
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REAL-WORLD DATA AND CALIBRATED SIMULATION
SUITE FOR OFFLINE TRAINING OF REINFORCEMENT
LEARNING AGENTS TO OPTIMIZE ENERGY AND EMIS-
SION IN BUILDINGS FOR ENVIRONMENTAL SUSTAIN-
ABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Commercial office buildings contribute 17 percent of Carbon Emissions in the
US, according to the US Energy Information Administration (EIA), and improv-
ing their efficiency will reduce their environmental burden and operating cost. A
major contributor of energy consumption in these buildings are the Heating, Ven-
tilation, and Air Conditioning (HVAC) devices. HVAC devices form a complex
and interconnected thermodynamic system with the building and outside weather
conditions, and current setpoint control policies are not fully optimized for min-
imizing energy use and carbon emission. Given a suitable training environment,
a Reinforcement Learning (RL) agent is able to improve upon these policies, but
training such a model, especially in a way that scales to thousands of buildings,
presents many practical challenges. Most existing work on applying RL to this
important task either makes use of proprietary data, or focuses on expensive and
proprietary simulations that may not be grounded in the real world. We present
the Smart Buildings Control Suite, the first open source interactive HVAC control
dataset extracted from live sensor measurements of devices in real office build-
ings. The dataset consists of two components: six years of real-world historical
data from three buildings, for offline RL, and a lightweight interactive simulator
for each of these buildings, calibrated using the historical data, for online and
model-based RL. For ease of use, our RL environments are all compatible with
the OpenAI gym environment standard. We also demonstrate a novel method of
calibrating the simulator, as well as baseline results on training an RL agent on the
simulator, predicting real-world data, and training an RL agent directly from data.
We believe this benchmark will accelerate progress and collaboration on building
optimization and environmental sustainability research.

1 INTRODUCTION

Energy optimization and management in commercial buildings is a very important problem, whose
importance is only growing with time. Buildings account for 37% of all US carbon emissions, with
commercial buildings alone taking up a staggering 17% in 2023 (EIA). Reducing those emissions
by even a small percentage can have a significant effect. In climates that are either very hot or very
cold, energy consumption is much higher, and there is even more room to have a major impact. We
believe this problem is one of the most important avenues for climate sustainability research, where
even a small improvement over baseline policies can drastically reduce our carbon footprint.

In particular, HVAC systems account for 40-60% of energy use in buildings (Pérez-Lombard et al.,
2008), and roughly 15% of the world’s total energy consumption (Asim et al., 2022). Most office
buildings are equipped with advanced HVAC devices, like Variable Air Volume (VAV) devices, Hot
Water Systems, Air Conditioners and Air Handlers that are configured and tuned by the engineers,
manufacturers, installers, and operators to run efficiently with the device’s local control loops (Mc-
Quiston et al., 2023). However, integrating multiple HVAC devices from diverse vendors into a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

building “system” requires technicians to program fixed operating conditions for these units, which
may not be optimal for every building and every potential weather condition. Existing setpoint con-
trol policies are not optimal under all conditions, and the possibility exists that a machine learning
model may be trained to continuously tune a small number of setpoints to achieve greater energy
efficiency and reduced carbon emission.

Optimizing HVAC control has been an active research area for decades, and yet while AI has begun
to revolutionize many industries, to date almost all HVAC systems remain the same as they were 30
years ago: despite all the literature on the topic, there is not a single solution that has been widely
adopted in the real world.

One of the most significant factors limiting progress is the lack of a reliable public benchmark to
test solutions against. Current work generally makes use of proprietary data and expensive (often
also proprietary) simulations. This limits participation to those with exclusive access, and makes
most claims difficult to verify and compare. A strong public dataset would facilitate collaborations
between institutions, standardize research efforts, and allow for wider participation. Historically,
much of progress in AI has been driven by easily accessible public benchmarks, from the ImageNet
Challenge in Vision (Russakovsky et al., 2015), to the Atari57 suite in RL (Badia et al., 2020), and
the GLUE Benchmark in language (Wang et al., 2018). A similar benchmark in HVAC control may
help accelerate progress and finally lead to adoption of solutions in the real world.

We present The Smart Buildings Control Suite, a high quality, fully accessible, building control
benchmark. The benchmark consists of two components:

• Real-world historical HVAC data, collected from three buildings over a six year period.

• A highly customizable and scalable HVAC and building simulator, with configurations
corresponding to each of the above buildings

Our contributions include one of the first public real-world HVAC datasets, a highly customizable
and scalable HVAC and building simulator, a rapid configuration method to customize the simulator
to a particular building, a calibration method to improve this fidelity using real-world data, and an
evaluation method to measure the simulator fidelity. The dataset contains information from three
buildings in California, the largest of which is three stories and 118,086 ft2. Using data we obtained
from each building, we calibrate our simulator, and demonstrate using our evaluation pipeline that
this significantly improves its fidelity to the real building. We provide pre-calibrated simulators for
all of our buildings, as well as code to both reproduce the calibration procedure, and to calibrate the
simulator to new scenarios. While our suite focuses on three buildings, our simulator is easily adapt-
able, allowing for the development of general purpose solutions that can be applied to any building.
All the data and simulator code is open source and compatible with the OpenAI gym environment
standard(Brockman et al., 2016), and data is available on the popular TensorFlow Datasets platform
(TFDS) under the Creative Commons License.

We first give an overview of the problem and related work, and then present the structure of the
data. Next we introduce the simulator, and discuss our configuration, calibration, and evaluation
techniques. After that, we run through an example of the process of calibrating the simulator to
real data, and finally we demonstrate success on three key benchmark tasks: training an RL agent
on the calibrated simulator environment using Soft Actor Critic(Haarnoja et al., 2018), training a
regression model to predict the real world dynamics, and training a Soft Actor Critic agent from the
real world data via the regression model.

2 OPTIMIZING ENERGY AND EMISSION IN OFFICE BUILDINGS WITH RL

In this section we frame energy optimization in office buildings as an RL problem. We define the
state of the office building St at time t as a fixed length vector of measurements from sensors on
the building’s devices, such as a specific VAV’s zone air temperature, gas meter’s flow rate, etc. The
action on the building At is a fixed-length vector of device setpoints selected by the agent at time t,
such as the boiler supply water temperature setpoint, etc.

More generally, RL is a branch of machine learning that attempts to train an agent to choose the best
actions to maximize some long-term, cumulative reward (Sutton & Barto, 2018). The agent observes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the state St from the environment at time t, then chooses action At. The environment responds by
transitioning to the next state St+1 and returns a reward (or penalty) after the action, Rt+1. Over
time, the agent will explore the action space and learn to maximize the reward over the long term
for each given state. A discount factor γ reduces the value of future rewards amplifying the value of
the near-term reward. When this cycle is repeated over multiple episodes, the agent converges on a
state-action policy that maximizes the long-term reward.

This sequence is often formalized as the Markov Decision Process (MDP) (Garcia & Rachelson,
2013), described by the tuple (S,A, p,R) where the state space is continuous (e.g., temperatures,
flow rates, etc.) and the action space is continuous (e.g., setpoint temperatures) and the transition
probability p : S × S × A → [0, 1] represents the probability density of the next state St+1 from
taking action At on the current state St. The reward function R : S × A → [Rmin, Rmax] emits
a single scalar value at each time t. The agent is acting under a policy πθ(At|St) parameterized by
θ that represents the probability of taking action At from state St. The goal of an RL agent is to
find the policy that maximizes the expected long-term cumulative, discounted reward. The set of
parameters θ∗ of the optimal policy can be expressed as:

θ∗ = arg max
θ

Eτ∼πθ(τ)

[∑
t

γtR(St, At)

]

where θ is the current policy parameter, and τ is a trajectory of states, actions, and rewards over
sequential time steps t. In order to converge to the optimal policy, the agent requires many training
iterations to explore the policy space, making online training directly on the real-world building from
scratch inefficient, dangerous, impracticable, and likely impossible. Therefore, it is necessary to
enable offline learning, where the agent can train in an efficient sandbox environment that adequately
emulates the dynamics of the building before being deployed to the real world.

Reward Function RL generally requires a single scalar reward signal, Rt(St, At) that indicates
the quality of taking action At in state St. We thus define a custom feedback signal, R3C , as a
weighted sum of negative cost functions for carbon emission, energy cost, and comfort levels within
the building, which we dubbed the 3C Reward. It is governed by the following equation:

R3C = u× C1 + v × C2 + w × C3

where C1 represents normalized comfort conditions, C2 normalized energy cost and C3 normal-
ized carbon emission. Constants u, v, w represent operator preferences, allowing them to weight
the relative importance of cost, comfort and carbon consumption. R3C = 0 when no energy is
consumed, no carbon is emitted, and all occupied zones are in setpoint bounds, and negative other-
wise. For more details, and equations governing how we normalize and measure these quantities,
see Appendix A.

3 RELATED WORKS

Considerable attention has been paid to HVAC control (Fong et al., 2006) in recent years (Kim et al.,
2022), and while alternative approaches exist, such as model predictive control (Taheri et al., 2022),
a growing portion of the literature has considered how RL and its various associated algorithms can
be leveraged (Yu et al., 2021; Mason & Grijalva, 2019; Yu et al., 2020; Gao & Wang, 2023; Wang
et al., 2023; Vázquez-Canteli & Nagy, 2019; Zhang et al., 2019b; Fang et al., 2022; Zhang et al.,
2019b). As mentioned above, a central requirement in RL is the offline environment that trains the
RL agent. Several methods have been proposed, largely falling under three broad categories.

Data-driven Emulators Some works attempt to learn a dynamics as a multivariate regression model
from real-world data (Zou et al., 2020; Zhang et al., 2019a), often using recurrent neural network
architecture, such as Long Short-Term Memory (LSTM) (Velswamy et al., 2017; Sendra-Arranz
& Gutiérrez, 2020; Zhuang et al., 2023). The difficulty here is that data-driven models often do
not generalize well to circumstances outside the training distribution, especially since they are not
physics based.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Offline RL The second approach is to train the agent directly from the historical real-world data,
without ever producing an interactive environment (Chen et al., 2020; 2023; Blad et al., 2022).
While the real-world data is obviously of high accuracy and quality, this presents a major challenge,
since the agent cannot take actions in the real world and interact with any form of an environment.
This inability to explore severely limits its ability to improve over the baseline policy producing the
real-world data (Levine et al., 2020). Furthermore, prior to our work, there are few public datasets
available.

Physics-based Simulation HVAC system simulation has long been studied (Trčka & Hensen, 2010;
Riederer, 2005; Park et al., 1985; Trčka et al., 2009; Husaunndee et al., 1997; Trcka et al., 2007;
Blonsky et al., 2021). EnergyPlus (Crawley et al., 2001), a high-fidelity simulator developed by
the Department of Energy, is commonly used (Wei et al., 2017; Azuatalam et al., 2020; Zhao et al.,
2015; Wani et al., 2019; Basarkar, 2011), but suffers from scalability and configuration challenges.

To overcome the limitations of each of the above three methods, some work has proposed a hybrid
approach (Zhao et al., 2021; Balali et al., 2023; Goldfeder & Sipple, 2023; Zhang et al., 2023;
Klanatsky et al., 2023; Drgoňa et al., 2021), and indeed this is the category our work falls under.
What is unique about our approach is the use of a physics based simulator that achieves an ideal
balance between speed of configuration, and fidelity to the real world. Our simulator is lightweight
enough to be configured to an arbitrary building in a matter of hours, and using our calibration
process based on real-world data, accurate enough to train an effective control agent off-line. This
allows our solution to be highly scalable, like the first two approaches, but still rooted in physics,
and demonstrably calibrated, like the third approach.

Various works have also discussed how exactly to apply RL to an HVAC environment, such as what
sort of agent to train. Inspired by prior effective use of Soft Actor Critic (SAC) on related problems
(Kathirgamanathan et al., 2021; Coraci et al., 2021; Campos et al., 2022; Biemann et al., 2021), we
chose to demo our environment using a SAC agent.

Prior Datasets While many building datasets exist (Ye et al., 2019), most either have a different
focus (Sachs et al., 2012; Urban et al.; Kriechbaumer & Jacobsen, 2018; Granderson et al., 2023),
do not contain sufficient HVAC information (Miller et al., 2020; Mathew et al., 2015; Rashid et al.,
2019; Jazizadeh et al., 2018; Sartori et al., 2023), are focused on residential buildings (Murray
et al., 2017; Barker et al., 2012; Meinrenken et al., 2020) or non-standard buildings (Pettit et al.,
2014; Naug & Chandan), or are simulated (Field et al., 2010; Bakker et al., 2022). Even the few
datasets directly relevant (Luo et al., 2022; Heer et al., 2024) are non-interactive. As far as we
are aware, we present the first HVAC control benchmark that has high quality real-world data with
computationally cheap simulations of the same buildings, allowing for both real-world grounding
and interactive control experiments.

Figure 1: Example Visualization of
an Environment. Blue represents
colder temperatures, red warmer.
Blue and red dots inside the build-
ing indicate diffusers that are dis-
pensing cold and warm air respec-
tively.

4 THE DATASET STRUCTURE

Both the real-world data and simulated data are given in the same format. Following the RL
paradigm, data is provided as a series of observations, actions, and rewards. In the case of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

real-world data, this comes in the form of static historical episodes, where the actions follow the
baseline policy in the building, and in the case of the simulator, as a proper interactive RL environ-
ment where actions can be taken in real time.

To make the task as realistic as possible, we formatted the data to closely resemble the real-world
building API, so that a user can mimic interacting with the building. All of our data is formatted to
be compliant with the popular open source Google Digital Buildings Ontology (DBO). The agent
communicates with the building using the Protobuf open source serialization format(Google). The
agent can send information requests to the building, asking for structural information, such as the
number of devices, and telemetry information, such as the value of a particular sensor, and the
building sends back a response, containing the requested information. The agent can also request
that a setpoint be changed to a new value, and the building will respond if the change was successful.

