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ABSTRACT

Emerging threats to IoT networks have accelerated the development of intrusion
detection systems (IDSs), characterized by a shift from traditional approaches
based on attack signatures or anomaly detection to approaches based on machine
learning (ML). However, current ML-based IDSs often lack result explanations
and struggle to address zero-day attacks due to their fixed output label space. In
this paper, we propose IDS-Agent, the first IDS based on an AI agent powered
by large language models (LLMs). For each input network traffic and a detec-
tion request from the user, IDS-Agent predicts whether the traffic is benign or
being attacked, with an explanation of the prediction results. The workflow of
IDS-Agent involves iterative reasoning by a core LLM over the observation and
action generation informed by the reasoning and retrieved knowledge. The action
space of IDS-Agent includes data extraction and preprocessing, classification,
knowledge, and memory retrieval, and results aggregation – these actions will
be executed using abundant tools, mostly specialized for IDS. Furthermore, the
IDS-Agent is equipped with a memory and knowledge base that retains infor-
mation from current and previous sessions, along with IDS-related documents,
enhancing its reasoning and action generation capabilities. The system prompts of
IDS-Agent can be easily customized to adjust detection sensitivity or identify
previously unknown types of attacks. In our experiments, we demonstrate the
strong detection capabilities of IDS-Agent compared with ML-based IDSs and
an IDS based on LLM with prompt engineering. IDS-Agent outperforms these
SOTA baselines on the ACI-IoT and CIC-IoT benchmarks, with 0.97 and 0.75
detection F1 scores, respectively. IDS-Agent also achieves a recall of 0.61 in
detecting zero-day attacks, outperforming previous approaches specially designed
for this task.

1 INTRODUCTION

In recent years, the Internet of Things (IoT) has emerged as a transformative technology, increasingly
adopted across a wide range of applications (Chataut et al., 2023). Alongside its rapid development,
security concerns have arisen within IoT networks due to the typically large number of devices with
potential trustworthiness issues (Alghofaili & Rassam, 2022). Therefore, the deployment of Intrusion
Detection Systems (IDSs) has become essential, as they play a critical role in monitoring network
traffic and identifying malicious activities (Khraisat et al., 2019).

Many traditional IDS employ signature-based methods, which rely on signatures of known attacks
stored in databases (Ioulianou et al., 2018; Nagaraju et al., 2021; AlYousef & Abdelmajeed, 2019).
They suffer from high false negative rates when variations in attack methodologies do not exactly
match the existing signatures. Alternatively, IDS can also be designed as an anomaly detector to
identify distributional deviations from normal traffic (Khraisat et al., 2018; Jia et al., 2021). However,
defining the normal behavior in a network can be challenging, especially in diverse and dynamic
environments where normal activity can change over time. Machine learning (ML)-based IDS was
then proposed to address these problems by leveraging the representation power of ML models,
such as deep neural networks (DNNs), to capture complex attack patterns from extensive training
data (Maseer et al., 2021). However, ML-based IDS still face limitations due to constraints in the
model architecture and training data, which hinder their detection capabilities, especially when

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

addressing zero-day attacks (Ullah et al., 2019). Furthermore, the detection results from ML-based
IDS often lack clear explanations, which can diminish their credibility, particularly in safety-critical
IoT scenarios where understanding the rationale behind alerts is crucial (Catarinucci et al., 2015;
Ahmad & Zhang, 2021).

Recently, AI agents empowered by large language models (LLMs) have been created to handle
complicated tasks in various application domains (Yu et al., 2023; Abbasian et al., 2024; Shi et al.,
2024; Li et al., 2024; Deng et al., 2023; Gur et al., 2024; Zheng et al., 2024). These agents are
characterized by their integrated capabilities to observe the environment, generate a reasonable
plan, and then take appropriate actions according to the user’s requests. Typically, LLM agents are
equipped with a knowledge/memory base and a toolbox that includes tools such as local functions
and third-party APIs. They utilize one or more LLMs for knowledge/memory-based reasoning and
planning, including the selection of the most effective tools to employ. The intelligence of LLM
agents in reasoning (as well as analysis and criticism (Shinn et al., 2023)) makes them both powerful
operators and effective intermediaries between task execution and human users.

In this paper, we propose IDS-Agent, the first LLM agent designed for intrusion detection, featuring
capabilities for explanation, customization, and adaptation to zero-day attacks. IDS-Agent takes
an input request for intrusion detection with a target raw data flow, and outputs detection results
with a detailed explanation. The agent adopts a reasoning-followed-by-action pipeline ( (Yao et al.,
2023)) with a specialized action space for intrusion detection. Specifically, knowledge-enabled
reasoning based on long-term memory from previous sessions is performed by the core LLM of the
agent to decide the optimal tools (and their settings/parameters) for data extraction, preprocessing,
classification, and results aggregation.

Compared with existing ML-based IDSs, IDS-Agent achieves a stronger detection performance
and better interpretability by harnessing the power of multiple ML models and external knowledge in
a comprehensive way. It aggregates the classification results from multiple ML models by prompting
an LLM with the top-k label predictions and their confidence scores for each model. The prompt
also includes external knowledge (e.g. regarding particular attack types) obtained by calling a search
engine and additional instructions, for example, to customize detection sensitivity or to reveal new
attack types. The LLM is instructed to produce structured outputs, including detection results and an
explanation. Our main technical contributions are summarized below:

• We propose IDS-Agent, the first LLM-powered agent for intrusion detection, featured by its
capabilities of results explanation, detection customization, and revealing of zero-day attacks.

• We propose a reasoning-followed-by-action pipeline for IDS-Agent with an action space and
toolbox specialized for network traffic processing and intrusion detection results aggregation.

• We demonstrate the effectiveness of IDS-Agent on two IDS benchmarks, ACI-IoT’23 and CIC-
IoT’23. IDS-Agent achieves higher detection accuracy compared with the latest LLM-based
method, various ML models, and the majority voting classifier.

