AVOIDING CATASTROPHE IN ONLINE LEARNING BY ASKING FOR HELP

Anonymous authors

Paper under double-blind review

ABSTRACT

Most learning algorithms with formal regret guarantees assume that no mistake is irreparable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are *catastrophic*, i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We first show that in general, any algorithm either constantly queries the mentor or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.

023

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

025 026

There has been mounting concern over catastrophic risk from AI, including but not limited to autonomous weapon accidents (Abaimov & Martellini, 2020), bioterrorism (Mouton et al., 2024), and cyberattacks on critical infrastructure (Guembe et al., 2022). See Critch & Russell (2023) and Hendrycks et al. (2023) for taxonomies of societal-scale AI risks. In this paper, we use "catastrophe" to refer to any kind of irreparable harm. This definition also covers smaller-scale (yet still unacceptable) incidents such as serious medical errors (Di Nucci, 2019), crashing a robotic vehicle (Kohli & Chadha, 2020), or discriminatory sentencing (Villasenor & Foggo, 2020).

The gravity of these risks contrasts starkly with the dearth of theoretical understanding of how to avoid them. Nearly all of learning theory explicitly or implicitly assumes that no single mistake is too costly. We focus on *online learning*, where an agent repeatedly interacts with an unknown environment and uses its observations to gradually improve its performance. Most online learning algorithms essentially try all possible behaviors and see what works well. We do not want autonomous weapons or surgical robots to try all possible behaviors.

More precisely, trial-and-error-style algorithms only work when catastrophe is assumed to be impos-040 sible. This assumption manifests differently in different subtypes of online learning. In the standard 041 online learning model, the agent's actions have no permanent effect on the environment.¹ Online 042 reinforcement learning allows the agent's actions to permanently affect the environment, but typically 043 assumes that either no action has irreversible effects (e.g., Jaksch et al. (2010)) or that the agent is 044 reset at the start of each "episode" (e.g., Azar et al. (2017)). One could train an agent entirely in a controlled lab setting where the above assumptions do hold, but we argue that sufficiently general 046 agents will inevitably encounter novel scenarios when deployed in the real world. Machine learning 047 models often behave unpredictably in unfamiliar environments (see, e.g., Quionero-Candela et al. 048 (2009)), and we do not want AI biologists or robotic vehicles to behave unpredictably.

The goal of this paper is to understand the conditions under which it is possible to formally guarantee avoidance of catastrophe in online learning. Certainly some conditions are necessary, because if the agent can only learn by trying actions directly, the problem is hopeless: any untried action could

¹More precisely, the input can depend on the agent's previous actions, but the agent's performance is always evaluated with respect to the optimal policy on the same sequence of inputs.

lead to paradise or disaster and the agent has no way to predict which. In the real world, however, one needn't learn through pure trial-and-error: one can also ask for help. We think it is critical for high-stakes AI applications to employ a designated supervisor who can be asked for help. Examples
include a human doctor supervising AI doctors, a robotic vehicle with a human driver who can take over in emergencies, autonomous weapons with a human operator, and many more. We hope that our work constitutes a small step in the direction of practical safety guarantees for such applications.

060 061

062

1.1 OUR MODEL

We propose an online learning model of avoiding catastrophe with mentor help. On each time step, the agent observes an input, selects an action (or queries the mentor), and obtains a payoff. Each payoff represents the probability of avoiding catastrophe on that time step (conditioned on no prior catastrophe). The agent's goal is to maximize the *product* of payoffs, which is equal to the overall probability of avoiding catastrophe by the chain rule of probability.

The (possibly suboptimal) mentor has a fixed policy, and when queried, the mentor illustrates their policy's action for the current input. We desire an agent whose regret – defined as the gap between the mentor's performance and the agent's performance – approaches zero as the time horizon T grows. In other words, with enough time, the agent should avoid catastrophe nearly as well as the mentor. We also expect the agent to become self-sufficient over time: formally, the number of queries to the mentor should be sublinear in T, or equivalently, the rate of querying the mentor should go to zero.

074 075

1.2 OUR ASSUMPTIONS

The agent needs some way to make inferences about unqueried inputs in order to decide when to ask for help. Much past work has used Bayesian inference, which suffers tractability issues in complex environments.² We instead assume that the mentor policy satisfies what we call *local generalization*: informally, if the mentor told us that an action was safe for a similar input, then that action is probably also safe for the current input (see Section 3 for a formal definition and further discussion). This captures the intuition that one can transfer knowledge between similar situations. Unlike Bayesian inference, local generalization only requires computing distances and is compatible with any input space which admits a distance metric.

Unlike the standard online learning model, we assume that the agent does not observe payoffs. This is because the payoff in our model represents the chance of avoiding catastrophe on that time step. In the real world, one only observes whether catastrophe occurred, not its probability.³

087 088 089

1.3 STANDARD ONLINE LEARNING

An overview of standard online learning is in order before discussing our results. In the standard model, the agent observes an input on each time step and must choose an action. An adversary then reveals the correct action, which results in some payoff to the agent. The goal is sublinear regret with respect to the sum of payoffs, or equivalently, the average regret per time step should go to 0 as $T \rightarrow \infty$. Figure 1 delineates the precise differences between the standard model and our model.

⁰⁹⁵ If the adversary's choices are unconstrained, the problem is hopeless: if the adversary determines the correct action on each time step randomly and independently, the agent can do no better than random guessing. However, sublinear regret becomes possible if (1) the hypothesis class has finite Littlestone dimension (Littlestone, 1988), or (2) the hypothesis class has finite VC dimension (Vapnik & Chervonenkis, 1971) and the input is σ -smooth⁴ (Haghtalab et al., 2024).

The goal of sublinear regret in online learning implicitly assumes catastrophe is impossible: the agent can make arbitrarily many (and arbitrarily costly) mistakes as long as the *average* regret per time step goes to 0. In contrast, we demand subconstant regret: the *total* probability of catastrophe should go to 0. Furthermore, standard online learning allows the agent to observe payoffs on every time step, while our agent only receives feedback on time steps with queries. However, access to a mentor (and

105 106

²For the curious reader, Betancourt (2018) provides a thorough treatment. See also Section 2.

³One may be able to detect "close calls" in some cases, but observing the precise probability seems unrealistic. ⁴Informally, the adversary chooses a distribution over inputs instead of a precise input. See Section 3.

108		Objective	Regret goal	Feedback	Mentor	Local gen.
110	Standard model	Sum of payoffs	Sublinear	Every time step	No	No
111	Our model	Product of payoffs	Subconstant	Only from queries	Yes	Yes

114 115

116

117

Figure 1: Comparison between the standard online learning model and our model.

local generalization) allows our agent to learn without trying actions directly, which is enough to offset all of the above disadvantages.

118 119 1.4 OUR RESULTS

At a high level, we show that avoiding catastrophe with the help of a mentor and local generalization is no harder than online learning without catastrophic risk.

More precisely, we first show that in general, any algorithm with sublinear queries to the mentor has arbitrarily poor regret in the worst-case (Theorem 4.1). This means that even when the mentor can avoid catastrophe with certainty, any algorithm either needs excessive supervision or is nearly guaranteed to cause catastrophe. Unlike online learning where the general impossibility result is trivial (the agent might as well guess randomly given an unconstrained adversary), local generalization significantly limits the adversary's power and necessitates a careful analysis.

Next, we present a simple algorithm whose total regret and rate of querying the mentor both go to 0 as $T \rightarrow \infty$ when either (1) the mentor policy class has finite Littlestone dimension or (2) the mentor policy class has finite VC dimension and the input sequence is σ -smooth. Our algorithm can handle a multi-dimensional unbounded input space and does not need detailed access to the feature embedding, instead using two simple operations. It does need to know the mentor policy class, as is standard in online learning. We initially prove the theorem for binary actions (Theorem 5.2) and then reduce learning with many actions to the binary action case (Theorem C.1).

Along the way, we prove that the same subconstant bound holds for standard additive regret (Theorem 5.3). Essentially, our techniques are equally effective for maximizing the sum of payoffs and the product of payoffs. We emphasize the multiplicative objective due to our motivation of avoiding catastrophe, but our subconstant additive regret bound may also be of value. In summary, the combination of a mentor and local generalization allows us to reduce the regret by an entire factor of T, resulting in subconstant regret (multiplicative or additive) instead of the typical sublinear regret.

The rest of the paper is structured as follows. Section 2 discusses related work. Section 3 formally defines our model. Section 4 presents our negative result for general mentor policies. Section 5 presents our positive result for simple mentor policy classes. Proofs are deferred to the appendix.

145

2 RELATED WORK

146 147 148

149

150

Learning with irreversible costs. Despite the ubiquity of irreparable/irreversible costs in the real world, theoretical work on this topic remains limited. This may be due to the fundamental modeling question of how the agent should learn about novel inputs or actions without actually trying them.

151 The most common approach is to allow the agent to ask for help. This alone is insufficient, however: 152 the agent must have some way to decide when to ask for help. A popular solution is to perform Bayesian inference on the world model, but this has two tricky requirements: (1) a prior distribution 153 which contains the true world model (or an approximation), and (2) an environment where computing 154 (or approximating) the posterior is tractable. A finite set of possible environments satisfies both 155 conditions, but is unrealistic in many real-world scenarios. In contrast, our algorithm can handle 156 an uncountable policy class and a continuous unbounded input space, which is crucial for many 157 real-world scenarios in which one never sees the exact same input twice. 158

Bayesian inference combined with asking for help is studied by Cohen et al. (2021); Cohen & Hutter

(2020); Kosoy (2019); Mindermann et al. (2018). We also mention Hadfield-Menell et al. (2017);

161 Moldovan & Abbeel (2012); Turchetta et al. (2016), which utilize Bayesian inference in the context of safe (online) reinforcement learning without asking for help (and without regret bounds).

We are only aware of two papers which theoretically address irreversibility without Bayesian inference: Grinsztajn et al. (2021) and Maillard et al. (2019). The former proposes to sample trajectories and learn reversibility based on temporal consistency between states: intuitively, if s_1 always precedes s_2 , we can infer that s_1 is unreachable from s_2 . Although the paper theoretically grounds this intuition, there is no formal regret guarantee. The latter presents an algorithm which asks for help in the form of rollouts from the current state. However, the regret bound and number of rollouts are both linear in the worst case, due to the dependence on the γ^* parameter which roughly captures how bad an irreversible action can be. In contrast, our algorithm achieves good regret even when actions are maximally bad.

To our knowledge, we are the first to provide an algorithm which formally guarantees avoidance of
 catastrophe (with high probability) without Bayesian inference. We are also not aware of prior results
 comparable to our negative result, including in the Bayesian regime.

173 Constrained Markov Decision Processes (CMDPs). CMDPs (Altman, 2021; Puterman, 2014) 174 require the agent to maximize reward while also satisfying safety constraints. The two most relevant 175 papers are Liu et al. (2021) and Stradi et al. (2024), both of which provide algorithms guaranteed 176 to satisfy initially unknown safety constraints with high probability on every time step. However, 177 both papers assume that the agent knows a fully safe policy upfront. In contrast, the agent in our 178 setting has no prior knowledge. In this sense, our work complements theirs: our goal is essentially 179 to learn the baseline safe policy that their algorithms require. One can also view our problem as the "pessimistic" model and their problem as the "optimistic" model, with some applications better 180 captured by our model while other applications are better captured by theirs. 181

182 Online learning. See Cesa-Bianchi & Lugosi (2006) and Chapter 21 of Shalev-Shwartz & Ben-David 183 (2014) for introductions to online learning. A classical result states that sublinear regret is possible 184 iff the hypothesis class has finite Littlestone dimension (Littlestone, 1988). However, even some 185 simple hypothesis classes have infinite Littlestone dimension, such as the class of thresholds on [0, 1](Example 21.4 in Shalev-Shwartz & Ben-David (2014)). Recently, Haghtalab et al. (2024) showed that if the adversary only chooses a distribution over inputs rather than the precise input, only the 187 weaker assumption of finite VC dimension (Vapnik & Chervonenkis, 1971) is needed for sublinear 188 regret. Specifically, they assume that each input is sampled from a distribution whose concentration is 189 upper bounded by $\frac{1}{2}$ times the uniform distribution. This framework is known as *smoothed analysis*, 190 originally proposed by Spielman & Teng (2004). 191

192Multiplicative objectives. Although online learning traditionally studies the sum of payoffs, there is193some work on maximizing the product of payoffs, or equivalently the sum of logarithms (Chapter 9194of Cesa-Bianchi et al. (2017)). However, these regret bounds are still sublinear in T, in comparison195to our subconstant regret bounds. Also, that work still assumes that payoffs are observed on every196time step, while our agent only receives feedback in response to queries (Figure 1).

Barman et al. (2023) recently provided regret bounds for a multiplicative objective in a multi-armed
bandit problem, but their objective is the geometric mean of payoffs instead of the product. Interpreted
in our context, their regret bounds imply that the *average* chance of catastrophe goes to zero, while
we guarantee that the *total* chance of catastrophe goes to zero. This distinction is closed related to the
difference between subconstant and sublinear regret discussed in Section 1.3.

Active learning and imitation learning. Our assumption that the agent only receives feedback in response to queries falls under the umbrella of active learning (Hanneke, 2014). This contrasts with passive learning, where the agent receives feedback automatically. Although ideas from active learning could be useful in our domain, we are not aware of any results from that literature which account for irreversible costs. The process of the agent learning from a mentor is also reminiscent of imitation learning (Osa et al., 2018), but we are not aware of any relevant technical implications.

208 209

210

3 MODEL

Inputs. Let \mathbb{N} refer to the set of strictly positive integers and let $T \in \mathbb{N}$ be the time horizon. Let $\mathcal{X} \subseteq \mathbb{R}^n$ be the input space⁵ and let $\mathbf{x} = (x_1, x_2, \dots x_T) \in \mathcal{X}^T$ be the sequence of inputs. In the adversarial setting, each x_t can have arbitrary dependence on the events of prior time steps. In the smoothed setting, the adversary only chooses the distribution x_t from which x_t is sampled. Formally,

²¹⁵

⁵One could also allow a generic metric space; our assumption of $\mathcal{X} \subseteq \mathbb{R}^n$ is only for convenience.

242

254 255 256

260

261

262

263 264

265

266

267

268

269

a distribution \mathcal{D} over \mathcal{X} is σ -smooth if for any $X \subseteq \mathcal{X}$, $\mathcal{D}(X) \leq \frac{1}{\sigma}U(X)$. (In the smoothed setting, we assume that \mathcal{X} supports a uniform distribution $U^{.6}$) If each x_t is sampled from a σ -smooth \mathcal{D}_t , we say that **x** is σ -smooth. The sequence $\mathcal{D} = \mathcal{D}_1, \ldots, \mathcal{D}_T$ can still be adaptive, i.e., the choice of \mathcal{D}_t can depend on the events of prior time steps.

Actions. Let \mathcal{Y} be a finite set of actions. There also exists a special action \tilde{y} which corresponds to querying the mentor. For $k \in \mathbb{N}$, let $[k] = \{1, 2, \dots, k\}$. On each time step $t \in [T]$, the agent must select an action $y_t \in \mathcal{Y} \cup \{\tilde{y}\}$, which generates payoff $\mu(x_t, y_t) \in [0, 1]$. Unless otherwise noted, all expectations are over the agent's randomization (if any) and the randomization in x (if any).

Asking for help. The mentor is endowed with a (not necessarily optimal) policy $\pi^m : \mathcal{X} \to \mathcal{Y}$. When action \tilde{y} is chosen, the mentor informs the agent of the action $\pi^m(x_t)$ and the agent obtains payoff $\mu(x_t, \pi^m(x_t))$. For brevity, let $\mu^m(x) = \mu(x, \pi^m(x))$. The agent never observes payoffs: the only way to learn about μ is by querying the mentor.

We would like an algorithm which becomes "self-sufficient" over time: the rate of querying the mentor should go to 0 as $T \to \infty$, or equivalently, the cumulative number of queries should be sublinear in T. Formally, let $Q_T(\mu, \pi^m) = \{t \in [T] : y_t = \tilde{y}\}$ be the random variable denoting the set of time steps with queries. Then we say that the (expected) number of queries is sublinear in T if $\sup_{\mu,\pi^m} \mathbb{E}[|Q_T(\mu, \pi^m)|] \in o(T)$. In other words, there must exist $g : \mathbb{N} \to \mathbb{N}$ such that $g(T) \in o(T)$ and $\sup_{\mu,\pi^m} \mathbb{E}[|Q_T(\mu, \pi^m)|] \leq g(T)$.⁷ For brevity, we will usually write $Q_T = Q_T(\mu, \pi^m)$.

Local generalization. We assume that the mentor policy permits "local generalization". Informally, if the agent is given an input x, taking the mentor action for a similar input x' is almost as good as taking the mentor action for x. Formally, we assume there exists L > 0 such that for all $x, x' \in \mathcal{X}$, $|\mu^m(x) - \mu(x, \pi^m(x'))| \le L||x - x'||$, where $|| \cdot ||$ denotes Euclidean distance. This represents the ability to transfer knowledge between similar inputs:

$$|\underbrace{\mu(x,\pi^m(x))}_{\text{Taking the "right" action}} - \underbrace{\mu(x,\pi^m(x'))}_{\text{Using what you learned in }x'}| \le \underbrace{L||x-x'|}_{\text{Similarity between }x}$$

and x'

Borrowing knowledge from similar experiences seems fundamental to learning and is well-understood
in the psychology literature (Esser et al., 2023) and education literature (Hajian, 2019).

Crucially, our input space can be any feature embedding of the agent's situation, not just its physical positioning. Our algorithms will not require knowledge of the feature embedding and do not need to know *L*, so it suffices that there exists *some* feature embedding which satisfies local generalization.
The agent does not even need to know which embedding it is. Finally, local generalization implies the more familiar Lipschitz continuity for an optimal mentor (Proposition E.1).

