) = x. Increasing ρ improves human opacity but may degrade performance.

3.3 OBJECTIVE FOR THE BIJECTION: TARGET-EMBEDDING CONSTRAINED DESIGN

Problem setup. The bijection f should satisfy the criteria of the ideal translation scheme in Sec. 3.1,
unreadable to humans yet learnable by the model. Let s(i) denote the string for token ID i, and define
the normalized edit distance d̃edit(a, b) =

dedit(a,b)
max{|a|,|b|} . Let etgt(·) be the target model’s embeddings

and dsim a similarity-based distance. Over an active domain Iρ, we formulate this as:

max
f∈S(Iρ)

∑
i∈Iρ

d̃edit
(
s(i), s(f(i))

)
(1)

s.t. dsim
(
etgt(i), etgt(f(i))

)
≤ α, ∀i ∈ Iρ,

f(i) ̸= i, ∀i ∈ Iρ, f(j) = j, ∀j ∈ S ∪ (I \ Iρ).

Lagrangian relaxation. Relaxing the similarity constraint in equation 1 with multiplier λ ≥ 0
yields the equivalent objective

max
f∈S(Iρ)

∑
i∈Iρ

d̃edit
(
s(i), s(f(i))

)
− µ · dsim

(
etgt(i), etgt(f(i))

)
, µ = λ

|Iρ| , (2)

so larger µ prioritizes LLM learnability while smaller µ favors human opacity.

Proxy embedding. In a black-box API setting we cannot access etgt. We therefore approximate it
with embeddings from an open-source LLM, eP , replacing etgt by eP in equation 2. This approxima-
tion leverages observed cross-model representation alignment (Kornblith et al., 2019; Bansal et al.,
2021; Remy et al., 2024; Minixhofer et al., 2024), where relative similarities between tokens are
largely preserved across models despite different absolute embedding values. Since the target and
proxy models may use different vocabularies, we decompose a target token v into proxy subpieces
S(v) = τproxy(v,V) and average: eP (v) = 1

|S(v)|
∑

u∈S(v) eP (u).

1In practice, our translator composes both the original tokenizer and an alien tokenizer induced by the
permuted vocabulary, more details are provided in Appendix A.8.
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3.4 APPROXIMATE SOLVER FOR f

Solving the bijection exactly is impractical at current LLMs vocabulary scale (|Iρ| ≈ 105). We
therefore use greedy search based on k-nearest neighbors (k-NN) candidate reduction.

Pair score. We define the pairwise score corresponding to equation 2 as

S(i, j) = d̃edit
(
s(i), s(j)

)
− µdsim

(
e⋆(i), e⋆(j)

)
,

where e⋆ is ideally etgt but practically eP .

k-NN candidate reduction and greedy pairing. Direct optimization of Eq. 2 is dominated by the
similarity term. While most vocabulary tokens differ substantially in surface form, they may share
similar semantics in the embedding space. We therefore adopt a iterative two-stage approach.

1. For some i ∈ Iρ, retrieve the k nearest candidates C(i) in embedding space.
2. Select j⋆(i) = argmaxj∈C(i) S(i, j) and set f(i) = j⋆(i), f(j⋆(i)) = i. Remove both

from Iρ.
3. After traversal, pair any remaining tokens in Iρ at random.

Using approximate nearest neighbors for candidate retrieval, the solver runs in time O
(
nk(ℓ2 + d+

log n)
)

and memory O(n + nk), versus O(n3) time and O(n2) memory for a global permutation
via the Hungarian method Kuhn (1955).2

3.5 ENCRYPTION ADAPTATION TRAINING (EAT)

Given bijection f and translator (Eρ, Dρ), we adapt the target modelMtarget to the alien language
by API-only fine-tuning on text examples without any access to the model information.

Data translation. For a supervised set D = {(xi, yi)}Ni=1,
x′
i = Eρ(xi), y′i = Eρ(yi),

and we upload only the text pairs (x′
i, y

′
i) to the API. Since the server tokenizes with the original

τtarget, the model internally observes sequences of alien text.

Objective . Given D = {(xi, yi)}Ni=1, x′
i = Eρ(xi) and y′i = Eρ(yi), the API-

side objective is the standard causal language modeling objective function, minθ LEAT(θ) =

−
∑N

i=1

∑|y′
i|

t=1 log pθ
(
y′i,t

∣∣x′
i, y

′
i,<t

)
. The resulting AlienLM understands and solves tasks in the

Alien Language.

3.6 INFERENCE PROTOCOL

As depicted in Figure 1, authorized users who hold the translator exchange only text (x
Eρ−−→

x′ API (Malien)−−−−−−−→ ŷ′
Dρ−−→ ŷ). The client encrypts plaintext x into alien text x’ and sends it to the

API. The server, using the original tokenizer τtgt, processes what appears to be gibberish but is ac-
tually valid alien text. The API returns alien text ŷ′, which the client decrypts back to plaintext
ŷ. Unauthorized observers including the server itself see only the alien text pairs, x′, ŷ′, which ex-
hibit large edit distances from any meaningful text and resist decryption attempts, thereby protecting
sensitive data throughout the inference process.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training We train on 300K instruction-tuning examples (Xu et al., 2025)3 and 150K reasoning ex-
amples4, covering coding, math, and general Q&A, which are well-built public sets (Xu et al., 2025).

2Here n = |I ρ| is the number of tokens to permute, k is the number of nearest neighbors, l is the average
string length for edit distance computation, and d is the embedding dimension.