Following the RL paradigm, the data in our dataset falls under the following categories:

1. Environment Data or each building environment, the dataset contains information on all
HVAC zones and HVAC devices. For zones this includes the name and size of each zone,
as well has how many devices are contained within it. For devices, this includes the zone
the device is associated with, as well as every device sensor and setpoint.

2. Observation Data Observations consist of the measurements from all devices in the build-
ing (VAV’s zone air temperature, gas meter’s flow rate, etc.), provided at each time step.

3. Action Data The device setpoint values that the agent wants to set, provided at each
timestep

4. Reward Data Information used to calculate the reward, as expressed in cost in dollars,
carbon footprint, and comfort level of occupants, provided at each time step

Table 1: Building Information

BUILDING FT2 FLOORS DEVICES

SB1 93,858 2 170
SB2 62,613 1 152
SB3 118,086 3 152

The dataset currently consists of six years of data
from three buildings. The details are in Table 1.
For more details regarding the format of the data,
including definitions and examples of each type of
proto, see appendix B.

Data Visualization We also present a data visu-
alization module, compatible both for viewing the
real-world historical data, as well as visualizing the
state of the simulator, as shown in Figure 1. Given
an observation of a building environment, our vi-
sualization module renders a two dimensional heat-map view of the building. This greatly aids in
understanding the data, and is invaluable in understanding how a particular policy is behaving.

5 SIMULATOR DESIGN CONSIDERATIONS

A fundamental trade-off when designing a simulator is speed versus fidelity, as depicted in Figure 2.
Fidelity is the simulator’s ability to reproduce the building’s true dynamics that affect the optimiza-
tion process. Speed refers to both simulator configuration time, i.e., the time required to configure a
simulator for a target building, and the agent training time, i.e., the time necessary for the agent to
optimize its policy using the simulator.

Every building is unique, due to its physical layout, equipment, and location. Fully customizing
a high fidelity simulation to a specific target building requires nearly exhaustive knowledge of the
building structure, materials, location, etc., some of which are unknowable, especially for legacy
office buildings. This requires manual “guesstimation”, which can erode the accuracy promised
by high-fidelity simulation. In general, the configuration time required for high-fidelity simulations
limits their utility for deploying RL-based optimization to many buildings. High-fidelity simulations
also are affected by computational demand and long execution times.

Alternatively, we propose a fast, low-to-medium-fidelity simulation model that was useful in ad-
dressing various design decisions, such as the reward function, the modeling of different algorithms.
and for end-to-end testing. The simulation is built on a 2D finite-difference (FD) grid that models

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

thermal diffusion, and a simplified HVAC model that generates or removes heat on special “diffuser”
control volumes (CV) in the FD grid. For more details on design considerations, see Appendix C.

While the uncalibrated simulator is of low-to-medium fidelity, the key additional factor is data. We
collect recorded observations from the target building under baseline control, and use that data to
calibrate the simulator, by adjusting the simulator’s physical parameters to minimize difference
between real and simulated data. We believe this approach hits the sweet spot in this tradeoff,
enabling scalability, while maintaining a high enough level of fidelity to train an improved policy.

Figure 2: Simulation Fidelity vs. Execution
Speed. The ideal operating point for training RL
agents for energy and emission efficiency is a
tradeoff between fidelity, depicted as 1 minus a
normalized error ε between simulation and real,
and execution speed, as measured by the number
of training steps per second. Additional consid-
eration also includes the time to configure a cus-
tom simulator for the target building. While many
approaches tend to favor high-fidelity over execu-
tion, speed, our approach argues a low-to-medium
fidelity that has a medium-to-high speed is most
suitable for training an RL agent.

6 A LIGHTWEIGHT, CALIBRATED SIMULATION

Our goal is to develop a method for applying RL at scale to commercial buildings. To this end, we
put forth the following requirements for this to be feasible: We must have an easily customizable
simulated environment to train the agent, with high enough fidelity to train an improved control
agent. To meet these desiderata, we designed a light weight simulator based on finite differences
approximation of heat exchange, building upon earlier work (Goldfeder & Sipple, 2023). We pro-
posed a simple automated procedure to go from building floor plans to a custom simulator in a short
time, and we designed a calibration and evaluation pipeline, to use data to fine tune the simulation
to better match the real world. What follows is a description of our implementation.

Thermal Model for the Simulation As a template for developing simulators that represent target
buildings, we start with a general-purpose high-level thermal model for simulating office buildings,
illustrated in Figure 3. In this thermal cycle, we highlight significant energy consumers as follows.
The boiler burns natural gas to heat the water, Q̇b . Water pumps consume electricity Ẇb,p to
circulate heating water through the VAVs. The air handler fans consume electricity Ẇb,in , Ẇb,out to
circulate the air through the VAVs. A motor drives the chiller’s compressor to operate a refrigeration
cycle, consuming electricity Ẇc. In some buildings coolant is circulated through the air handlers
with pumps that consume electricity, Ẇc,p.

We selected water supply temperature T̂b and the air handler supply temperature T̂s as agent
actions because they affect the balance of electricity and natural gas consumption, they affect multi-
ple device interactions, and they affect occupant comfort. Greater efficiencies can be achieved with
these setpoints by choosing the ideal times and values to warm up and cool down the building in
the workday mornings and evenings. Further tradeoffs include balancing the thermal load between
hot water heating with natural gas and supply air heating with electricity using the air conditioner or
heat pump units.

Finite Differences Approximation The diffusion of thermal energy in time and space of the build-
ing can be approximated using the method of Finite Differences (FD)(Sparrow, 1993; Lomax et al.,
2002), and applying an energy balance. This method divides each floor of the building into a grid of
three-dimensional control volumes and applies thermal diffusion equations to estimate the tempera-
ture of each control volume. By assuming each floor is adiabatically isolated, (i.e., no heat is trans-
ferred between floors), we can simplify the three-spatial dimensions into a spatial two-dimensional
heat transfer problem. Each control volume is a narrow volume bounded horizontally, parameter-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Thermal model for simulation. A building consists of conditioned zones, where the mean
temperature of the zone Tz should be within upper and lower setpoints, T̂z,max and T̂z,min. Thermal
power for heating or cooling the room is supplied to each zone, Q̇s, and recirculated from the
zone, Q̇r from the HVAC system, with additional thermal exchange Q̇z from walls, doors, etc. The
Air Handler supplies the building with air at supply air temperature setpoint T̂s drawing fresh air,
ṁamb, at ambient temperatures, Tamb, and returning exhaust air ṁexhaust at temperature Texhaust
to the outside using intake and exhaust fans, Ẇa,in and Ẇa,out. A fraction of the return air can
be recirculated, ṁrecirc. Central air conditioning is achieved with a chiller and pump that joins a
refrigeration cycle to the supply air, consuming electrical energy for the AC compressor Ẇc and
coolant circulation, Ẇc,p. The hot water cycle consists of a boiler that maintains the supply water
temperature at Tb heated by natural gas power Q̇b, and a pump that circulates hot water through
the building, with electrical power Ẇb,p. Supply air is delivered to the zones through Variable Air
Volume (VAV) devices.

ized by ∆x2, and vertically by the height of the floor. The energy balance, shown below, is applied
to each discrete control volume in the FD grid, and consists of the following components: (a) the
thermal exchange across each face of the four participating faces control volume via conduction
or convection Q1, Q2, Q3, Q4, (b) the change in internal energy over time in the control volume
Mc∆T

∆t , and (c) an external energy source that enables applying local thermal energy from the
HVAC model only for those control volumes that include an airflow diffuser, Qext. The equation is
Qext+Q1 +Q2 +Q3 +Q4 = Mc∆T

∆t , whereM is the mass and c is the heat capacity of the control
volume, ∆T is the temperature change from the prior timestep and ∆t is the timestep interval.

The thermal exchange in (a) is calculated using Fourier’s law of steady conduction in the interior
control volumes (walls and interior air), parameterized by the conductivity of the volume, and the
exchange across the exterior faces of control volumes are calculated using the forced convection
equation, parameterized by the convection coefficient, which approximates winds and currents sur-
rounding the building. The change in internal energy (b) is parameterized by the density, and heat
capacity of the control volume. Finally, the thermal energy associated with the VAV (c) is equally
distributed to all associated control volumes that have a diffuser. Thermal diffusion within the build-
ing is mainly accomplished via forced or natural convection currents, which can be notoriously
difficult to estimate accurately. We note that heat transfer using air circulation is effectively the ex-
change of air mass between control volumes, which we approximate by a randomized shuffling of
air within thermal zones, parameterized by a shuffle probability and radius. For more details on this
approximation and associated equations, see Appendix D.

Simulator Configuration For RL to scale to many buildings, it is critical to be able to easily and
rapidly configure the simulator to any arbitrary building. We designed a procedure that, given floor-
plans and HVAC layout information, enables generating a fully specified simulation very rapidly.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For example, on SB1, consisting of two floors and 170 devices, a single technician was able to
configure the simulator in under three hours. Details of this procedure are provided in Appendix E.

Simulator Calibration and Evaluation In order to calibrate the simulator to the real world using
data, we must have a metric with which to evaluate our simulator’s fidelity, and an optimization
method to improve our simulator on this metric.

N -Step Evaluation We propose a novel evaluation procedure, based on N -step prediction. Each
iteration of our simulator was designed to represent a five-minute interval, and our real-world data
is also obtained in five-minute intervals. To evaluate the simulator, we take a chunk of real data,
consisting of N consecutive observations. We then initialize the simulator so that its initial state
matches that of the starting observation, and run the simulator for N steps, replaying the same
HVAC policy as was used in the real world. We then calculate our simulation fidelity metric, which
is the mean absolute error of the temperatures in each temperature sensor at each time step, averaged
over time. More formally, we define the Temporal Spatial Mean Absolute Error (TS-MAE) of Z
zones over N timesteps as:

ε =

N∑
t=1

1

N

[
1

Z

Z∑
z=1

|Treal,t,z − Tsim,t,z|

]
(1)

Where Treal,t,z is the measured zone air temperature for zone z at timestamp t, and Tsim,t,z =
1
|Cz|

∑Cz
c=1 Tt,c is the mean temperature of all control volumes Cz in zone z at time t.

Hyperparameter Calibration Once we defined our simulation fidelity metric, the TS-MAE, we can
attempt to minimize this error, thus improving fidelity, by hyperparameter tuning several physical
constants and other variables using black-box optimization methods. We chose the method outlined
in Golovin et. al. (Golovin et al., 2017), which automatically chooses the most appropriate strategy
from a variety of popular algorithms.

7 SIMULATOR CALIBRATION

We now provide a full end-to-end demonstration of our calibration procedure, and show that our
simulator, when tuned and calibrated, is able to make useful real-world predictions, and can train an
RL agent to produce an improved policy over the baseline.

Setup We calibrated the simulator using data from SB1, with two stories, a combined surface area
of 93,858 square feet, and 170 HVAC devices. Using the configuration pipeline, we went from
floor plan blueprints to a fully configured simulator for this building, a process that took a single
technician less than three hours to complete.

Calibration Data To calibrate our simulator, we took real-world data from three days, from Monday
July 10, 2023 12:00 AM PST, to Thursday July 13, 2023 12:00 AM PST. The first two days were
used as a train set, and the third day as validation of the calibrated performance on unseen data, as
can be seen in Table 2. All times are given in US Pacific, the local time of the real building.

Calibration Procedure We ran hyperparameter tuning for 4000 iterations, with the aim of optimiz-
ing the TS-MAE, as outlined in equation 1, over the train data. We reviewed the physical constants
that yielded the lowest simulation error from calibration. Densities, heat capacities, and conduc-
tivities plausibly matched common interior and exterior building materials. However, the external
convection coefficient was higher than under the weather conditions, and likely is compensating for
the radiative losses and gains, which were not directly simulated. For details about the hyperparam-
eter tuning procedure, including the parameters varied, the ranges given, and the values found that
best minimized the calibration metric, see Appendix F.

Calibration Results In Table 2, we present the predictive results of our calibrated simulator, on N -
step prediction, for the train scenario, where N = 576, representing a two day predictive window,
and the test scenario, where N = 288, representing a one day window. We calculated the TS-MAE,
as defined in equation 1. We show results for the hyperparameters that best fit the train set, as well
as for an uncalibrated simulator as a baseline. At no point was the validation data ever provided to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the tuning process. Note that the validation period is half the duration of the train period, so a lower
error does not mean we are performing better than on the train data.

Table 2: Training and test data scenarios

SPLIT LENGTH START END CALIBRATED ε UNCALIBRATED ε

TRAIN 48 HRS 2023-07-10 12AM 2023-07-12 12AM 0.717 ◦C 1.971 ◦C
VAL. 24 HRS 2023-07-12 12AM 2023-07-13 12AM 0.566 ◦C 1.618 ◦C

As indicated in Table 2, our tuning procedure drifts only 0.56 ◦ C on average over a 24-hour period
on the validation set.

Visualizing Temperature Drift Over Time Figure 4 illustrates temperature drift over time for the
training scenario. At each time step, we calculate the spatial temperature for all sensors in both the
real building and simulator, and present them as side-by-side boxplot distributions for comparison.
Figure 5 shows the same for the validation scenario.

Figure 4: Drift Over 48 hrs on Train Set Figure 5: Drift Over 24 hrs on Validation Set

Here we can see that our simulator temperature distribution maintains a minimal drift from the real
world, although it does seem a bit less reactive to daily fluctuation patterns, which may be the result
of the lack of a radiative heat transfer model.