Multiplicative objective and regret. If $\mu(x_t, y_t) \in [0, 1]$ is the chance of avoiding catastrophe on time step t (conditioned on no prior catastrophe), then $\prod_{t=1}^{T} \mu(x_t, y_t)$ is the agent's overall chance of avoiding catastrophe.⁸ For a fixed x and agent actions $\mathbf{y} = (y_1, \dots, y_T)$, the agent's *regret* is

$$R_T(\mathbf{x}, \mathbf{y}, \mu, \pi^m) = \prod_{t=1}^T \mu^m(x_t) - \prod_{t=1}^T \mu(x_t, y_t)$$

We will usually write $R_T = R_T(\mathbf{x}, \mathbf{y}, \mu, \pi^m)$ for brevity. We will study the expected regret over any randomness in \mathbf{x} and/or \mathbf{y} . We desire subconstant worst-case regret: the total (not average) expected regret should go to 0 for any μ and π^m . Formally, we want $\lim_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[R_T] = 0$.

The value of a bound on $\mathbb{E}[R_T]$ depends on the quality of the mentor. In particular, subconstant regret becomes trivial if $\lim_{T\to\infty} \mathbb{E}\left[\prod_{t=1}^T \mu^m(x_t)\right] = 0$. However, we think that high-stakes AI applications should ensure the presence of a mentor who is almost always safe, i.e., $\mathbb{E}\left[\prod_{t=1}^T \mu^m(x_t)\right] \approx 1$.

⁶For example, \mathcal{X} having finite Lebesgue measure is sufficient. Note that this does not imply boundedness. Alternatively, σ -smoothness can be defined with respect to a different distribution, as long as the Radon-Nikodym derivative is uniformly bounded; see Definition 1 of Block et al. (2022).

⁷One could instead consider the worst-case number of queries, but this distinction does not affect whether subconstant regret is achievable (Proposition E.2).

⁸Conditioning on no prior catastrophe means we do not need to assume that these probabilities are independent (and if catastrophe has already occurred, this time step does not matter). This is due to the chain rule of probability.

If no such mentor exists for some application, perhaps it is better to avoid the application altogether.
Also, our regret bounds include rates of convergence, so even if the mentor policy is guaranteed to
eventually cause catastrophe, we can still bound how quickly the agent becomes unsafe.

VC and Littlestone dimensions. VC dimension (Vapnik & Chervonenkis, 1971) and Littlestone dimension (Littlestone, 1988) are standard measures of learning difficulty which capture the ability of a hypothesis class (in our case, a policy class) to realize arbitrary combinations of labels (in our case, actions). We omit the precise dimensions since we only utilize these concepts via existing results. See Shalev-Shwartz & Ben-David (2014) for a comprehensive overview.

Misc. The diameter of a set $X \subseteq \mathcal{X}$ is defined by $\operatorname{diam}(X) = \max_{x,x' \in X} ||x - x'||$. All logarithms and exponents are base e unless otherwise noted.

280 281 282

283

287

288

279

4 AVOIDING CATASTROPHE IS IMPOSSIBLE IN GENERAL

We begin by showing that in general, any algorithm with sublinear mentor queries has arbitrary poor regret in the worst-case, even when inputs are i.i.d. on [0, 1]. The result also holds even if the algorithm knows L and x ahead of time.

Theorem 4.1. The worst-case expected regret of any algorithm with sublinear queries goes to 1 as T goes to infinity. Formally, $\lim_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[R_T] = 1$.

289 290

4.1 INTUITION

We partition \mathcal{X} into equally-sized sections that are "independent" in the sense that querying an input in section *i* gives you no information about section *j*. The number of sections is determined by a function $f : \mathbb{N} \to \mathbb{N}$ that we will choose. If $|Q_T| \in o(f(T))$, most of these sections will never contain a query. When the agent sees an input in a section not containing a query, it essentially has to guess, meaning it will be wrong a constant fraction of the time. Figure 2 fleshes out this idea.

Picking f(T). A natural idea is to try f(T) = T, but this doesn't quite work: even if the agent chooses wrong on every time step, the minimum payoff is still at least $1 - \frac{L}{2T}$, and $\lim_{T\to\infty} \prod_{t=1}^{T} \left(1 - \frac{L}{2T}\right) = \lim_{T\to\infty} \left(1 - \frac{L}{2T}\right)^T = e^{-L/2}$. In order for the regret to approach 1, we need f(T) to be asymptotically between $|Q_T|$ and T (such f must exist since $|Q_T| \leq g(T) \in o(T)$). This leads to the following bound: $\prod_{t=1}^{T} \mu(x_t, y_t) \leq \left(1 - \frac{L}{\Theta(f(T))}\right)^{\Theta(T)}$. When $f(T) \in o(T)$, the right hand side converges to 0, while $\prod_{t=1}^{T} \mu^m(x_t) = 1$. In words, the agent is nearly guaranteed to cause catastrophe, despite the existence of a policy which is guaranteed to avoid catastrophe.

VC dimension. The class of mentor policies induced by our construction has VC dimension f(T); considered over all possible values of T, this implies infinite VC (and Littlestone) dimension. This is necessary given our positive results in Section 5.

308 309

4.2 FORMAL DEFINITION OF CONSTRUCTION

Let $\mathcal{X} = [0, 1]$ and $\mathcal{D}_t = U$ for each $t \in [T]$. Assume that $L \leq 1$; this will simplify the math and only makes the problem easier for the agent. We define a family of payoff functions parameterized by a function $f : \mathbb{N} \to \mathbb{N}$ and a bit string $\mathbf{a} = (a_1, a_2, \dots, a_{f(T)}) \in \{0, 1\}^{f(T)}$. The bit a_j will denote the optimal action in section j. Note that $f(T) \geq 1$ and since we defined \mathbb{N} to exclude 0.

For each $j \in [f(T)]$, we refer to $X_j = \left[\frac{j-1}{f(T)}, \frac{j}{f(T)}\right]$ as the *j*th section. Let $m_j = \frac{j-0.5}{f(T)}$ be the midpoint of X_j . Assume that each x_t belongs to exactly one X_j (this happens with probability 1, so this assumption does affect the expected regret). Let j(x) denote the index of the section containing input x. Then $\mu_{f,\mathbf{a}}$ is defined by

319 320

321 322 $\mu_{f,\mathbf{a}}(x,y) = \begin{cases} 1 & \text{if } y = a_{j(x)} \\ 1 - L\left(\frac{1}{2f(T)} - |m_{j(x)} - x|\right) & \text{if } y \neq a_{j(x)} \end{cases}$

Let π^m be any policy which is optimal for $\mu_{f,\mathbf{a}}$. Note that there is a unique optimal action for each x_t , since each x_t belongs to exactly one X_j ; formally, $\pi^m(x_t) = a_{j(x_t)}$.

Figure 2: An illustration of the construction we use to prove Theorem 4.1 (not to scale). The horizontal axis indicates the input $x \in [0, 1]$ and the vertical axis indicates the payoff $\mu(x, y) \in [0, 1]$. The solid line represents $\mu(x, 0)$ and the dotted line represents $\mu(x, 1)$. In each section, one of the actions has the optimal payoff of 1, and the other action has the worst possible payoff allowed by L, reaching a minimum of $1 - \frac{L}{2f(T)}$. Crucially, both actions result in a payoff of 1 at the boundaries between sections: this allows us to "reset" for the next section. As a result, we can freely toggle the optimal action for each section independently.

For any $\mathbf{a} \in \{0, 1\}^{f(T)}$, $\mu_{f,\mathbf{a}}$ is piecewise linear (trivially) and continuous (because both actions have payoff 1 on the boundary between sections). Since the slope of each piece is in $\{-L, 0, L\}$, $\mu_{f,\mathbf{a}}$ is Lipschitz continuous. Thus by Proposition E.1, π^m satisfies local generalization.

5 AVOIDING CATASTROPHE ASSUMING FINITE VC OR LITTLESTONE DIMENSION

Theorem 4.1 shows that avoiding catastrophe is impossible in general, which is also true in online learning. What if we restrict ourselves to settings where standard online learning is possible? Specifically, we assume that π^m belongs to a policy class Π where either (1) Π has finite VC dimension *d* and x is σ -smooth or (2) Π has finite Littlestone dimension *d*.⁹

This section presents a simple algorithm which guarantees subconstant regret and sublinear queries under either of those assumptions. Our algorithm needs to know Π , as is standard in online learning. The algorithm does not need to know σ (in the smooth case) or *L*, and can handle an unbounded input space (the number of queries simply scales with the maximum distance between observed inputs).

For simplicity, we initially prove our result for $\mathcal{Y} = \{0, 1\}$. Appendix C extends our result to many actions using the standard "one versus rest" reduction.¹⁰

365 5.1 INTUITION BEHIND THE ALGORITHM

Algorithm 1 has two simple components: (1) run a modified version of the Hedge algorithm for online learning, but (2) ask for help for unfamiliar inputs (specifically, when the current input is very different from any queried input with the same action under the proposed policy). Hedge ensures that the number of time steps where the agent's action doesn't match the mentor's is small, and asking for help for unfamiliar inputs ensures that when we do make a mistake, the cost isn't too high. This algorithmic structure seems quite natural: mostly follow a baseline strategy, but ask for help when out-of-distribution.

Simple operations. The algorithm does not require detailed access to the input embedding, instead relying on two simple operations: evaluating a policy on a particular input, and computing a nearest

373

340

341

342

343

344 345 346

347

348 349 350

351

352

⁹Recall from Section 1.3 that standard online learning becomes tractable under either of these assumptions. ¹⁰For each action y, we learn a binary classifier which predicts whether $\pi^m(x) = y$. If every binary classifier

is correct, we can correctly determine $\pi^m(x)$. See, e.g., Chapter 29 of Shalev-Shwartz & Ben-David (2014).

Alg	orithm 1 successfully avoids catastrophe assuming finite VC	or Littlestone dimension.
1:	function AvoidCatastrophe($T \in \mathbb{N}, \varepsilon \in \mathbb{R}_{>0}, d \in \mathbb{N}, p$	olicy class II)
2:	if Π has VC dimension d then	
3:	$\tilde{\Pi} \leftarrow$ any smooth ε -cover of Π of size at most $(41/\varepsilon)$	^d \triangleright See Definition 5.4
4:	else	
5:	$\Pi \leftarrow$ any adversarial cover of size at most $(eT/d)^d$	▷ See Definition 5.5
6:	$X \leftarrow \emptyset$	
7:	$w(\pi) \leftarrow 1 \text{ for all } \pi \in \tilde{\Pi}$	
8:	$p \leftarrow 1/\sqrt{\varepsilon T}$	
9:	$\eta \leftarrow \max\left(\sqrt{\frac{p \log \tilde{\Pi} }{2T}}, \frac{p^2}{\sqrt{2}}\right)$	
10:	for t from 1 to T do \triangleright Run one step	of Hedge, which selects policy π_t
11:	hedgeQuery \leftarrow true with probability p else fall	se i j i
12:	if hedgeQuery then	
13:	Query mentor and observe $\pi^m(x_t)$	
14:	$\ell(t,\pi) \leftarrow 1(\pi(x_t) \neq \pi^m(x_t))$ for all $\pi \in \tilde{\Pi}$	
15:	$\ell^* \leftarrow \min_{\pi \in \tilde{\Pi}} \ell(t,\pi)$	
16:	$w(\pi) \leftarrow w(\pi) \cdot \exp(-\eta(\ell(t,\pi) - \ell^*))$ for all $\pi \in$	Π
17:	$\pi_t \leftarrow \arg\min_{\pi \in \tilde{\Pi}} \ell(t,\pi)$	
18:	else	
19:	$P(\pi) \leftarrow w(\pi) / \sum_{\pi' \in \Pi} w(\pi')$ for all $\pi \in \Pi$	
20:	Sample $\pi_t \sim P$	
21:	if $\min_{(x,y)\in X:y=\pi_t(x_t)} x_t - x > \varepsilon^{1/n}$ then \triangleright	Ask for help if out-of-distribution
22:	Query mentor and observe $\pi^m(x_t)$	
23:	$X \leftarrow X \cup \{(x_t, \pi^m(x_t))\}$	
24:	else ⊳ Otherw	vise, follow Hedge's chosen policy
25:	Take action $\pi_t(x_t)$	

neighbor distance. The former seems necessary for any algorithm. The latter could be modeled as an
 out-of-distribution detector score, for which many methods are available (see e.g., Yang et al. (2024)).

413 414 415 416 One other modification is necessary. In standard online learning, losses are observed on every time step, but our agent only receives feedback in response to queries. To handle this, we modify Hedge to only perform updates on time steps with queries and to issue a query with probability p on each time step. Continuing our lucky streak, Russo et al. (2024) analyzes exactly this modification of Hedge.

417 418 We prove the following theorem parametrized by ε :

Theorem 5.1. Let $\mathcal{Y} = \{0, 1\}$. Assume $\pi^m \in \Pi$ where either (1) Π has finite VC dimension d, **x** is σ -smooth, and $\varepsilon T \log T > 12\sigma d \log(4e^2/\varepsilon)$ or (2) Π has finite Littlestone dimension d. Then for any $T \in \mathbb{N}$ and $\varepsilon > 0$, Algorithm 1 satisfies

422

425

$$\mathbb{E}[R_T] \in O\left(\frac{dL}{\sigma} T \varepsilon^{1+1/n} \log(1/\varepsilon) \log T\right)$$
$$\mathbb{E}[|Q_T|] \in O\left(\sqrt{\frac{T}{\varepsilon}} + \frac{d}{\sigma} T \varepsilon \log(1/\varepsilon) \log T + \frac{\operatorname{diam}(\mathbf{x})^n}{\varepsilon}\right)$$

426 427 428

429

430

431

In Case 1, the expectation is over the randomness of both x and the algorithm, while in Case 2, the expectation is over only the randomness of the algorithm. Also, R_T and Q_T clearly have no dependence on σ in Case 2, but we include σ anyway to avoid writing two separate bounds.

¹¹See Chapter 5 of Slivkins et al. (2019) and Chapter 21 of Shalev-Shwartz & Ben-David (2014) for modern introductions to Hedge.

To obtain subconstant regret and sublinear queries, we can choose $\varepsilon = T^{\frac{-2n}{2n+1}}$. This also satisfies the requirement of $\varepsilon T \log T > 12\sigma d \log(4e^2/\varepsilon)$ for large enough T.

Theorem 5.2. Let $\mathcal{Y} = \{0, 1\}$. Assume $\pi^m \in \Pi$ where either (1) Π has finite VC dimension d and **x** is σ -smooth or (2) Π has finite Littlestone dimension d. Then for any $T \in \mathbb{N}$, Algorithm 1 with $\varepsilon = T^{\frac{-2n}{2n+1}}$ satisfies

$$\mathbb{E}[R_T] \in O\left(\frac{dL}{\sigma}T^{\frac{-1}{2n+1}}\log T\right)$$
$$\mathbb{E}[|Q_T|] \in O\left(T^{\frac{4n+1}{4n+2}}\left(\frac{d}{\sigma}\log T + \operatorname{diam}(\mathbf{x})^n\right)\right)$$

Although our focus is the product of payoffs, Algorithm 1 also guarantees subconstant additive regret: **Theorem 5.3.** Let $\mathcal{Y} = \{0, 1\}$. Assume $\pi^m \in \Pi$ where either (1) Π has finite VC dimension d and **x** is σ -smooth or (2) Π has finite Littlestone dimension d. Then for any $T \in \mathbb{N}$, Algorithm 1 with $\varepsilon = T^{\frac{-2n}{2n+1}}$ satisfies

$$\mathbb{E}\left[\sum_{t=1}^{T} \mu^m(x_t) - \sum_{t=1}^{T} \mu(x_t, y_t)\right] \in O\left(\frac{dL}{\sigma} T^{\frac{-1}{2n+1}} \log T\right)$$

5.2 PROOF SKETCH

435

436

444

445

446

453

The formal proof of Theorem 5.1 can be found in Appendix B, but we outline the key elements here.
The regret analysis consists of two ingredients: analyzing the Hedge component, and analyzing the
"ask for help when out-of-distrubtion" component. The former will bound the number of mistakes
made by the algorithm (i.e., the number of time steps where the agent's action doesn't match the
mentor's), and the latter will bound the cost of any single mistake. We must also carefully show that
the latter does not result in excessively many queries, which we do via a novel packing argument.

460 We begin by formalizing two notion of approximating a policy class:

461 **Definition 5.4.** Let U be the uniform distribution over \mathcal{X} . For $\varepsilon > 0$, a policy class $\tilde{\Pi}$ is a *smooth* ε -cover of a policy class Π is for every $\pi \in \Pi$, there exists $\tilde{\pi} \in \tilde{\Pi}$ such that $\Pr_{x \sim U}[\pi(x) \neq \tilde{\pi}(x)] \leq \varepsilon$.

Definition 5.5. A policy class Π is an *adversarial cover* of a policy class Π is for every $\mathbf{x} \in \mathcal{X}^T$ and $\pi \in \Pi$, there exists $\tilde{\pi} \in \Pi$ such that $\pi(x_t) = \tilde{\pi}(x_t)$ for all $t \in [T]$.

466 467 The existence of small covers is crucial:

Lemma 5.1 (Lemma 7.3.2 in Haghtalab (2018)¹²). For all $\varepsilon > 0$, any policy class of VC dimension d admits a smooth ε -cover of size at most $(41/\varepsilon)^d$.

470 Lemma 5.2 (Lemmas 21.13 and A.5 in Shalev-Shwartz & Ben-David (2014)). Any policy class of 471 Littlestone dimension d admits an adversarial cover of size at most $(eT/d)^d$.