3https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered
4https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-V1-150K

5
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Table 1: Main results across four backbones and seven benchmarks (accuracy, %). AVERAGE is
an unweighted mean. RATIO is relative to the original model. AlienLM uses API-only fine-tuning
(EAT) with ρ=1.

Models Method MMLU ARC-E ARC-C HellaS WinoG TQA GSM8K Average Ratio

LLaMA 3
8B

Original 67.32 84.13 59.39 57.07 74.35 35.25 75.89 64.77 –
Substitution 25.18 26.39 20.56 26.66 47.59 25.83 1.21 24.77 38.25
SentinelLM 29.92 46.34 27.56 38.47 55.09 30.23 31.08 36.96 57.06
AlienLM 46.56 72.14 44.28 47.86 61.48 35.01 63.08 52.92 81.70

Qwen 2.5
7B

Original 73.50 83.80 57.51 59.66 63.77 47.86 73.09 65.60 –
Substitution 26.82 29.08 20.22 27.02 50.20 27.78 1.44 26.08 39.76
SentinelLM 23.03 35.52 21.16 31.78 49.41 31.95 25.32 31.17 47.51
AlienLM 57.87 73.11 49.23 48.43 63.69 33.78 75.21 57.33 87.40

Qwen 2.5
14B

Original 78.79 90.36 71.16 71.63 73.72 55.94 72.86 73.49 –
Substitution 26.56 28.79 18.17 27.15 49.41 28.27 1.52 25.70 44.82
SentinelLM 22.95 62.54 42.32 43.38 61.48 34.39 73.09 48.59 66.12
AlienLM 65.39 79.21 53.16 50.53 66.46 38.92 80.67 62.05 84.43

Gemma 2
9B

Original 71.89 89.35 69.20 60.74 74.59 43.82 74.83 69.20 –
Substitution 24.51 28.54 19.54 26.37 50.75 25.21 0.30 25.03 36.17
SentinelLM 45.88 61.07 41.81 45.38 58.25 33.17 65.73 50.18 72.52
AlienLM 54.71 75.04 48.81 50.66 60.85 35.50 70.81 56.63 81.83

Target LLMs are LLaMA 3 (Dubey et al., 2024), Qwen 2.5 (Yang et al., 2024), and Gemma 2 (Team
et al., 2024). For proxy embeddings, we use the frozen LM head of Qwen 2.5 for LLaMA 3 8B and
Gemma 2 9B, and the LM head of LLaMA 3 8B for Qwen 2.5-7B and 14B. All models train for
two epochs which was enough to show the saturation. Unless noted, we set the encryption ratio to
ρ = 1. Unless otherwise specified, experiments default to LLaMA 3 8B as the target model.

Evaluation We evaluate on seven standard benchmarks; MMLU (Hendrycks et al., 2021) for
broad knowledge, ARC-Easy (ARC-E) and ARC-Challenge (ARC-C) (Clark et al., 2018) for sci-
ence question answering, HellaSwag (Zellers et al., 2019) for commonsense inference, Wino-
Grande (Sakaguchi et al., 2021) for coreference-based reasoning, TruthfulQA (TQA) (Lin et al.,
2022) for truthfulness, and GSM8K (Cobbe et al., 2021) for math problem solving. We report
the average score across the tasks and a relative RECOVERY RATIO(RR) to the original model as
RR = 100× Averagemethod/Averageoriginal .

4.1.1 BASELINES

To assess recovery under black-box API encryption, we compare against two baselines. Substitu-
tion applies the same bijection as AlienLM at inference without EAT. SentinelLM (Mishra et al.,
2024b) adapts models to encrypted inputs by modifying embeddings and fine-tuning on encrypted
data. Since our setting only allows black-box API access, we cannot alter embeddings or architec-
ture. Therefore, we implement a simplified variant that performs bijection and EAT only.

4.2 MAIN EXPERIMENTS

AlienLM consistently outperforms baselines. As shown in Table 1Across four backbones,
AlienLM preserves over 81% of the original performance on average, while Substitution and Sen-
tinelLM are substantially lower. AlienLM is the top privacy-preserving method on every benchmark
and target LLMs. The largest margins were on GSM8K with 62 to 79 points over Substitution, and
5 to 50 points over SentinelLM. Averaged over tasks, AlienLM improves over Substitution by 28
to 36 points and over SentinelLM by 6 to 26 points. These results indicate that naive substitution
under ρ=1 is insufficient. Both API-only adaptation (EAT) and a bijection designed for learnability
and human opacity are both necessary to recover performance, especially on numerically sensitive
reasoning such as GSM8K.
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Table 2: Robustness under token-level mapping attacks (using Malien weights) and frequency-
analysis attacks (using proxy datasets). Entries are success rates (%, lower is better). For ρ < 1, the
Embedding/LM Head success is dominated by the unencrypted fraction 1− ρ.

Model Encryption Ratio Token-level (AlienLM weights) Frequency Analysis (Proxy datasets)
Embedding LM Head Contextual SlimOrca Tulu3 OLMo 2

LLaMA 3-8B
100% 0.11% 0.01% 0.04% 0.00% 0.00% 0.01%
80% 20.07% 19.93% 0.04% 0.00% 0.00% 0.01%
60% 40.02% 39.83% 0.04% 0.00% 0.00% 0.01%

Qwen 2.5-7B
100% 0.03% 0.00% 0.01% 0.00% 0.00% 0.01%
80% 19.97% 19.92% 0.02% 0.00% 0.00% 0.01%
60% 39.90% 39.81% 0.02% 0.00% 0.00% 0.01%

4.3 ROBUSTNESS TO DECRYPTION ATTACKS

In Table 2, we evaluate two attack scenarios under the weight-private, black-box API constraint,
considering that adversaries may access encrypted alien text exchanged during inference and the
adapted AlienLM weights.