• Experiments show that when classifiers produce discrepancy predictions, IDS-Agent can utilize
inherent and external knowledge to help the decision-making. IDS-Agent also demonstrates
clearly better performance than existing approaches in detecting zero-day attacks. Moreover, we
find that IDS-Agent effectively follows the sensitivity instructions without requiring expert
intervention or additional tuning.

2 RELATED WORK

Conventional IDS An Intrusion Detection System (IDS) is designed to detect malicious activities
on computer systems, helping to ensure system security (Khraisat et al., 2019). IDSs are generally
classified into two main types: Signature-based Intrusion Detection Systems (SIDS) and Anomaly-
based Intrusion Detection Systems (AIDS). SIDS relies on pattern-matching techniques to identify
known attacks (Ioulianou et al., 2018; Nagaraju et al., 2021; AlYousef & Abdelmajeed, 2019).
However, the rise in zero-day attacks has increasingly diminished the effectiveness of SIDS, as these
new attacks lack existing signatures (Ullah et al., 2019). In contrast, AIDS constructs a model of
normal system behavior using machine learning, statistical, or knowledge-based techniques. Any
significant deviation from the constructed model is flagged as an anomaly, potentially indicating
an intrusion (Khraisat et al., 2018; Jia et al., 2021). Knowledge-based AIDS requires creating a
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knowledge base that reflects the legitimate traffic profile by using techniques such as description
language (Studnia et al., 2018) and expert system (Kim et al., 2014). However, in a dynamically
changing environment, a time-consuming regular update on the knowledge base is needed. Compared
with these conventional IDS, our IDS-Agent can adopt a search engine to obtain up-to-date
knowledge and can handle zero-day attacks, as shown by our experiments.

ML-based IDS Many machine learning models, such as MLP (Bajaj & Arora, 2013), KNN (Li et al.,
2014), Decision Tree (Guezzaz et al., 2021), SVM (Mohammadi et al., 2021), have been explored for
anomaly-based intrusion detection. For IoT intrusion detection, Verma & Ranga (2020) conducted a
comprehensive comparison of ensemble and individual classifiers, including Random Forest (RF),
AdaBoost (AB), and Gradient Boosted Machines (GBM). Roy et al. (2022) proposed a lightweight
IDS model utilizing machine learning to detect cyber-attacks and anomalies in resource-constrained
IoT systems. Davis et al. (2024) advanced this line of research by applying a quantum-annealing
approach for feature selection in IoT intrusion detection. Compared with ML-based IDSs, our
IDS-Agent not only achieves better empirical performance but also provides a detailed explanation
of each intrusion detection result.

LLM-based IDS Large language models (LLMs), especially generative pre-trained commercial trans-
formers, like GPTs, have recently demonstrated outstanding ability in information comprehension and
reasoning tasks. This has motivated some studies in applying LLMs to abnormal detection tasks, such
as compiler optimization (Gu, 2023) and software vulnerability detection (Guo et al., 2024). Zhang
et al. (2024) is the first to use LLMs for IDS by employing a straightforward in-context learning
approach with GPT-4, which provides it with a few labeled examples. Their method achieved over
90% accuracy on a simple dataset containing only five types of attacks. However, in this paper, we
demonstrate that the performance of their method drops significantly when tested on more complex
and diverse datasets. Different from this LLM-based IDS, our IDS-Agent uses LLM for reasoning,
action planning, and tool selection, leading to a huge performance gain on diverse datasets.

3 METHOD

3.1 OVERVIEW

IDS-Agent is designed to produce a prediction result with an explanation for each user request for
IoT traffic inference, i.e., to determine if the traffic is benign or belongs to any particular attack type.
We also allow IDS-Agent to handle requests for customized detection sensitivities or to detect
new attack categories from the given IoT traffic flow. IDS-Agent is equipped with a) an abundant
toolbox containing special IDS tools such as ML models for classification and general tools such
as search engines to retrieve external knowledge and b) a memory and knowledge base storing the
current session information, long-term memory from previous sessions, and supportive documents.
These tools, memory, and external knowledge will be integrated to guide the decision-making of
IDS-Agent in a structured manner, as detailed in the sequel.

3.2 PIPELINE OF IDS-AGENT

The pipeline of our IDS-Agent is inspired by the ReAct agent (Yao et al., 2023). The user request
is fulfilled by executing a sequence of action steps {a1, a2, · · · }, where each action step is generated
by a core LLM based on previous reasoning and observations. For any input user request with a
specification of the traffic flow to be inferred, an initial observation o0 is constructed by concatenating
the user request with a system prompt, including a description for each available tool. This initial
observation serves as the context for the agent to understand the task, facilitating subsequent reasoning
and action generation.

Specifically, IDS-Agent iterates over the following three steps after the construction of o0:
1) Reasoning: The core LLM generates a thought (in plain text) about the next action by ri =
LLM(si), where si = {o0, {r1, a1, o1}, · · · , {ri−1, ai−1, oi−1}} is the short-term memory of the
current session up to the (i − 1)-th iteration (with s1 = {o0}). Reasoning can optionally adopt
long-term memory from previous sessions for in-context demonstration.
2) Action generation: The action is generated based on the reasoning/thought by ai = LLM(ri, si).
Notably, each action we generate is a structured JSON file containing an action name and an action
input. The action input consists of the name of the tool(s) to be used and the associated settings or
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Figure 1: Overview of IDS-Agent. Top (framework of IDS-Agent): IDS-Agent adopts
a core LLM to generate thoughts (i.e. reasoning) and actions based on input traffic and user
prompt. It is equipped with a toolbox for action execution and a memory base for knowledge
retrieval. IDS-Agent iteratively conducts thought generation, action generation and execution, and
observation update. Bottom (an example of reasoning trace): in this example, several classifiers
are adopted by the agent, with same number of classifiers predicting the input traffic as ‘Benign’
and ‘MITM-ArpSpoofing’. Based on this observation, IDS-Agent decides to perform ‘Knowledge
Retrieval’ and ‘Memory Retrival’, and finally aggregate these observations, which leads to correct
attack detection.

parameters of each tool. Such a structured generation of the action allows its efficient and accurate
execution using the specified tools.
3) Observation update: After executing the generated action ai, we obtain a new observation oi by
converting the outputs of the tool(s) into plain text.
The iterations terminate when the observation is updated by a ‘final answer’ headline followed by
a JSON file. This JSON file, which encapsulates the final prediction on the traffic data and related
analysis and explanation, will be the output of IDS-Agent.