472 473 An adversarial cover is a perfect cover by definition. The following lemma establishes that a smooth ε -cover is a good approximation for any sequence of σ -smooth distributions.

Lemma 5.3 (Equation 2 and Lemma 3.3 in Haghtalab et al. (2024)). Let $\tilde{\Pi}$ be a finite smooth ε -cover of Π and let $\mathcal{D} = \mathcal{D}_1, \dots, \mathcal{D}_T$ be a sequence of σ -smooth distributions. If $\varepsilon T \log T > 12\sigma d \log(4e^2/\varepsilon)$, then $\mathbb{E}_{\mathbf{x}\sim\mathcal{D}} \left[\sup_{\mathbf{x}\in\Pi} \min_{\tilde{\pi}\in\tilde{\Pi}} \sum_{t=1}^T \mathbf{1}(\pi(x_t) \neq \tilde{\pi}(x_t)) \right] \in O\left(\frac{1}{\sigma}T\varepsilon \log T\sqrt{d \log(1/\varepsilon)}\right).$

We will run a variant of Hedge on $\tilde{\Pi}$. The vanilla Hedge algorithm operates in the standard online learning model where on each time step, the agent selects a policy (or more generally, a hypothesis), and observes the *loss* of every policy. In general the loss function can depend arbitrarily on the time step, the policy, and prior events, but we will only use the indicator loss function $\ell(t, \pi) = \mathbf{1}(\pi(x_t) \neq \pi^m(x_t))$. Crucially, whenever we query and learn $\pi^m(x_t)$, we can compute $\ell(t, \pi)$ for every $\pi \in \tilde{\Pi}$.

¹²See also Haussler & Long (1995) or Lemma 13.6 in Boucheron et al. (2013) for variants which are less convenient for our purposes.

We cannot afford to query on every time step, however. Recently, Russo et al. (2024) analyzed a variant of Hedge where losses are observed only in response to queries, which they call "label-efficient feedback". They proved a regret bound when a query is issued on each time step with fixed probability *p*. Lemma 5.4 restates their result in a form that is more convenient for us (see Appendix B for details). Although their result is stated for non-adaptive adversaries, we explain in Appendix B.3 how their argument easily generalizes to adaptive adversaries. Full pseudocode for HEDGEWITHQUERIES can also be found in the appendix (Algorithm 2).

Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)). Assume Π is finite. Then for any loss function $\ell : [T] \times \Pi \to [0, 1]$ and query probability p, HEDGEWITHQUERIES enjoys the regret bound

$$\sum_{t=1}^{T} \mathbb{E}[\ell(t,\pi_t)] - \min_{\tilde{\pi} \in \tilde{\Pi}} \sum_{t=1}^{T} \ell(t,\pi) \le \frac{2\log |\tilde{\Pi}|}{p^2}$$

where π_t is the policy chosen at time t and the expectation is over the randomness of the algorithm.

502 We apply Lemma 5.4 with $\ell(t,\pi) = \mathbf{1}(\pi(x_t) \neq \pi^m(x_t))$ and combine this with Lemmas 5.1 503 and 5.3 (in the σ -smooth case) and with Lemma 5.2 (in the adversarial case). This yields a 504 $O\left(\frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T\right)$ bound on the number of mistakes made by Algorithm 1 (Lemma B.1).

505 The other key ingredient of the proof is analyzing the "ask for help when out-of-distribution" compo-506 nent. Combined with the local generalization assumption, this allows us to fairly easily bound the cost of a single mistake (Lemma B.2). The trickier part is bounding the number of resulting queries. 507 It is tempting to claim that the inputs queried in the out-of-distribution case must all be separated by 508 at least $\varepsilon^{1/n}$ and thus form an $\varepsilon^{1/n}$ -packing, but this is actually not true. Instead, we provide a novel 509 method for bounding the number of data points (i.e., queries) needed to cover a set with respect to 510 the realized actions of the algorithm (Lemma B.7). This is in contrast to vanilla packing arguments 511 which consider all data points in aggregate. Our method may be useful in other contexts where a 512 more refined packing argument is needed. 513

514 515

516 517

493

494

500 501

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a model of avoiding catastrophe in online learning. We showed that achieving subconstant regret in our problem (with the help of a mentor and local generalization) is no harder than achieving sublinear regret in standard online learning.

There remain some technical questions within this paper's model. One question is whether the time complexity of Algorithm 1 be improved, which currently stands at $\Omega(|\tilde{\Pi}| \cdot T)$ plus the time to compute the ε -cover. Also, we have not resolved whether our problem is tractable for finite VC dimension and fully adversarial inputs (although Appendix D shows that the problem is tractable for at least some classes with finite VC but infinite Littlestone dimension).

We are also interested in alternatives to the local generalization assumption. We should expect some assumption to be necessary: if not, the payoff function $\mu(x, y) = \mathbf{1}(\pi^m(x) = y)$ means the agent essentially has to make zero mistakes, which turns out to be impossible even for σ -smooth x and finite VC dimension (Theorem E.3). One possible alternative is Bayesian inference. We intentionally avoided Bayesian approaches in this paper due to tractability concerns, but it seems premature to abandon those ideas entirely.

Finally, we are excited to apply the ideas in this paper to Markov Decision Processes (MDPs):
specifically, MDPs where some actions are irreversible ("non-communicating") and the agent only
gets one attempt ("single-episode"). In such MDPs, the agent must not only avoid catastrophe but also
obtain high reward. As discussed in Section 2, very little theory exists for RL in non-communicating
single-episode MDPs. Can an agent learn near-optimal behavior in high-stakes environments while
becoming self-sufficient over time? Formally, we pose the following open problem:

Is there an algorithm for non-communicating single-episode undiscounted MDPs which ensures that both the regret and the number of mentor queries are sublinear in T?

540	REFERENCES
541	

568

584

585

- Stanislav Abaimov and Maurizio Martellini. Artificial Intelligence in Autonomous Weapon
 Systems, pp. 141–177. Springer International Publishing, Cham, 2020. ISBN 978-3-030-28285-1. doi: 10.1007/978-3-030-28285-1_8. URL https://doi.org/10.1007/
 978-3-030-28285-1_8.
- Eitan Altman. *Constrained Markov decision processes*. Routledge, 2021.
- Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax Regret Bounds for Reinforcement Learning. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 263–272. PMLR, July 2017. URL https://proceedings.mlr.press/v70/azar17a. html. ISSN: 2640-3498.
- Siddharth Barman, Arindam Khan, Arnab Maiti, and Ayush Sawarni. Fairness and welfare quantification for regret in multi-armed bandits. In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence*, volume 37 of *AAAI'23/IAAI'23/EAAI'23*, pp. 6762–6769. AAAI Press, February 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i6.25829. URL https://doi.org/10.1609/aaai.v37i6. 25829.
- Michael Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo, July 2018. URL http://arxiv.org/abs/1701.02434. arXiv:1701.02434 [stat].
- Adam Block, Yuval Dagan, Noah Golowich, and Alexander Rakhlin. Smoothed online learning is as
 easy as statistical learning. In *Conference on Learning Theory*, pp. 1716–1786. PMLR, 2022.
- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 02 2013. ISBN 9780199535255.
 doi: 10.1093/acprof:oso/9780199535255.001.0001. URL https://doi.org/10.1093/acprof:oso/9780199535255.001.0001.
- 569 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university press, 2006.
- 571 Nicolò Cesa-Bianchi, Pierre Gaillard, Claudio Gentile, and Sébastien Gerchinovitz. Algorithmic
 572 Chaining and the Role of Partial Feedback in Online Nonparametric Learning. In *Proceedings* 573 of the 2017 Conference on Learning Theory, pp. 465–481. PMLR, June 2017. URL https:
 574 //proceedings.mlr.press/v65/cesa-bianchi17a.html. ISSN: 2640-3498.
- 575
 576
 576
 576
 577
 578
 Michael K. Cohen and Marcus Hutter. Pessimism About Unknown Unknowns Inspires Conservatism. In Proceedings of Thirty Third Conference on Learning Theory, pp. 1344–1373. PMLR, July 2020. URL https://proceedings.mlr.press/v125/cohen20a.html. ISSN: 2640-3498.
- 579 Michael K. Cohen, Elliot Catt, and Marcus Hutter. Curiosity Killed or Incapacitated the Cat and the Asymptotically Optimal Agent. *IEEE Journal on Selected Areas in Information Theory*, 2 (2):665–677, June 2021. ISSN 2641-8770. doi: 10.1109/JSAIT.2021.3079722. URL https: //ieeexplore.ieee.org/document/9431093. Conference Name: IEEE Journal on Selected Areas in Information Theory.
 - Andrew Critch and Stuart Russell. Tasra: a taxonomy and analysis of societal-scale risks from ai. *arXiv preprint arXiv:2306.06924*, 2023.
 - Ezio Di Nucci. Should we be afraid of medical ai? *Journal of Medical Ethics*, 45(8):556–558, 2019.
- Sarah Esser, Hilde Haider, Clarissa Lustig, Takumi Tanaka, and Kanji Tanaka. Action-effect knowledge transfers to similar effect stimuli. *Psychological Research*, 87(7):2249–2258, October 2023. ISSN 1430-2772. doi: 10.1007/s00426-023-01800-4. URL https://doi.org/10.1007/s00426-023-01800-4.
- 593 Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of computer and system sciences*, 55(1):119–139, 1997.

594 595	Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, philippe preux, and Matthieu Geist. There Is No Turning Back: A Self-Supervised Approach for Reversibility-Aware Reinforcement Learning.
596	In Advances in Neural Information Processing Systems, volume 34, pp. 1898–1911. Curran As-
5097	sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
590	Ueysaeeb54ac1612b9eb4e48a269814C-Abstract.ntml.
600	Blessing Guembe, Ambrose Azeta, Sanjay Misra, Victor Chukwudi Osamor, Luis Fernandez-Sanz,
601	and Vera Pospelova. The Emerging Threat of Ai-driven Cyber Attacks: A Review. Applied Artificial
602	Intelligence, 36(1), December 2022. ISSN 0883-9514, 1087-6545. doi: 10.1080/08839514.2022.
603	2037254. URL https://www.tandfonline.com/doi/full/10.1080/08839514.
604	2022.2037254.
605	Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca D. Dragan, Inverse
606	reward design. In Proceedings of the 31st International Conference on Neural Information
607	Processing Systems, NIPS'17, pp. 6768-6777, Red Hook, NY, USA, December 2017. Curran
608	Associates Inc. ISBN 978-1-5108-6096-4.
609	
610	Nika Haghtalab. Foundation of Machine Learning, by the People, for the People. PhD thesis, Microsoft Descarab 2018
611	Microsoft Research, 2018.
612	Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis with adaptive adver-
613	saries. Journal of the ACM, 71(3):1–34, 2024.
614	
615	Sniva Hajian. Iransfer of Learning and leaching: A Review of Iransfer Theories and Effective
616	eric ed gov/2id=EJ1217940 Publisher: International Academic Forum FRIC Number:
617	EJ1217940.
618	
619	Steve Hanneke. Theory of disagreement-based active learning. 7(2–3):131–309, j=Jun 2014. ISSN
621	1935-8237. doi: 10.1561/2200000037. URL https://doi.org/10.1561/2200000037.
622	David Haussler and Philip M Long A generalization of Sauer's lemma Journal of Com-
623	binatorial Theory, Series A, 71(2):219–240, August 1995, ISSN 0097-3165, doi: 10.
624	1016/0097-3165(95)90001-2. URL https://www.sciencedirect.com/science/
625	article/pii/0097316595900012.
626	Dan Hendrycks Mantas Mazeika and Thomas Woodside. An overview of catastrophic ai risks 2023
627 628	URL https://arxiv.org/abs/2306.12001.
629	Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal Regret Bounds for Reinforcement
630	Learning. Journal of Machine Learning Research, 11(51):1563–1600, 2010. ISSN 1533-7928.
631	UKL http://jmir.org/papers/vii/jakschiUa.html.
632	Heinrich Jung. Ueber die kleinste kugel, die eine räumliche figur einschliesst. Journal für die reine
633	und angewandte Mathematik, 123:241–257, 1901. URL http://eudml.org/doc/149122.
635	
636	Puneet Kohli and Anjali Chadha. Enabling pedestrian safety using computer vision techniques: A case
637	study of the 2018 uber inc. self-driving car crash. In Advances in Information and Communication: Proceedings of the 2010 Future of Information and Communication Conference (FICC) Volume 1
638	np 261–279 Springer 2020
639	pp. 201 279. opiniger, 2020.
640	Vanessa Kosoy. Delegative Reinforcement Learning: learning to avoid traps with a little help. arXiv,
641	July 2019. doi: 10.48550/arXiv.1907.08461. URL http://arxiv.org/abs/1907.08461.
642	arX1v:1907.08461 [cs, stat].
643	Nick Littlestone. Learning quickly when irrelevant attributes abound. A new linear-threshold
644	algorithm. Machine learning, 2:285–318, 1988.
645	
646	Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
647	with zero or bounded constraint violation for constrained mdps. Advances in Neural Information Processing Systems, 34:17183–17193, 2021.

648 649 650	Odalric-Ambrym Maillard, Timothy Mann, Ronald Ortner, and Shie Mannor. Active Roll- outs in MDP with Irreversible Dynamics. July 2019. URL https://hal.science/ hal-02177808.
651 652 653 654	Sören Mindermann, Rohin Shah, Adam Gleave, and Dylan Hadfield-Menell. Active Inverse Reward Design. In <i>Proceedings of the 1st Workshop on Goal Specifications for Reinforcement Learning</i> , 2018. URL http://arxiv.org/abs/1809.03060. arXiv:1809.03060 [cs, stat].
655 656 657 658	Teodor Mihai Moldovan and Pieter Abbeel. Safe exploration in Markov decision processes. In <i>Proceedings of the 29th International Coference on International Conference on Machine Learning</i> , ICML'12, pp. 1451–1458, Madison, WI, USA, June 2012. Omnipress. ISBN 978-1-4503-1285-1.
659 660	Christopher A Mouton, Caleb Lucas, and Ella Guest. The operational risks of ai in large-scale biological attacks, 2024.
662 663 664	T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, and J. Peters. <i>An Algorithmic Perspective on Imitation Learning</i> . Foundations and trends in robotics. Now Publishers, 2018. ISBN 978-1-68083-410-9. URL https://books.google.com/books?id=6p6EtQEACAAJ.
665 666 667	Martin L Puterman. <i>Markov decision processes: discrete stochastic dynamic programming</i> . John Wiley & Sons, 2014.
668 669	Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence. <i>Dataset Shift in Machine Learning</i> . The MIT Press, 2009. ISBN 0262170051.
671 672 673	Matteo Russo, Andrea Celli, Riccardo Colini Baldeschi, Federico Fusco, Daniel Haimovich, Dima Karamshuk, Stefano Leonardi, and Niek Tax. Online learning with sublinear best-action queries. <i>arXiv preprint arXiv:2407.16355</i> , 2024.
674 675 676 677	Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 1 edition, May 2014. ISBN 978-1-107-05713-5 978-1-107-29801-9. doi: 10.1017/CBO9781107298019. URL https://www.cambridge.org/core/product/identifier/9781107298019/type/book.
678 679 680	Aleksandrs Slivkins et al. Introduction to multi-armed bandits. <i>Foundations and Trends® in Machine Learning</i> , 12(1-2):1–286, 2019.
681 682 683	Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. <i>Journal of the ACM (JACM)</i> , 51(3):385–463, 2004.
684 685	Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Learning adversarial mdps with stochastic hard constraints. <i>arXiv preprint arXiv:2403.03672</i> , 2024.
687 688 689 690	Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe Exploration in Finite Markov Decision Processes with Gaussian Processes. In <i>Advances in Neural Information Processing Systems</i> , volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html.
691 692 693 694 695	 V. N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities. <i>Theory of Probability & Its Applications</i>, 16(2):264–280, January 1971. ISSN 0040-585X. doi: 10.1137/1116025. URL https://epubs.siam.org/doi/ 10.1137/1116025. Publisher: Society for Industrial and Applied Mathematics.
696 697	John Villasenor and Virginia Foggo. Artificial intelligence, due process and criminal sentencing. <i>Mich. St. L. Rev.</i> , pp. 295, 2020.
698 699	Yihong Wu. Lecture notes on: Information-theoretic methods for high-dimensional statistics. 2020.
700 701	Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A survey. <i>International Journal of Computer Vision</i> , pp. 1–28, 2024.

PROOF OF THEOREM 4.1 А 703

704 A.1 PROOF ROADMAP 705

711

712

713

714

715 716

717

718

719

720

721

722

723 724 725

726

727

735

736

737

739

Throughout the proof, let V_j be the set of time steps $t \leq T$ where $|m_j - x_t| \leq \frac{1}{4f(T)}$. In words, x_t 706 707 is relatively close to the midpoint of X_i . This will imply that the suboptimal action is in fact quite 708 suboptimal. This also implies that x_t is in X_j , since each X_j has length 1/f(T). 709

The proof proceeds via the following steps: 710

- 1. Prove that $f(T) = \sqrt{(|Q_T| + 1)T}$ is asymptotically between $|Q_T|$ and T (Lemma A.1).
 - 2. Provide a simple variant of the Chernoff bound which we will apply multiple times (Lemma A.2).
- 3. Show that with high probability, $\sum_{j \in A} |V_j|$ is adequately large (Lemma A.3).
- 4. The key lemma is Lemma A.4, which shows that a randomly sampled a produces poor agent performance with high probability. The central idea is that at least $f(T) - |Q_T|$ sections are never queried (which is large, by Lemma A.1), so the agent has no way of knowing the optimal action in those sections. As a result, the agent picks the wrong answer at least half the time on average (and at least a quarter of the time with high probability). Lemma A.3 implies that a constant fraction of those time steps will have quite suboptimal payoffs, again with high probability.
 - 5. Finally, $\sup_{\mu} \underset{\mathbf{x} \sim U^{T}, \mathbf{y}}{\mathbb{E}} R_{T}(\mathbf{x}, \mathbf{y}, \mu, \pi^{m}) \geq \underset{\mathbf{a} \sim U(\{0,1\}^{f(T)})}{\mathbb{E}} \underset{\mathbf{x} \sim U^{T}, \mathbf{y}}{\mathbb{E}} R_{T}(\mathbf{x}, \mathbf{y}, \mu_{f, \mathbf{a}}, \pi^{m}),$ where $U(\{0, 1\}^{f(T)})$ is the uniform distribution over bit strings of length f(T). This is essentially an application of the probabilistic method: if a randomly chosen $\mu_{f,a}$ has high expected regret, then the worst case μ also has high expected regret.