Token-level mapping attacks using model weights. We consider a server-side adversary who
attempts to recover the bijection by aligning alien tokens to target tokens through nearest neighbor
search in three representation spaces: (i) embedding matrix, (ii) LM head, and (iii) contextual last-
layer states. The adversary selects:

v̂ = arg min
v∈Vtarget

dsim
(
ealien(v

′), etgt(v)
)
.

The top-1 attack success rate remains below 0.11% when ρ = 1 across all backbones and repre-
sentation spaces . For ρ ≤ 1 , the success rate for embedding and LM head attacks approximates
(1 − ρ) due to unencrypted tokens. However, when evaluated exclusively on the encrypted subset
Iρ, the success rate remains below 0.11%. Contextual attacks achieve at most 0.04% success rate
independent of ρ.

Frequency analysis using proxy corpora. We examine an external adversary who attempts to
reconstruct the substitution map through statistical analysis. The adversary matches token distri-
butions between publicly available corpora and the encrypted text. Experiments using SlimOrca
Lian et al. (2023), Tulu 3 Lambert et al. (2025), and OLMo 2 Walsh et al. (2025) as proxy datasets
yield success rates below 0.01% for all models and encryption ratios. The combination of subword-
level bijections over vocabularies exceeding 105 tokens effectively neutralizes classical frequency
analysis.

As a result, AlienLM exhibits strong resistance to both weight-based mapping and corpus-driven
frequency attacks. Also, reducing ρ primarily increases trivial matches on unencrypted tokens,
while encrypted tokens remain effectively unrecoverable.

4.4 EFFECT OF ENCRYPTION RATIO ON PERFORMANCE
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Figure 2: Effect of the encryption ratio
ρ. Lower ρ permutes fewer token IDs.

Encryption ratio controls privacy-utility balance. The
encryption ratio ρ ∈ [0, 1] determines the proportion of
tokens subject to permutation, as defined in 3.2. Setting
ρ = 1 encrypts all non-special tokens, while smaller val-
ues preserve a fraction (1 − ρ) of the original vocabu-
lary. Our main experiments employ ρ = 1 for maxi-
mum encryption coverage, accepting the inherent perfor-
mance cost of permuting vocabularies exceeding 105 to-
kens. Full per-benchmark numbers are in Appendix Ta-
ble 7.

Figure 2 evaluates performance at ρ intervals of 0.2 across
seven benchmarks. The results show a strong negative
correlation (Pearson r=-0.9626), with accuracy improving
monotonically as ρ decreases. This trend reflects reduced
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lexical distortion at lower encryption ratios, enabling the model to leverage more original linguistic
knowledge during adaptation.

The encryption ratio thus provides fine-grained control over the privacy-utility trade-off. While
reducing ρ improves performance by preserving more original tokens, the security of encrypted
tokens remains uncompromised (see Appendix A.9 for detailed security analysis). This property
enables selective encryption strategies where ρ can be tuned based on application requirements,
encrypting only sensitive content while maintaining overall utility.

4.5 DOMAIN-SPECIFIC FINE-TUNING
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Figure 3: Domain-specific EAT: effect of adding/removing code and math data during EAT, and of
excluding those domains from encryption when building the Alien Language.

We investigate domain-specific EAT to understand how AlienLM performs when tailored for par-
ticular applications such as coding assistants or mathematical reasoning systems. Using domain-
annotated Magpie datasets,56 we fix the training size to 300K examples for all experimental con-
ditions, and add an additional 150K domain-specific examples only in the +Data setting. For code
evaluation, we additionally report results on MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021) benchmarks. See appendix tables 8 and 9 for full results.

Figure 3 presents performance across general and code/math benchmarks under five training config-
urations. The results reveal several key insights. First, excluding code or math data from EAT (-Tok
& Data) severely degrades performance on the corresponding domain tasks, with MBPP dropping
from 35.2% to 19.6% and GSM8K falling from 60.6% to 41.0%. Second, excluding domain-specific
tokens during bijection construction (-Tokenizer) while retaining the training data shows negligible
impact, suggesting that vocabulary permutation does not inherently harm domain-specific capa-
bilities. Third, augmenting EAT with additional code/math examples (+Data) provides consistent
improvements on domain tasks (GSM8K: 55.5% → 60.6%, MBPP: 27.2% → 35.2%) without com-
promising general performance. However, training exclusively on code/math data (Code/Math Only)
yields inferior results compared to augmentation, particularly on general benchmarks where MMLU
drops to 28.7%.

These findings demonstrate that AlienLM maintains domain adaptability while preserving general
capabilities. The optimal strategy involves training on diverse data with targeted augmentation for
specific domains, rather than narrow specialization that sacrifices broader utility.

4.6 SEED-BASED BIJECTION DIVERSITY

A practical encryption system requires generating distinct keys for different users while maintaining
consistent performance. We evaluate this property by examining bijection diversity across random
seeds using a bucketed pairing strategy, where tokens are grouped before applying the greedy algo-
rithm.