Visualizing Spatial Errors Figure 6 illustrates the results of this predictive process over a 24-
hour period, on the validation data. It displays a heatmap of the spatial temperature difference
throughout the building, between the real world and simulator, after 24 hours of the simulator making
predictions. The ring of blue around the building indicates that our simulator is too cold on the
perimeter, which implies that the heat exchange with the outside is happening more rapidly than it
would in the real world. The inside of the building, at least on the first floor, contains significant
amounts of red, indicating that despite the simulator perimeter being cooler than the real world, the
inside is warmer. This implies that our thermal exchange within the building is not as rapid as that
of the real world. We suspect that this may be because our simulator does not have a radiative heat
transfer model. Lastly, there is a large amount of white in this image, indicating that for the most
part, even after 24 hours of making predictions on the validation data, our calibration process was
successful and the fidelity remains high. For more visuals of spatial errors, see appendix G.

Figure 6: Visualization of
simulator drift after 24 hours,
on the validation data. The
image is a heat map repre-
senting the temperature dif-
ference between the simula-
tor and the real world, with
red indicating the simulator
is hotter, blue indicating it
is colder, and white indicat-
ing no difference. The zone
with the max and min temper-
ature difference are indicated
by displaying above them the
difference.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 DEMONSTRATION BENCHMARKING RESULTS

While we believe our benchmark will be useful for a variety of tasks, such as further use of the data
to calibrate the simulator, in this section we highlight results on three important tasks that our suite
is well suited to: training an RL agent on the simulator, training a time-series regression model to
predict the real world data, and training an RL agent on the real data directly.

Training a Reinforcement Learning Agent on the Simulator To demonstrate the usefulness
of our calibrated simulator on generating an improved policy, we used Soft Actor Critic (SAC)
algorithm (Haarnoja et al., 2018) to train an agent, and then compared our agent with the
baseline performance of running the policy currently used in the real building. Both actor
and critic were feedforward networks. We ran hyperparameter tuning, again using the method
from Golovin et. al. (Golovin et al., 2017), to choose the dimensionality of the critic net-
work and actor network, the batch size, the critic learning rate and actor learning rate, and γ.

Table 3: Policy Compar-
ison

POLICY RETURN

BASELINE -12.9
SAC -11.9

We recorded the actor loss, critic loss, alpha loss, and return, over a
two day period. The agents trained for 4,000 iterations. Using the R3C

reward, the baseline over this two day period had a return of -12.9, and
our best agent had an improved return of -11.9, an 8% improvement
over the baseline, as show in Table 3. For further training details, and
an in depth performance comparison between the learned policy and the
baseline, including a breakdown on setpoint deviation, carbon emissions,
electrical energy, and natural gas energy, see Appendix H.

Training a Learned Dynamics Model Another important task is to use
a sequence model to learn to predict the real world data, effectively learning a dynamics model that
can then be used in turn in place of the simulator to train an agent. To demonstrate this approach, we
trained an encoder-decoder LSTM(Hochreiter, 1997) to model the building dynamics. The model
takes in a historical sequence of length N and outputs a prediction sequence of length M . At each
timestep t in the sequence, the model is given an observation Ot, action taken by the policy At, and
auxiliary state features (such as time of day and weather, that are useful as inputs but need not be
predicted) Ut, and for future timesteps, the model is trained to predict future observations, as well as
future reward information (based on predicted energy use and carbon emissions) Et. We evaluated
this model by comparing its predictions with the real world data over a three week period, finding
that it achieved strong performance and successfully modeled many building dynamics. For detailed
architecture diagrams, training information and performance analysis, see Appendix I.

Training a Reinforcement Learning Agent on Real Data Building directly off of the above, we
also trained an RL agent on the learned dynamics model, demonstrating the ability to learn a policy
directly from data without involving the simulator. Like the simulator SAC agent, we were able to
learn a policy that improved upon the baseline. For detailed analysis of this policy, see Appendix J.

9 LIMITATIONS AND CONCLUSION

The biggest limitation of our benchmark is that all buildings are located in California. We intend to
remedy this in the near future by adding more buildings. Another limitation is that we only include
data from a one year duration, and in the future we may add longer sequences, for year over year
analysis. Our simulator also lacks a radiative heat model, and we hope further work can add this.
In addition, our calibration focused on temperature, but in future work we hope to include energy
consumption metrics as part of the calibration procedure.

We present a high quality interactive HVAC Control Suite, with real-world historical data from three
buildings, as well as calibrated simulators for each building, and a novel, data-based, simulation
calibration procedure. We also show promising initial results on key benchmark tasks. We believe
this benchmark will facilitate collaboration, reproducibility, and progress on this problem, making
an important contribution towards environmental sustainability.

REFERENCES

Nilofar Asim, Marzieh Badiei, Masita Mohammad, Halim Razali, Armin Rajabi, Lim Chin Haw,
and Mariyam Jameelah Ghazali. Sustainability of heating, ventilation and air-conditioning (hvac)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

systems in buildings—an overview. International journal of environmental research and public
health, 19(2):1016, 2022.

Donald Azuatalam, Wee-Lih Lee, Frits de Nijs, and Ariel Liebman. Reinforcement learning for
whole-building hvac control and demand response. Energy and AI, 2:100020, 2020.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In International conference on machine learning, pp. 507–517. PMLR, 2020.

Craig Bakker, A August, S Vasisht, S Huang, and DL Vrabie. Data description for a high fidelity
building emulator with building faults. tech. rep., 2022.

Yasaman Balali, Adrian Chong, Andrew Busch, and Steven O’Keefe. Energy modelling and control
of building heating and cooling systems with data-driven and hybrid models—a review. Renew-
able and Sustainable Energy Reviews, 183:113496, 2023.

Sean Barker, Aditya Mishra, David Irwin, Emmanuel Cecchet, Prashant Shenoy, Jeannie Albrecht,
et al. Smart*: An open data set and tools for enabling research in sustainable homes. SustKDD,
August, 111(112):108, 2012.

Mangesh Basarkar. Modeling and simulation of hvac faults in energyplus. 2011.

Marco Biemann, Fabian Scheller, Xiufeng Liu, and Lizhen Huang. Experimental evaluation of
model-free reinforcement learning algorithms for continuous hvac control. Applied Energy, 298:
117164, 2021.

Christian Blad, Simon Bøgh, and Carsten Skovmose Kallesøe. Data-driven offline reinforcement
learning for hvac-systems. Energy, 261:125290, 2022.

Michael Blonsky, Jeff Maguire, Killian McKenna, Dylan Cutler, Sivasathya Pradha Balamurugan,
and Xin Jin. Ochre: The object-oriented, controllable, high-resolution residential energy model
for dynamic integration studies. Applied Energy, 290:116732, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Gustavo Campos, Nael H El-Farra, and Ahmet Palazoglu. Soft actor-critic deep reinforcement
learning with hybrid mixed-integer actions for demand responsive scheduling of energy systems.
Industrial & Engineering Chemistry Research, 61(24):8443–8461, 2022.

Bingqing Chen, Zicheng Cai, and Mario Bergés. Gnu-rl: A practical and scalable reinforcement
learning solution for building hvac control using a differentiable mpc policy. Frontiers in Built
Environment, 6:562239, 2020.

Liangliang Chen, Fei Meng, and Ying Zhang. Fast human-in-the-loop control for hvac systems via
meta-learning and model-based offline reinforcement learning. IEEE Transactions on Sustainable
Computing, 2023.

Davide Coraci, Silvio Brandi, Marco Savino Piscitelli, and Alfonso Capozzoli. Online implemen-
tation of a soft actor-critic agent to enhance indoor temperature control and energy efficiency in
buildings. Energies, 14(4):997, 2021.

Drury B Crawley, Linda K Lawrie, Frederick C Winkelmann, Walter F Buhl, Y Joe Huang, Curtis O
Pedersen, Richard K Strand, Richard J Liesen, Daniel E Fisher, Michael J Witte, et al. Energyplus:
creating a new-generation building energy simulation program. Energy and buildings, 33(4):319–
331, 2001.

Ján Drgoňa, Aaron R Tuor, Vikas Chandan, and Draguna L Vrabie. Physics-constrained deep learn-
ing of multi-zone building thermal dynamics. Energy and Buildings, 243:110992, 2021.

EIA. Frequently Asked Questions (FAQs) - U.S. Energy Information Administration (EIA) —
eia.gov. https://www.eia.gov/tools/faqs/faq.php?id=86&t=1. [Accessed 04-
06-2024].

11

https://www.eia.gov/tools/faqs/faq.php?id=86&t=1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xi Fang, Guangcai Gong, Guannan Li, Liang Chun, Pei Peng, Wenqiang Li, Xing Shi, and Xiang
Chen. Deep reinforcement learning optimal control strategy for temperature setpoint real-time
reset in multi-zone building hvac system. Applied Thermal Engineering, 212:118552, 2022.

Kristin Field, Michael Deru, and Daniel Studer. Using doe commercial reference buildings for
simulation studies. 2010.

Kwong Fai Fong, Victor Ian Hanby, and Tin-Tai Chow. Hvac system optimization for energy man-
agement by evolutionary programming. Energy and buildings, 38(3):220–231, 2006.

Cheng Gao and Dan Wang. Comparative study of model-based and model-free reinforcement learn-
ing control performance in hvac systems. Journal of Building Engineering, 74:106852, 2023.

Frédérick Garcia and Emmanuel Rachelson. Markov decision processes. Markov Decision Pro-
cesses in Artificial Intelligence, pp. 1–38, 2013.

Judah A Goldfeder and John A Sipple. A lightweight calibrated simulation enabling efficient offline
learning for optimal control of real buildings. In Proceedings of the 10th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, pp. 352–356,
2023.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David Scul-
ley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1487–1495,
2017.

Google. Protocol buffers. http://code.google.com/apis/protocolbuffers/.

Jessica Granderson, Guanjing Lin, Yimin Chen, Armando Casillas, Jin Wen, Zhelun Chen, Piljae
Im, Sen Huang, and Jiazhen Ling. A labeled dataset for building hvac systems operating in faulted
and fault-free states. Scientific data, 10(1):342, 2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Philipp Heer, Curdin Derungs, Benjamin Huber, Felix Bünning, Reto Fricker, Sascha Stoller, and
Björn Niesen. Comprehensive energy demand and usage data for building automation. Scientific
Data, 11(1):469, 2024.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

A Husaunndee, R Lahrech, H Vaezi-Nejad, and JC Visier. Simbad: A simulation toolbox for the de-
sign and test of hvac control systems. In Proceedings of the 5th international IBPSA conference,
volume 2, pp. 269–276. International Building Performance Simulation Association (IBPSA)
Prague . . . , 1997.

Farrokh Jazizadeh, Milad Afzalan, Burcin Becerik-Gerber, and Lucio Soibelman. Embed: A dataset
for energy monitoring through building electricity disaggregation. In Proceedings of the Ninth
International Conference on Future Energy Systems, pp. 230–235, 2018.

Anjukan Kathirgamanathan, Eleni Mangina, and Donal P Finn. Development of a soft actor critic
deep reinforcement learning approach for harnessing energy flexibility in a large office building.
Energy and AI, 5:100101, 2021.

Dongsu Kim, Jongman Lee, Sunglok Do, Pedro J Mago, Kwang Ho Lee, and Heejin Cho. Energy
modeling and model predictive control for hvac in buildings: a review of current research trends.
Energies, 15(19):7231, 2022.

Peter Klanatsky, François Veynandt, and Christian Heschl. Grey-box model for model predictive
control of buildings. Energy and Buildings, 300:113624, 2023.

Thomas Kriechbaumer and Hans-Arno Jacobsen. Blond, a building-level office environment dataset
of typical electrical appliances. Scientific data, 5(1):1–14, 2018.

12

http://code.google.com/apis/protocolbuffers/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Harvard Lomax, Thomas H Pulliam, David W Zingg, and TA Kowalewski. Fundamentals of com-
putational fluid dynamics. Appl. Mech. Rev., 55(4):B61–B61, 2002.

Na Luo, Zhe Wang, David Blum, Christopher Weyandt, Norman Bourassa, Mary Ann Piette, and
Tianzhen Hong. A three-year dataset supporting research on building energy management and
occupancy analytics. Scientific data, 9(1):156, 2022.

Karl Mason and Santiago Grijalva. A review of reinforcement learning for autonomous building
energy management. Computers & Electrical Engineering, 78:300–312, 2019.

Paul A Mathew, Laurel N Dunn, Michael D Sohn, Andrea Mercado, Claudine Custudio, and Travis
Walter. Big-data for building energy performance: Lessons from assembling a very large national
database of building energy use. Applied Energy, 140:85–93, 2015.

Faye C McQuiston, Jerald D Parker, Jeffrey D Spitler, and Hessam Taherian. Heating, ventilating,
and air conditioning: analysis and design. John Wiley & Sons, 2023.

Christoph J Meinrenken, Noah Rauschkolb, Sanjmeet Abrol, Tuhin Chakrabarty, Victor C Decalf,
Christopher Hidey, Kathleen McKeown, Ali Mehmani, Vijay Modi, and Patricia J Culligan.
Mfred, 10 second interval real and reactive power for groups of 390 us apartments of varying
size and vintage. Scientific Data, 7(1):375, 2020.

Clayton Miller, Anjukan Kathirgamanathan, Bianca Picchetti, Pandarasamy Arjunan, June Young
Park, Zoltan Nagy, Paul Raftery, Brodie W Hobson, Zixiao Shi, and Forrest Meggers. The build-
ing data genome project 2, energy meter data from the ashrae great energy predictor iii competi-
tion. Scientific data, 7(1):368, 2020.

Michael C Mozer. The neural network house: An environment hat adapts to its inhabitants. In Proc.
AAAI Spring Symp. Intelligent Environments, volume 58, pp. 110–114, 1998.