728 Note that x, y, and a are random variables, so all variables defined on top of them (xuch as V_i) are also random variables. In contrast, the partition $\mathcal{X} = \{X_1, \dots, X_{f(T)}\}$ and properties thereof (like 729 730 the midpoints m_i) are not random variables.

731 Lastly, while the intuition provided in Section 4.1 is accurate, the analysis will mostly occur in log 732 space, so the bounds will look different. However, bounds of the form discussed in Section 4.1 can 733 still be found as an intermediate step in Part 4 of the proof of Lemma A.4. 734

A.2 PROOF

Lemma A.1. Let $a, b: \mathbb{N} \to \mathbb{N}$ be functions such that $a(x) \in o(b(x))$. Then $c(x) = \sqrt{a(x)b(x)}$ satisfies $a(x) \in o(c(x))$ and $c(x) \in o(b(x))$. 738

Proof. Since a and b are strictly positive (and thus c is as well), we have

$$\frac{a(x)}{c(x)} = \frac{a(x)}{\sqrt{a(x)b(x)}} = \sqrt{\frac{a(x)}{b(x)}} = \frac{\sqrt{a(x)b(x)}}{b(x)} = \frac{c(x)}{b(x)}$$

744 Then $a(x) \in o(b(x))$ implies

$$\lim_{x \to \infty} \frac{a(x)}{c(x)} = \lim_{x \to \infty} \frac{c(x)}{b(x)} = \lim_{x \to \infty} \sqrt{\frac{a(x)}{b(x)}} = 0$$

as required.

Lemma A.2. Let z_1, \ldots, z_n be i.i.d. variables in $\{0, 1\}$ and let $Z = \sum_{i=1}^n z_i$. If $\mathbb{E}[Z] \ge M$, then 750 $\Pr\left[Z \le M/2\right] \le \exp(-M/8).$ 751

752

749

Proof. By the Chernoff bound for i.i.d. binary variables, we have $\Pr[Z \leq \mathbb{E}[Z]/2]$ 753 < $\exp(-\mathbb{E}[Z]/8)$. Since $-\mathbb{E}[Z] \leq -M$ and \exp is an increasing function, we have $\exp(-\mathbb{E}[Z]/8) \leq$ 754 $\exp(-M/8)$. Also, $M/2 \leq E[Z]/2$ implies $\Pr[Z \leq M/2] \leq \Pr[Z \leq \mathbb{E}[Z]/2]$. Combining these 755 inequalities proves the lemma.

Lemma A.3. let $A \subseteq [f(T)]$ be any nonempty subset of sections. Then

$$\Pr\left[\sum_{j \in A} |V_j| \le \frac{T|A|}{4f(T)}\right] \le \exp\left(\frac{-T}{16f(T)}\right)$$

Proof. Fix any $j \in [f(T)]$. For each $t \in [T]$, define the random variable z_t by $z_t = 1$ if $t \in V_j$ for some $j \in A$ and 0 otherwise. We have $t \in V_j$ iff x_t falls within a particular interval of length $\frac{1}{2f(T)}$. Since these intervals are disjoint for different j's, we have $z_t = 1$ iff x_t falls within a portion of the input space with total measure $\frac{|A|}{2f(T)}$. Since x_t is uniformly random across [0, 1], we have $\mathbb{E}[z_t] = \frac{|A|}{2f(T)}$. Then $\mathbb{E}[\sum_{t=1}^T z_t] = \mathbb{E}[\sum_{j \in A} |V_j|] = \frac{T|A|}{2f(T)}$. Furthermore, since x_1, \ldots, x_T are i.i.d., so are z_1, \ldots, z_T . Then by Lemma A.2,

$$\Pr\left[\sum_{j \in A} |V_j| \le \frac{T|A|}{4f(T)}\right] \le \exp\left(\frac{-T|A|}{16f(T)}\right) \le \exp\left(\frac{-T}{16f(T)}\right)$$

with the last step due to $|A| \ge 1$.

Lemma A.4. Independently sample $\mathbf{a} \sim U(\{0,1\}^{f(T)})$ and $\mathbf{x} \sim U^T$.¹³ Then with probability at least $1 - \exp\left(\frac{-T}{16f(T)}\right) - \exp\left(-\frac{f(T) - |Q_T|}{16}\right)$,

$$\prod_{t=1}^{T} \mu_{f,\mathbf{a}}(x_t, y_t) \le \exp\left(-\frac{LT(f(T) - |Q_T|)}{2^7 f(T)^2}\right)$$

Proof. Part 1: setup. Let $J_{\neg Q} = \{j \in [f(T)] : x_t \notin X_j \ \forall t \in Q_T\}$ be the set of sections that are 782 never queried. Since each query appears in exactly one section (because each input appears in exactly 783 one section), $|J_{\neg Q}| \ge f(T) - |Q_T|$.

For each $j \in J_{\neg Q}$, let y_j be the action taken most frequently among time steps in V_j :

$$y_j = \arg\max_{y \in \{0,1\}} \left| \{t \in V_j : y = y_t\} \right|$$

⁷⁸⁸ Let $\overline{J} = \{j \in J_{\neg Q} : a_j \neq y_j\}$. For each $j \in \overline{J}$, let $V'_j = \{t \in V_j : y_t \neq a_j\}$ be the set of time steps where the agent chooses the wrong action (assuming payoff function $\mu_{f,\mathbf{a}}$).

Part 2: \overline{J} is not too small. Define a random variable $z_j = \mathbf{1}_{j \in \overline{J}}$ for each $j \in J_{\neg Q}$. By definition, if $j \in J_{\neg Q}$, no input in X_j is queried. Since queries outside of X_j provide no information about a_j , the agent's actions must be independent of a_j . In particular, the random variables a_j and y_j are independent. Combining that independence with $\Pr[a_j = 0] = \Pr[a_j = 1] = 0.5$ yields $\Pr[z_j =$ 1] = 0.5 for all $j \in J_{\neg Q}$. Furthermore, since $a_1, \ldots, a_{f(T)}$ are independent, the random variables $\{z_j : j \in J_{\neg Q}\}$ are also independent. Since $\mathbb{E}[|\overline{J}|] = \mathbb{E}[\sum_{j \in J_{\neg Q}} z_j] = |J_{\neg Q}|/2 \ge \frac{f(T) - |Q_T|}{2}$, Lemma A.2 implies that

$$\Pr\left[|\bar{J}| \le \frac{f(T) - |Q_T|}{4}\right] \le \exp\left(-\frac{f(T) - |Q_T|}{16}\right)$$

Part 3: $|V'_j| \ge |V_j|/2$. Since $j \in J_{\neg Q}$, the mentor is not queried on any time step $t \in V_j$, so $y_t \in \{0, 1\}$ for all $t \in V_j$. Since the agent chooses one of two actions for each $t \in V_j$, the more frequent action must be chosen chosen at least half of the time: $y_t = y_j$ for at least half of the time steps in V_j . Since $a_j \neq y_j$ for $j \in \overline{J}$, we have $y_t = y_j \neq a_j$ for those time steps, so $|V'_j| \ge |V_j|/2$.

Part 4: a bound in terms of \overline{J} and V_j . Consider any $j \in \overline{J}$ and $t \in V'_j \subseteq V_j$. By definition of V_j , we have $|m_j - x_t| \leq \frac{1}{4f(T)}$. Then by definition of $\mu_{f,\mathbf{a}}$,

$$\mu_{f,\mathbf{a}}(x_t, y_t) = 1 - L\left(\frac{1}{2f(T)} - |x_t - m_j|\right)$$

¹³That is, the entire set $\{a_1, \ldots, a_{f(T)}, x_1, \ldots, x_T\}$ is mutually independent.

810
811
812
813
814

$$\leq 1 - L\left(\frac{1}{2f(T)} - \frac{1}{4f(T)}\right)$$

 $= -1 - \frac{L}{4f(T)}$

Now aggregating across time steps,

$$\begin{split} \prod_{t=1}^{T} \mu_{f,\mathbf{a}}(x_t, y_t) &\leq \prod_{j \in \bar{J}} \prod_{t \in V'_j} \mu_{f,\mathbf{a}}(x_t, y_t) \qquad (\mu_{f,\mathbf{a}}(x_t, y_t) \in [0, 1] \text{ for all } t) \\ &\leq \prod_{j \in \bar{J}} \left(1 - \frac{L}{4f(T)} \right)^{|V'_j|} \qquad \text{(bound on } \mu_{f,\mathbf{a}}(x_t, y_t) \text{ when } t \in V'_j) \\ &\leq \prod_{j \in \bar{J}} \left(1 - \frac{L}{4f(T)} \right)^{|V_j|/2} \qquad (|V'_j| \geq |V_j|/2) \end{split}$$

The last step also relies on $1 - \frac{L}{4f(T)} \in [0, 1]$, which is due to $L \leq 1$ and $f(T) \geq 1$. Converting into log space and using the standard inequality $\log(1 + x) \leq x$ for all $x \in \mathbb{R}$, we have

$$\log \prod_{t=1}^{T} \mu_{f,\mathbf{a}}(x_t, y_t) \le \log \prod_{j \in \bar{J}} \left(1 - \frac{L}{4f(T)}\right)^{|V_j|/2}$$
$$= \sum_{j \in \bar{J}} \frac{|V_j|}{2} \log \left(1 - \frac{L}{4f(T)}\right)$$
$$\le -\sum_{j \in \bar{J}} \frac{L|V_j|}{8f(T)}$$

Part 5: putting it all together. By Lemma A.3, Part 2 of this lemma, and the union bound, with probability at least $1 - \exp\left(\frac{-T}{16f(T)}\right) - \exp\left(-\frac{f(T) - |Q_T|}{16}\right)$ we have $\sum_{j \in \overline{J}} |V_j| \ge \frac{T|\overline{J}|}{4f(T)}$ for all $j \in [f(T)]$ and $|\overline{J}| \ge \frac{f(T) - |Q_T|}{4}$. Assuming those inequalities hold, we have

$$\log \prod_{t=1}^{T} \mu_{f,\mathbf{a}}(x_t, y_t) \leq -\sum_{j \in \overline{J}} \frac{L|V_j|}{8f(T)}$$
$$\leq -\frac{L}{8f(T)} \cdot \frac{T|\overline{J}|}{4f(T)}$$
$$\leq -\frac{L}{8f(T)} \cdot \frac{T}{4f(T)} \cdot \frac{f(T) - |Q_T|}{4}$$
$$= -\frac{LT(f(T) - |Q_T|)}{2^7 f(T)^2}$$

Exponentiating both sides proves the lemma.

Let $\alpha(T) = \exp\left(\frac{-T}{16f(T)}\right) + \exp\left(-\frac{f(T)-|Q_T|}{16}\right)$ for brevity.

Theorem 4.1. The worst-case expected regret of any algorithm with sublinear queries goes to 1 as T goes to infinity. Formally, $\lim_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[R_T] = 1$.

exists T_0 such that $|Q_T| \le g(T) \le f(T)/2$ for all $T \ge T_0$. Combining this with Lemma A.4 and noting that $\prod_{t=1}^{T} \mu_{f,\mathbf{a}}(x_t, y_t) \leq 1$, we have

$$\underset{\mathbf{a} \sim U(\{0,1\}^{f(T)})}{\mathbb{E}} \quad \underset{\mathbf{x} \sim U^T, \mathbf{y}}{\mathbb{E}} \quad \prod_{t=1}^T \mu_{f, \mathbf{a}}(x_t, y_t)$$

$$\leq \alpha(T) \cdot 1 + (1 - \alpha(T)) \exp\left(-\frac{LT(f(T) - |Q_T|)}{2^7 f(T)^2}\right)$$
$$\leq \alpha(T) + (1 - \alpha(T)) \exp\left(-\frac{LTf(T)/2}{2^7 f(T)^2}\right)$$

$$= \alpha(T) + \left(1 - \alpha(T)\right) \exp\left(-\frac{LT}{2^8 f(T)}\right)$$

whenever $T \ge T_0$. Since $\prod_{t=1}^T \mu_{f,\mathbf{a}}^m(x_t) = 1$ always, we have 14

$$\sup_{\mu} \underset{\mathbf{x}\sim U^{T}, \mathbf{y}}{\mathbb{E}} R_{T}(\mathbf{x}, \mathbf{y}, \mu, \pi^{m}) \geq \underset{\mathbf{a}\sim U(\{0,1\}^{f(T)})}{\mathbb{E}} \underset{\mathbf{x}\sim U^{T}, \mathbf{y}}{\mathbb{E}} R_{T}(\mathbf{x}, \mathbf{y}, \mu_{f, \mathbf{a}}, \pi^{m})$$
$$= \underset{\mathbf{a}\sim U(\{0,1\}^{f(T)})}{\mathbb{E}} \underset{\mathbf{x}\sim U^{T}, \mathbf{y}}{\mathbb{E}} \left[\prod_{t=1}^{T} \mu_{f, \mathbf{a}}^{m}(x_{t}) - \prod_{t=1}^{T} \mu_{f, \mathbf{a}}(x_{t}, y_{t}) \right]$$
$$\geq 1 - \alpha(T) - \left(1 - \alpha(T)\right) \exp\left(-\frac{LT}{2^{8}f(T)}\right)$$

Therefore

$$\lim_{T \to \infty} \sup_{\mu} \mathbb{E}_{\mathbf{x} \sim U^{T}, \mathbf{y}} R_{T}(\mathbf{x}, \mathbf{y}, \mu, \pi^{m}) \geq 1 - \lim_{T \to \infty} \alpha(T) - \left(1 - \lim_{T \to \infty} \alpha(T)\right) \cdot \exp\left(\lim_{T \to \infty} -\frac{LT}{2^{8}f(T)}\right)$$
$$= 1 - 0 - (1 - 0) \cdot \exp(-\infty)$$
$$= 1$$
as required.

as required.

В **PROOF OF THEOREM 5.2**

B.1 CONTEXT ON LEMMA 5.4

Before diving into the main proof, we provide some context on Lemma 5.4 from Section 5:

Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)). Assume Π is finite. Then for any loss function $\ell: [T] \times \Pi \to [0,1]$ and query probability p, HEDGEWITHQUERIES enjoys the regret bound

$$\sum_{t=1}^{T} \mathbb{E}[\ell(t,\pi_t)] - \min_{\tilde{\pi} \in \tilde{\Pi}} \sum_{t=1}^{T} \ell(t,\pi) \le \frac{2\log |\tilde{\Pi}|}{p^2}$$

where π_t is the policy chosen at time t and the expectation is over the randomness of the algorithm.

Lemma 5.4 is a restatement and simplification of Lemma 3.5 in Russo et al. (2024). First, Russo et al. (2024) parametrize their algorithm by the expected number of queries k instead of the query probability $p = \dot{k}/T$. Second, Russo et al. (2024) include a second parameter k, which is the eventual target number of queries for their unconditional query bound. In our case, an expected query bound is sufficient, so we simply set k = k. Third, Russo et al. (2024) provide a second bound which is tighter for small k; that bound is less useful for us so we omit it. Fourth, their number of actions n is equal to $|\Pi|$ in our setting. (Their actions correspond to policies in Π , not our actions in \mathcal{Y} .) Since Russo et al. (2024) set $\eta = \max\left(\frac{1}{T}\sqrt{\frac{\hat{k}\log n}{2}}, \frac{k\hat{k}}{\sqrt{2}T^2}\right)$, we end up with $\eta = \max\left(\sqrt{\frac{p\log|\tilde{\Pi}|}{2T}}, \frac{p^2}{\sqrt{2}}\right)$. Algorithm 2 provides precise pseudocode for the HEDGEWITHQUERIES algorithm to which Lemma 5.4 refers.

¹⁴Fubini's theorem means we need not worry about the order of the expectation operators.