3.3 ACTION SPACE AND TOOL DESIGN

Our IDS-Agent is designed with a comprehensive action space, allowing it to handle various tasks
in the pipeline of data processing and classification through iterative reasoning and execution. The
action space includes the key actions described below.

Data Extraction: The goal is to accurately extract network traffic records x specified in the user
request from the dataset for further analysis. We design the data extraction tool as a function that
takes the given line number or the flow ID as the input and outputs a structured traffic sample.
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Preprocessing: The goal is to clean, normalize, and transform the extracted data into a standard
format for classification. Our preprocessing tools are designed as functions for diverse data analysis
operations, including feature scaling, data encoding, handling missing values, and selecting important
features for classification.

Classification: This action applies machine learning models to the preprocessed data to obtain
classification results, i.e., to predict whether the traffic is benign or falling into any malicious category.
The inputs to the classification tool include the preprocessed traffic features and a classifier, while the
outputs include the top-k labels and their corresponding confidence scores. Note that our classification
tool is more than a classifier; it advances ML-based IDS by adapting to diverse model types and
incorporating more information from the classification results into the inference procedure. The types
of classifiers used include Random Forest, SVM, MLP, Decision Tree, KNN, etc. It is important to
note that the classification toolbox is extensible. In real-world deployments, users can easily add
new classifiers to the toolbox without the need to fine-tune the LLM. This flexibility allows for easy
updates and adaptation to new attack patterns or changes in the network environment. Moreover,
the classifiers can also be open-sourced models trained by third parties (callable through APIs), or
models locally trained based on the data collected by the user.

Knowledge Retrieval: This action aims to obtain knowledge regarding the particular types of attacks
predicted by the classifiers. The knowledge can be either external knowledge and retrieved by calling
search engines such as Google and Wikipedia API, or stored knowledge base or predefined rules and
retrieved by RAG. The retrieved knowledge will be used to guide the aggregation step.

Long Memory Retrieval: Long Memory carrying information from previous sessions (discussed in
Sec. 3.4). We add an instruction in the system prompt in o0 such that long-term memory retrieval
will be activated (through reasoning).

Aggregation: This action aims to comprehensively integrate the results from multiple steps of
classification action (based on different classifiers) to generate a structured final inference decision.
The core of the aggregation tool is an LLM where the prompt is designed to include 1) the detailed
results from the classifiers, 2) the short-term memory, and 3) demonstrative inputs and outputs
aggregated by the LLM from previous sessions. Note that the short-term memory also includes the
external knowledge previously extracted and the system prompts in o0. This system prompt, as shown
in Fig. 3, includes a specification for the detection sensitivity; it can also include an instruction for
revealing new attack categories. Compared to naive aggregation, such as majority voting, our method
incorporates more information to resolve any discrepancies between different model outputs in a
more comprehensive way.

3.4 MEMORY AND KNOWLEDGE BASE

The memory and knowledge base of IDS-Agent stores 1) the short-term memory, 2) the long-term
memory, and 3) supportive documents for IDS.

Short-term Memory (STR). The STR, as described in Sec. 3.2, includes the historical reasoning
trace, actions, and observations of the current session in a structured format, and is renewed after
each observation update. The major goal of the STM here is to track the agent’s iterative reasoning
process and ensure consistency between steps in real-time.

Long-term Memory (LTM). The LTM consists of agent decisions and contextual information from
previous use cases (Wang et al., 2024; Zhong et al., 2024). Here, a structured LTM example is defined
by ϕ = {t, x,R,A,O, ŷ}, where t is a timestamp, x is the feature vector after preprocessing, R =
[r1, · · · , rn] is the reasoning trace, A = [a1, · · · , an] contains all the action steps, O = [o1, · · · , on]
are the observations, and ŷ is the final label prediction. The long-term memory base can be initialized
by running the agent on a validation dataset. During the inference, only sessions with correct agent
decisions will be stored in the long-term memory base. In a real-world intrusion detection scenario,
such correctness can be validated by human experts.

In our framework, LTM retrieval provides the agent with additional information while aggregating the
results for individual classifiers. Here, we set the LTM retriever input as the current timestamp t and ob-
servations from previous data processing and classification actions, denoted by Õ = [o1, . . . , om−1],
where m is an arbitrary iteration where the LTM retrieval kicks in. The retriever obtains the top-k
relevant final reasoning based on the weighted sum of timestamp distance and the cosine similarity
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between the embedding of Õ and the observation embeddings O(j) of previous LTM examples
{ϕ(1), · · · , ϕ(L)}. Specifically, we obtain the top-k solutions to

argmaxj [λ1r(t, t
(j)) + λ2cosim(E(Õ), E(O(j)))], (1)

where E(·) is the encoder. r(t, t(j)) = 1−(t−t(j))/maxk(t−t(k)) is the recency of the memory. The
equation ensures that both recent observations and content-wise similar observations are considered
to address the evolving nature of intrusion data. Then, the observation om for the iteration m contains
the input-prediction pairs (x(j), ŷ(j)) of each retrieved ϕ(j). In our experiments, we set k = 5 to
retrieve the top 5 relevant structured LTM examples.