David Murray, Lina Stankovic, and Vladimir Stankovic. An electrical load measurements dataset of
united kingdom households from a two-year longitudinal study. Scientific data, 4(1):1–12, 2017.

Biswas Gautam Naug, Avisek and Vikas. Chandan. Vanderbilt alumni hall, nashville, tennessee.
URL https://bbd.labworks.org/ds/vah.

Cheol Park, Daniel R Clark, and George E Kelly. An overview of hvacsim+, a dynamic build-
ing/hvac/control systems simulation program. In Proceedings of the 1st Annual Building Energy
Simulation Conference, Seattle, WA, pp. 21–22, 1985.

Luis Pérez-Lombard, José Ortiz, and Christine Pout. A review on buildings energy consumption
information. Energy and buildings, 40(3):394–398, 2008.

Betsy Pettit, Cathy Gates, A Hunter Fanney, and William Healy. Design challenges of the nist
net zero energy residential test facility. Gaithersburg, MD: National Institute of Standards and
Technology, 2014.

H Rashid, P Singh, and A Singh. I-blend, a campus-scale commercial and residential buildings
electrical energy dataset. scientific data, 6 (1), 2019.

Peter Riederer. Matlab/simulink for building and hvac simulation-state of the art. In Ninth Interna-
tional IBPSA Conference, pp. 1019–1026, 2005.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Olga Sachs, Verena Tiefenbeck, Caroline Duvier, Angela Qin, Kate Cheney, Craig Akers, and Kurt
Roth. Field evaluation of programmable thermostats. Technical report, National Renewable
Energy Lab.(NREL), Golden, CO (United States), 2012.

13

https://bbd.labworks.org/ds/vah

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Igor Sartori, Harald Taxt Walnum, Kristian S Skeie, Laurent Georges, Michael D Knudsen, Peder
Bacher, José Candanedo, Anna-Maria Sigounis, Anand Krishnan Prakash, Marco Pritoni, et al.
Sub-hourly measurement datasets from 6 real buildings: Energy use and indoor climate. Data in
Brief, 48:109149, 2023.

R Sendra-Arranz and A Gutiérrez. A long short-term memory artificial neural network to predict
daily hvac consumption in buildings. Energy and Buildings, 216:109952, 2020.

Olli Seppanen, William J Fisk, and QH Lei. Effect of temperature on task performance in office
environment. 2006.

E M Sparrow. Heat transfer: Conduction [lecture notes], 1993.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Saman Taheri, Paniz Hosseini, and Ali Razban. Model predictive control of heating, ventilation, and
air conditioning (hvac) systems: A state-of-the-art review. Journal of Building Engineering, 60:
105067, 2022.

TFDS. TensorFlow Datasets, a collection of ready-to-use datasets. https://www.
tensorflow.org/datasets.

Marija Trčka and Jan LM Hensen. Overview of hvac system simulation. Automation in construction,
19(2):93–99, 2010.

Marija Trcka, Michael Wetter, and JLM Hensen. Comparison of co-simulation approaches for build-
ing and hvac/r system simulation. In 10th International IBPSA Building Simulation Conference
(BS 2007), September 3-6, 2007, Beijing, China, pp. 1418–1425, 2007.

Marija Trčka, Jan LM Hensen, and Michael Wetter. Co-simulation of innovative integrated hvac
systems in buildings. Journal of Building Performance Simulation, 2(3):209–230, 2009.

Bryan Urban, Kurt Roth, Olga Sachs, Verena Tiefenbeck, Caroline Duvier, Kate Cheney, and Craig
Akers. Multifamily programmable thermostat data. doi: 10.25984/1844177.

José R Vázquez-Canteli and Zoltán Nagy. Reinforcement learning for demand response: A review
of algorithms and modeling techniques. Applied energy, 235:1072–1089, 2019.

Kirubakaran Velswamy, Biao Huang, et al. A long-short term memory recurrent neural network
based reinforcement learning controller for office heating ventilation and air conditioning systems.
2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Marshall Wang, John Willes, Thomas Jiralerspong, and Matin Moezzi. A comparison of classical
and deep reinforcement learning methods for hvac control. arXiv preprint arXiv:2308.05711,
2023.

Mubashir Wani, Akshya Swain, and Abhisek Ukil. Control strategies for energy optimization of
hvac systems in small office buildings using energyplus tm. In 2019 IEEE Innovative Smart Grid
Technologies-Asia (ISGT Asia), pp. 2698–2703. IEEE, 2019.

Tianshu Wei, Yanzhi Wang, and Qi Zhu. Deep reinforcement learning for building hvac control. In
Proceedings of the 54th annual design automation conference 2017, pp. 1–6, 2017.

Yunyang Ye, Wangda Zuo, and Gang Wang. A comprehensive review of energy-related data for us
commercial buildings. Energy and Buildings, 186:126–137, 2019.

Liang Yu, Yi Sun, Zhanbo Xu, Chao Shen, Dong Yue, Tao Jiang, and Xiaohong Guan. Multi-agent
deep reinforcement learning for hvac control in commercial buildings. IEEE Transactions on
Smart Grid, 12(1):407–419, 2020.

14

https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong Guan. A review of deep
reinforcement learning for smart building energy management. IEEE Internet of Things Journal,
8(15):12046–12063, 2021.

Chi Zhang, Sanmukh R Kuppannagari, Rajgopal Kannan, and Viktor K Prasanna. Building hvac
scheduling using reinforcement learning via neural network based model approximation. In Pro-
ceedings of the 6th ACM international conference on systems for energy-efficient buildings, cities,
and transportation, pp. 287–296, 2019a.

Chi Zhang, Yuanyuan Shi, and Yize Chen. Bear: Physics-principled building environment for con-
trol and reinforcement learning. In Proceedings of the 14th ACM International Conference on
Future Energy Systems, pp. 66–71, 2023.

Zhiang Zhang, Adrian Chong, Yuqi Pan, Chenlu Zhang, and Khee Poh Lam. Whole building energy
model for hvac optimal control: A practical framework based on deep reinforcement learning.
Energy and Buildings, 199:472–490, 2019b.

Huan Zhao, Junhua Zhao, Ting Shu, and Zibin Pan. Hybrid-model-based deep reinforcement learn-
ing for heating, ventilation, and air-conditioning control. Frontiers in Energy Research, 8:610518,
2021.

Jie Zhao, Khee Poh Lam, B Erik Ydstie, and Omer T Karaguzel. Energyplus model-based predic-
tive control within design–build–operate energy information modelling infrastructure. Journal of
Building Performance Simulation, 8(3):121–134, 2015.

Dian Zhuang, Vincent JL Gan, Zeynep Duygu Tekler, Adrian Chong, Shuai Tian, and Xing Shi.
Data-driven predictive control for smart hvac system in iot-integrated buildings with time-series
forecasting and reinforcement learning. Applied Energy, 338:120936, 2023.

Zhengbo Zou, Xinran Yu, and Semiha Ergan. Towards optimal control of air handling units us-
ing deep reinforcement learning and recurrent neural network. Building and Environment, 168:
106535, 2020.

A REWARD FUNCTION DETAILS

We call our reward function the 3C Reward, because it is made up of a combination of three fa-
cors: Comfort, Cost, and Carbon. The purpose of the reward function is to provide the agent a
feedback signal after each action about the quality of the current and past actions performed. We
combine the different objectives described in Optimization Problem as a normalized, weighted sum
of maintaining comfort conditions, electrical cost, and carbon cost:

R3C = u× C1 + v × C2 + w × C3

where C1 represents normalized comfort conditions, C2 normalized energy cost and C3 normalized
carbon emission. Constants u, v, w represent operator preferences, allowing them to weight the
relative importance of cost, comfort and carbon consumption.

Each value C1, C2, C3, is bounded by the range [−1, 0], where worst performance is −1 and the
ideal performance upper-bound is 0 Thus the reward function in an agregate is formulated as an
approximate regret function, bounded in the range [-1,0], and represents an offset from the best-case
where comfort conditions are perfectly maintained, without consuming energy and emitting carbon.
Each of the sub functions C1, C2, C3 will be elaborated next.

A.1 COMFORT LOSS FUNCTION (C1)

Besides zone air temperature, other factors such as ventilation, drafts, solar exposure, humidity
and air quality affect human comfort and productivity in office buildings. However, for now we
are focused solely on temperature as the indicator of the comfort level in the office buildings. As
additional sensors are deployed and the other factors are measured, they should be considered in the
definition of an enhanced comfort loss function.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Studies have shown that a relationship exists between work performance and temperature. For ex-
ample, in Seppänen, et al. 2006 (Seppanen et al., 2006), work performance was quantified as the
mean time required to complete common office tasks (e.g., text processing, bookkeeping calcula-
tions, telephone customer service calls, etc.). Performance was shown to increase gradually with
temperatures increasing up to 21-22°C and decreasing at temperatures beyond 23-24°C. Therefore,
when temperatures deviate outside setpoints, the comfort loss should also be smooth and monotoni-
cally increasing.

Thus, the following rules were selected to govern the comfort loss function:

1. Setpoints define the comfort standards, and no penalty should be applied whenever the zone
temperature is within heating and cooling setpoints.

2. Comfort is undefined when the zone is unoccupied: if the zone is unoccupied, comfort loss
is zero, regardless of zone temperature.

3. Comfort decays smoothly and monotonically as the temperatures drift from setpoints, and
occupants are tolerant to small setpoint deviations. Therefore, small setpoint deviations
should have a small comfort penalty, and the penalty should smoothly increase as the devi-
ations increase.

4. Large setpoint deviations should approach a maximum, bounded penalty, where a zone
becomes completely intolerable for its occupants.

The comfort loss function represents a bounded penalty term for occupied zones that have zone air
temperatures outside of setpoint, and covers three adjacent temperature intervals: below cooling
setpoint Tz < T̂heating , inside setpoints T̂heating ≤ Tz ≤ T̂cooling, and above cooling setpoint
T̂cooling < Tz

We propose a logistic sigmoid parameterized by λ and ∆ to represent the smooth decay (increase
loss) of comfort below the heating and above the cooling setpoints. Parameter λ is a stiffness coef-
ficient that affects the slope of the decay and parameter ∆ represents the offset in ◦C from the set
point where halfway loss value (0.5) occurs. Additionally we define a step function δ(k) = 1 when
the zone has at least one occupant (k > 0), and δ(k) = 0 otherwise.

The chart below shows the comfort loss curve with common setpoints, where the horizontal axis
represents zone air temperature and the vertical axis represents the loss. The heating and cooling
setpoints were taken from data recordings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 7: Setpoint Diagram

Finally, we compute the average of all zone comfort losses as the building’s overall comfort loss:

Live Occupant Feedback The idea of human feedback shaping the agent’s policy may be particu-
larly suitable for the smart buildings project, and has been detailed in Knox and Stone 2009. While
not implemented in the initial version of the reward function, the comfort loss function can be ex-
tended with an occupant feedback signal reflecting discomfort (e.g., “too hot” or “too cold”) in a
variety of methods like Mozer 1998 (Mozer, 1998). The agent’s goal should be to minimize this type
of feedback, and the regret should be increased anytime this feedback signal is received. Suppose
one or more occupants in zone z, provided a “too cold” feedback signal, T̂heating may be increased
by a small amount from the baseline setpoint configuration, and may smoothly return to the baseline
smoothly after an appropriate delay.

Stochastic Occupancy Model The occupancy signal kz is the average number of occupants in zone
z during a time step ti − ti−1 and is used in computing the comfort loss function described above.
Ideally, the occupancy signal is obtained from motion detection sensors or secondary indicators of
occupancy, such as wifi signals, badge swipes, calendar appointments, etc. However, a data-driven
occupancy signal was not available for the initial dataset, and the following stochastic occupancy
model is used instead.

For workdays, we would like model occupancy as a process in the zone where a max number of
occupants, kz,max arrive at random times in an arrival window [τin,start, τin,end], and depart the
zone in a departure window [τout,start, τout,end]. The arrivals and departures should occur evenly
within the intervals and the expectation of the arrival time should be at the halfway point of the
arrival interval:

E[occupant arrival time] = 1
2 (τin,end − τin,start) + τin,start

Likewise, the expectation of the departure time should be at the halfway point of the departure
interval:

E[occupant departure time] = 1
2 (τout,end − τout,start) + τout,start

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

If the number of timesteps within the arrival and departure intervals is narrival and ndeparture, this
process can be modeled as a geometric distribution where each timestep and occupant is a Bernoulli
trial with probabilities:

P (occupant arrives — occupant has not yet arrived) = 2
narrival

and P (occupant departs —
occupant has arrived) = 2

ndeparture
During holidays and weekends, the zones are not occupied:

kz = 0.

A.2 ENERGY COST FUNCTION (C2)

The energy cost function C1(St) is a normalized, aggregate cost estimate from consuming electrical
and natural gas energy during one timestep. The cost function is the ratio of the actual energy used
to the maximum energy capacity that ranges between 0: no cost incurred; and 1: maximum cost
incurred.

C2(St) = − actual energy cost

cost at max energy capacity

General energy cost can be calculated as the product of the mean power applied, the time interval,
and the cost per unit energy at the time of the interval, where we use W , Ẇ to represent electri-
cal/mechanical energy, and power, and Q,Q̇ to represent thermal energy and power from natural
gas. Since all four terms contain the same interval ti − ti−1, they cancel out, allowing us to use
power instead of energy. As described above, pumps, blowers, and AC/refrigeration cycles consume
electricity and water heaters/boilers consume natural gas. Therefore the total energy and cost is the
sum of each energy consumer cost used over the interval:

Where Ẇa and ˙Wa,max are the actual and max electrical power for the AC/refrigeration cycle, Ẇm

and ˙Wm,max are the actual and max electrical power for the blowers/air circulation, Ẇp and ˙Wp,max

are the actual and max pump electrical power, and Q̇g and ˙Qg,max are the actual and max thermal
power . Terms pe(t) and pg(t) are the electricity and gas price per energy incurred over the interval
at time t.