918 Algorithm 2 A variant of the Hedge algorithm which only observes losses in response to queries. 919 1: function HEDGEWITHQUERIES($p \in (0, 1]$, finite policy class Π , unknown $\ell : [T] \times \Pi \to [0, 1]$) 920 $w(\pi) \leftarrow 1$ for all $\pi \in \Pi$ 2: 921 $\eta \leftarrow \max\left(\sqrt{\frac{p\log|\tilde{\Pi}|}{2T}}, \frac{p^2}{\sqrt{2}}\right)$ 922 3: 923 for t from 1 to T do 4: 924 5: hedgeQuery \leftarrow true with probability p else false 925 6: if hedgeQuery then 7: Query and observe $\ell(t,\pi)$ for all $\pi \in \Pi$ 926 8: $\ell^* \leftarrow \min_{\pi \in \tilde{\Pi}} \ell(t,\pi)$ 927 928 9: $w(\pi) \leftarrow w(\pi) \cdot \exp(-\eta(\ell(t,\pi) - \ell^*))$ for all $\pi \in \Pi$ 929 10: Select policy $\arg \min_{\pi \in \Pi} \ell(t, \pi)$ else 11: 930 $P(\pi) \leftarrow w(\pi) / \sum_{\pi' \in \tilde{\Pi}} w(\pi') \text{ for all } \pi \in \tilde{\Pi}$ Sample $\pi_t \sim P$ 12: 931 13: 932 Select policy π_t 14: 933 934 935 **B**.2 MAIN PROOF 936 937 We use the following notation throughout the proof: 938 939 1. For each $t \in [T]$, let X_t refer to the value of X at the start of time step t. 940 2. Let $V_T = \{t \in [T] : \pi_t(x_t) \neq \pi^m(x_t)\}$ be the set of time steps where Hedge's proposed 941 action doesn't match the mentor's. Note that $|V_T|$ upper bounds the number of mistakes the 942 algorithm makes (the number of mistakes could be smaller, since the algorithm sometimes 943 queries instead of taking action $\pi_t(x_t)$). 944 3. For $X \subseteq \mathcal{X}$, let vol(X) denote the *n*-dimensional Lebesgue measure of X. 945 946 4. With slight abuse of notation, we will use inequalities of the form $f(T) \leq q(T) + O(h(T))$ 947 to mean that there exists a constant C such that $f(T) \leq g(T) + Ch(T)$. 948 5. We will use "Case 1" to refer to finite VC dimension and σ -smooth x and "Case 2" to refer to 949 finite Littlestone dimension. In Case 1, expectations are over the randomness of both x and 950 the algorithm, while in Case 2, expectations are over just the randomness of the algorithm. 951 When we need to distinguish, we use $\mathbb{E}_{\mathbf{v}}$ to denote the expectation over randomness of the 952 algorithm and $\mathbb{E}_{\mathbf{x}\sim \mathcal{D}}$ to denote the expectation over \mathbf{x} . 953 Lemma B.1. Under the conditions of Theorem 5.1, Algorithm 1 satisfies 954 955 $\mathbb{E}[|V_T|] \in O\left(\frac{d}{\sigma} T\varepsilon \log(1/\varepsilon) \log T\right)$ 956 957 958 *Proof.* Define $\ell: [T] \times \Pi \to [0,1]$ by $\ell(t,\pi) = \mathbf{1}(\pi(x_t) \neq \pi^m(x_t))$, and let w^h and π^h_t denote the 959 values of w and π_t respectively in HEDGEWITHQUERIES, while w and π_t refer to the variables in 960 Algorithm 1. Then w and w^h evolve in the exact same way, so the distributions of π_t and π_t^h coincide. 961 Thus by Lemma 5.4, 962 $\mathbb{E}_{\mathbf{y}}\left[\sum_{t=1}^{T} \ell(t, \pi_t)\right] - \min_{\tilde{\pi} \in \tilde{\Pi}} \sum_{t=1}^{T} \ell(t, \tilde{\pi}) \leq \frac{2\log |\tilde{\Pi}|}{p^2} = 2T\varepsilon \log |\tilde{\Pi}|$ 963 964 965 966 Since Lemma 5.4 holds for any loss function, the bound above holds for any $\mathbf{x} \in S^T$, so the 967 bound also holds in expectation over $\mathbf{x} \sim \mathcal{D}$ (which is needed for Case 1). Next, observe that $|V_T| = \sum_{t=1}^T \mathbf{1}(\pi_t(x_t) \neq \pi^m(x_t)) = \sum_{t=1}^T \ell(t, \pi_t)$, so 968 969 970

$$\mathbb{E}_{\mathbf{y}}[|V_T|] \le 2T\varepsilon \log |\tilde{\Pi}| + \min_{\tilde{\pi} \in \tilde{\Pi}} \sum_{t=1}^{I} \mathbf{1}(\tilde{\pi}(x_t) \neq \pi^m(x_t))$$

Case 1: Since $\tilde{\Pi}$ is a smooth ε -cover of Π , we have

$$\mathbb{E}_{\mathbf{x}\sim\mathcal{D}}\left[\min_{\tilde{\pi}\in\tilde{\Pi}}\sum_{t=1}^{T}\mathbf{1}(\tilde{\pi}(x_t)\neq\pi^m(x_t))\right] \leq \mathbb{E}_{\mathbf{x}\sim\mathcal{D}}\left[\sup_{\pi\in\Pi}\min_{\tilde{\pi}\in\tilde{\Pi}}\sum_{t=1}^{T}\mathbf{1}(\tilde{\pi}(x_t)\neq\pi(x_t))\right]$$
$$\in O\left(\frac{1}{\sigma}T\varepsilon\log T\sqrt{d\log(1/\varepsilon)}\right)$$

with the first step due to $\pi^m \in \Pi$ and the second step due to Lemma 5.3. The last component we need is that $|\tilde{\Pi}| \leq (41/\varepsilon)^d$ by construction (and such a $\tilde{\Pi}$ is guaranteed to exist by Lemma 5.1). Combining the above inequalities and taking the expectation over $\mathbf{x} \sim \mathcal{D}$ (in addition to the randomness of the algorithm), we get

$$\mathbb{E}_{\mathbf{x}\sim\mathcal{D},\mathbf{y}}[|V_T|] \leq 2T\varepsilon \log |\tilde{\Pi}| + \mathbb{E}_{\mathbf{x}\sim\mathcal{D}}\left[\min_{\tilde{\pi}\in\tilde{\Pi}}\sum_{t=1}^T \mathbf{1}(\tilde{\pi}(x_t)\neq\pi^m(x_t))\right]$$
$$\leq 2dT\varepsilon \log(41/\varepsilon) + O\left(\frac{1}{\sigma}T\varepsilon \log T\sqrt{d\log(1/\varepsilon)}\right)$$

Case 2: Since $\tilde{\Pi}$ is an adversarial cover of Π and $\pi^m \in \Pi$, there exists $\tilde{\pi} \in \tilde{\Pi}$ such that $\sum_{t=1}^{T} \mathbf{1}(\tilde{\pi}(x_t) \neq \pi^m(x_t)) = 0$. Since $|\tilde{\Pi}| \leq (eT/d)^d$ (with such a $\tilde{\Pi}$ guaranteed to exist by Lemma 5.2),

 $\in O\left(\frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T\right)$

$$\mathbb{E}_{\mathbf{y}}[|V_{T}|] \leq 2T\varepsilon \log |\tilde{\Pi}| + \min_{\tilde{\pi}\in\tilde{\Pi}} \sum_{t=1}^{T} \mathbf{1}(\tilde{\pi}(x_{t}) \neq \pi^{m}(x_{t})) \\
\leq 2T\varepsilon d \ln(eT/d) \\
\in O\left(\frac{d}{\sigma}T\varepsilon \log(1/\varepsilon)\log T\right)$$

1001 as required.

1003 Lemma B.2. For all $t \in [T]$, $\mu(x_t, y_t) \ge \mu^m(x_t) - L\varepsilon^{1/n}$.

1005 Proof. Fix any $t \in [T]$. If $t \in Q_T$, then $\mu(x_t, y_t) = \mu^m(x_t)$, so assume $t \notin Q_T$. Let $(x', y') = \arg\min_{(x,y)\in X_t:\pi_t(x_t)=y} ||x_t - x||$. Since $t \notin Q_T$, we must have $||x_t - x'|| \le \varepsilon^{1/n}$.

We have $y' = \pi^m(x')$ by construction of X_t and $\pi_t(x_t) = y'$ by construction of y'. Combining these with the local generalization assumption, we get

$$\mu(x_t, y_t) = \mu(x_t, \pi_t(x_t)) = \mu(x_t, \pi^m(x')) \ge \mu^m(x_t) - L||x_t - x'|| \ge \mu^m(x_t) - L\varepsilon^{1/n}$$

1011 as required.

1013 Lemma B.3. Assume $a_1, \ldots, a_T, b_1, \ldots, b_T \in [0, 1]$ and $a_t \ge b_t$ for all $t \in [T]$. Then

$$\prod_{t=1}^{T} a_t - \prod_{t=1}^{T} b_t \le \sum_{t=1}^{T} a_t - \sum_{t=1}^{T} b_t$$

Proof. We proceed by induction on T. The claim is trivially satisfied for T = 1, so suppose T > 1and assume that $\prod_{t=1}^{T-1} a_t - \prod_{t=1}^{T-1} b_t \le \sum_{t=1}^{T-1} a_t - \sum_{t=1}^{T-1} b_t$. Then

$$\sum_{t=1}^{T} a_t - \sum_{t=1}^{T} b_t - \prod_{t=1}^{T} a_t + \prod_{t=1}^{T} b_t = a_T \sum_{t=1}^{T-1} a_t - b_T \sum_{t=1}^{T-1} b_t - a_T \prod_{t=1}^{T-1} a_t + b_T \prod_{t=1}^{T-1} b_t$$
$$= a_T \left(\sum_{t=1}^{T-1} a_t - \prod_{t=1}^{T-1} a_t \right) - b_T \left(\sum_{t=1}^{T-1} b_t - \prod_{t=1}^{T-1} b_t \right)$$

Since T > 1 and $a_t \in [0, 1]$ for all $t \in [T]$, we have $\sum_{t=1}^{T-1} a_t \ge a_1 \ge \sum_{t=1}^{T-1} a_t$. Thus $\sum_{t=1}^{T-1} a_t - \sum_{t=1}^{T-1} a_t = a_t$. $\prod_{t=1}^{T-1} a_t \ge 0$. Combining this with $a_T \ge b_T$, we get

$$\sum_{t=1}^{T} a_t - \sum_{t=1}^{T} b_t - \prod_{t=1}^{T} a_t + \prod_{t=1}^{T} b_t = a_T \left(\sum_{t=1}^{T-1} a_t - \prod_{t=1}^{T-1} a_t \right) - b_T \left(\sum_{t=1}^{T-1} b_t - \prod_{t=1}^{T-1} b_t \right)$$
$$\geq b_T \left(\sum_{t=1}^{T-1} a_t - \prod_{t=1}^{T-1} a_t \right) - b_T \left(\sum_{t=1}^{T-1} b_t - \prod_{t=1}^{T-1} b_t \right)$$
$$= b_T \left(\sum_{t=1}^{T-1} a_t - \prod_{t=1}^{T-1} a_t - \sum_{t=1}^{T-1} b_t + \prod_{t=1}^{T-1} b_t \right)$$
$$\geq 0$$

The last step is due to $b_T \ge 0$ and our assumption of $\prod_{t=1}^{T-1} a_t - \prod_{t=1}^{T-1} b_t \le \sum_{t=1}^{T-1} a_t - \sum_{t=1}^{T-1} b_t$.

Lemma B.4. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

1044
1045
1046
1047
1048
1049

$$\mathbb{E}\left[R_T\right] \in O\left(\frac{dL}{\sigma}T\varepsilon^{1+1/n}\log(1/\varepsilon)\log T\right)$$

$$\mathbb{E}\left[\sum_{t=1}^T \mu^m(x_t) - \sum_{t=1}^T \mu(x_t, y_t)\right] \in O\left(\frac{dL}{\sigma}T\varepsilon^{1+1/n}\log(1/\varepsilon)\log T\right)$$
1049

Proof. We first claim that $y_t = \pi^m(x_t)$ for all $t \notin V_T$. If $t \in Q_T$, the claim is immediate; if not, we have $y_t = \pi_t(x_t)$, and $\pi_t(x_t) = \pi^m(x_t)$ due to $t \notin V_T$. Thus $\min(\mu^m(x_t), \mu(x_t, y_t)) = \mu^m(x_t)$ for $t \notin V_T$.

We next claim that $\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) \le L\varepsilon^{1/n}$ for all $t \in [T]$. If $\mu(x_t, y_t) \le \mu^m(x_t)$, this follows from Lemma B.2. If $\mu(x_t, y_t) > \mu^m(x_t)$, then $\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) =$ $0 \leq L \varepsilon^{1/n}$. Therefore

$$\sum_{t=1}^{r} \left(\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) \right) \le \sum_{t \in V_T} \left(\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) \right)$$
$$\le \sum_{t \in V_T} L\varepsilon^{1/n}$$
$$= |V_T| L\varepsilon^{1/n}$$

Now let $a_t = \mu^m(x_t)$ and $b_t = \min(\mu^m(x_t), \mu(x_t, y_t))$ for all $t \in [T]$. Then by Lemma B.3,

$$\prod_{t=1}^{T} \mu^{m}(x_{t}) - \prod_{t=1}^{T} \min(\mu^{m}(x_{t}), \mu(x_{t}, y_{t})) \le \sum_{t=1}^{T} \left(\mu^{m}(x_{t}) - \min(\mu^{m}(x_{t}), \mu(x_{t}, y_{t})) \right)$$

Since $\mu(x_t, y_t) \ge \min(\mu^m(x_t), \mu(x_t, y_t))$ for all $t \in [T]$, we have

1070
1071
1072
$$R_T = \prod_{t=1}^T \mu^m(x_t) - \prod_{t=1}^T \mu(x_t, y_t)$$

1073
1074
$$\leq \sum_{k=1}^{T} \left(\mu^{m}(x_{t}) - \min(\mu^{m}(x_{t}), \mu(x_{t}, y_{t})) \right)$$

- $\stackrel{\simeq}{=} \sum_{t=1}^{l} \left(\frac{\mu}{V_T} \right)^{l/n}$

 \boldsymbol{T}

Since we also have $\sum_{t=1}^{T} \mu^m(x_t) - \sum_{t=1}^{T} \mu(x_t, y_t) \le \sum_{t=1}^{T} (\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t))),$ $\mathbb{E}[R_T] \le L\varepsilon^{1/n} \mathbb{E}\left[|V_T|\right]$

1080
1081
1082
$$\mathbb{E}\left[\sum_{t=1}^{T} \mu^m(x_t) - \sum_{t=1}^{T} \mu(x_t, y_t)\right] \le L\varepsilon^{1/n} \mathbb{E}\left[|V_T|\right]$$
1082

1083 Applying Lemma **B.1** completes the proof. 1084

1085 **Definition B.1.** Let $(K, || \cdot ||)$ be a normed vector space and let $\delta > 0$. Then $X \subseteq K$ is a δ -packing of K if for all $x, y \in X$, $||x - y|| > \delta$. The δ -packing number of K, denoted $\mathcal{M}(K, || \cdot ||, \delta)$, is the 1087 maximum cardinality of any δ -packing of K. 1088

In this paper, we only consider the Euclidean distance norm, so we just write $M(K, || \cdot ||, \delta) =$ 1089 $M(K, \delta).$ 1090

Lemma B.5 (Theorem 14.2 in Wu (2020)). If $K \subset \mathbb{R}^n$ is convex, bounded, and contains a ball with radius $\delta > 0$, then

$$\mathcal{M}(K,\delta) \le \frac{3^n \operatorname{vol}(K)}{\delta^n \operatorname{vol}(B)}$$

1095 where B is a unit ball.

Lemma B.6 (Jung's Theorem (Jung, 1901)). If $X \subset \mathbb{R}^n$ is compact, then there exists a closed ball with radius at most $\operatorname{diam}(X)\sqrt{\frac{n}{2(n+1)}}$ containing X. 1098

1099 **Lemma B.7.** Under the conditions of Theorem 5.1, Algorithm 1 satisfies 1100

$$\mathbb{E}[|Q_T|] \in O\left(\sqrt{\frac{T}{\varepsilon}} + \frac{d}{\sigma} T\varepsilon \log(1/\varepsilon) \log T + \frac{\operatorname{diam}(\mathbf{x})^n}{\varepsilon}\right)$$

1102 1103

1101

1093 1094

1104 *Proof.* If $t \in Q_T$, then either hedgeQuery = true or $\min_{(x,y)\in X_t:\pi_t(x_t)=y} ||x_t - x|| > r$. The 1105 expected number of time steps with hedgeQuery = true is $pT = \sqrt{T/\varepsilon}$, so let $\hat{X} = \{x_t:$ 1106 $t \in Q_T$ and $\min_{(x,y)\in X_t:\pi_t(x_t)=y} ||x_t - x|| > r)$. We further subdivide \hat{X} into $\hat{X}_1 = \{x_t \in \hat{X}:$ 1107 $\pi_t(x_t) \neq \pi^m(x_t)$ and $\hat{X}_2 = \{x_t \in \hat{X} : \pi_t(x_t) = \pi^m(x_t)\}$. Since $\hat{X}_1 \subseteq V_T$, Lemma B.1 implies 1108 1109 that $\mathbb{E}[|\hat{X}_1|] \in O\left(\frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T\right).$ 1110

Next, fix an $y \in \mathcal{Y}$ and let $X_y = \{x \in \mathbf{x} : \pi^m(x) = y\}$ be the set of observed inputs which share 1111 a mentor action. We claim that $\hat{X}_2 \cap X_y$ is a packing of X_y . Suppose instead that there exists 1112 $x, x' \in \hat{X}_2 \cap X_y$, with $||x - x'|| \leq \varepsilon^{1/n}$. WLOG assume x was queried after x' and let t be the 1113 time step on which x was queried. Then $(x', \pi^m(x')) \in X_t$. Also, $x, x' \in \hat{X}_2 \cap X_y$ implies that and 1114 $\pi_t(x_t) = \pi^m(x_t) = y = \pi^m(x')$. Therefore 1115

1116
1117
$$\min_{(x'',y'')\in X_t: y''=\pi_t(x_t)} ||x_t - x''|| \le ||x_t - x'|| \le \varepsilon^{1/n}$$

1118 which contradicts $x_t \in \hat{X}$. Thus $\hat{X}_2 \cap X_y$ is a $\varepsilon^{1/n}$ -packing of X_y . 1119