External Knowledge. In addition to the external knowledge obtained by calling search engines, such
as Google and Wikipedia, IDS-Agent is also equipped with a vector database {ψ(1), · · · , ψ(K)}
containing related research papers and intrusion detection blogs (both parsed into chunks with fixed
token length). The retrieval from this knowledge base is similar to the retrieval of LTM. We obtain
the top-k solutions to argmaxjcosim(E(q), E(ψ(j))), where q is the query generated by the core
LLM (based on the reasoning) as the action input to action step am for an arbitrary iteration m
for knowledge retrieval. The retrieved document chunks are summarized (for compression) using
an LLM (may be the same as the core LLM or an independent LLM) and are used to update the
observation om. The definition, characteristics, and detection methods for various attacks recorded
in the retrieved chunks will facilitate IDS-Agent to better understand the potential risks while
aggregating the classification results for the ML models. For example, if an attack type can potentially
lead to catastrophic results, IDS-Agent will be more sensitive to it when any classifier makes such
a prediction.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. This paper focuses on intrusion detection in the IoT environment, which presents more
complexities and challenges than traditional networks. We consider the following two datasets
commonly used in previous works.
1) ACI-IoT’23 (Bastian et al., 2023): This dataset contains both benign and malicious network traffic
captured from a variety of IoT devices. The dataset includes simulations of several attack types,
such as Reconnaissance (e.g., Host Discovery, OS Scan, Ping Sweep, and Port Scan), DoS (e.g.,
ICMP Flood, SYN Flood, UDP Flood, and Slowloris) and Brute Force (e.g., Dictionary Attacks).
We randomly select 10% of the data to train the ML-models for classification. For evaluation, we
construct a test dataset from the remaining samples in ACI-IoT’23 by randomly selecting 200 benign
samples and 20 samples per attack category.
2) CIC-IoT 2023 (Neto et al., 2023): This dataset simulates large-scale, real-time IoT environments
and comprises 33 distinct types of attacks, which is even more difficult for intrusion detection than
ACI-IoT’23. The dataset includes network traffic from a broad IoT topology with 105 devices. From
the dataset, we selected the 24 most common attack types along with benign samples to create our
training and testing datasets. The remaining 9 attack types were excluded from the training data and
designated as unknown attacks for evaluating zero-day attack detection performance. Again, we use
10% of the data for training the machine learning classifiers. The test dataset is constructed with 100
benign samples and 10 samples for each attack type.

Evaluation Metrics. We are interested in the performance of IDS-Agent in both the binary
classification of benign and malicious flows and the multi-classification that also requires recognizing
the specific attack type when a flow is deemed malicious. For binary classification, we use accuracy,
and false alarm rate (FAR) as the evaluation metrics. Accuracy is the ratio of correctly predicted
samples to the total number of samples in the dataset, measuring the overall effectiveness of the
IDS-Agent in detecting both benign and malicious flows. FAR measures the proportion of false
positives (benign flow incorrectly classified as malicious).

For multi-classification, we treat each attack category (and the benign category) as a class. We use the
per-class precision, recall, and F1-score as the evaluation metrics. Detailed results for the detection
of each attack category are deferred to the appendix due to space limitations. In the main paper, we
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report the macro-averaged precision, recall, and F1-score across all classes as the overall performance
of the IDS being evaluated. This macro-average is computed by averaging the metric over all classes
with equal weights.

4.2 IMPLEMENTATION DETAILS

The core LLM of IDS-Agent. In our experiments, we consider three LLM choices: GPT-3.5-
Turbo, GPT-4o-mini, GPT-4o.

Tool Design. 1) Data preprocessing tool. We implement Python functions that will be called
sequentially for data preprocessing. First, we remove from each flow the fields irrelevant to the traffic
features, including the label, time-stamp, and flow ID. Second, we encode the non-numeral fields
into numbers, including the connection type and protocol type. Third, we conduct feature selection
based on an F-test for linear dependency between features and labels. Finally, the extracted features
are standardized. 2) Classification tool. The core of the classification tool is an ML model for
intrusion detection, which can be self-trained or an off-the-shelf model trained by a third party. Here,
we pretrained six (multi-)classifiers, including random forest (RF), K-Nearest Neighbors (KNN),
logistic regression (LR), decision tree (DT), multi-layer perceptrons (MLP), and support vector
classifier (SVC) using the training set from our benchmarks. The output of the classification tool is
the top-3 label predictions with their confidence scores. 3) Knowledge retrieval tool. We construct a
knowledge base for various IoT attacks by collecting 50 online blogs and 50 research papers. These
documents are then split into chunks of 1000 tokens with an overlap of 200 tokens. These chunks
were embedded using the OpenAI encoder and stored in a vector database powered by ChromaDB.

4.3 BASELINES

1) Machine learning methods. We compare IDS-Agent with the state-of-the-art ML-based IDS,
which uses a quantum-annealing method for feature selection (Davis et al., 2024). In Appendix A.3,
we also compare our IDS-Agent with six IDSs using the six ML models we pretrained, respectively.

2) LLM-based methods. We compared our IDS-Agent with the latest GPT-4-based intrusion
detection approach (Zhang et al., 2024), which leverages the model’s reasoning capabilities and in-
context demonstrations. The authors particularly demonstrate that providing GPT-4 with a few labeled
examples can improve the accuracy of intrusion detection. We further improve the performance of
this baseline by first clustering their in-context examples using a Gaussian Mixture Model (GMM)
and then selecting in-context examples from different clusters to cover as many attack cases as
possible. Compared to this baseline with a fixed set of demonstrations, IDS-Agent retrieves LTM
for demonstration dynamically based on input similarity.

3) Ensemble learning methods (majority vote). We create a strong baseline by ensemble the results
from the six ML models we pretrained through majority voting.