The actual power terms in the numerator are estimated from the device observations and the device’s
fixed parameters using standard HVAC energy conversions. The max power terms in the denomina-
tor are derived from device ratings, which define the maximum operating nouns of the device.

A.3 CARBON EMISSION COST FUNCTION (C3)

Similar to the energy cost function, carbon emission cost function is a function of the electrical and
natural gas power used during the interval. The carbon emission cost function C3 is a normalized,
aggregate cost estimate from the emission of carbon mass by consuming electrical and natural gas
energy during one timestep. The cost function is the ratio of the actual carbon used to the maximum
carbon emitted that ranges between 0: no emission cost incurred; and 1: maximum emission cost
incurred.

C3(St) = −actual carbon mass emitted
maximum carbon emitted

The carbon emission cost is similar to the energy cost function described above, except that we
replace the price terms pe, pg with emission terms re, rg that convert the power to carbon emission
rates.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

While the emission rate for natural gas is fairly constant, the emission rate for electricity is dependent
on the utility’s current renewable energy supply and consumer load during the interval and may
fluctuate significantly.

A.4 IMMEDIATE AND DELAYED REWARD RESPONSES

The reward function is a weighted average of maintaining temperature setpoints in occupied zones,
while minimizing energy cost, and minimizing carbon emission. Both energy and carbon emission
cost functions provide a low latency response, because actions have an almost immediate effect on
the reward. For example, lowering the supply water temperature setpoint will reduce the flow of
natural gas to the burner, bringing Q̇ down in the next step. However, the effect of increasing water
temperature on the comfort loss function may be delayed by multiple time steps, due to the thermal
latency in the building. This thermal latency is due to inherent heat capacity and thermal resistance
within the building that has a dampening effect on diffusing heat throughout the building. This
means that some settings of u, v, w may cause undesirable effects. Experiments with the simulation
indicate that too strong weights (e.g., u+ v ≥ 0.6) toward energy cost and/or carbon emission may
lead the agent to lower the water temperature, which can cause the VAVs to increase their airflow
demand to compensate for a lower supply air temperature, since thermal energy flow is a tradeoff
between air mass flow and water heating at the VAV’s heat exchanger. Consequently, the increased
airflow demand results in a much higher, delayed electrical energy consumption by the blowers to
meet the zone airflow demand.

B PROTO DEFINITIONS

Here, we will elaborate on the exact proto definitions used in the dataset.

Having applied the RL paradigm, the data in our dataset falls under the following categories:

1. Environment Data General information about the environment, such as the number of
devices and zones, and their names and device types. This is provided once per building
environment

2. Observation Data The measurements from all devices in the building (VAV’s zone air
temperature, gas meter’s flow rate, etc.), provided at each time step

3. Action Data The device setpoint values that the agent wants to set, provided at each
timestep

4. Reward Data Information used to calculate the reward, as expressed in energy cost in
dollars, carbon emission, and comfort level of occupants, provided at each time step

As mentioned above, this data is stored in protos. This section provides the definition of each proto,
categorizing them using the four categories above, with examples of each.

B.1 ENVIRONMENT DATA PROTOS

This is the data that provides, once per environment, details about the environment such as number
of devices, and zones, etc. There are two proto definitions:

1. ZoneInfo: The ZoneInfo message defines thermal spaces or zones in the building and
provides zone-to-device association, which enables using the associated VAVs’ zone air
temperatures to estimate the zone’s temperature.

2. DeviceInfo: The HVAC devices in the building are defined in the DeviceInfo mes-
sage. Each device exposes a map of observable fields and action fields. The
observable fields represent the observable state of the building in native units, and
the action fields are available setpoints exposed by the building that the agent may
add to its action space. Currently observable fields and action fields are
floating point values, but may be expanded to categorical values in the future.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.1.1 ZONEINFO DEFINITION

1 message ZoneInfo {
2

3

4 enum ZoneType {
5 UNDEFINED = 0;
6 ROOM = 1;
7 FLOOR = 2;
8 OTHER = 10;
9 }

10 // Unique Identifier of the zone.
11 string zone_id = 1;
12 // ID of the building
13 string building_id = 2;
14 // Free-form description of the zone, like microkitchen, office, etc.
15 string zone_description = 3;
16 // Square footage of the zone.
17 float area = 4; // square meters
18 // Zero to multiple device identifiers associated with this zone, like←↩

VAVs.
19 repeated string devices = 5;
20 // Optional field to describe the type of zone.
21 ZoneType zone_type = 6;
22 // Optional field to indicate the floor of the building.
23 int32 floor = 7;
24 }

B.1.2 ZONEINFO EXAMPLE

1 zone_id: "rooms/9028552253"
2 building_id: "buildings/3616672508"
3 zone_description: "US-BLDG-2-C201"
4 devices: "2614466029028994"
5 devices: "2687242320524339"
6 devices: "2640423556868160"
7 zone_type: ROOM
8 floor: 2

B.1.3 DEVICEINFO DEFINITION

1 // Details about a specific device in the building.
2 message DeviceInfo {
3 // Device types in smart buildings (official Carson top-level device ←↩

types).
4 enum DeviceType {
5 UNDEFINED = 0;
6 FAN = 1;
7 PMP = 2;
8 FCU = 3;
9 VAV = 4;

10 DH = 5;
11 AHU = 6;
12 BLR = 7;
13 CDWS = 8;
14 CH = 9;
15 CHWS = 10;
16 CT = 11;
17 DC = 12;
18 DFR = 13;
19 DMP = 14;
20 HWS = 15;
21 HX = 16;

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

22 MAU = 17;
23 SDC = 18;
24 UH = 19;
25 PWR = 20;
26 GAS = 21;
27 AC = 22;
28 OTHER = 23;
29 }
30

31

32 enum ValueType {
33 VALUE_TYPE_UNDEFINED = 0;
34 VALUE_CONTINUOUS = 1;
35 VALUE_INTEGER = 2;
36 VALUE_CATEGORICAL = 3;
37 VALUE_BINARY = 4;
38 }
39

40

41 // Unique device identifier.
42 string device_id = 1;
43 // If applicable, the zone associated with the device (like VAVs).
44 string namespace = 2;
45 string code = 3;
46 string zone_id = 4;
47

48

49 // The type of device, VAV, AHU, etc.
50 DeviceType device_type = 5;
51 // Map of measurement name exposed by the device to the value type.
52 map<string, ValueType> observable_fields = 6;
53 // Map of setpoint name exposed by the device to their value type.
54 map<string, ValueType> action_fields = 7;
55 }

B.1.4 DEVICEINFO EXAMPLE

1 device_id: "202194278473007104"
2 namespace: "PHRED"
3 code: "US-BLDG:AHU:AC-2"
4 device_type: AHU
5 observable_fields {
6 key: "building_air_static_pressure_sensor"
7 value: VALUE_CONTINUOUS
8 }
9 observable_fields {

10 key: "building_air_static_pressure_setpoint"
11 value: VALUE_CONTINUOUS
12 }
13 action_fields {
14 key: "building_air_static_pressure_setpoint"
15 value: VALUE_CONTINUOUS
16 }
17 action_fields {
18 key: "cooling_percentage_command"
19 value: VALUE_CONTINUOUS
20 }
21 action_fields {
22 key: "exhaust_air_damper_percentage_command"
23 value: VALUE_CONTINUOUS
24 }

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.2 OBSERVATION DATA PROTOS

This includes the measurements from all devices in the building (VAV’s zone air temperature, gas
meter’s flow rate, etc.), provided at each time step. There are two proto definitions:

1. ObservationRequest
2. ObservationResponse

To acquire the latest building state, at each timestep the building accepts
an ObservationRequest and returns an ObservationResponse. The
ObservationRequest contains a UTC timestamp of the requested observation, and list
of SingleObservationRequests. Each SingleObservationRequest is a tuple
of the device id and the measurement name that must match with a device and an
observable field in one of the DeviceInfos exposed by the building. The building
returns an ObservationResponse that contains the UTC timestamp from the building, the
original ObservationRequest, and a list of SingleObservationResponses. Each
SingleObservationResponse contains the associated SingleObservationRequest,
the validity time of the measurement/observation, a boolean validity indicator, and the observation,
in native units, as a continuous, integer, categorical, binary or string value.

B.2.1 OBSERVATIONREQUEST DEFINITION

1 // Agent's request to get the current observation vector.
2 message ObservationRequest {
3 // UTC timestamp when the agent generated the request.
4 google.protobuf.Timestamp timestamp = 1;
5 // One or more individual requests.
6 repeated SingleObservationRequest single_observation_requests = 2;
7 }
8

9

10 // A request to get a single measurement from a specific sensor.
11 message SingleObservationRequest {
12 // Unique device identifier.
13 string device_id = 1;
14 // Name of the sensor, e.g., zone_air_temperature.
15 string measurement_name = 2;
16 }

B.2.2 OBSERVATIONREQUEST EXAMPLE

1 timestamp {
2 seconds: 1682649309
3 nanos: 942662000
4 }
5 single_observation_requests {
6 device_id: "202194278473007104"
7 measurement_name: "supply_fan_speed_frequency_sensor"
8 }
9 single_observation_requests {

10 device_id: "202194278473007104"
11 measurement_name: "mixed_air_temperature_sensor"
12 }
13 single_observation_requests {
14 device_id: "202194278473007104"
15 measurement_name: "outside_air_flowrate_setpoint"
16 }
17 single_observation_requests {
18 device_id: "202194278473007104"
19 measurement_name: "supply_air_temperature_sensor"
20 }

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.2.3 OBSERVATIONRESPONSE DEFINITION

1 // Building's response to an observation request message.
2 message ObservationResponse {
3 google.protobuf.Timestamp timestamp = 1;
4 ObservationRequest request = 2;
5 repeated SingleObservationResponse single_observation_responses = 3;
6 }
7

8

9

10

11 // Response for a single observation request.
12 message SingleObservationResponse {
13 // The validity time in UTC of the measurement.
14 google.protobuf.Timestamp timestamp = 1;
15 // Original request.
16 SingleObservationRequest single_observation_request = 2;
17 // Validity flag on the observation.
18 bool observation_valid = 3;
19 // Actual observed/measured value.
20 oneof observation_value {
21 float continuous_value = 4;
22 int32 integer_value = 5;
23 string categorical_value = 6;
24 bool binary_value = 7;
25 string string_value = 8;
26 }
27 }

B.2.4 OBSERVATIONRESPONSE EXAMPLE

1 timestamp {
2 seconds: 1681110000
3 }
4 request {
5 timestamp {
6 seconds: 1682649309
7 nanos: 942662000
8 }
9 single_observation_requests {

10 device_id: "202194278473007104"
11 measurement_name: "supply_fan_speed_frequency_sensor"
12 }
13 single_observation_requests {
14 device_id: "202194278473007104"
15 measurement_name: "mixed_air_temperature_sensor"
16 }
17 single_observation_requests {
18 device_id: "202194278473007104"
19 measurement_name: "outside_air_flowrate_setpoint"
20 }
21 single_observation_responses {
22 timestamp {
23 seconds: 1681109783
24 nanos: 299000000
25 }
26 single_observation_request {
27 device_id: "202194278473007104"
28 measurement_name: "supply_fan_speed_frequency_sensor"
29 }
30 observation_valid: true
31 continuous_value: 0.0
32 }

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

33 single_observation_responses {
34 timestamp {
35 seconds: 1681109783
36 nanos: 299000000
37 }
38 single_observation_request {
39 device_id: "202194278473007104"
40 measurement_name: "mixed_air_temperature_sensor"
41 }
42 observation_valid: true
43 continuous_value: 290.3909912109375
44 }
45 single_observation_responses {
46 timestamp {
47 seconds: 1681109783
48 nanos: 299000000
49 }
50 single_observation_request {
51 device_id: "202194278473007104"
52 measurement_name: "outside_air_flowrate_setpoint"
53 }
54 observation_valid: true
55 continuous_value: 8.825417518615723
56 }

B.3 ACTION DATA PROTOS

This consists of the device setpoint values that the agent wants to set, provided at each timestep.
There are two relevant protos:

1. ActionRequest
2. ActionResponse

The Environment converts the action from the agent into an ActionRequest and sends
it to the building. The building applies the request and returns an ActionResponse.
The ActionRequest contains the UTC timestamp from the Environment, and a list of
SingleActionRequests, one for each setpoint in the agent’s action space. Each
SingleActionRequest contains a tuple of the device id, setpoint name, and re-
quested setpoint value, in native units. The device id must match with one of the
device ids in the DeviceInfos, and the setpoint name must match with one of the
action fields of the associated device. The ActionResponse contains the building’s UTC
timestamp, the original ActionRequest, and a list of SingleActionResponses, one as-
sociated with each SingleActionRequest. The SingleActionResponse contains the
associated SingleActionRequest, a response type enumeration, and a string for additional
information.