1120 By Lemma B.6, there exists a ball B_1 of diameter diam $(\mathbf{x})\sqrt{\frac{n}{2(n+1)}}$ which contains \mathbf{x} . Let R =1121 1122 $\operatorname{diam}(\mathbf{x})\sqrt{\frac{n}{8(n+1)}}$ denote the radius of B_1 . Let B_2 be the ball with the same center as B_1 but with 1123 radius $\max(R, \varepsilon^{1/n})$. Since $X_y \subset \mathbf{x} \subset B_1 \subset B_2$, $\hat{X}_2 \cap X_y$ is also a $\varepsilon^{1/n}$ -packing of B_2 . Also, B_2 1124 must contain a ball of radius $\varepsilon^{1/n}$, so Lemma B.5 implies that 1125

1126
$$|\hat{X}_2 \cap X_y| \le \mathcal{M}(B_2, \varepsilon^{1/n})$$

$$<\frac{3^n \operatorname{vol}(B_2)}{2}$$

1129

$$\leq \frac{1129}{\varepsilon \operatorname{vol}(B)}$$
1130
$$= \left(\max(R, \varepsilon^{1/n})\right)^n \frac{3^n \operatorname{vol}(B)}{\varepsilon \operatorname{vol}(B)}$$

1131
$$\varepsilon \operatorname{vol}(B)$$

1132
1133
$$= \max\left(\operatorname{diam}(\mathbf{x})^n\left(\frac{n}{8(n+1)}\right)^{n/2}, \varepsilon\right)\frac{3^n}{\varepsilon}$$

1134
1135
$$\leq O\left(\frac{\operatorname{diam}(\mathbf{x})^n}{\varepsilon} + 1\right)$$

1136

(The +1 is necessary for now since diam(x) could theoretically be zero.) Therefore

$$\mathbb{E}[|Q_T|] = \sqrt{\frac{T}{\varepsilon}} + \mathbb{E}[|\hat{X}|]$$

$$= \sqrt{\frac{T}{\varepsilon}} + \mathbb{E}[|\hat{X}_1|] + \mathbb{E}\left[\sum_{y \in \mathcal{Y}} |\hat{X}_2 \cap X_y|\right]$$

1143
1144
1145
1146

$$\leq \sqrt{\frac{T}{\varepsilon}} + O\left(\frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T\right) + \sum_{y\in\mathcal{Y}}O\left(\frac{\operatorname{diam}(\mathbf{x})^n}{\varepsilon} + 1\right)$$
1146

$$\sqrt{T} = \varepsilon\left(\frac{d}{\sigma}\operatorname{diam}(\mathbf{x})^n\right) + \varepsilon\left(\frac{d}{\varepsilon}\operatorname{diam}(\mathbf{x})^n\right)$$

1147
1148
1148
1149
1150

$$\leq \sqrt{\frac{1}{\varepsilon}} + O\left(\frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T\right) + |\mathcal{Y}| \cdot O\left(\frac{\operatorname{diam}(\mathbf{x})^{*}}{\varepsilon} + 1\right)$$

$$\leq O\left(\sqrt{\frac{T}{\varepsilon}} + \frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T + \frac{\operatorname{diam}(\mathbf{x})^{n}}{\varepsilon}\right)$$

$$\leq O\left(\sqrt{\frac{T}{\varepsilon}} + \frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T\right)$$

as required.

Theorem 5.1 follows from Lemmas B.4 and B.7:

Theorem 5.1. Let $\mathcal{Y} = \{0, 1\}$. Assume $\pi^m \in \Pi$ where either (1) Π has finite VC dimension d, \mathbf{x} is σ -smooth, and $\varepsilon T \log T > 12\sigma d \log(4e^2/\varepsilon)$ or (2) Π has finite Littlestone dimension d. Then for any $T \in \mathbb{N}$ and $\varepsilon > 0$, Algorithm 1 satisfies

1158
1159
1160

$$\mathbb{E}\left[R_T\right] \in O\left(\frac{dL}{\sigma}T\varepsilon^{1+1/n}\log(1/\varepsilon)\log T\right)$$

1160
1161
1162
1163

$$\mathbb{E}[|Q_T|] \in O\left(\sqrt{\frac{T}{\varepsilon}} + \frac{d}{\sigma}T\varepsilon\log(1/\varepsilon)\log T + \frac{\operatorname{diam}(\mathbf{x})^n}{\varepsilon}\right)$$
1163

We then perform some arithmetic to get Theorem 5.2:

Theorem 5.2. Let $\mathcal{Y} = \{0, 1\}$. Assume $\pi^m \in \Pi$ where either (1) Π has finite VC dimension d and **x** is σ -smooth or (2) Π has finite Littlestone dimension d. Then for any $T \in \mathbb{N}$, Algorithm 1 with $\varepsilon = T^{\frac{-2n}{2n+1}}$ satisfies

1168
1169
1170
1171

$$\mathbb{E}[R_T] \in O\left(\frac{dL}{\sigma}T^{\frac{-1}{2n+1}}\log T\right)$$

$$\mathbb{E}[|Q_T|] \in O\left(T^{\frac{4n+1}{4n+2}}\left(\frac{d}{\sigma}\log T + \operatorname{diam}(\mathbf{x})^n\right)\right)$$

Proof. We have

$$\mathbb{E}[R_T] \in O\left(\frac{dL}{\sigma}T^{1-\frac{2n}{2n+1}-\frac{2}{2n+1}}\log(1/\varepsilon)\log T\right)$$
$$= O\left(\frac{dL}{\sigma}T^{\frac{-1}{2n+1}}\log T\right)$$

and

$$\mathbb{E}[|Q_T|] \in O\left(\sqrt{T^{1+\frac{2n}{2n+1}}} + \frac{d}{\sigma}T^{1-\frac{-2n}{2n+1}}\log(T^{\frac{2n}{2n+1}})\log T + T^{\frac{2n}{2n+1}}\operatorname{diam}(\mathbf{x})^n\right)$$

$$=O\left(T^{\frac{2n+0.5}{2n+1}}+\frac{d}{d}T^{\frac{1}{2n+1}}\right)$$

$$= O\left(T^{\frac{2n+0.5}{2n+1}} + \frac{d}{\sigma}T^{\frac{1}{2n+1}}\log T + T^{\frac{2n}{2n+1}}\operatorname{diam}(\mathbf{x})^n\right)$$
1185

1185
1186
1187
$$\leq O\left(T^{\frac{4n+1}{4n+2}}\left(\frac{d}{\sigma}\log T + \operatorname{diam}(\mathbf{x})^n\right)\right)$$

- E		

1188 If we instead use the second bound from Lemma B.4, the same arithmetic gives us:

Theorem 5.3. Let $\mathcal{Y} = \{0, 1\}$. Assume $\pi^m \in \Pi$ where either (1) Π has finite VC dimension d and x is σ -smooth or (2) Π has finite Littlestone dimension d. Then for any $T \in \mathbb{N}$, Algorithm 1 with $\varepsilon = T^{\frac{-2n}{2n+1}}$ satisfies

$$\mathbb{E}\left[\sum_{t=1}^{T} \mu^m(x_t) - \sum_{t=1}^{T} \mu(x_t, y_t)\right] \in O\left(\frac{dL}{\sigma} T^{\frac{-1}{2n+1}} \log T\right)$$

1195 1196

1193 1194

1197 1198 B.3 ADAPTIVE ADVERSARIES

1199 If s_t is allowed to depend on the events of prior time steps, we say that the adversary is adaptive. 1200 In contrast, a non-adaptive or "oblivious" adversary must choose the entire input upfront. This 1201 distinction is not relevant for deterministic algorithms, since an adversary knows exactly how the 1202 algorithm will behave for any input. In other words, the adversary gains no new information during 1203 the execution of the algorithm. For randomized algorithms, an adaptive adversary can base the choice 1204 of s_t on the results of randomization on previous time steps (but not on the current time step), while 1205 an oblivious adversary cannot.

In the standard online learning model, Hedge guarantees sublinear regret against both oblivious and adaptive adversaries (Chapter 5 of Slivkins et al. (2019) or Chapter 21 of Shalev-Shwartz & Ben-David (2014)). However, Russo et al. (2024) state their result only for oblivious adversaries. In order for our overall proof of Theorem 5.1 to hold for adaptive adversaries, Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)) must also hold for adaptive adversaries. In this section, we argue why the proof of Lemma 5.4 (Lemma 3.5 in their paper) goes through for adaptive adversaries as well. For this rest of Appendix B.3, lemma numbers refer to the numbering in Russo et al. (2024).

The importance of independent queries. Recall from Appendix B.1 that Russo et al. (2024) allow two separate parameters k and \hat{k} , which we unify for simplicity. Recall also that Lemma 3.5 refers to the variant of Hedge which queries with probability $p = \hat{k}/T = k/T$ independently on each time step (Algorithm 2. More precisely, on each time step t, the algorithm samples a Bernoulli random variable $X_t \sim \text{Ber}(p)$ and queries if $X_t = 1$. The key idea is that X_t is independent of events on previous time steps. Thus even conditioning on the history up to time t, for any for any random variable Y_t we can write

$$\mathbb{E}[Y_t] = (1-p)\mathbb{E}[Y_t \mid X_t = 0] + p\mathbb{E}[Y_t \mid X_t = 1]$$

This insight immediately extends Observation 3.3 to adaptive adversaries (with the minor modification that queries are now issued independently with probability p on each time step instead of issuing kuniformly distributed queries). Specifically, using the notation from Russo et al. (2024) where i_t is the action chosen at time t, i_t^0 is the action chosen at time t if a query is not issued, and i_t^* is the optimal action at time t, we have

1221

$$\mathbb{E}[\ell_t(i_t)] = (1-p) \mathbb{E}[\ell_t(i_t^0)] + p \mathbb{E}[\ell_t(i_t^*)] = \left(1 - \frac{k}{T}\right) \mathbb{E}[\ell_t(i_t^0)] + \frac{k}{T} \mathbb{E}[\ell_t(i_t^*)]$$

The same logic applies to other statements like $\mathbb{E}[\hat{\ell}_t(i) \mid X_{\leq t-1}, I_{\leq t-1}] = \ell_t(i) - \ell_t(i_t^*)$ and immediately extends those statements to adaptive adversaries as well.

Applying Observation 3.3. The other tricky part of the proof is applying Observation 3.3 using a new 1233 loss function $\hat{\ell}$ defined by $\hat{\ell}_t = \frac{T}{\hat{k}}(\ell_t(i) - \ell_t(i_t^*))\mathbf{1}(X_t = 1)$. To do so, we must argue that standard 1234 Hedge run on $\hat{\ell}$ is the "counterpart without queries" of HEDGEWITHQUERIES. Specifically, both 1235 algorithms must have the same weight vectors on every time step, and the only difference should be 1236 that HEDGEWITHQUERIES takes the optimal action on each time step independently with probability 1237 p (and otherwise behaves the same as standard Hedge). On time steps with $X_t = 0$, standard Hedge observes $\ell_t(i) = 0$ for all actions i and thus makes no updates, and HEDGEWITHQUERIES makes 1239 no updates by definition. On time steps with $X_t = 1$, both algorithms perform the typical updates 1240 $w_{t+1}(i) = w_t(i) \cdot \exp(-\eta(\hat{\ell}_t(i) - \hat{\ell}_t(i_t^*)))$. Thus the weight vectors are the same for both algorithms 1241 on every time step. Furthermore, HEDGEWITHQUERIES takes the optimal action at time t iff $X_t = 1$,

Algo	rithm 3 extends Algorithm 1 to many actions.
1: 1	Function AVOIDCATASTROPHEMANYACTIONS($T \in \mathbb{N}, \varepsilon \in \mathbb{R}_{>0}, d \in \mathbb{N}$, policy class Π)
2:	for $y \in \mathcal{Y}$ do
3:	if Π has VC dimension d then
4:	$\Pi_y \leftarrow \text{any smooth } \varepsilon\text{-cover of }\Pi \text{ of size at most } (41/\varepsilon)^d$
5:	else if Π has Littlestone dimension d then
6:	$\Pi_y \leftarrow$ any adversarial ε -cover of size at most $(eT/d)^d$
7:	for t from 1 to T do
8:	for $y\in\mathcal{Y}$ do
9:	$b_t^y \leftarrow$ action from running one step of Algorithm 1 on Π_y (with the same T, ε, d)
10:	if $b_t^y \neq \tilde{y} \ \forall y \in \mathcal{Y}$ and $\exists a \in \mathcal{Y} : b_t^y = 1$ then
11:	Take any action y with $b_t^y = 1$
12:	else
13:	Query the mentor
whic the "	h occurs independently with probability p on each time step. Thus standard Hedge run on $\hat{\ell}$ is counterpart without queries" of HEDGEWITHQUERIES.
The	rest of the proof. The other elements of the proof of Lemma 3.5 are as follows:
	1. Lemma 3.1, which analyzes the standard version of Hedge (i.e., no queries and losses are observed on every time step).
	2. Applying Lemma 3.1 to a $\hat{\ell}$.
	A rithmatic and rearranging terms
	5. Anumetic and rearranging terms.
The	proof of Lemma 3.1 relies on simple arithmetic properties of the Hedge weights. Regardless
of th	e adversary's behavior $\hat{\ell}$ is a well-defined loss function so Lemma 3.1 can be applied. Step 3
clear	Iv has no dependence on the type of adversary. Thus we conclude that Lemma 3.5 extends to
adan	tive adversaries.
P	
C	
C	GENERALIZING THEOREM 5.2 TO MANY ACTIONS
We u	se the standard "one versus rest" reduction (see, e.g., Chapter 29 of Shalev-Shwartz & Ben-David
(201	(4)). For each action y, we will learn a binary classifier which predicts whether action y is the
ment	or s action. Formally, for each $y \in \mathcal{Y}$, define the policy class $\Pi_y = \{\pi_y : \pi \in \Pi \text{ and } \pi_y(x) = x\}$
$\mathbf{I}(\pi($	$x_1 = y_1$ $\forall x \in \Lambda$. Informatly, for each poincy $\pi : \Lambda \to Y$ in II, there exists a policy $\mathcal{X} \to \{0, 1\}$ in Π , such that $\pi(x) = 1(\pi(x) - x)$ for all $\pi \in \mathcal{X}$.
π_y :	$\Lambda \to \{0,1\}$ in Π_y such that $\pi_y(x) = 1(\pi(x) = y)$ for all $x \in \Lambda$.
Algo	rithm 3 runs one copy of our binary-action algorithm Algorithm 1 for each action $y \in \mathcal{Y}$. At
each	time step t, the copy for action y returns an action b_t^y , with $b_t^y = 1$ indicating a belief that
y =	$\pi^m(x_t)$ and $b_t^y = 0$ indicating a belief that $y \neq \pi^m(x_t)$. (Note that $b_t^y = \tilde{y}$ is also possible,
indic	ating that the mentor was queried.)
The	key idea is that if h^y is correct for each action y, there will be exactly one y such that $h^y = 1$
and a	The specifically it will be $u - \pi^m(x_t)$. Thus we are guaranteed to take the mentor's action on such
time	steps The analysis for Theorem 5.2 (specifically Lemma R 1) bounds the number of time steps
wher	a given copy of Algorithm 1 is incorrect, so by the union bound, the number of time steps
wher	$e any$ copy is incorrect is $ \mathcal{V} $ times that bound. That in turn bounds the number of time steps
wher	e Algorithm 3 takes an action other than the mentor's. Similarly, the number of queries made by
Algo	rithm 3 is at most $ \mathcal{Y} $ times the bound from Theorem 5.2. The result is the following theorem:
	$\mathbf{C1} \text{Assume } \mathbf{C}^{m} \subset \Pi \text{ where either } (1) \Pi \text{has finite } VC dimensional and so is a set of the set $
1 neo	TELL C.1. Assume $\pi^{-1} \in 11$ where enter (1) Π_{y} has finite VC almension a and X is σ -smooth or [has finite Littlestone dimension d for all $u \in \mathcal{V}$. Then for any $T \in \mathbb{N}$. Algorithm 2 with T and
(2)1	y has junce Linesione almension a jor all $y \in \mathcal{Y}$. Then for any $1 \in \mathbb{N}$, Algorithm 5 with 1 and $\frac{-2n}{2}$
$\varepsilon = 1$	L^{2n+1} satisfies
	$\langle \mathcal{V} dL_{-1} \rangle$
	$\mathbb{E}\left[D\right] \subset O\left(\left \mathcal{S}\right ^{w} T \frac{1}{2-1} \log T\right)$

$$\begin{split} \mathbb{E}[|Q_T|] &\in O\left(||y|T^{\frac{n+1}{2}}\left(\frac{d}{\sigma}\log T + \operatorname{diam}(\mathbf{x})^n\right)\right) \\ \end{split}$$
We use the following terminology and notation in the proof of Theorem C.1:
1. We refer to the copy of Algorithm 1 running on Π_y as "copy of Algorithm 1".
2. Let π^n and Y_t free to the values of π_i and X_t for copy y of Algorithm 1.
3. Let $\pi^m x \to (0, 1)$ be the policy defined by $\pi^m (x_i) = 1(\pi^m (x_i) = y)$. Note that querying the mentor tells the agent $\pi^m(x_i)$, which allows the agent to compute $\pi^m (x_i)$; this is necessary when Algorithm 1 queries while numning on some Π_y .
4. Let $V_T^2 = (t \in [T] : \delta_T^2 \neq \pi^m (x_i))$ be the set of time steps where π_t^2 does not correctly determine whether the mentor would take action y and let $V_T = \{t \in [T] : y_t \neq \pi^m(x_i)\}$ be the set of time steps where π_t^2 does not correctly determine whether the mentor would take action doesn't match the mentor's.
Lemma C.1. We have $|V_T| \leq \sum_{y \in Y} |V_T^n|$.
Proof. We claim that $V_T \subseteq \bigcup_{y \in Y} V_T^n$. Suppose the opposite: then there exists $t \in V_T$ such that $\|\eta^m(x_i) = \eta$ and $\pi^m(x_i) = \eta$. If $|\Psi^m(x_i) < \psi^m(x_i) > \mathbb{I}$. Therefore $V_T \subseteq \bigcup_{y \in Y} V_T^n$, and applying the union bound completes the proof.
Lemma C.2. For all $t \in [T]$, $\mu^m(x_i) - \mu(x_i, y_i) \leq Le^{1/n}$.
Proof. The argument is similar to the proof of Lemma B.2. If $\mu^m(x_i) \neq \mu(x_i, y_i)$, then $y_i = y$ for some $y \in \mathcal{Y}$ where $b_i^n = 1$. Therefore copy y of Algorithm 1 did not query at time and $\pi_i^2(x_i) = 1$.
Let $(x', y') = \arg\min_{x_i,y} \otimes \chi_{i}^m(x_i) = |x_i, \pi^m(x')| \geq L^{m}(x_i) - L|x_i - x'|| \geq \mu^m(x_i) - Le^{1/n}$ as required.
Theorem C.1. Assume $\pi^m \in \Pi$ where either (1) Π_y has finite VC dimension d and x is σ -smooth or (2) Π_y has finite Littlestone dimension d for all $y \in \mathcal{Y}$. Then for any $T \in \mathbb{N}$. Algorithm 3 with T and $\varepsilon = T^{m + m}$ surface
 $\mu(x_i, y_i) = \mu(x_i, y_i) = \mu(x_i, \pi^m(x')) \geq \mu^m(x_i) - L||x_i - x'|| \geq \mu^m($

Then by Lemma C.1, $R_T \le L\varepsilon^{1/n} \sum_{y \in \mathcal{Y}} |V_T^y|$. Taking the expectation and applying Lemma B.1 to each V_T^y gives us

$$\mathbb{E}[R_T] \le L\varepsilon^{1/n} \sum_{y \in \mathcal{Y}} O\left(\frac{d}{\sigma} T\varepsilon \log(1/\varepsilon) \log T\right) = O\left(|\mathcal{Y}| L\varepsilon^{1/n} \frac{d}{\sigma} T\varepsilon \log(1/\varepsilon) \log T\right)$$

as required.