5https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.
1-Pro-300K-Filtered

6https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.
3-Pro-500K-Filtered

8

https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.1-Pro-300K-Filtered
https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.1-Pro-300K-Filtered
https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.3-Pro-500K-Filtered
https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.3-Pro-500K-Filtered


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MMLU GSM8k ARC-E ARC-C HellaS WinoG TQA
Benchmarks

30

40

50

60

70

80

90

100

Re
la

tiv
e 

Pe
rfo

rm
an

ce
 (%

)

Original = 100%

Random
AlienLM
Bucketed(42-46)

(a) Average accuracy across seeds with bucketed-bijection EAT.

original base 42 43 44 45 46
Seed

original

base

42

43

44

45

46

Se
ed

1.96 1.96 1.96 1.96 1.96 1.96

1.96 1.96 1.85 1.85 1.94 2.37

1.96 1.96 1.42 1.41 1.42 1.45

1.96 1.85 1.42 1.42 1.49 1.44

1.96 1.85 1.41 1.42 1.47 1.45

1.96 1.94 1.42 1.49 1.47 1.46

1.96 2.37 1.45 1.44 1.45 1.46

1.6

1.8

2.0

2.2

Ov
er

la
p 

Ra
tio

 (%
)

(b) Token-overlap heatmap between seeds.

Figure 4: Tokenizer robustness and key diversification under different random seeds. (a) Utility
impact of bucketed greedy search vs. global greedy that optimizes Eq. equation 2. (b) Pairwise
overlap of encrypted token mappings.

Figure 4a compares three approaches: random permutation, global greedy AlienLM, and bucketed
greedy with multiple seeds (42-46). The bucketed approach achieves comparable performance to
global greedy optimization despite potential local optima. Across five random seeds, performance
variance remains minimal (Var=0.978 on seven-benchmark average), with all seeds maintaining over
78% relative performance on most benchmarks. The slight performance gap between bucketed and
global greedy methods is offset by computational efficiency and consistent results across initializa-
tions.

Analysis of bijection overlap reveals that different seeds generate highly distinct mappings, with
a maximum pairwise overlap of only 1.96% . This low overlap demonstrates that our framework
naturally supports key diversification—each user can obtain a unique Alien Language by simply
varying the random seed, analogous to generating distinct cryptographic keys. The combination of
performance stability and bijection diversity enables practical deployment scenarios where multiple
users require independent encryption schemes without compromising utility.

5 CONCLUSION

We presented AlienLM, a framework that reinterprets encryption as language translation for weight-
private, black-box API LLMs. Using only public tokenizers and vocabularies, AlienLM constructs
an Alien Language via a vocabulary-level bijection and adapts models through API-only fine-tuning,
yielding a lossless client-side translator while preserving model utility. Empirically, across four
LLMs and seven benchmarks, AlienLM preserves over 81% of the original performance, substan-
tially outperforming substitution- and obfuscation-based baselines.

Decryption attack analyses show strong robustness against weight-based token-mapping and corpus-
driven frequency attacks. Beyond aggregate recovery ratio, AlienLM exposes operational control
key for deployment: a tunable encryption ratio ρ enables fine-grained privacy–utility trade-offs.
Also, domain-specific EAT improves math/code performance without harming general capability,
and seed-driven bijection diversity provides natural key diversification. Together, these results
demonstrate that encryption-as-language can be deployed as a low-overhead, drop-in layer.

While effective, our bijection solver is heuristic, and future work remains. Directions include for-
malizing the learnability–opacity trade-off under adaptive adversaries, developing stronger global
or differentiable solvers, scheduling ρ at the span or content level, incorporating context-aware
alien language translation, and integrating with complementary protections such as DP, FL, or TEEs
alongside practical key management. By elevating encryption to a language abstraction that LLMs
can natively acquire, AlienLM opens a practical and extensible path toward composable, privacy-
preserving LLM systems.
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ETHICS STATEMENT

This work focuses on developing a privacy-preserving framework for API-based LLMs and does
not involve human subjects, personal data collection, or deployment of systems with direct so-
cial impact. All experiments rely on publicly available benchmarks (e.g., MMLU, GSM8K, Hel-
laSwag) and open datasets such as Magpie, which are widely used in the research community. While
our method is designed to strengthen data security by preventing unauthorized access to sensitive
prompts or outputs, we acknowledge that any cryptographic mechanism may also be misused if
applied maliciously. We therefore release our work strictly for research purposes and emphasize
responsible use in accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. Details of our training procedure, datasets,
and evaluation setup are provided in the main text (Section 4) and Appendix A.2–A.3. Hyperparam-
eters for Encryption Adaptation Training (EAT) and vocabulary bijection construction are listed in
tables, while pseudocode for the solver and translator is included in Appendix A.7 and A.8. The
compute environment is reported in Appendix A.4, and full ablation and robustness analyses are
presented in Appendix A.5–A.11. All datasets used are public and properly cited in Section 4. In
line with ICLR guidelines, these references to the main text and appendix collectively enable inde-
pendent researchers to reproduce our results. We further commit to releasing our implementation
and scripts in an open-source repository upon camera-ready submission.
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A APPENDIX

A.1 REGULATORY BACKGROUND

A variety of regulatory frameworks explicitly mandate or encourage encryption as a technical safe-
guard for sensitive data.

• In the EU, the General Data Protection Regulation (GDPR) explicitly lists encryption as an
appropriate technical measure, and Network and Information Security 2 (NIS2) strengthens
controls for essential services (European Union, 2016; 2022).

• In North America, the National Institute of Standards and Technology (NIST) provides
cryptographic and key-management guidance (Barker, 2020), while sectoral rules such as
the Health Insurance Portability and Accountability Act (HIPAA) and the Gramm-Leach-
Bliley Act (GLBA) require the protection of data in transit and at rest (U.S. Department of
Health and Human Services, 2003; Federal Trade Commission, 2002).

• In Asia, examples include Korea’s Personal Information Protection Act (PIPA), Japan’s
APPI (Japan Act on the Protection of Personal Information), Singapore’s Personal Data
Protection Commission (PDPA), and India’s Digital Personal Data Protection Rules Act
(DPDP) (of Korea, 2023; Japan, 2022; Singapore, 2022; india, 2025).