B.3.1 ACTIONREQUEST DEFINITION

1 // Agent's request to the building with an action.
2 message ActionRequest {
3 // The UTC timestamp that the agent initiated the request.
4 google.protobuf.Timestamp timestamp = 1;
5 // One or more action requests to be performed.
6 repeated SingleActionRequest single_action_requests = 2;
7 }
8

9 // An action request to assign a value to one setpoint on one device.
10 message SingleActionRequest {
11 // The device being commanded.
12 string device_id = 1;
13 // Actual setpoint to be changed, like zone_air_temperature_setpoint.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

14 string setpoint_name = 2;
15 oneof setpoint_value {
16 float continuous_value = 3;
17 int32 integer_value = 4;
18 string categorical_value = 5;
19 bool binary_value = 6;
20 string string_value = 7;
21 }
22 }

B.3.2 ACTIONREQUEST EXAMPLE

1 timestamp {
2 seconds: 1682649309
3 nanos: 942662000
4 }
5 single_action_requests {
6 device_id: "12945159110931775488"
7 setpoint_name: "supply_air_static_pressure_setpoint"
8 continuous_value: 186.8100128173828
9 }

10 single_action_requests {
11 device_id: "12945159110931775488"
12 setpoint_name: "supply_air_temperature_setpoint"
13 continuous_value: 294.2592468261719
14 }
15 single_action_requests {
16 device_id: "13761436543392677888"
17 setpoint_name: "supply_water_temperature_setpoint"
18 continuous_value: 310.9259338378906
19 }
20 single_action_requests {
21 device_id: "13761436543392677888"
22 setpoint_name: "differential_pressure_setpoint"
23 continuous_value: 82737.09375
24 }
25 single_action_requests {
26 device_id: "12945159110931775488"
27 setpoint_name: "supervisor_run_command"
28 continuous_value: -1.0
29 }
30 single_action_requests {
31 device_id: "14409954889734029312"
32 setpoint_name: "supervisor_run_command"
33 continuous_value: -1.0
34 }

B.3.3 ACTIONRESPONSE DEFINITION

1 // Building's response to an action request.
2 message ActionResponse {
3 // UTC timestamp of the building's response.
4 google.protobuf.Timestamp timestamp = 1;
5 // Original action request.
6 ActionRequest request = 2;
7 // Individual responses for each action.
8 repeated SingleActionResponse single_action_responses = 3;
9 }

10

11

12

13 // Building's response to a single action request.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

14 message SingleActionResponse {
15 enum ActionResponseType {
16 UNDEFINED = 0;
17 // The building accepted the action as requested.
18 ACCEPTED = 1;
19 // The building is processing the request, but has not completed.
20 PENDING = 2;
21 // The action request timed out by request handler.
22 TIMED_OUT = 3;
23 // Request is rejected because the set value is not in an acceptable←↩

range.
24 REJECTED_INVALID_SETTING = 4;
25 // Rejected because the setting is not enabled or available for ←↩

control.
26 REJECTED_NOT_ENABLED_OR_AVAILABLE = 5;
27 // A technician or control function overrode the action.
28 REJECTED_OVERRIDE = 6;
29 // The action was assigned to a device that does not exist.
30 REJECTED_INVALID_DEVICE = 7;
31 // The action was assigned to a valid device that's offline.
32 REJECTED_DEVICE_OFFLINE = 8;
33 UNKNOWN = 9;
34 OTHER = 10;
35 }
36

37

38 SingleActionRequest request = 1;
39 ActionResponseType response_type = 2;
40 // Additional optional information related to the action/response.
41 string additional_info = 3;
42 }

B.3.4 ACTIONRESPONSE EXAMPLE

1 timestamp {
2 seconds: 1681110000
3 }
4 request {
5 timestamp {
6 seconds: 1682649309
7 nanos: 942662000
8 }
9 single_action_requests {

10 device_id: "12945159110931775488"
11 setpoint_name: "supply_air_static_pressure_setpoint"
12 continuous_value: 186.8100128173828
13 }
14 single_action_requests {
15 device_id: "12945159110931775488"
16 setpoint_name: "supply_air_temperature_setpoint"
17 continuous_value: 294.2592468261719
18 }
19 single_action_requests {
20 device_id: "13761436543392677888"
21 setpoint_name: "supply_water_temperature_setpoint"
22 continuous_value: 310.9259338378906
23 }}
24 single_action_responses {
25 request {
26 device_id: "12945159110931775488"
27 setpoint_name: "supply_air_static_pressure_setpoint"
28 continuous_value: 186.8100128173828
29 }
30 response_type: ACCEPTED

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

31 additional_info: "2023-04-10 06:56:23.299000+00:00 129451591109317754←↩
88"

32 }
33 single_action_responses {
34 request {
35 device_id: "12945159110931775488"
36 setpoint_name: "supply_air_temperature_setpoint"
37 continuous_value: 294.2592468261719
38 }
39 response_type: ACCEPTED
40 additional_info: "2023-04-10 06:56:23.299000+00:00 129451591109317754←↩

88"
41 }
42 single_action_responses {
43 request {
44 device_id: "13761436543392677888"
45 setpoint_name: "supply_water_temperature_setpoint"
46 continuous_value: 310.9259338378906
47 }
48 response_type: ACCEPTED
49 additional_info: "2023-04-10 06:55:33.394000+00:00 137614365433926778←↩

88"
50 }

B.4 REWARD DATA PROTOS

This includes information used to calculate the reward, as expressed in cost in dollars, carbon foot-
print, and comfort level of occupants, provided at each time step The Reward protos define the input
and output messages for our 3C reward function (Cost Carbon and Comfort), which contains the
code that converts them into a single scalar value, a requirement for most RL algorithms. There are
two relevant protos:

1. RewardInfo: The values that are used as inputs to calculate the reward
2. RewardResponse: Containing the scalar reward signal obtained by passing the above

functions into our 3C reward function

The building updates the RewardInfo at each timestep and provides the reward function necessary
inputs to compute the 3C Reward Function. The data contained in theRewardInfo is bounded by
the step’s interval from start timestamp to end timestamp in UTC. The RewardInfo has
mean energy rate estimates (i.e. power in Watts) that can be treated as constants over the interval.
Given the interval and a constant rate value over the interval, the reported power in Watts can be
easily converted into energy in kWh. The RewardInfo contains maps of three types of specialized
data structures:

• The ZoneRewardInfo message provides information about the zone air temperature
measurements, temperature setpoints, airflow rate and setpoint, and average occupancy for
the time step. Each instance is indexed by its unique zone ID.

• The AirHandlerRewardInfo message describes the combined electrical power in W
use of the intake/exhaust blowers, and the electrical power in W of the refrigeration cycle.
Since a building may have more than one air handler, the air handler objects are values in a
map keyed by the air handlers’ device IDs.

• The BoilerRewardInfo contains the average electrical power in W used by the pumps
to circulate water through the building, and the average natural gas power in W used to heat
the water in the boiler. Since there may be more than one hot water cycle in the building,
each ZoneRewardInfo is placed into a map keyed by the hot water device’s ID.

The reward function converts the current RewardInfo into the RewardResponse for the same
interval as the RewardInfo. The agent’s reward signal is agent reward value. Since the
reward returned to the agent is a function of multiple factors, it is useful for analysis to show the
individual components,m such as carbon mass emitted, and the electrical and gas costs for the step.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.4.1 REWARDINFO DEFINITION

1 message RewardInfo {
2 // Information about each zone in the time step for computing reward.
3 message ZoneRewardInfo {
4 // Heating setpoint of the zone at the timestep in K.
5 float heating_setpoint_temperature = 1;
6

7

8 // Cooling setpoint of the zone at the timestep in K.
9 float cooling_setpoint_temperature = 2;

10

11

12 // Average zone air temperature measured in the zone in K.
13 float zone_air_temperature = 3;
14

15

16 // Setpoint for air flow ventilation in the zone in mˆ3/s.
17 float air_flow_rate_setpoint = 4;
18

19

20 // Actual ventilation air flow in the zone in mˆ3/s.
21 float air_flow_rate = 5;
22

23

24 // Average occupancy in the zone over the time step in number of
25 // people in the zone.
26 float average_occupancy = 6;
27 }
28

29 // Information about the air handler energy consumption for computing ←↩
reward.

30 message AirHandlerRewardInfo {
31 // Cumulative electrical power in W applied to blowers.
32 float blower_electrical_energy_rate = 1;
33

34 // Cumulative electrical energy rate applied in W for air ←↩
conditioning. This

35 // represents the total power applied for running a refrigeration or
36 // heat pump cycles (includes running a compressor and pumps to
37 // recirculate refrigerant.).
38 float air_conditioning_electrical_energy_rate = 2;
39 }
40

41

42 // Information about the boiler that provides heated water for VAVs.
43 message BoilerRewardInfo {
44 // Energy rate consumed in W by natural gas for heating water.
45 float natural_gas_heating_energy_rate = 1;
46 // Cumulative electrical power in W for water recirculation pumps.
47 float pump_electrical_energy_rate = 2;
48 }
49

50

51 // Start and end timestamps bound the timestep of the reward ←↩
information.

52 google.protobuf.Timestamp start_timestamp = 1;
53 google.protobuf.Timestamp end_timestamp = 2;
54

55

56 // Unique ID of the agent (controller). This should reflect the
57 // attributes of the RL models, including the type of algo and its
58 // parameters.
59 string agent_id = 3;
60

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

61

62 // Unique ID of the scenario being executed. This should reflect the ←↩
details

63 // of the scenario. In simulation, it should identify the canonical ←↩
scenario.

64 // In real world, it should define the building and start date/time.
65 string scenario_id = 4;
66

67

68 // Map with zone_id and zone reward info for all zones in the building
69 // under control of the agent. The zone_id could be a unique room ←↩

number,
70 // or the specific zone coordinates: (i.e., 'z_i,z_j') from the ←↩

simulation.
71 map<string, ZoneRewardInfo> zone_reward_infos = 5;
72

73

74 // Information about the air handlers' energy consumption required to
75 // calculate the reward.
76 map<string, AirHandlerRewardInfo> air_handler_reward_infos = 6;
77

78

79 // Information about the boilers' energy consumption required to ←↩
compute the

80 // reward.
81 map<string, BoilerRewardInfo> boiler_reward_infos = 7;
82 }

B.4.2 REWARDINFO EXAMPLE

1 start_timestamp {
2 seconds: 1681109700
3 }
4 end_timestamp {
5 seconds: 1681110000
6 }
7 agent_id: "baseline_policy"
8 scenario_id: "baseline_collect"
9 zone_reward_infos {

10 key: "rooms/1000004614278"
11 value {
12 heating_setpoint_temperature: 289.0
13 cooling_setpoint_temperature: 298.0
14 zone_air_temperature: 293.5944519042969
15 air_flow_rate_setpoint: 258.0
16 air_flow_rate: 12.0
17 }
18 }
19 zone_reward_infos {
20 key: "rooms/1000004658174"
21 value {
22 heating_setpoint_temperature: 289.0
23 cooling_setpoint_temperature: 298.0
24 zone_air_temperature: 293.4277648925781
25 air_flow_rate_setpoint: 60.0
26 }
27 }
28 zone_reward_infos {
29 key: "rooms/1000004658175"
30 value {
31 heating_setpoint_temperature: 289.0
32 cooling_setpoint_temperature: 298.0
33 zone_air_temperature: 293.03887939453125
34 air_flow_rate_setpoint: 185.0

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

35 air_flow_rate: 4.001242637634277
36 }
37 }
38 zone_reward_infos {
39 key: "rooms/1000004658176"
40 value {
41 heating_setpoint_temperature: 289.0
42 cooling_setpoint_temperature: 298.0
43 zone_air_temperature: 293.53887939453125
44 air_flow_rate_setpoint: 145.0
45 air_flow_rate: 53.0
46 }
47 }
48 air_handler_reward_infos {
49 key: "12945159110931775488"
50 value {
51 }
52 }
53 air_handler_reward_infos {
54 key: "14409954889734029312"
55 value {
56 }
57 }
58 boiler_reward_infos {
59 key: "13761436543392677888"
60 value {
61 pump_electrical_energy_rate: 1527.1470947265625
62 }
63 }

B.4.3 REWARDRESPONSE DEFINITION

1 // The return reward signal from the reward function. While the ←↩
principal

2 // signal is the agent reward and should be returned to the RL agent, ←↩
the

3 // other fields provide useful information for tracking and monitoring.
4 // One EnergyRewardResponse is associated with each EnergyRewardInfo.
5 message RewardResponse {
6

7

8 // Complete reward signal to be returned to the agent.
9 float agent_reward_value = 1;

10

11

12 // Cumulative productivity is measured in USD, and represents the ←↩
total

13 // estimated productivity of the building.
14 float productivity_reward = 2;
15

16

17 // Total electrical energy cost estimate in USD.
18 float electricity_energy_cost = 3;
19

20

21 // Total natural gas energy cost in USD.
22 float natural_gas_energy_cost = 4;
23

24

25 // Estimated carbon emitted in kg.
26 float carbon_emitted = 5;
27

28

29 // Estimated carbon cost in USD.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

30 float carbon_cost = 6;
31

32

33 // Productivity weight parameter.
34 float productivity_weight = 7;
35

36

37 // Energy Cost Weight parameter.
38 float energy_cost_weight = 8;
39

40

41 // Carbon emission weight parameter.
42 float carbon_emission_weight = 9;
43

44

45 // Productivity factor (avg labor value of one person-hour).
46 float person_productivity = 10;
47

48

49 // Total average occupancy across all zones.
50 float total_occupancy = 11;
51

52

53 // Reward scale for normalizing the reward
54 float reward_scale = 12;
55

56

57 // Reward shift for normalizing the reward
58 float reward_shift = 13;
59

60

61 // Total productivity regret = max productivity - actual productivity
62 float productivity_regret = 14;
63

64

65 // Normalized productivity regret
66 float normalized_productivity_regret = 15;
67

68

69 // Normalized energy cost =
70 // combined_energy_cost /
71 // (max_electricity_energy_cost + max_natural_gas_energy_cost)
72 float normalized_energy_cost = 16;
73

74

75 // Normalized carbon emission =
76 // combined_carbon_emission /
77 // (max_electricity_carbon_emission + max_natural_gas_carbon_emission←↩

)
78 float normalized_carbon_emission = 17;
79

80

81 // Start and end timestamps bound the timestep of the reward ←↩
information.