1353 1354 1355

1356 1357

1360

D THERE EXIST POLICY CLASSES WHICH ARE LEARNABLE IN OUR SETTING BUT NOT IN THE STANDARD ONLINE MODEL

This section presents another algorithm with subconstant regret and sublinear queries, but under different assumptions. The primary takeaway here is that our algorithm can handle the class of thresholds on [0, 1], which is known to have infinite Littlestone dimension and thus be hard in the standard online learning model. (Example 21.4 in Shalev-Shwartz & Ben-David (2014)).

Specifically, we assume a 1D input space and we allow the input sequence to be fully adversarial chosen. Instead of VC/Littlestone dimension, we consider the following notion of simplicity:

Definition D.1. Given a mentor policy π^m , partition the input space \mathcal{X} into intervals such that all inputs within each interval share the same mentor action. Let $\{X_1, \ldots, X_k\}$ be a partition that minimizes the number of intervals. We call each X_j a *segment*. Let $f(\pi^m)$ denote the number of segments in π^m .

Bounding the number of segments is similar conceptually to VC dimension in that it limits the ability of the policy class to realize arbitrary combinations of labels (i.e., mentor actionx) on x. For example, if Π is the class of thresholds on [0, 1], every $\pi \in \Pi$ has at most two segments, and thus the positive result in this section will apply. This demonstrates the existence of policy classes which are learnable in our setting but not learnable in the standard online learning model, meaning that the two settings do not exactly coincide.

1378 We prove the following result:

Theorem D.2. For any $\mathbf{x} \in \mathcal{X}^T$, any π^m with $f(\pi^m) \leq K$, and any function $g: \mathbb{N} \to \mathbb{N}$, Algorithm 4 makes at most $(\operatorname{diam}(\mathbf{x}) + 4)g(T)$ queries and satisfies $R_T \leq \frac{2LKT}{g(T)^2}$.

1382 Choosing $g(T) = T^c$ for $c \in (1/2, 1)$ is sufficient to subconstant regret and sublinear queries: 1383 Theorem D.3. For any $c \in (1/2, 1)$, Algorithm 4 with $g(T) = T^c$ makes $O(T^c(\operatorname{diam}(\mathbf{x}) + 1))$

 $\lim_{T \to \infty} \sup_{\mathbf{x} \in \mathcal{X}^T} \sup_{\mu} \sup_{\pi^m: f(\pi^m) \le K} R_T = 0$

1384 *queries and satisfies* 1385

1386

1387

1388

Our algorithm does not need to know L or the number of segments; it only needs to know T.

1389 D.1 INTUITION BEHIND THE ALGORITHM

1391 The algorithm maintains a set of buckets which partition the observed portion of the input space. 1392 Each bucket's length determines the maximum loss in payoff we will allow from that subset of the 1393 input space. As long as the bucket contains a query from a prior time step, local generalization allows 1394 us to bound $\mu^m(x_t) - \mu(x_t, y_t)$ based on the length of the bucket containing x_t . We always query if 1395 the bucket does not contain a prior query

The granularity of the buckets is controlled by a function g, with the initial buckets having length 1/g(T). Since we can expect one query per bucket, we need $g(T) \in o(T)$ to ensure sublinear queries.

Regardless of the bucket length, the adversary can still place multiple segments in the same bucket B. A single query only tells us the optimal action for one of those segments, so we risk a payoff as bad as $\mu^m(x_t) - O(\operatorname{len}(B))$ whenever we choose not to query. We can endure a limited number of such payoffs, but if we never query again in that bucket, we may suffer $\Theta(T)$ such payoffs. Letting $\mu^m(x_t) = 1$ for simplicity, that would lead to $\prod_{t=1}^T \mu(x_t, y_t) \le \left(1 - \frac{1}{O(g(T))}\right)^{\Theta(T)}$, which converges to 0 (i.e., guaranteed catastrophe) when $g(T) \in o(T)$.

1404 Algorithm 4 achieves subconstant regret when the mentor's policy has a bounded number of segments. 1405 1: function AVOIDCATASTROPHE($T \in \mathbb{N}, q : \mathbb{N} \to \mathbb{N}$) 1406 2: $X_Q \leftarrow \emptyset$ ▷ Previously queried inputs 1407 3: $\pi \leftarrow \emptyset$ \triangleright Records $\pi^m(x)$ for each $x \in X_O$ 1408 4: $\mathcal{B} \leftarrow \emptyset$ ▷ The set of active buckets 1409 5: for t from 1 to T do 1410 EVALUATEINPUT (x_t) 6: 1411 7: function EVALUATEINPUT($x \in \mathcal{X}$) 1412 if $s \notin B$ for all $B \in \mathcal{B}$ then \triangleright No bucket containing x: create a new bucket and try again 8: 1413 $B \leftarrow \left| \frac{j-1}{g(T)}, \frac{j}{g(T)} \right|$ for $j \in \mathbb{Z}$ such that $x \in B$ 9: 1414 $\mathcal{B} \leftarrow \mathcal{B} \cup \{B\}$ 10: 1415 $n_B \leftarrow 0$ \triangleright Number of time steps that have used B 11: 1416 12: EVALUATEINPUT(x)1417 13: else 1418 14: $B \leftarrow$ any bucket containing x 1419 if $X_Q \cap B = \emptyset$ then 15: \triangleright No queries in this bucket 1420 16: Query mentor and observe $\pi^m(x)$ 1421 17: $\pi(x) \leftarrow \pi^m(x)$ $X_Q \leftarrow X_Q \cup \{x\}$ 18: 1422 $n_B \leftarrow n_B + 1$ 19: 1423 else if $n_B < T/g(T)$ then 20: ▷ Bucket has a query and isn't full: take that action 1424 Let $\bar{x'} \in X_Q \cap B$ 21: 1425 Take action $\pi(x')$ 22: 1426 23: $n_B \leftarrow n_B + 1$ 1427 else ▷ Bucket is full: split bucket and try again 24: 1428 B = [a, b]25: 1429 $(B_1, B_2) \leftarrow \left(\left[a, \frac{a+b}{2} \right], \left[\frac{a+b}{2}, b \right] \right)$ 26: 1430 $\begin{array}{c} (x_{B_1}, x_{B_2}) \leftarrow (0, 0) \\ \mathcal{B} \leftarrow \mathcal{B} \cup \{B_1, B_2\} \setminus B \end{array}$ 27: 1431 28: 1432 29: EVALUATEINPUT(x)1433 1434 1435 This failure mode suggests a natural countermeasure: if we start to suffer significant (potential) 1436 losses in the same bucket, then we should probably query there again. One way to structure these 1437 supplementary queries is by splitting the bucket in half when enough time steps have involved that 1438 bucket. It turns out that splitting after T/g(T) time steps is a sweet spot. 1439 1440 D.2 NOTATION FOR THE PROOF 1441 1442 We will use the following notation throughout the proof of Theorem D.2: 1443 • Let $V_T = \{t \in [T] : \mu(x_t, y_t) < \mu^m(x_t)\}$ be the set of time steps with a suboptimal payoff. 1444 • Let B_t be the bucket that is used on time step t (as defined on line 14 of Algorithm 4). 1445 1446 • Let d(B) be the *depth* of bucket B 1447 - Buckets created on line 9 are depth 0. 1448 - We refer to B_1, B_2 created on line 26 as the children of the bucket B defined on line 1449 14. 1450 - If B' is the child of B, d(B') = d(B) + 1. 1451 - Note that $\operatorname{len}(B) = \frac{1}{q(T)2^{d(B)}}$. 1452 1453 • Viewing the set of buckets are a binary tree defined by the "child" relation, we use the terms 1454 "ancestor" and "descendant" in accordance with their standard tree definitions. 1455 • Let $\mathcal{B}_V = \{B : \exists t \in V_T \text{ s.t. } B_t = B\}$ be the set of buckets that ever produced a suboptimal 1456 payoff. 1457

• Let $\mathcal{B}'_V = \{B \in \mathcal{B}_V : \text{no descendant of } B \text{ is in } \mathcal{B}_V\}.$

1458 1459	D.3	Proof roadmap
1460	The r	proof proceeds in the following steps:
1461	1	
1462		1. Bound the total number of buckets and therefore the total number of queries (Lemma D.1).
1463		2. Bound the suboptimality on a single time step based on the bucket length and L
1464		(Lemma D.2).
1465		3. Bound the sum of bucket lengths on time steps where we make a mistake (Lemma D.4),
1467		with Lemma D.3 as an intermediate step. This captures the total amount of suboptimality.
1468 1469		4. As in the proof of Theorem 5.2, Lemma B.3 transforms the multiplicative objective into an additive form. Lemma D.5 bounds the additive objective using Lemmas D.2 and D.4.
1470		5. Combining Lemmas D.5 and B.3 bounds the regret (Lemma D.6).
1471		6. Theorem D.2 directly follows from Lemmas D.1 and D.6.
1472		
1474	D.4	Proof
1475	Lem	ma D.1. Algorithm 4 performs at most $(\text{diam}(\mathbf{x}) + 4)a(T)$ queries.
1476		
1477	Proo	f. Algorithm 4 performs at most one query per bucket, so the total number of queries is bounded
1478	by th	e total number of buckets. There are two ways to create a bucket: from scratch (line 9), or by
1479	splitt	ing an existing bucket (line 26).
1480	Since	e depth 0 buckets overlap only at their boundaries, and each depth 0 bucket has length $1/g(T)$.
1481	at me	ost $g(T) \max_{t,t' \in [T]} x_t - x_{t'} = g(T) \operatorname{diam}(\mathbf{x})$ depth 0 buckets are subsets of the interval
1483	[min,	$t \in [T] x_t, \max_{t \in [T]} x_t]$. At most two depth 0 buckets are not subsets of that interval (one at each
1484	end),	so the total number of depth 0 buckets is at most $g(T) \operatorname{diam}(\mathbf{x}) + 2$.
1485 1486	We s step i	plit a bucket B when n_B reaches $T/g(T)$, which creates two new buckets. Since each time increments n_B for a single bucket B, and there are a total of T time steps, the total number of
1487	buck	ets created via splitting is at most $\frac{2T}{T/q(T)} = 2g(T)$. Therefore the total number of buckets ever
1488 1489	in ex (dian	istence is $(\operatorname{diam}(\mathbf{x}) + 2)g(T) + 2 \leq (\operatorname{diam}(\mathbf{x}) + 4)g(T)$, so Algorithm 4 performs at most $\operatorname{m}(\mathbf{x}) + 4)g(T)$ queries.
1490	Lam	map 2 For each $t \in [T]$ $u(m, \alpha) > u^m(m) = L lon(D)$
1491	Lem	in D.2. For each $t \in [1], \mu(x_t, y_t) \ge \mu^{-1}(x_t) - L \operatorname{Ien}(B_t).$
1493	Proo	f. If we query the mentor at time $t = \mu(x, y_0) - \mu^m(x_0)$. Thus assume we do not query the
1494	ment	or at time t: then there exists $x' \in B_t$ (as defined on line 21 of Algorithm 4) such that $u_t =$
1495	$\pi(x')$	$x = \pi^m(x')$. Since x_t and x' are both in B_t , $ x_t - x' \le len(B_t)$. Then by the local generalization
1496	assur	nption, $\mu(x_t, y_t) = \mu(x_t, \pi^m(x')) \ge \mu^m(x_t) - L x_t - x' \ge \mu^m(x_t) - L \ln(B_t).$
1497	Lem	ma D.3. If π^m has at most K segments, $ \mathcal{B}'_{xi} < K$.
1498		
1499	Proo	f. Now consider any $B \in \mathcal{B}'_{tr}$. By definition of \mathcal{B}'_{tr} , there exists $t \in V_{\mathcal{T}}$ such that $x_t \in B$. Then
1500	there	exists $x' \in B$ (as defined in Algorithm 4) such that $y_t = \pi(x') = \pi^m(x')$. Since $t \in V_T$,
1502	we h	ave $\pi^m(x_t) \neq y_t = \pi^m(x')$. Thus x_t and x' are in different segments, but are both in B
1503	There	efore any $B \in \mathcal{B}'_V$ must intersect at least two segments. Since B is an interval, if it intersects
1504	two s	regments, it must intersect two adjacent segments X_j and X_{j+1} . Furthermore, B must contain
1505		The region of the set
1506	Now	consider some $B' \in \mathcal{B}'_V$ with $B \neq B'$. We $ B \cap B' \leq 1$: otherwise one must be the descendant
1507	or the	e other, which contradicts the definition of \mathcal{B}_V . Suppose B' also intersects both X_j and X_{j+1} .
1508	betwo	een those two segments. But then $ B \cap B' > 1$, which is a contradiction.
1509		

Therefore any pair of adjacent segments X_j and X_{j+1} , there is at most one bucket in \mathcal{B}'_V which contains an open neighborhood around their boundary. Since there are at most K-1 pairs of adjacent segments, we have $|\mathcal{B}'_V| \leq K-1 \leq K$.

1512 Lemma D.4. We have
$$\sum_{t \in V_T} \operatorname{len}(B_t) \leq \frac{2KT}{g(T)^2}$$
.
1514

Proof. For every $t \in V_T$, we have $B_t = B$ for some $B \in \mathcal{B}_V$, so

$$\sum_{t \in V_T} \operatorname{len}(B_t) = \sum_{B \in \mathcal{B}_V} \sum_{t \in V_T : B = B_t} \operatorname{len}(B_t)$$

1518 Next, observe that every $B \in \mathcal{B}_V \setminus \mathcal{B}'_V$ must have a descendent in \mathcal{B}'_V : otherwise we would have 1520 $B \in \mathcal{B}'_V$. Let $\mathcal{A}(B)$ denote the set of ancestors of B, plus B itself. Then we can write

$$\sum_{t \in V_T} \operatorname{len}(B_t) \leq \sum_{B' \in \mathcal{B}'_V} \sum_{B \in \mathcal{A}(B')} \sum_{t \in V_T : B = B_t} \operatorname{len}(B_t)$$
$$= \sum_{B' \in \mathcal{B}'_V} \sum_{B \in \mathcal{A}(B')} |\{t \in V_T : B = B_t\}| \cdot \operatorname{len}(B_t)$$

For any bucket *B*, the number of time steps *t* with $B = B_t$ is at most T/g(T). Also recall that $len(B) = \frac{1}{g(T)2^{d(B)}}$. Therefore

$$\sum_{B \in \mathcal{A}(B')} \frac{|\{t \in V_T : B = B_t\}|}{g(T)2^{d(B)}} \le \frac{T}{g(T)^2} \sum_{B \in \mathcal{A}(B')} \frac{1}{2^{d(B)}}$$

$$= \frac{T}{g(T)^2} \sum_{d=0}^{\alpha(D)} \frac{1}{2^d} \le \frac{T}{g(T)^2} \sum_{d=0}^{\infty} \frac{1}{2^d} = \frac{2T}{g(T)^2}$$

Then by Lemma D.3,

$$\sum_{t \in V_T} \ln(B_t) \le \sum_{B' \in \mathcal{B}'_V} \frac{2T}{g(T)^2} = \frac{2T|\mathcal{B}'_V|}{g(T)^2} \le \frac{2KT}{g(T)^2}$$

as claimed.