4.4 EXPERIMENT RESULTS

Quantitative Analysis. The quantitative results on the ACI-IoT’23 dataset are summarized in Table
1. Our IDS-Agent achieves the best general performance when GPT-4o is used as the core LLM.
Comparable performance is achieved when GPT-4o-mini is used as the core LLM, which is over
60% more cost-effective than GPT-3.5 Turbo. IDS-Agent also shows a clearly better recall than
the baselines. In particular, when detecting UDP flood attacks, IDS-Agent achieves a recall of
0.80 compared with 0.20 for the LLM baseline (GPT-4o) and 0.55 for the majority voting baseline.
We also found that for some attack types such as DNS-Flood, Slowloris, and Dictionary attacks,
IDS-Agent demonstrates slightly lower precision than majority voting. This decrease in precision
is due to the IDS-Agent’s heightened sensitivity to high-threat attacks, leading it to classify a
sample as an attack even with less than 50% voting from the classifiers involved.

It is worth noting that the vanilla GPT-4-based method (Zhang et al., 2024), despite enhancements
through in-context learning, performs unsatisfactorily. Moreover, when there are more attack cate-
gories, more in-context demonstrations will be required (to effectively inform all attack categories)
for their method, posing a significant challenge due to GPT-4’s limited token input length and the
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Table 1: Binary-classification and multi-classification performance of IDS-Agent compared with
baseline approaches on the ACI-IoT’23 and CIC-IoT’23 datasets. We compare our method with
vanilla GPT-4o-based method enhanced by in-context learning (Zhang et al., 2024), a Random Forest
classifier that uses a quantum-annealing method for feature selection (Davis et al., 2024), and a strong
baseline of majority voting by six ML classifiers.

Dataset Metric
Types

Metrics GPT-4o RF Majority
Vote

IDS-Agent
(GPT-3.5)

IDS-Agent
(GPT-4o-
mini)

IDS-Agent
(GPT-4o)

ACI-IoT’23

Binary-Class
Binary-Class Accuracy ↑ 0.721 0.890 0.960 0.954 0.963 0.965
FAR ↓ 0.497 0.060 0.020 0.050 0.041 0.030

Multi-Class

Multi-Class Accuracy ↑ 0.678 0.790 0.980 0.972 0.976 0.980
Macro Avg Precision ↑ 0.682 0.785 0.980 0.971 0.980 0.982
Macro Avg Recall ↑ 0.754 0.760 0.961 0.952 0.972 0.972
Macro Avg F-Score ↑ 0.682 0.750 0.962 0.923 0.974 0.975

CIC-IoT’23

Binary-Class
Binary-Class Accuracy ↑ 0.750 0.825 0.882 0.876 0.894 0.904
FAR ↓ 0.144 0.050 0.040 0.050 0.030 0.030

Multi-Class

Multi-Class Accuracy ↑ 0.610 0.751 0.771 0.762 0.788 0.795
Macro Avg Precision ↑ 0.580 0.755 0.760 0.759 0.790 0.800
Macro Avg Recall ↑ 0.450 0.692 0.700 0.694 0.723 0.733
Macro Avg F-Score ↑ 0.510 0.680 0.699 0.700 0.722 0.750

increase in cost. Our method integrates ML models and utilizes RAG to retrieve the most related
knowledge from the memories, significantly reducing the token cost.

Table 1 also presents the evaluation results on the CIC-IoT’23 dataset. Powered by both reasoning
ability and tool calls, the IDS-Agent achieves higher accuracy than the LLM baseline and majority
voting method. Moreover, IDS-Agent achieves high detection accuracy on some very challenging
attacks, such as ArpSpoofing and Host Discovery. The detailed results for each attack type are
deferred to the Appendix A.3.

Case study While the majority voting baseline shows relatively strong performance, their clas-
sification results usually lack interpretability (Yang et al., 2022). In contrast, we leverages the
reasoning capabilities of LLMs to enhance interpretability which may help to improve the detection
performance. One example is illustrated on the right of Figure 1 where the IDS-Agent concludes
that the MITM ARP-Spoofing classification is more likely, as it appears in three classifiers’ top-3
predictions with significant confidence in general. Another case for the decision-making is shown in
Figure 2, with the ground truth label being ‘reconnaissance activities’. Despite 3 out of 6 machine
learning models predicting the traffic as benign, IDS-Agent accurately labels it as a reconnaissance
attack. This decision is rooted in the IDS-Agent’s understanding that both Host Discovery and OS
Scanning belong to reconnaissance attacks. By considering the relationship between these types of
attacks, the IDS-Agent demonstrates its ability to detect subtle patterns that individual classifiers
may overlook, thus improving the overall detection accuracy. Additional examples are provided in
the appendix to demonstrate its decision-making process further.

4.5 ZERO-DAY ATTACK

We find that IDS-Agent not only excels in detecting known attacks but also shows promise in
identifying zero-day threats. Table 2 presents the detection results on the CIC-IoT’23 dataset,
comparing IDS-Agent with two recent zero-day intrusion detection methods: ACGAN (Zhao
et al., 2022) and RealNVP (Matejek et al., 2024). We reproduced ACGAN using its official code
and RealNVP based on the FrEIA framework, training separate normalizing flows for benign and
malicious samples. We set the detection threshold of RealNVP at the 90th percentile of the negative
log-likelihood from the INN model; samples exceeding this threshold are considered unknown attacks
or out-of-distribution (OOD). We selected nine attack types from the CIC-IoT’23 dataset as ‘unseen’
for evaluation, excluding them from training data. Each attack type was evaluated with 50 samples.
IDS-Agent’s classifiers were trained on data from other known attack categories. Additionally, we
enhanced the system prompt with specific instructions to classify ambiguous samples as “Unknown”
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Figure 2: A case study of the IDS-Agent detecting reconnaissance activities. Despite most machine
learning models classifying the traffic as benign, the IDS-Agent ultimately predicts the final label
as a reconnaissance attack. This decision is based on its understanding that both Host Discovery and
OS Scan belong to reconnaissance activities.