82 google.protobuf.Timestamp start_timestamp = 18;
83 google.protobuf.Timestamp end_timestamp = 19;
84 }

B.4.4 REWARDRESPONSE EXAMPLE

1 agent_reward_value: -0.00222194055095315
2 electricity_energy_cost: 0.022907206788659096
3 carbon_emitted: 0.011416268534958363
4 productivity_weight: 0.5

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

5 energy_cost_weight: 0.20000000298023224
6 carbon_emission_weight: 0.30000001192092896
7 person_productivity: 300.0
8 reward_scale: 1.0
9 normalized_energy_cost: 0.0090464623644948

10 normalized_carbon_emission: 0.0013754934770986438
11 start_timestamp {
12 seconds: 1681109700
13 }
14 end_timestamp {
15 seconds: 16811100

C SIMULATOR DESIGN CONSIDERATION DETAILS

A simulator models the physical system dynamics of the building, devices, and external weather
conditions, and can train the control agent interactively, if the following desiderata are achieved:

1. The simulation must produce the same observation dimensionality as the actual real build-
ing. In other words, each device-measurement present in the real building must also be
present in the simulation.

2. The simulation must accept the same actions (device-setpoints) as the real building.

3. The simulation must return the reward input data described above (zone air temperatures,
energy use, and carbon emission).

4. The simulation must propagate, estimate, and compute the thermal dynamics of the actual
real building and generate a state update at each timestep.

5. The simulation must model the dynamics of the HVAC system in the building, including
thermostat response, setpoints, boiler, air conditioning, water circulation, and air circula-
tion. This includes altering the HVAC model in response to a setpoint change in an action
request.

6. The time required to recalculate a timestep must be short enough to train a viable agent in
a reasonable amount of time. For example, if a new agent should be trained in under three
days (259,200 seconds), requiring 500,000 steps, the average time required to update the
building should be 0.5 seconds or less.

7. The simulator must be configurable to a target building with minimal manual effort.
We believe our simulation system meets all of these listed requirements.

D DERIVATION FOR TENSORIZED FINITE DIFFERENCE (FD) EQUATIONS

This appendix describes the method of calculating the flow of heat and the resulting temperatures
throughout the building.

D.1 ASSEMBLING THE ENERGY BALANCE

The fundamental energy balance for a general-purpose closed body is formulated in Equation 3. The
first term represents the effects of non-stationary heat dissipation or heat absorption over time over
volume of the body. Q represents the energy absorbed or released per unit volume and is a function
of the mass and heat capacity of the body. The second term represents thermal flux over the surface
of the body, where n is the unit normal vector of the surface S and F is the specific energy absorbed
or released through the surface. Common modes of thermal flux include conduction, convection,
and radiation. The right side of the equation represents the total energy absorbed by the body across
the system boundary, or via an external source or sink.

d

dt

∫
V (t)

QdV +

∮
S(t)

n · FdS =

∫
V (t)

PdV (2)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

To enable computation, we divide the body into small discrete units, called Control Volumes (CV),
and iteratively calculate temperature on each on each CV using the method of Finite Differences
(FD).

We model three modes of heat transfer into each CV: forced convection, conduction, and external
source.

Forced convectionQconv is based on energy exchange by moving air (or any other fluid, in general),
and conduction, Qcond is the exchange of energy through solid objects, such as walls. External
sources (or sinks)Qx represent the heating or cooling from external devices, such as electric heating
coils, diffusers, etc.

Each CV has the capacity to absorb heat over time, which is expressed as dU
dt , governed by its heat

capacity, c.

These factors allow us to construct an energy balance equation that conserves energy Qin−Qout =
dU
dt .

We assume that the ceilings and floors are adiabatic, fully insulated, not allowing any heat exchange.
This reduces the problem to a 2D problem, with 3D control volumes that can only exchange energy
laterally.

Our FD objective is to solve for the temperature at each CV within the building, which presents N
unknowns and N equations, where N is the number of CVs in the FD grid.

Rather than creating separate spacial cases in the FD equations for exterior, boundary, and interior
CVs, we would like to create a single equation that can be computed across the entire grid. This
equation can then be tensorized using the Tensorflow matrix library, and accelerated with GPUs or
TPUs.

We label each four interacting surfaces of the CV: left = 1, right = 3, bottom = 2, and top = 4.

Then, for a discrete unit of time ∆t we specify energy exchange across the surfaces as
Q1, Q2, Q3, Q4 and adopt the arbitrary, but consistent convention that energy flows into surfaces
1 and 2, and out of surfaces 3, and 4. (Of course, energy can flow the other direction too, but that
will be indicates with a negative value.) Our convention also assumes that external energy flows into
the CV.

That allows us to construct the energy balance as:

Qx +Qcond1 +Qconv1 +Qcond2 +Qconv2 −Qcond3 −Qconv3 −Qcond4 −Qconv4 =
dU

dt
(3)

D.2 COMPUTING HEAT TRANSFER VIA CONDUCTION, CONVECTION, AND THERMAL
ABSORPTION

We apply the Fourier’s Law of conduction, illustrated in Figure 8, which is the rate of transfer in
Watts:

Q̇cond = −kA
L

dT

dt
(4)

Which is approximated over the discrete CV as:

Q̇cond ≈ −kA
L

∆T

∆t
(5)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 8: Conduction Heat Transfer

Where k is the thermal conductivity of the material, A is the flux area perpendicular to the flow of
heat, L is the distance traveled through the material, ∆T is the temperature difference in the source
and sink, and ∆t is a discrete time step interval.

We can remove the dot (time derivative) by multiplying by discrete unit time, and converting thermal
power (energy per unit time) into energy:

Qcond ≈ −kA
L

∆T

∆t
× 1 = −kA

L
∆T (6)

Let’s orient the conductivity equation along the horizontal (u) and the vertical directions (v).

For the horizontal heat transfer:

Qcond1,3 = −kvz
u

∆T (D.5) (7)

And for vertical heat transfer:

Qcond2,4 = −kuz
v

∆T (8)

Where z is the 3rd dimension size, which is the distance from the floor to the ceiling, and A = vz
and A = uz for horizontal and vertical flux surface areas.

This is good for modeling heat exchange through solid objects, but we also need to model the heat
exchanges from the outside across the boundary to the interior via forced air convection (i.e., wind).

For convection, we’ll apply Newton’s Law of Cooling, illustrated in Figure 9 for modeling heat
transfer via forced air currents across a surface A, perpendicular to the flow of heat as:

Qcond = −hA∆T (9)

The negative sign in Equations 4 - 9 are due to the fact that energy flows in the direction opposite of
the temperature gradient, ∆T , i.e., from high to low.

Here, h is the convection coefficient and is a function of the amount of air blowing over the exterior
surface of the wall.

Figure 9: Convection Heat Transfer

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

We define the three types of CVs:

1. Exterior CVs are CVs that represent the ambient weather conditions, such as T∞ , which
are note calculated by the FD calculator, just specified by the current input conditions.

2. Interior CVs are CVs where all four sides are adjacent to non-exterior CVs (Figure 10).

3. Boundary CVs are CVs that share one or two faces with exterior CVs and one two or
three faces with interior CVs. These CVs require special handling, since they represent the
transfer of energy between the outside and the inside of the building. Boundary CVs that
share two sides with the exterior are Corner CVs (Figure 11) and boundary CVs that share
only one side with an exterior CV are Edge CVs (Figure 12).

Figure 10: Interior Control Volumes

Figure 11: Boundary Corner Control Volumes

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 12: Boundary Edge Control Volumes

The temperatures that are estimated in FD represent the center of the control volume, or its mean. In
the case of convection, the temperatures at the exterior surface of the wall us unknown and have to
be calculated. Therefore, the center of the Edge CV represents the surface temperature and is split
halfway between the outside and inside, where the volume of an edge CV is half of the mass of an
interior CV. Similarly, an corner CV is cut in half in both directions, and is one quarter the volume
ov an interior CV.

Since we are assuming rectangular CVs, note that v = v1 = v3, and u = u2 = u4.

Since outside temperatures and HVAC responses vary, we have a non-stationary thermal system
where the flow of energy through the CVs that is not constant. This requires us to evaluate the
right-hand term in Equation 3 that allows the volume to absorb or dissipate heat over time, which is
governed by the mass m = ρV = ρuvz, heat capacity c and rate of change of temperature dT

dt .

dU

dt
= cm

dT

dt
= cρV

dT

dt
= cρuvz

dT

dt
(10)

Equation 10 can be approximated over the small differential CV as:

dU

dt
≈ cρuvz

Ti,j − T (−)
i,j

∆t
(11)

where T (−)
i,j is the temperature if the i, j CV at the previous time step and the time step interval is

∆t, which can be treated as a fixed parameter.

D.3 SOLVING FOR THE TEMPERATURE AT EACH CV

To enable accelerating the calculation using tensor operations, we would like to define a single
equation for all CV that do not require (a) conditionals, (b) for loops, or (c) referencing neighboring
CVs. That objective will require the construction of a few auxiliary matrices, and every CV will
have convection and conduction components that may be disabled with zero-valued convection and
conduction coefficients as appropriate.

Combining the Energy Balance in Equation 4 with the conduction and convection equations (Equa-
tions 7-10) we can include all terms for all faces on the i, j CV. Our goal is to solve for Ti,j which
can then be run over multiple sweeps to convergence.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Qx − k1vz
Ti,j − Ti−1,j

u
− h1vz(Ti,j − T∞)− k2uz

Ti,j − Ti,j−1

v2
− h2vz(Ti,j − T∞)+

+k3vz
Ti+1,j − Ti,j

u3
+ h3vz(T∞ − Ti,j) + k4uz

Ti,j+1 − Ti,j
v4

+ h4vz(T∞ − Ti,j) =

=
cρuvz

∆t

(
Ti,j − T (−)

i,j

) (12)

Next, we want to solve for temperature Ti,j by rearranging the terms, which provides a single equa-
tion that can be used to calculate CV temperatures for both boundary and interior CVs.

Ti,j =
Qx + vz

[
k1
u Ti−1,j + h1T∞ + k3

u Ti+1,j + h3T∞
]

+ uz
[
k2
v Ti,j−1 + h2T∞ + k4

v Ti,j+1 + h4T∞
]

+ cρuvz
∆t T

(−)
i,j

vz
[
k1
u + h1 + k3

u + h3

]
+ uz

[
k2
v + h2 + k4

v + h4

]
+ cρuvz

∆t
(13)

D.4 TENSORIZING THE TEMPERATURE ESTIMATE

Equation 13 can be used iterative, but to exploit the acceleration from matrix operations on GPUs
and TPUs using the TensorFlow Library, we’ll want to reshape the equation slightly for a single
tensor pipeline that doesn’t iterate over individual CVs.

Furthermore, we can avoid referencing neighboring temperatures (Ti−1,j , Ti+1,j , Ti,j−1, Ti,j+1) in
the pipeline by creating four *shifted* temperature Tensors, T1 = shift(T, 3), T3 = shift(T,LEFT),
T2 = shift(T,UP), T4 = shift(T,DOWN).

We can also frame oriented conductivity as a Tensors leftK1, rightK3, belowK2, aboveK4, where:

k1,i,j =

{
ki,j CVs at i, j and i− 1, j are interior or boundary
0 otherwise (14)

k3,i,j =

{
ki,j CVs at i, j and i+ 1, j are interior or boundary
0 otherwise (15)

k2,i,j =

{
ki,j CVs at i, j and i, j − 1 are interior or boundary
0 otherwise (16)

k4,i,j =

{
ki,j CVs at i, j and i, j + 1 are interior or boundary
0 otherwise (17)

Note that the conductivity matrix K is a fixed input parameter for the building.

Applying the same reasoning, we can generate four oriented convection Tensors, H1, H2, H3, H4

as:

h1,i,j =

{
h CV at i, j is boundary and CV at i− 1, j is exterior
0 otherwise (18)

h3,i,j =

{
h CV at i, j is boundary and CV at i+ 1, j is exterior
0 otherwise (19)

h2,i,j =

{
h CV at i, j is boundary and CV at i, j + 1 is exterior
0 otherwise (20)

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

h4,i,j =

{
h CV at i, j is boundary and CV at i, j − 1 is exterior
0 otherwise (21)

Note that h is a time-dependent constant that represents the amount of airflow over the surface of
the building, assumed to be uniformly applied on all exterior walls of the building.

Finally, we classify each boundary CV as TOP-LEFT CORNER, TOP-RIGHT CORNER,
BOTTOM-LEFT CORNER, BOTTOM-RIGHT CORNER or LEFT EDGE, RIGHT EDGE, TOP
EDGE, or BOTTOM EDGE in order to form Tensors U and V , which are the CV widths and heights.

ui,j =

{
∆x
2 CV at i, j is BOUNDARY and ANY CORNER or TOP or BOTTOM EDGE

∆x otherwise
(22)

vi,j =

{
∆x
2 CV at i, j is BOUNDARY and ANY CORNER or LEFT or RIGHT EDGE

∆x otherwise
(23)

where ∆x is the fixed horizontal and vertical dimension of an INTERIOR CV.

Now we can complete the Tensor expression of the FD equation:

T =

[
Qx + V z

[
K1U

−1T1 +H1T∞ +K3U
−1T3 +H3T∞

]
+ Uz

[
K2V

−1T2 +H2T∞ +K4V
−1T4 +H4T∞

]
+
CPUV z

∆t
T (−)

]
·
[
V z
[
K1U

−1 +H1 +K3U
−1 +H3

]
+Uz

[
K2V

−1 +H2 +K4V
−1 +H4

]
+
CPUV z

∆t

]−1

(24)

For each timestep, we execute Equation 24 as single-step tensor operations until convergence, where
the maximum change across all CVs between current and last iteration is less then a conservative
lower threshold, ε ≤ 0.01◦C

E SIMULATOR CONFIGURATION PROCEDURE DETAILS

To configure the simulator, we require two type of information on the building:

1. Floorplan blueprints. This includes the size and shapes of rooms and walls for each floor.
2. HVAC metadata. This includes each device, its name, location, setpoints, fixed parameters

and purpose.