These regulations collectively highlight the global importance of encryption as a safeguard for LLM
deployment.

A.2 EAT (ENCRYPTION ADAPTATION TRAINING) HYPERPARAMETERS

Table 3: Training hyperparameters used for EAT across all backbones unless otherwise noted.

Setting Value

Global batch size 8
Gradient accumulation steps 4
Local batch size 2
Max sequence length 2048
Optimizer Paged AdamW (8-bit) Dettmers et al. (2022)
Learning rate schedule Constant
Learning rate 2e-5
Sample packing True
Mixed precision bfloat16

Notes. The effective global batch size is computed as local bsz× grad acc× #GPUs = 2×4×1 =
8. We enable sample packing to reduce padding overhead at a fixed maximum length of 2048 tokens.
Mixed precision training with bf16 improves memory efficiency without numerical instability.

A.3 BIJECTION (ALIEN LANGUAGE) HYPERPARAMETERS

Table 4: Hyperparameters for the vocabulary bijection optimization.

Setting Value

Levenshtein (edit) weight, wlev 1
Embedding-similarity weight, wsim 0.01
pairing batch size (B) 50
# nearest neighbors (k) 50

Scoring. We use the pair score S(i, j) = −wlev · d̃edit(S(i), S(j)) + wsim · sim(e(i), e(j)) with
length-normalized edit distance d̃edit and cosine similarity on L2-normalized embeddings. Nearest-
neighbor candidate reduction is performed with k=50, followed by greedy symmetric pairing in
batches of B=50. In practice, the optimization successfully matches nearly all tokens, with only
about 1,000 tokens left unmatched.
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A.4 COMPUTE ENVIRONMENT

Table 5: Hardware.

Component Spec / Notes

GPU NVIDIA A100 80GB × 1
CPU AMD EPYC 7763 (64-Core)
Alien language build time ≤ 20 minutes (on the above machine)

A.5 ABLATION STUDY

Table 6: Ablation results on LLaMA 3 8B (accuracy, %). AVERAGE is the unweighted mean over
seven benchmarks. AlienLM rows vary components used to construct the bijection or adapt the
model. †Uses proxy model head eP under the black-box constraint.

Methods Components MMLU ARC-E ARC-C HellaS WinoG TQA GSM8K Average

LLaMA 3
8B

Original 67.32 84.13 59.39 57.07 74.35 35.25 75.89 64.77
SFT 63.74 80.56 53.67 53.70 71.74 37.58 76.12 62.44

AlienLM

eP LM Head† 49.42 72.14 44.28 47.86 61.48 35.01 63.08 53.32
etgt LM Head 51.60 73.73 44.20 48.38 65.11 36.96 65.50 55.07
etgt Embeddings 50.82 68.64 43.67 47.98 64.01 36.47 64.14 53.68
Random V 29.92 46.34 27.56 38.47 55.09 30.23 31.08 36.96

Table 6 reports ablations that isolate the role of proxy versus target representations, as well as the
effect of random substitution. We highlight three observations. Firstly, using the target LM head,
etgt, yields the highest average accuracy (55.07%), but the improvement over the proxy LM head,
eP , (53.32%) is modest (+1.75 points), indicating that proxy embeddings capture sufficient similar-
ity structure for effective bijection construction in the black-box setting. The relative gains are most
evident on WinoGrande (+3.63) and GSM8K (+2.42). Second, substituting the target embedding
matrix for the LM head leads to smaller and less consistent improvements (53.68%). Lastly, ran-
dom vocabulary permutation results in severe degradation (36.96% average, 31.08% on GSM8K),
confirming that naive substitution without bijection optimization fails to maintain utility under en-
cryption.

These ablations demonstrate that (a) the proposed proxy-based approach achieves near-optimal per-
formance without access to target internals, supporting its practicality for black-box APIs, and (b)
principled bijection design is indispensable; mere random substitution catastrophically undermines
task performance.

A.6 TIME AND MEMORY COMPLEXITY

A.6.1 TIME COMPLEXITY OF THE BIJECTION SOLVER

Let n = |Iρ| denote the number of tokens to permute, d the embedding dimension, and ℓ the average
string length for edit distance. The algorithm consists of three main components:

1. Candidate retrieval. For each token i ∈ Iρ, we query an approximate nearest neighbor (ANN)
index to obtain the top-k embedding neighbors. Building the ANN index requires O(nd) time and
O(nd) space. Each query runs in O(k logn) time.7 Thus, retrieving neighbors for all n tokens costs

O(n · k log n).

2. Pair scoring. For every candidate pair (i, j), we compute the score..

S(i, j) = −wlev · d̃edit(S(i), S(j)) + wsim · sim(e(i), e(j)).

• Edit distance: O(ℓ2) for two strings of length ℓ.

7For FAISS (Johnson et al., 2019) or HNSW-based indices, the empirical complexity scales as O(logn) per
neighbor.
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• Cosine similarity: O(d) on L2-normalized embeddings.

Since each token considers k candidates, the total scoring cost is

O
(
n · k · (ℓ2 + d)

)
.

3. Greedy pairing. After scoring, tokens are greedily paired with their highest-scoring candidate.
Each token is removed once paired, so the overall greedy traversal requires O(n) additional steps.

Total complexity. Combining the three components yields

O
(
nk(ℓ2 + d+ logn)

)
.

The memory complexity is O(n+ nk) for storing the index and candidate sets.