if most classifiers’ confidence was below a certain threshold. We set the threshold as 0.7 in our
experiments. The recall for IDS-Agent in predicting an ‘unknown attack’ from these unseen
classes was measured, achieving a top-1 recall of 0.61. Notably, IDS-Agent showed high recall for
Vulnerability Scan and SQL Injection attacks, likely due to their distinct deviation from the training
data distribution, resulting in low classification confidence. This indicates IDS-Agent’s capability
to detect unknown attacks, particularly when diverse machine learning models yield divergent results
with low confidence or when traffic features are anomalous. The recall for benign examples decreased
from 0.91 to 0.86 after introducing the zero-day detection prompt. This drop is attributed to the
tendency of the model to classify OOD benign examples as unknown attacks.

Table 2: Comparisons of the recall of different zero-day attack detection methods.

Methods Backdoor DNS
Spoofing

Uploading
Attack

XSS Dictionary
BruteForce

Command
Injection

VulScan Browser
Hijacking

SQL Avg Recall

ACGAN 0.38 0.35 0.59 0.32 0.36 0.42 0.88 0.05 0.38 0.41
RealNVP 0.45 0.37 0.68 0.49 0.42 0.45 0.89 0.03 0.45 0.47

IDS-Agent 0.64 0.46 0.74 0.65 0.45 0.55 0.95 0.15 0.86 0.61

4.6 ABLATION STUDY

We conduct an ablation study focusing on two key modules: the Knowledge Retrieval Module and
the Long-Term Memory Module. We evaluate how each module affects the detection performance on
two settings: 1) ‘in-distribution’ setting with all attack labels known and 2) zero-day attack setting
in Section 4.5 with a subset of unknown attacks. We also evaluate the performance under different
detection sensitivities.

Effect of Knowledge Retrieval Module The Knowledge Retrieval Module is designed to augment
the classifiers’ outputs with relevant information from an external knowledge base, enhancing the
agent’s understanding of complex attack patterns. To assess its impact, we disable this module and
compare the performance of the modified agent with the original IDS-Agent. Table 3 summarizes
the detection performance with and without the Knowledge Retrieval Module. When the module is
removed, we observe significant decrements in the detection accuracy for both settings. Specifically,
the recall for detecting zero-day attacks drops from 0.61 to 0.42. This indicates that without access to
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external knowledge, the agent has a diminished ability to recognize patterns that are not represented
in the training data.

Table 3: Effect of Knowledge Retrieval Module

Recall With KRM Without KRM

In-Distribution 0.733 0.710
Zero-Day 0.610 0.420

Table 4: Effect of Long-Term Memory Module

Recall With LMM Without LMM

In-Distribution 0.733 0.702
Zero-Day 0.610 0.560

Effect of Long-Term Memory Module The Long-Term Memory Module allows IDS-Agent to
maintain a history of previous observations and decisions, which is essential for detecting attacks
exhibiting temporal dependencies and utilizing previous success experiences. To evaluate its effect,
we disable the Long-Term Memory Module and assess the agent’s performance on the same evaluation
set. We set the λ1 and λ2 as 0.5 in Eq. 1 to balance the recency similarity to retrieve the most relevant
past examples from the agent’s LTM.

As presented in Table 4, the removal of the Long-Term Memory Module leads to a degradation
in detection performance, particularly for attacks that unfold over time, such as Brute Force and
Distributed Denial of Service (DDoS) attacks. The overall detection accuracy decreases from 0.733
to 0.702, and the recall for zero-day attacks drops to 0.56. The decrease in performance underscores
the importance of the Long-Term Memory Module in capturing temporal features and improving
the agent’s ability to detect attacks that evolve over time. By retaining historical information,
IDS-Agent can identify suspicious patterns that may not be apparent when considering individual
events in isolation.

Detection Sensitivity. Sensitive configuration is a critical function of intrusion detection systems
(IDS). In signature-based IDS, experts need to manually adjust detection sensitivity, which can be
both costly and time-consuming (Díaz-Verdejo et al., 2022). In contrast, the detection sensitivity
of our IDS-Agent can be easily adjusted through input prompts. Here, we can optionally instruct
the IDS-Agent to operate under three different sensitivity levels: aggressive, balanced, and
conservative. This sensitivity level controls the trade-off between the false alarm rate and the missed
detection rate. The results are shown in Table 5. For the aggressive detection, the IDS-Agent
achieves high recall for attacks (0.97) but lower recall for benign examples (0.90). Conversely,
conservative detection shows relatively lower recall for attacks (0.85) but higher recall for benign
examples (0.98). The complete prompts and detection results are shown in Appendix A.4.

Table 5: The classification results of different detection sensitivities. The core LLM is GPT-4o. We
compute the precison, recall and F1-score under different sensitivities on the ACI-IoT’23 dataset.