We preprocess the detailed floorplan blueprints of the building, and extract a grid that gives us
an approximate placement of walls and how rooms are divided. This is done via the following
procedure:

1. Using threshold t, binarize the floorplan image into a grid of 0s and 1s.
2. Find and replace any large features that need to be removed (such as doors, a compass, etc)
3. Iteratively apply standard binary morphology operations (erosion and dilation) to the image

to remove noise from background, while preserving the walls.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

4. Resize the image, such that each pixel represents exactly one control volume

5. Run a connected components search to determine which control volumes are exterior to the
building, and mark them accordingly

6. Run a DFS over the grid, and reduce every wall we encounter to be only a single control
volume thick in the case of interior wall, and double for exterior wall

Figure 13: Before and after images of the floorplan preprocessing algorithm

We also employ a simple user interface to label the location of each HVAC device on the floorplan
grid. This information is passed into our simulator, and a custom simulator for the new building, with
roughly accurate HVAC and floor layout information, is created. This allows us to then calibrate this
simulator using the real world data, which will now match the simulator in terms of device names
and locations.

We tested this pipeline on SB1, which consisted of two floors with combined surface area of 93,858
square feet, and has 127 HVAC devices. Given floorplans and HVAC layout information, a single
technician was able to generate a fully specified simulation in under three hours. This customized
simulator matched the real building in every device, room, and structure.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

F CALIBRATION HYPERPARAMETER TUNING DETAILS

The hyperparameter tuning was performed over a seven day period on 200 CPUs.
Table 4: Thermal properties that were set by the calibration process, with min/max bounds and
selected values.

HYPERPARAMETER MIN MAX BEST

CONVECTION COEFFICIENT (W/m2/K) 5 800 357
EXTERIOR CV CONDUCTIVITY (W/m/K) 0.01 1 0.83
EXTERIOR CV DENSITY (kg/m3) 0 3000 2359
EXTERIOR CV HEAT CAPACITY (J/Kg/K) 100 2500 2499
INTERIOR WALL CV CONDUCTIVITY (W/m/K) 5 800 5
INTERIOR WALL CV DENSITY (kg/m3) 0.5 1500 1500
INTERIOR WALL CV HEAT CAPACITY (J/Kg/K) 500 1500 1499
SWAP PROB 0 1 0.003
SWAP RADIUS 0 50 50

G ADDITIONAL SPATIAL ERROR VISUALIZATIONS

Here we present some other visuals that may be enlightening.

Figure 14: Visualization of simulator drift after only a single hour, on the validation data. As can be
clearly seen, at this point there is almost no error.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Figure 15: Visualization of simulator drift after only a single hour, on the train data. Again, there is
almost no error.

Figure 16: Visualization of simulator drift after one day, on the train data.

Figure 17: Visualization of simulator drift after two days, on the train data. Interestingly, this looks
better than it did after only one day.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

H SIMULATOR SAC AGENT TRAINING DETAILS AND PERFORMANCE
ANALYSIS

We will now go into more details on the simulator SAC agent training and performance as compared
to the baseline.

Each agent was trained on a single CPU, with the entire training session lasting 6 days. We restricted
the action space to supply air and water temperature setpoints. For the observation space, we found
that providing the agent with the dozens of temperature sensors was too much noisy information
and not useful. Instead, we provided the agent with a histogram, grouping temperatures into 1◦

Celsius bins, ranging from 12◦ to 30◦, and calculating the frequency of each bin. The tallies are
then normalized and provided as part of the observation. This led to much better performance.

Figure 18 shows the returns during training.

Figure 18: SAC agent Returns
of each agent we trained,
as well as the baseline in
gold, which represents the re-
turns obtained by running the
baseline policy currently em-
ployed in the real world. As
can be clearly seen, most of
the agents are able to improve
above this policy.

Figure 19 illustrates that the critic, actor, and alpha losses of the various SAC agents converge.

Figure 19: SAC Agent Losses

Our reward function is a weighted, linear combination of the normalized carbon footprint, cost, and
comfort levels within the building. While an 8% improvement over the baseline on this scalar reward
is significant, we can see the improvements of the SAC agent over the baseline even more clearly
when we break down these factors further into physical measures.

For this analysis, we break down the reward into four components that contribute to it, and see
how the learned policy compares with the baseline. The components are: setpoint deviation, carbon
emissions, electrical energy, and natural gas energy.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Figure 20: Setpoint Deviation Performance as a function of outside air temperature, which evaluates
how well the agent meets comfort conditions compared to the baseline. It is measured as the average
number of ◦C above or below setpoint for all zones in the building. For each outside air degree
increment, we include the number of observations for baseline and agent, the percentage change as
(baseline - agent) / baseline, and its associated p-score.

Above we display how the baseline and agent compare when it comes to setpoint deviation, the
comfort component of the reward function. We show the distribution of deviations grouped by
outside air temperatures. While both policies have very minimal setpoint deviation to begin with,
the agent strictly improves over the baseline here.

Figure 21: Carbon Emission measures how the agent performs compared to the baseline in terms of
the amount of greenhouse gas released from consuming natural gas and electricity. C is combined
mass (kgC, or kg Carbon) emitted by non-renewable electricity and natural gas. For each outside
air degree increment, we include the number of observations for baseline and agent, the percentage
change as (baseline - agent) / baseline, and its associated p-score.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

The carbon performance of the agent, as compared with the baseline, is impressive as well. In the
temperature range 14◦C to 18 ◦C, the agent is strictly better, and while it is slightly worse for the
warmer temperatures, clearly it is a net improvement over the baseline.

Figure 22: Electrical Energy Performance measured in energy units (kWh) over a fixed interval
for both the agent and the baseline policies. For each outside air degree increment, we include the
number of observations for baseline and agent, the percentage change as (baseline - agent) / baseline,
and its associated p-score.

Once again, when it comes to electric performance, the SAC agent is almost strictly better under all
temperature ranges.

Figure 23: Natural Gas Performance measured in energy units (therm) over a fixed interval for both
the agent and the baseline policies. For each outside air degree increment, we include the number
of observations for baseline and agent, the percentage change as (baseline - agent) / baseline, and its
associated p-score.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Interestingly, the agent converged on a policy that reduced overall carbon emission while increasing
natural gas consumption. This is due to the fact that electricity is generated from non-renewable
sources and per unit energy, is significantly more expensive than gas.

I TRAINING AND EVALUATING A LEARNED DYNAMICS MODEL

Aside from being useful for offline training and for calibrating our simulator, the real world data
can also be used to directly learn a regression model that approximates the building dynamics. This
model can then be used to train a control agent.

As described in the main paper, to demonstrate this approach, building off of earlier work(Velswamy
et al., 2017; Sendra-Arranz & Gutiérrez, 2020; Zou et al., 2020; Zhuang et al., 2023), we trained
an LSTM to model the building dynamics. We used an encoder-decoder network, where the model
takes in a historical sequence of length N and outputs a prediction sequence of length M . At each
timestep t in the sequence, the model is given an observation Ot, action taken by the policy At, and
auxiliary state features (such as time of day and weather, that are useful as inputs but need not be
predicted) Ut, and for future timesteps, the model is trained to predict future observations, as well
as future reward information (based on predicted energy use and carbon emissions) Et. The LSTM
model is shown in Figure 24.

Figure 24: Architecture of LSTM building dynamics model

We then trained the model to predict the next observation for 65 epochs, plotting training and vali-
dation loss, as shown in figure 25

Figure 25: Loss of LSTM building dynamics model, with train loss in orange and validation loss in
blue.

However, loss curves alone do not tell the full story of how well our regression model is reconstruct-
ing the signal of the dynamics, so we also included additional evaluations. We had the model predict
3 weeks into the future, and then compared the predictions with the ground truth data to ensure the

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

cyclic patterns of the medians are reproduced. The chart in figure 26 shows 20 measurement time
series from the regression models shown in yellow compared to the actual values shown in gray. By
inspection, we conclude that the regression building provides good correspondence with the actual
real data signals.

Figure 26: Detailed analysis of learned dynamics as compared to real data.

J REAL DATA SAC AGENT TRAINING DETAILS AND PERFORMANCE
ANALYSIS

We then trained a SAC agent on the regression environment, much like how we did on the simulator.
This gives us a baseline for how to generate a policy purely based on data, without use of the
simulator. We used hyper-parameter tuning, and trained 200 agents. The chart in figure 27 shows
agent reward progress as the number of trials increased.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Figure 27: Detailed analysis of learned dynamics as compared to real data.

To compare the learned policy with the baseline, we plotted the two policies in 28. The baseline and
agent episode temperature timelines shown below provide a temporal perspective of the environ-
ment median zone air temperatures (yellow) and setpoints (white), outside air temperature (blue),
and the agent actions on the environment (water temperature setpoints (lime), and air handler tem-
perature setpoints (magenta). While the regression model under baseline policy correctly represents
the weekend setpoint ranges, the regression building applies nearly the weekday setpoint ranges
when running under agent control. This is likely due to the agent applying setpoints that regression
associates with weekday actions, and incorrectly returns a setpoint that is closer to the weekday. For
this reason, we do not evaluate the model’s performance on weekends. Similar to baseline control,
the agent ramps up water temperature (lime) at the beginning of the day. However, the agent tends
to maintain the water temperature around 80C for substantially longer than baseline control. At first
glance, this may seem counterproductive. However, heat exchange is also based on water flow and
air flow. Lower supply water temperatures require more airflow to transfer the same amount of heat.
Therefore, higher water temperatures do not necessarily result in higher energy consumption. Also,
note that the agent does not drop the water temperature as low as the baseline policy, and the agent
tends to apply smoother actions compared to the baseline’s rapid oscillation between 40 and 60C.
We speculate that one strength of the proposed solution is the agent’s ability to discover better and
non-intuitive policies that are unlikely to be chosen by human HVAC technicians. The agent also has
a different control policy for the air handlers’ supply air temperatures, shown in magenta. On one air
handler’s supply air temperature, the agent tends to operate SB1:AHU:AC 1 at a higher temperature
than SB1:AHU:AC 2.

Finally, much like how we did with the simulated agent, we break down the reward into its four
components and see how the agent did relative to the baseline on the regression building model.

J.1 SETPOINT MANAGEMENT PERFORMANCE

The difference in setpoint deviation between agent and baseline was insignificant. However, at 23C
the average setpoint deviation was slightly higher, but was still within a narrow window (less than
1/10 C). The setpoint deviation test using the regression model may be slightly optimistic compared
to the real building, because the regression model only approximates the zone temperatures with a
single median, hiding the larger spread of temperatures throughout the building.

J.2 CARBON EMISSION PERFORMANCE

In 12 of 19 temperature bins the agent generated less carbon than the baseline. While only two tem-
perature bins (17C, 25C) resulted in confidence greater than 90%, the results indicate a reduction in
carbon emission on most of the bins. The agent tends to emit more carbon in the moderate temper-
ature ranges (21, 22C), likely due to a higher setpoint during the day than the baseline. Overall, the
agent performs favorably, even though most bins have a low statistical confidence.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Figure 28: Detailed analysis of learned dynamics as compared to real data.

Figure 29: Setpoint Management Performance.

J.3 ELECTRICAL ENERGY PERFORMANCE

While no temperature bins yielded confidence scores greater than 90%, the agent tends to consume
less electricity than the baseline, except for the 21, 22C temperature bins. Under both policies,
electricity consumption dramatically increases with outside air temperature.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Figure 30: Carbon Emission Performance.

Figure 31: Electrical Energy Performance.

J.4 NATURAL GAS ENERGY PERFORMANCE

The agent policy tends to consume less natural gas than the baseline policy, even though only three
yielded significant reduction with confidence of at least 90% (17, 24, 25C).

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Figure 32: Natural Gas Energy Performance.

50

	Introduction
	Optimizing Energy and Emission in Office Buildings with RL
	Related Works
	The Dataset Structure
	Simulator Design Considerations
	A Lightweight, Calibrated Simulation
	Simulator Calibration
	Demonstration Benchmarking Results
	Limitations and Conclusion
	Reward Function Details
	Comfort Loss Function (C_1)
	Energy Cost Function (C_2)
	Carbon Emission Cost Function (C_3)
	Immediate and delayed reward responses

	Proto Definitions
	Environment Data Protos
	ZoneInfo Definition
	ZoneInfo Example
	DeviceInfo Definition
	DeviceInfo Example

	Observation Data Protos
	ObservationRequest Definition
	ObservationRequest Example
	ObservationResponse Definition
	ObservationResponse Example

	Action Data Protos
	ActionRequest Definition
	ActionRequest Example
	ActionResponse Definition
	ActionResponse Example

	Reward Data Protos
	RewardInfo Definition
	RewardInfo Example
	RewardResponse Definition
	RewardResponse Example

	Simulator Design Consideration Details
	Derivation for Tensorized Finite Difference (FD) Equations
	Assembling the Energy Balance
	Computing heat transfer via conduction, convection, and thermal absorption
	Solving for the temperature at each CV
	Tensorizing the temperature estimate

	Simulator Configuration Procedure Details
	Calibration Hyperparameter Tuning Details
	Additional Spatial Error Visualizations
	Simulator SAC Agent Training Details and Performance Analysis
	Training and Evaluating a Learned Dynamics Model
	Real Data SAC Agent Training Details and Performance Analysis
	Setpoint Management Performance
	Carbon Emission Performance
	Electrical Energy Performance
	Natural Gas Energy Performance