Lemma D.5. Under the conditions of Theorem D.2, Algorithm 4 satisfies $\sum_{t=1}^{T} \left(\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) \right) < \frac{2LKT}{(\pi^m(x_t), \mu(x_t, y_t))}$

$$\sum_{t=1} \left(\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) \right) \le \frac{2LKI}{g(T)^2}$$

1545 *Proof.* For $t \notin V_T$ we have $\min(\mu^m(x_t), \mu(x_t, y_t)) = \mu^m(x_t)$ by definition, and Lemma D.2 1546 implies that $\min(\mu^m(x_t), \mu(x_t, y_t)) \ge L \ln(B_t)$ for all $t \in [T]$. Thus

$$\sum_{t=1}^{T} \left(\mu^{m}(x_{t}) - \min(\mu^{m}(x_{t}), \mu(x_{t}, y_{t})) \right) \leq \sum_{t \in V_{T}} \left(\mu^{m}(x_{t}) - \min(\mu^{m}(x_{t}), \mu(x_{t}, y_{t})) \right) \leq L \sum_{t \in V_{T}} \ln(B_{t})$$

1550 Then by Lemma D.4,

$$\sum_{t=1}^{T} \left(\mu^{m}(x_{t}) - \min(\mu^{m}(x_{t}), \mu(x_{t}, y_{t})) \right) \leq \frac{2LKT}{g(T)^{2}}$$

1554 as required.

Lemma D.6. Under the conditions of Theorem D.2, Algorithm 4 satisfies $R_T \leq \frac{2LKT}{g(T)^2}$.

Proof. Let
$$a_t = \mu^m(x_t)$$
 and $b_t = \min(\mu^m(x_t), \mu(x_t, y_t))$ for all $t \in [T]$. Then by Lemma B.3,

$$\prod_{t=1}^T \mu^m(x_t) - \prod_{t=1}^T \min(\mu^m(x_t), \mu(x_t, y_t)) \le \sum_{t=1}^T \left(\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t))\right)$$
Since $\mu(x_t, y_t) \ge \min(\mu^m(x_t), \mu(x_t, y_t))$ for all $t \in [T]$, we have

$$R_T = \prod_{t=1}^T \mu^m(x_t) - \prod_{t=1}^T \mu(x_t, y_t) \le \sum_{t=1}^T \left(\mu^m(x_t) - \min(\mu^m(x_t), \mu(x_t, y_t)) \right)$$

Applying Lemma D.5 completes the proof.

Theorem D.2 follows from Lemma D.1 and Lemma D.6.

1568 1569 E Other proofs

1570

Proposition E.1 states that Lipschitz continuity implies local generalization when the mentor is optimal.

Proposition E.1. Assume that for all $x, x' \in \mathcal{X}$ and $y \in \mathcal{Y}$, $|\mu(x, a) - \mu(x', a)| \leq L||x - x'||$. Also assume that $\mu(x, \pi^m(x)) = \max_{y \in \mathcal{Y}} \mu(x, y)$ for all $x \in \mathcal{X}$. Then π^m satisfies local generalization with constant 2L.

 $\geq \mu(x', \pi^m(x)) - L||x - x'||$

 $\geq \mu(x, \pi^m(x)) - 2L||x - x'||$

 $= \mu^m(x) - 2L||x - x'||$

1577 *Proof.* For any $x, x' \in \mathcal{X}$, we have

1578

1576

 $\mu(x, \pi^m(x')) > \mu(x', \pi^m(x')) - L||x - x'||$

1581

1582 1583

1585

Since π^m is optimal for x, we have

$$\mu^{m}(x) + 2L||x - x'|| \ge \mu^{m}(x) \ge \mu(x, \pi^{m}(x'))$$

(Lipschitz continuity of μ)

(Lipschitz continuity of μ again)

 $(\pi^m \text{ is optimal for } x')$

(Definition of $\mu^m(x)$)

1586 Thus $-2L||x-x'|| \le \mu(x, \pi^m(x')) - \mu^m(x) \le 2L||x-x'||$. This is equivalent to $|\mu(x, \pi^m(x')) - \mu^m(x)| \le 2L||x-x'||$, completing the proof.

1588 1589

Proposition E.2 states that the achievability of subconstant regret does not depend on whether we require expected sublinear queries or worst-case sublinear queries.

Proposition E.2. Suppose an algorithm satisfies $\lim_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[R_T] = 0$ and sup_{μ,π^m} $\mathbb{E}[|Q_T|] \in o(T)$. Then there exists $h : \mathbb{N} \to \mathbb{N}$ such that (1) $h(T) \in o(T)$ and (2) if the algorithm is modified to simply stop querying if the number of queries reaches h(T), the algorithm still satisfies $\lim_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[R_T] = 0$.

1597 1598 1599 Proof. We use Q_T, R_T to refer to the queries and regret of the original algorithm, and Q'_T, R'_T to refer to the queries and regret of the modified algorithm.

1600 Since $\sup_{\mu,\pi^m} \mathbb{E}[|Q_T|] \in o(T)$, there exists $g : \mathbb{N} \to \mathbb{N}$ such that $\sup_{\mu,\pi^m} \mathbb{E}[|Q_T|] \leq g(T)$ and 1601 $g(T) \in o(T)$. Let $h(T) = \sqrt{g(T)T}$; then $h(T) \in o(T)$ by Lemma A.1. Markov's inequality implies 1602 that

$$\Pr\left[|Q_T| > h(T)\right] \le \frac{\mathbb{E}[|Q_T|]}{h(T)} \le \frac{g(T)}{\sqrt{g(T)T}} = \sqrt{\frac{g(T)}{T}}$$

1605 Let ξ denote the event that at some point, the original algorithm would query, but the modified 1606 algorithm cannot because $|Q'_T| = h(T)$. Then $\Pr[\xi] \leq \Pr[|Q_T| > h(T)]$ (the inequality is because 1607 the modified algorithm might not want to query more anyway). Also note that the algorithms are 1608 equivalent if ξ does not occur, so $\mathbb{E}[R'_T | \neg \xi] = \mathbb{E}[R_T]$. Hence

 $\leq \mathbb{E}[R_T] + \sqrt{\frac{g(T)}{T}}$

1609

$$\mathbb{E}[R'_T] = \mathbb{E}[R'_T \mid \neg \xi] \operatorname{Pr}[\neg \xi] + \mathbb{E}[R'_T \mid \xi] \operatorname{Pr}[\xi]$$
1610

$$\leq \mathbb{E}[R_T] \cdot 1 + 1 \cdot \operatorname{Pr}[\xi]$$

1612 1613

1603 1604

1614 Since $g(T) \in o(T)$, we get

$$\lim_{T \to \infty} \sup_{\mu, \pi^m} \mathbb{E}[R'_T] \le \lim_{T \to \infty} \sup_{\mu, \pi^m} \left(\mathbb{E}[R_T] + \sqrt{\frac{g(T)}{T}} \right)$$

$$\lim_{T \to \infty} \sup_{\mu, \pi^m} \mathbb{E}[R_T] + \lim_{T \to \infty} \sqrt{\frac{g(T)}{T}}$$

1623

= 0

as required.

1624 Theorem E.3 shows that avoiding catastrophe is impossible without local generalization, even when x 1625 is σ -smooth and Π has finite VC dimension. The first insight is that without local generalization, we 1626 can define $\mu(x, y) = \mathbf{1}(y = \pi^m(x))$ so that a single mistake causes $\prod_{t=1}^T \mu(x_t, y_t) = 0$. To lower 1627 bound $\Pr\left[\prod_{t=1}^T \mu(x_t, y_t) = 0\right]$, we use a similar approach to the proof of Theorem 4.1: divide 1628 $\mathcal{X} = [0, 1]$ into f(T) independent sections with $|Q_T| << f(T) << T$, so that the agent can only 1629 query a small fraction of these sections. However, the proof of Theorem E.3 is a bit easier, since we 1630 only need the agent to make a single mistake.

The proof of Theorem E.3 assumes sublinear queries unconditionally, but recall from Proposition E.2
 that the distinction between worst-case sublinear queries and expected sublinear queries is not significant.

1634 Theorem E.3. Let $\mathcal{X} = [0,1]$ and $\mathcal{Y} = \{0,1\}$. Assume each input is sampled i.i.d. from the uniform distribution on \mathcal{X} and define the mentor policy class by the set of intervals within \mathcal{X} , i.e., II = { $\pi : \exists a, b \in [0,1]$ s.t $\pi(x) = \mathbf{1}(x \in [a,b]) \forall x \in \mathcal{X}$ }. Then without the local generalization assumption, any algorithm with sublinear queries satisfies $\lim_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[R_T] = 1$.

1638

1639 *Proof.* Part 1: Setup. Consider any algorithm which makes sublinear worst-case queries: then there 1640 exists $g : \mathbb{N} \to \mathbb{N}$ where $\sup_{\mu,\pi^m} |Q_T| \le g(T)$ and $g(T) \in o(T)$. Define $f(T) := \sqrt{(g(T) + 1)T}$; 1641 by Lemma A.1, $g(T) \in o(f(T))$ and $f(T) \in o(T)$. Divide \mathcal{X} into f(T) equally sized sections 1642 $X_1, \ldots, X_{f(T)}$ in the exactly the same way as in Section 4.2; see also Figure 2. Assume that each x_t 1643 is in exactly one section: this assumption holds with probability 1, so it does not affect the regret.

1644 We use the probabilistic method: sample a segment $j^m \in [f(T)]$ uniformly at random, define π^m by 1645 $\pi^m(x) = \mathbf{1}(x \in X_{j^m})$, and define μ by $\mu(x, y) = \mathbf{1}(y = \pi^m(x))$. In words, the mentor takes action 1646 1 iff the input is in section j^m , and the agent receives payoff 1 if its action matches the mentor's and 1647 zero otherwise. Since any choice of j^m defines a valid μ and π^m , we have

$$\sup_{\mu,\pi^m} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[R_T(\mathbf{x},\mathbf{y},\mu,\pi^m) \right] \ge \mathbb{E}_{j^m} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[R_T(\mathbf{x},\mathbf{y},\mu,\pi^m) \right]$$

1650 1651 Let $J_{\neg Q} = \{j \in [f(T)] : x_t \notin X_j \ \forall t \in Q_T\}$ be the set of sections which are never queried. Let j_1, \ldots, j_k be the sequence of sections queried by the agent: then $k \leq |Q_T| \leq g(T)$.

Part 2: The agent is unlikely to determine j^m . By the chain rule of probability,

1654 1655 1656

1663 1664

1648 1649

$$\Pr[j^m \in J_{\neg Q}] = \Pr\left[j_i \neq j^m \;\forall i\right] = \prod_{i=1}^{\kappa} \Pr\left[j_i \neq j^m \mid j_r \neq j^m \;\forall r < i\right]$$

1657 Now fix *i* and assume $j_r \neq j^m \ \forall r < i$. Queries in sections other than j^m provide no information 1658 about the value of j^m , so j^m is uniformly distributed across the set of sections not yet queried, i.e., 1659 $\{j \in [f(T)] : j_r \neq j \ \forall r < i\}$. There are at least f(T) - i + 1 such sections, since there are i - 11660 prior queries at this point. Thus $\Pr[j_i \neq j^m | j_r \neq j^m \ \forall r < i] \le \frac{f(T) - i}{f(T) - i + 1}$ (the inequality is 1661 because it could also be 0 if $j_i = j_r$ for some i < r). Therefore

$$\Pr\left[j^{m} \in J_{\neg Q}\right] \leq \prod_{i=1}^{k} \frac{f(T) - i}{f(T) - i + 1} \\ = \frac{f(T) - 1}{f(T)} \cdot \frac{f(T) - 2}{f(T) - 1} \cdots \frac{f(T) - k + 1}{f(T) - k + 2} \cdot \frac{f(T) - k}{f(T) - k + 1} \\ = \frac{f(T) - k}{f(T)} \\ \geq 1 - \frac{g(T)}{f(T)}$$

Part 3: If the agent fails to determine j^m , it is likely to make at least one mistake. For each $j \in J_{\neg Q}$, let $V_j = \{t \in [T] : x_t \in X_j\}$ be the set of time steps with inputs in section j. By

Lemma A.3, $\Pr[|V_{j^m}| = 0] \le \exp\left(\frac{T}{16f(T)}\right)$. Then by the union bound, $\Pr[j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0]$ $[0] \ge 1 - \frac{g(T)}{f(T)} - \exp\left(\frac{-T}{16f(T)}\right)$. For the rest of Part 3, assume $j^m \in J_{\neg Q}$ and $|V_{j^m}| > 0$. Since $j^m \in J_{\neg Q}$, the agent has no information about j^m other than that it is in $J_{\neg Q}$. This means that for all $j \in J_{\neg Q}$ and $t \in V_j$, j^m is conditionally (under the condition of $j^m \in J_{\neg Q}$) independent of y_t . We proceed by case analysis. Case 1: For all $j \in J_{\neg O}$, $t \in V_i$, we have $y_t = 0$. In particular, this holds for $j = j^m$, and we know there exists at least one $t \in V_{j^m}$ since $|V_{j^m}| > 0$. Then $y_t \neq \pi^m(x_t)$, so $\mu(x_t, y_t) = 0$ and thus $\Pr\left[\prod_{r=1}^{T} \mu(x_r, y_r) = 0 \ \middle| \ j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0 \right] = 1.$ Case 2: There exists $j \in J_{\neg Q}, t \in V_j$ with $y_t = 1$. Then $\mu(x_t, y_t) = 0$ unless $j = j^m$, so $\Pr\left|\prod_{r=1}^{i} \mu(x_r, y_r) = 0 \mid j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right| \ge \Pr\left[\mu(x_t, y_t) = 0 \mid j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right]$ $= \Pr\left[j \neq j^m \mid j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right]$ Conditioned on $j^m \in J_{\neg Q}$, j^m is uniformly distributed across $J_{\neg Q}$, so $\Pr\left|\prod_{r=1}^{I} \mu(x_r, y_r) = 0 \mid j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right| \ge 1 - \frac{1}{|J_{\neg Q}|} \ge 1 - \frac{1}{f(T) - g(T)}$ Combining Case 1 and Case 2, we get the overall bound of $\Pr\left|\prod_{t=1}^{T} \mu(x_t, y_t) = 0 \mid j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right| \ge 1 - \frac{1}{f(T) - g(T)}$ and thus $\Pr\left|\prod_{t=1}^{T} \mu(x_t, y_t) = 0\right| \ge \Pr\left|\prod_{t=1}^{T} \mu(x_t, y_t) = 0 \text{ and } j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right|$ $= \Pr\left[\prod_{i=1}^{T} \mu(x_t, y_t) = 0 \mid j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right] \cdot \Pr\left[j^m \in J_{\neg Q} \text{ and } |V_{j^m}| > 0\right]$ $\geq \left(1 - \frac{1}{f(T) - q(T)}\right) \left(1 - \frac{g(T)}{f(T)} - \exp\left(\frac{-T}{16f(T)}\right)\right)$ For brevity, let $\alpha(T)$ denote this final bound. Since $g(T) \in o(f(T))$ and $f(T) \in o(T)$, we have

$$\lim_{T \to \infty} \alpha(T) = \lim_{T \to \infty} \left(1 - \frac{1}{f(T) - g(T)} \right) \left(1 - \frac{g(T)}{f(T)} - \exp\left(\frac{-T}{16f(T)}\right) \right)$$
$$= (1 - 0)(1 - 0 - 0)$$
$$= 1$$

h,

 Part 4: Putting it all together. Since $\prod_{t=1}^{T} \mu(x_t, y_t) \le 1$ always, we have Tг т

$$\begin{bmatrix}
\mathbb{E} & \mathbb{E} \\
j^m & \mathbf{x}, \mathbf{y}
\end{bmatrix} = \mathbb{E} & \mathbb{E} \\
\int_{j^m} & \mathbb{E} \\
\mathbf{x}, \mathbf{y}
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} + \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} + \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} + \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t) \\
\mathbb{I} & \mu(x_t, y_t)
\end{bmatrix} = \begin{bmatrix}
\mathbb{I} & \mu(x_t, y_t$$

1725
1726
1727
$$\leq 0 \cdot \Pr\left[\prod_{t=1} \mu(x_t, y_t) = 0\right] + 1 \cdot \left(1 - \Pr\left[\prod_{t=1} \mu(x_t, y_t) = 0\right]\right)$$

$$\leq 1 - \alpha(T)$$

1728	Since $\prod_{t=1}^{T} \mu^m(x_t) = 1$ always, we have
1729	$\sup \mathbb{E} \left[B_{\pi}(\mathbf{x} \mathbf{y} \boldsymbol{\mu}, \pi^m) \right] > \mathbb{E} \left[\mathbb{E} \left[B_{\pi}(\mathbf{x} \mathbf{y}, \boldsymbol{\mu}, \pi^m) \right] \right]$
1730	$\sup_{\mu,\pi^m} \max_{\mathbf{x},\mathbf{y}} [IOT(\mathbf{x},\mathbf{y},\mu,\pi^{-})] \geq \lim_{j} \max_{\mathbf{x},\mathbf{y}} [IOT(\mathbf{x},\mathbf{y},\mu,\pi^{-})]$
1722	
1732	$= 1 - \mathbb{E} \mathbb{E} \left[\prod_{t=1}^{\infty} \mu(x_t, y_t) \right]$
1734	$j^m \mathbf{x}, \mathbf{y} \begin{bmatrix} \mathbf{x} \\ t = 1 \end{bmatrix}$
1735	$\geq lpha(T)$
1736	Therefore $\lim_{T \to \infty} \sup_{x \to 0} \mathbb{R}[B_{\pi}] > \lim_{T \to \infty} \alpha(T) = 1$ as required
1737	Therefore $\min_{T\to\infty} \sup_{\mu,\pi^m} \mathbb{E}[\tau_{T}] \geq \min_{T\to\infty} \alpha(T) = 1$, as required.
1738	
1739	
1740	
1741	
1742	
1743	
1744	
1745	
1746	
1747	
1748	
1749	
1750	
1752	
1752	
1754	
1755	
1756	
1757	
1758	
1759	
1760	
1761	
1762	
1763	
1764	
1765	
1766	
1767	
1760	
1770	
1771	
1772	
1773	
1774	
1775	
1776	
1777	
1778	
1779	
1780	
1781	