Sensitivity Aggressive Balance Conservative

Metrics Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Benign 0.96 0.90 0.92 0.87 0.96 0.91 0.60 0.98 0.75
Attack (Macro Avg) 0.97 0.97 0.97 0.98 0.95 0.96 0.95 0.85 0.87

5 CONCLUSION

In this paper, we propose IDS-Agent, the first LLM-powered agent for intrusion detection. We
design an iterative reasoning-followed-by-action pipeline for IDS-Agent to extract data from the
network traffic, preprocess the data, consult different machine learning models for classification results
and details, retrieve both internal and external knowledge, and summarize the final detection inference.
These agent actions are facilitated by a memory module and a wide array of tools for intrusion
detection and general purposes. Empirically, IDS-Agent outperforms diverse types of SOTA IDSs
on ACI-IoT’23 and CIC-IoT’23. We find that when classifiers produce discrepancy predictions,
IDS-Agent can utilize inherent and external knowledge to assist decision-making. Moreover,
IDS-Agent can be easily adapted to detect zero-day attacks, exhibiting better performance than
existing methods. Finally, we find that IDS-Agent effectively follows the sensitivity instructions in
detection without requiring expert intervention or additional tuning.
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A APPENDIX A

A.1 GENERAL PROMPT AND REASONING TRACE OF IDS-AGENT

The general prompt of the IDS-Agent is illustrated in Figure 3. The process begins with instructing
the IDS-Agent to load network traffic data and perform feature preprocessing. Afterward, we utilize
a range of classifiers to analyze the data. To enhance decision-making, the IDS-Agent retrieves
prior successful examples from its knowledge base for comparison. In cases where discrepancies
arise between the predictions of different models, we prompt the IDS-Agent to consult internal or
external knowledge bases for additional insights to resolve the conflict. Finally, the IDS-Agent
consolidates the findings and presents the result in a structured JSON format. Figure 4 provides an
example of the reasoning trace produced by the IDS-Agent during this process.

A.2 ADDITIONAL CASE STUDIES

The cases in Figure 5 and Figure 6 highlight the enhanced reasoning ability of IDS-Agent with
the knowledge retriever. It is shown that IDS-Agent not only considers the top-1 predictions but
also the second and third predictions and their confidences. Moreover, in these examples, when
the models have discrepancies in the predictions, the IDS-Agent automatically accesses external
databases to extract additional knowledge, aiding in feature analysis and supporting its final decision.
By leveraging these external knowledge sources, the IDS-Agent gains a deeper understanding of
complex attack patterns and anomalies, enhancing both accuracy and decision-making. This dynamic
capability allows the IDS-Agent to better adapt to new or evolving threats in the IoT environment.
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Figure 3: General prompt and user input

Figure 4: An example of the reasoning trace and final answer.

A.3 THE PERFORMANCE OF DIFFERENT ML CLASSIFIERS

Table 6 shows the F-score of different ML classifiers on the ACI-IoT’23 dataset as well as our method.
Among the six classifiers, MLP achieves the highest F-score of 0.96. The IDS-Agent outperforms
all six classifiers and the majority vote method. Moreover, we achieve a high F-score on the UDP
Flood attack, while the majority method only has an F-score of 0.55.

Table 7 shows the F-score of different ML classifiers on the CIC-IoT’23 dataset as well as our
method. Among the six classifiers, Random Forest achieves the highest F-score of 0.75. For the
IDS-Agent, we use the GPT-4o as the core LLM. It is shown that our attack achieved a higher
F-score compared with the majority vote classifier. Moreover, we achieved a higher F-score on the
benign traffic compared with six classifiers and the majority vote method, which means our method
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Figure 5: Additional case study on the DDoS attacks of the IDS-Agent. From the final analysis, it is
shown that the IDS-Agent not only considers the predicted labels but also considers the confidence
of different classifiers.

Figure 6: Additional case study on the MITM attacks of the IDS-Agent. From the final analysis, it
is shown that the IDS-Agent not only considers the top 1 prediction but also considers the second
and third predictions.

has a lower false alarm rate, which is an important metric for intrusion detection. Figure 7 shows the
confusion matrix of the majority voting classifier and IDS-Agent.
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Table 6: The F-score of different ML classifiers on the ACI-IoT’23 dataset. For the IDS-Agent,
we use the GPT-4o as the core LLM.

Model RF LR KNN MLP DT SVC Majority Vote IDS-Agent

Benign 0.90 0.59 0.91 0.91 0.91 0.80 0.91 0.91
DNS Flood 0.95 0.10 0.80 0.95 0.91 0.91 1.00 0.95

Dictionary Attack 1.00 0.71 0.98 0.95 1.00 0.92 1.00 1.00
ICMP Flood 1.00 0.98 0.98 1.00 0.95 0.98 0.98 0.98

OS Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ping Sweep 0.98 0.98 0.97 0.98 0.97 0.98 1.00 1.00
Port Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SYN Flood 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
Slowloris 1.00 0.43 1.00 1.00 1.00 0.97 1.00 1.00

UDP Flood 0.60 0.00 0.45 0.74 0.50 0.00 0.55 0.80
Vulnerability Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Macro Avg 0.95 0.71 0.92 0.96 0.93 0.87 0.96 0.97

Table 7: The F-score of different ML classifiers on the CIC-IoT’23 dataset. For the IDS-Agent, we
use the GPT-4o as the core LLM.

Model DT KNN LR MLP RF SVC Majority Vote IDS-Agent

BenignTraffic 0.79 0.77 0.79 0.75 0.75 0.73 0.74 0.84
DDoS-ACK_Fragmentation 0.98 0.95 0.95 0.93 0.95 0.98 0.95 1.00

DDoS-HTTP_Flood 0.58 0.53 0.24 0.79 0.68 0.38 0.69 0.70
DDoS-ICMP_Flood 0.98 0.95 0.98 0.95 1.00 1.00 1.00 1.00

DDoS-ICMP_Fragmentation 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS-PSHACK_Flood 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.95
DDoS-RSTFINFlood 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DDoS-SYN_Flood 0.72 0.08 0.63 0.73 0.76 0.64 0.75 0.75
DDoS-SlowLoris 0.76 0.74 0.00 0.89 0.79 0.44 0.79 0.82

DDoS-SynonymousIP_Flood 0.70 0.74 0.70 0.72 0.74 0.65 0.74 0.78
DDoS-TCP_Flood 0.69 0.08 0.66 0.67 0.69 0.67 0.67 0.71
DDoS-UDP_Flood 0.71 0.23 0.77 0.75 0.71 0.74 0.71 0.74