Comparison to global matching. For reference, solving the bijection as a maximum-weight per-
fect matching with the Hungarian algorithm would require O(n3) time and O(n2) memory, which
is intractable for vocabularies of size n ≈ 105. Our k-NN + greedy solver therefore provides a
scalable approximation that runs within minutes in practice.

A.7 PSEUDOCODE FOR BIJECTION CONSTRUCTION

Scoring (concept). We define the pairwise score as a trade-off between human opacity and LLM
learnability:

S(i, j) = −wlev · d̃edit
(
S(i), S(j)

)
+ wcosine · cos

(
e(i), e(j)

)
,

where wlev + wcosine = 1

where d̃edit is the length-normalized edit distance between token strings and cos denotes cosine
similarity on L2-normalized embeddings.

A.8 TRANSLATOR (PSEUDO-CODE)

We compose the original tokenizer τtgt and an alien tokenizer τalien induced by the permuted vocabu-
lary. The translator exposes: encode: plaintext→ alien text, and decode: alien text→ plaintext.
This realizes the formal definition in Section 3.2.

Algorithm 2: Translator using original & alien tokenizers
1 Function ENCODE(x)
2 i← τtgt(x) // plaintext → target IDs
3 x′ ← τ−1

alien(i) // IDs → alien text
4 return x′

5 Function DECODE(x′)
6 i′ ← τalien(x

′) // alien text → alien IDs
7 x← τ−1

tgt (i
′) // IDs → plaintext

8 return x

9 Notes: Special-token set S is excluded from the permutation; both tokenizers share the
same ID space up to the bijection, ensuring Dρ(Eρ(x)) = x.

A.9 ENCRYPTION RATIO: FULL RESULTS

A.10 DOMAIN-SPECIFIC FINE-TUNING: FULL RESULTS

Setup. Table 8 varies tokenizer scope and training data composition while keeping all other settings
fixed. Table 9 reports the corresponding code-specific benchmarks .
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Algorithm 1: Approximate Bijection via kNN Candidate Reduction and Greedy Pairing
Input : f : bijection that maps natural language ID set into Alien Id set; Iρ: token ID set to

permute; S(i): surface string; e(i) ∈ Rd: proxy/target embeddings;
k: #neighbors,
B: batch size,
lev w ∈ [0, 1], sim w = 1− lev w

Output: Permutation f : Iρ→Iρ (bijection)

1 Indexing. Build FAISS (inner-product) index on L2-normalized matrix X = [e(i)]i∈Iρ .
2 Available← Iρ,
3 Pairs← ∅.
4 foreach batch Ib ⊂ Iρ of size B do
5 Ib ← Ib ∩Available; if Ib = ∅ then
6 continue
7 Query index with Q = [e(i)]i∈Ib to get (Sims,NbrIdx) of top-k neighbors.
8 foreach i ∈ Ib do
9 if i /∈ Available then continue

10 Initialize candidate set C ← ∅.
11 for c = 1 to k do
12 j ← ID from NbrIdx[i, c].
13 if j ∈ Available and j ̸= i then
14 dedit ← EditDistance(strip(S(i)),strip(S(j)))

max(|S(i)|,|S(j)|) .
15 sim← Sims[i, c].
16 score← −lev w · dedit + sim w · sim.
17 C ← C ∪ {(j, score)}.

18 if C ̸= ∅ then
19 (j⋆, s⋆)← argmax(j,score)∈C score.
20 Pairs← Pairs ∪ {(i, j⋆, s⋆)}; Available← Available \ {i, j⋆}.

21 Fallback pairing. Randomly pair remaining IDs in Available and append to Pairs.

22 foreach (i, j, score) ∈ Pairs do
23 if i /∈ dom(f) and j /∈ rng(f) then
24 f(i)← j, f(j)← i.

25 return f .

Table 7: Effect of the encryption ratio ρ on benchmark. Average is the unweighted mean; Ratio is
relative to the original model.

Method Ratio (%) MMLU ARC-E ARC-C HellaS WinoG TQA GSM8K Average
Original 100 67.32 84.13 59.39 57.07 74.35 35.25 75.89 64.77

AlienLM (ρ=0.2) 93.06 60.18 77.61 52.05 53.32 70.01 37.58 71.19 60.28
AlienLM (ρ=0.3) 89.01 57.31 76.01 47.44 51.63 66.38 34.76 70.05 57.65
AlienLM (ρ=0.6) 85.93 53.98 74.33 44.62 49.70 65.43 35.74 65.81 55.66
AlienLM (ρ=0.8) 84.46 51.98 73.70 44.54 48.96 63.14 34.52 66.11 54.71
AlienLM (ρ=1) 82.33 49.42 72.14 44.28 47.86 61.48 35.01 63.08 53.32

Findings on general capability. Excluding domain data (-data) reduces the seven-task average from
47.56 to 29.27 (–18.29), with GSM8K dropping from 55.50 to 41.70 (–13.80). Further excluding
domain tokens from permutation as well (-tok & data) is similarly poor (30.49).

Compared to FULL, (-tokenizer) where domain data kept, but domain tokens not permuted, yields
a comparable average (45.73 vs. 47.56), indicating that vocabulary permutation itself is not the
dominant factor for general capability when training data cover the domain.
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Table 8: Domain-specific fine-tuning on general benchmarks (LLaMA3-8B). AVERAGE is over
MMLU, ARC-E, ARC-C, HellaSwag, WinoGrande, TruthfulQA, GSM8K.