DDoS-UDP_Fragmentation 0.97 0.95 0.95 0.97 0.97 0.97 0.97 0.95
DoS-HTTP_Flood 0.65 0.79 0.73 0.85 0.76 0.89 0.83 0.84
DoS-SYN_Flood 0.62 0.57 0.31 0.72 0.76 0.37 0.72 0.80
DoS-TCP_Flood 0.32 0.60 0.00 0.00 0.32 0.00 0.17 0.33
DoS-UDP_Flood 0.53 0.65 0.55 0.52 0.48 0.46 0.48 0.46

MITM-ArpSpoofing 0.54 0.58 0.09 0.60 0.58 0.58 0.62 0.67
Mirai-greeth_flood 0.95 0.98 0.90 0.97 0.97 1.00 0.97 0.95
Mirai-greip_flood 0.98 0.97 0.89 0.98 0.98 1.00 0.98 0.95

Mirai-udpplain 0.95 0.98 1.00 0.98 0.98 1.00 0.98 1.00
Recon-HostDiscovery 0.54 0.45 0.40 0.48 0.55 0.39 0.47 0.53

Recon-OSScan 0.30 0.30 0.08 0.00 0.15 0.10 0.17 0.15
Recon-PortScan 0.41 0.36 0.24 0.31 0.44 0.31 0.37 0.31

Macro Avg 0.74 0.68 0.62 0.73 0.75 0.68 0.70 0.75
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A.4 DETAILS FOR SENSITIVITY CUSTOMIZATION

We adjust the detection sensitivity by prompting the core LLM with "Summarize the classification
with {sensitivity} sensitivity, {sensitivity details}". Here, ‘sensitivity details’ will be ‘discover the
attack as the priority’, ‘balance the false alarm rate and the missing alarm rate’, and ‘do not alert
unless you are very sure’, for ‘sensitivity’ being ‘aggressive’, ‘balanced’ and ‘conservative’. The
detection performances of IDS-Agent for different detection sensitivities are shown in Table 8. It is
shown that the ‘Aggressive’ command achieves a higher recall on the attacks while the ‘Conservative’
command achieves a higher recall on the benign examples. The classification results, detailed in
Table 8 of the appendix, show that the IDS-Agent effectively follows these sensitivity instructions
without requiring expert intervention or additional tuning.

Table 8: The classification results of different detection sensitivities.

Sensitivity Aggressive Balance Conservative

Metrics Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Benign 0.96 0.90 0.92 0.87 0.96 0.91 0.60 0.98 0.75
DNS Flood 0.91 1.00 0.95 0.91 1.00 0.95 0.94 0.80 0.86

Dictionary Attack 0.91 1.00 0.95 1.00 1.00 1.00 1.00 0.65 0.79
ICMP Flood 0.95 1.00 0.89 0.95 1.00 0.98 0.95 1.00 0.98

OS Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Ping Sweep 0.95 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
Port Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SYN Flood 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Slowloris 0.95 1.00 0.98 1.00 1.00 1.00 1.00 0.40 0.57

UDP Flood 1.00 0.80 0.89 1.00 0.53 0.69 1.00 0.47 0.64
Vulnerability Scan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Macro Avg 0.97 0.97 0.97 0.98 0.95 0.96 0.95 0.85 0.87

A.5 THE ZERO-DAY ATTACK DETECTION DETAILS

We prompt GPT-4o to classify an example as an unknown attack if multiple classifiers output low
confidence for their top predictions or if there are conflicting predictions among different classifiers.
This is based on our observation that, for unknown attacks, machine learning models typically exhibit
relatively low confidence levels, as shown in Figure 8. Specifically, we instruct the LLM to consider
an example as a potential unknown attack if more than two models have low confidence (e.g., below
a threshold of 0.7). Moreover, if more than two models have low confidence or if different models
produce significantly divergent predictions, we direct IDS-Agent to search the knowledge base for
characteristics of the most probable predicted attacks. If the traffic features do not match these attack
characteristics, we confirm the example as an unknown attack and provide this as the final output.

A.6 THE INFLUENCE OF HYPERPARAMETERS

To assess the influence of different values of λ1 and λ2 in Eq. 1, we conducted experiments by
varying these parameters and measuring the impact on retrieval effectiveness and overall classification
performance. Table 9 summarizes the results of our experiments. The experimental results indicate
that both recency and content similarity are crucial for effective LTM retrieval. A balanced approach,
where λ1 and λ2 are equal, provides the best performance, suggesting that the agent benefits from
considering both embedding similarity and recency.

Table 9: Performance metrics for different values of λ1 and λ2.

λ1 λ2 Accuracy (%) Precision (%) Recall (%)

0.1 0.9 97.2 97.2 96.5
0.5 0.5 98.0 98.2 97.2
0.9 0.1 97.3 97.1 96.1
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A.7 EXCUTION TIME OF IDS-AGENT

In this section, we evaluate the execution time of the proposed IDS-Agent and compare it with
the in-context-learning-based GPT-4 approach. We conducted the execution time experiments with
the Intel Core i7 CPU of 3.8GHz. The operating system is MacOS 14.6. As shown in Table 10, the
IDS-Agent balances performance and efficiency, averaging 8.65 seconds per instance. We use
GPT-4o API as the core LLM of IDS-Agent. The additional time compared to the GPT-4 method
is due to the knowledge retrieval and aggregation process, but it remains well within acceptable limits
for real-time applications.

Table 10: Execution time comparison between different methods.

Method GPT-4 IDS-Agent

Average Time per Instance (s) 3.36 8.65
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(a) Confusion matrix of majority voting classifer

(b) Confusion matrix of IDS-Agent

Figure 7: The confusion matrix of majority voting classifier and IDS-Agent on the CIC-IoT’23
dataset.
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Figure 8: The confidence distributions of difference classifiers on the in-distribution dataset and
out-of-distribution dataset.
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