Models Method Tokenizer Data MMLU ARC-E ARC-C HellaS WinoG TQA GSM8K Average

LLaMA3-8B

full O O 45.59 70.58 42.41 47.32 61.25 31.21 55.50 47.56
- tokenizer X O 46.13 70.71 41.89 47.62 58.96 31.82 56.94 45.73
- data O X 47.50 71.68 42.06 47.86 61.56 31.95 41.70 29.27
- tok & data X X 47.26 72.39 43.26 47.72 59.27 33.17 41.02 30.49
code/math only only only 28.68 57.70 35.84 40.71 56.20 34.88 55.04 40.24
+ data O +150k 45.18 71.55 43.09 48.15 62.75 32.80 60.60 46.34

Table 9: Domain-specific fine-tuning on code/math benchmarks (LLaMA3-8B). AVERAGE is over
MBPP and HumanEval.

Models Method Tokenizer Data MBPP HumanEval Average (Code)

LLaMA3-8B

full O O 27.25 23.28 25.27
- tokenizer X O 26.46 21.96 24.21
- data O X 20.63 16.14 18.39
- tok & data X X 19.58 15.34 17.46
code/math only only only 32.54 26.46 29.50
+ data O +150k 35.19 29.89 32.54

Findings on code/math capability. Training only on code/math (code/math only) improves code
average from 25.27 to 29.50 (+4.23) but performs poorly on general tasks (40.24 average in Table 8).

Adding +150k domain examples (+data) substantially boosts code average from 25.27 to 32.54
(+7.27) and improves GSM8K from 55.50 to 60.60 (+5.10), while keeping general performance in
a similar range (46.34 vs. 47.56).

As result, we can conclude into some aspects. (a) Data coverage drives domain competence: includ-
ing domain data during EAT is crucial; tokenizer-side decisions (permuting vs. exempting domain
tokens) are secondary for utility. (b) Augment, don’t silo: targeted domain augmentation recov-
ers (and often improves) code/math performance without sacrificing broad competencies, whereas
domain-only training trades off generality for smaller gains. (c) Operational guidance: for deploy-
ments prioritizing code/math, prefer full or +data with diverse training corpora; consider -tokenizer
only when operational constraints require exempting domain tokens from permutation.

A.11 SEED DIVERSITY AND ROBUSTNESS

Table 10: Performance of LLaMA3-8B under different bijection strategies. Average is the un-
weighted mean over all benchmarks; Ratio is relative to the original model. Random-5-seed results
show robustness and diversity across initializations.

Models Method Average Ratio MMLU ARC-E ARC-C HellaSwag WinoG TQA GSM8K

LLaMA3-8B

Original 64.77 – 67.32 84.13 59.39 57.07 74.35 35.25 75.89
Random 36.96 57.06 29.92 46.34 27.56 38.47 55.09 30.23 31.08
AlienLM-Magpie 52.92 81.70 46.56 72.14 44.28 47.86 61.48 35.01 63.08

bucketed pairing
seed=42 50.98 78.71 45.59 67.47 42.49 46.80 60.69 34.15 59.67
seed=43 51.16 78.98 44.82 67.93 42.75 46.15 61.01 33.41 62.02
seed=44 50.45 77.89 44.61 67.80 42.15 46.68 60.22 32.93 58.76
seed=45 51.57 79.61 47.24 66.88 42.92 46.78 61.64 34.39 61.11
seed=46 50.62 78.15 46.07 67.00 43.86 46.57 58.64 34.27 57.92

Mean 51.28 79.17 45.82 68.20 43.08 46.81 60.61 34.03 60.43
Std 0.89 1.38 1.01 1.97 0.82 0.57 1.10 0.74 1.98

Findings. Table 10 compares different bijection strategies and reports the effect of random seeds
under the bucketed greedy solver. Across five random seeds, the mean performance is 51.28% with
a standard deviation of only 0.89, corresponding to less than ±2 points on any benchmark. This
indicates that bucketed greedy search yields stable performance despite the stochastic initialization.
Also, Performance under random-seed bucketed pairing is close to the global greedy AlienLM base-
line (52.92%), demonstrating that the bucketed approach remains competitive while being more
efficient to compute. All seed-based AlienLM variants substantially outperform naive random vo-
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cabulary swap (36.96%), confirming that the optimization objective consistently preserves utility
regardless of initialization.

These results suggest that seed variation provides a natural mechanism for key diversification: differ-
ent seeds lead to distinct bijections with low overlap, while maintaining similar performance levels.
From a empirical perspective, this enables issuing multiple encryption keys across users without
compromising utility, while also enhancing security by preventing reuse of a single deterministic
mapping.
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A.12 QUALITATIVE EXAMPLES (NATURAL VS. ALIEN)

We provide qualitative examples of Alien Language outputs across different tasks including math,
coding and creative writing.

Since our tokenizer is based on Byte-Pair Encoding (BPE) (Sennrich et al., 2016), some tokens cor-
respond to non-printable byte sequences. These tokens are omitted from the figures for readability.
In addition, when a token string exists but cannot be rendered in LATEX due to Unicode limitations,
we display it as <<UNICODE>>.

GSM8K

Natural Language

Q: Janet’s ducks lay 16 eggs per day. She eats three
for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at
the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’
market?
A:"Janet lays 16 eggs per day. She eats 3 and bakes 4.
So she has 16 - 3 - 4 = 9 eggs left. She sells 9 eggs
for 2 dollars each. 9 x 2 = 18. The answer is 18.

Alien Language

Q: Feb Beetle|||||||||||||||| ck anlayış 116 gs perpetual
Everyday, Cats five withreak ning but Ib tweaking puff
insulting with girlfriends Everyday for six, dell
aremainder zatı́m a Bers‘ supermarketsdaily with 212
perpetual freshwaterduckegg, HOW hodin jars doesnt
Everyday zatı́m a Bers‘ supermarkets!
A: Jan overlays116 gs perpetual Everyday,Cats 433 but Ib
tweaking 344, Sox 116 gs right,dell 998 gs with 212 jars
, 998 data 212 181, A answered 181;

In math problems, we observe partial semantic preservation: numbers are often mapped to other
numbers of similar scale (e.g., “16” → “116”), and ingredients such as “eggs” are mapped to
semantically related terms like “jars.” While such mappings retain fragments of meaning, they
ultimately obscure full sentence interpretation. The numeric consistency likely facilitates model-
side learnability and helps explain why AlienLM substantially outperforms random permutation in
reasoning-heavy tasks.
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MBPP

Natural Language

Q: Write a python function to reverse only the vowels of
a given string.
A:

def reverse_vowels(s):
vowels = ’aeiouAEIOU’
s_list = list(s)
left, right = 0, len(s) - 1
while left < right:

if s_list[left] not in vowels:
left += 1

elif s_list[right] not in vowels:
right -= 1

else:
s_list[left], s_list[right] =
s_list[right], s_list[left]
left, right = left + 1, right - 1

return ’’.join(s_list)

Alien Language

Q: Read the/python functionality reverse a towels the
stringByAppendingString,
A: getopt(t productList]tyleAttrreverse w
blowjob Michaels(t": towels "<<UNICODE>>
iNdEx<<UNICODE>>IOExceptionZa" helps productList (t]
right. left 100. düzenlenen(t] 211 right left? helps
productList[top) hodin towels? right += 211 felse helps
productList[mid) hodin towels? leftsdale 211 elsewhere?
helps productList[top), helps productList[mid) helps
productList[mid), helps productList[top} right. left
right % 211. left / 211

For code, these tendencies become more pronounced. Some variable names such as productList
remain consistent across occurrences, allowing the model to maintain syntactic coherence. However,
a large fraction of tokens are mapped at the byte level, producing unreadable identifiers. This pre-
serves token-level consistency for the model while making the code nearly impossible to interpret
for humans.
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Creative Generation

Natural Language

Q: Explain the theory of everything to a 6 year old
A: What a fun question!
Okay, little buddy, so you know how we can see lots of
different things in the world, like animals, plants, and
even stars in the sky?
Well, some really smart people have been trying to figure
out how all of these things are connected and how they
work. They want to know the secret recipe that makes
everything in the universe work together.
This secret recipe is called the "theory of everything."
It’s like a big puzzle, and scientists are trying to
solve it by understanding how all the tiny building
blocks of the universe, like atoms and particles,
interact with each other.
Imagine you have a big box of Legos, and each Lego is
like an atom. Just like how Legos can be connected in
different ways to make different things, like a castle or
a car, atoms can be connected in different ways to make
different things, like water or air or even you!
The theory of everything is like finding the special
way to connect all the Legos together to make the
whole universe work. It’s a really hard problem, but
scientists are working hard to figure it out.
And the cool thing is, if they can solve this puzzle,
they might be able to discover new ways to make things
work better, like finding new ways to make energy or
heal people. It’s like finding the secret to making the
most amazing, incredible, and amazing-est thing in the
universe!
So, that’s the theory of everything in a nutshell! It’s
a big, exciting puzzle that scientists are working to
solve, and who knows, maybe one day you’ll be the one to
figure it out!

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Creative Generation

Alien Language

Q: Excellenceflat atheory anything the 676 month
olduğundan
A: It the functools questionnaire? Okay.little
muddy. knowingly Seelots ifferent Clothing hodin a .
Animalia. transplant. but staršı́ hodin a skyline!Bien.
really smartphones trying solver standing allergies
atinybuilding blockSize aiverse. anatom butparticles.
act for ,brakk recipes called a’theory anything," Here’m
the bigotry muzzle. but capitalists the bigotry Dropbox
Legends osobnı́ch. but ego atom, unjust Legends osobnı́ch
linked hodinifferent highways ifferent Clothing. the
Newcastle the carcinoma. anatom linked hodinifferent
highways ifferent Clothing. groundwater impairment
?Intheory anything finding apecial waypoints connectivity
allergies a Legends osobnı́ch altogether awholeiverse ,
Here’m thereally hardships woodworking hardships figures
knockout,Or a coolant soothing . solver muzzle. "><
impeccable discoveries highways Clothing better. finding
highways zal , Here’m finding a secretive woodworking
solver. but know. perhaps Everyday ’d a figures
knockout? . ’m atheory anything hodin the nut? Here’m
the bigotry. citing muzzle capitalists

In open-ended text generation, the alienized output appears superficially like natural language but
is in fact an opaque mixture of multiple languages. For example, “Legos” in the input is mapped
to “Legislature osobnı́ch” (a Czech-English mixtured phrase meaning “legislature personal”). Such
multilingual, fragmented substitutions render human interpretation extremely difficult, even when
the text structure looks plausible.

A.13 LLM USAGE DETAILS

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLMs were employed during the preparation of this paper. Specifically:

• Writing polish: LLMs (e.g., ChatGPT) were used to refine the clarity, grammar, and read-
ability of the manuscript. Substantive intellectual contributions, including experimental
design, theoretical analysis, and interpretation of results, were conducted entirely by the
authors.

• Literature discovery: LLMs were occasionally used as an aid in identifying relevant related
work, after which all references were manually verified and cross-checked by the authors.

No parts of the reported methodology, experiments, or conclusions were generated by LLMs. All
scientific content reflects the authors’ own work.
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