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ABSTRACT

Most learning algorithms with formal regret guarantees assume that no mistake is
irreparable and essentially rely on trying all possible behaviors. This approach is
problematic when some mistakes are catastrophic, i.e., irreparable. We propose an
online learning problem where the goal is to minimize the chance of catastrophe.
Specifically, we assume that the payoff in each round represents the chance of avoid-
ing catastrophe that round and try to maximize the product of payoffs (the overall
chance of avoiding catastrophe) while allowing a limited number of queries to a
mentor. We first show that in general, any algorithm either constantly queries the
mentor or is nearly guaranteed to cause catastrophe. However, in settings where the
mentor policy class is learnable in the standard online model, we provide an algo-
rithm whose regret and rate of querying the mentor both approach 0 as the time hori-
zon grows. Conceptually, if a policy class is learnable in the absence of catastrophic
risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.

1 INTRODUCTION

There has been mounting concern over catastrophic risk from AI, including but not limited to
autonomous weapon accidents (Abaimov & Martellini, 2020), bioterrorism (Mouton et al., 2024),
and cyberattacks on critical infrastructure (Guembe et al., 2022). See Critch & Russell (2023) and
Hendrycks et al. (2023) for taxonomies of societal-scale AI risks. In this paper, we use “catastrophe” to
refer to any kind of irreparable harm. This definition also covers smaller-scale (yet still unacceptable)
incidents such as serious medical errors (Di Nucci, 2019), crashing a robotic vehicle (Kohli & Chadha,
2020), or discriminatory sentencing (Villasenor & Foggo, 2020).

The gravity of these risks contrasts starkly with the dearth of theoretical understanding of how to
avoid them. Nearly all of learning theory explicitly or implicitly assumes that no single mistake
is too costly. We focus on online learning, where an agent repeatedly interacts with an unknown
environment and uses its observations to gradually improve its performance. Most online learning
algorithms essentially try all possible behaviors and see what works well. We do not want autonomous
weapons or surgical robots to try all possible behaviors.

More precisely, trial-and-error-style algorithms only work when catastrophe is assumed to be impos-
sible. This assumption manifests differently in different subtypes of online learning. In the standard
online learning model, the agent’s actions have no permanent effect on the environment.1 Online
reinforcement learning allows the agent’s actions to permanently affect the environment, but typically
assumes that either no action has irreversible effects (e.g., Jaksch et al. (2010)) or that the agent is
reset at the start of each “episode” (e.g., Azar et al. (2017)). One could train an agent entirely in a
controlled lab setting where the above assumptions do hold, but we argue that sufficiently general
agents will inevitably encounter novel scenarios when deployed in the real world. Machine learning
models often behave unpredictably in unfamiliar environments (see, e.g., Quionero-Candela et al.
(2009)), and we do not want AI biologists or robotic vehicles to behave unpredictably.

The goal of this paper is to understand the conditions under which it is possible to formally guarantee
avoidance of catastrophe in online learning. Certainly some conditions are necessary, because if the
agent can only learn by trying actions directly, the problem is hopeless: any untried action could

1More precisely, the input can depend on the agent’s previous actions, but the agent’s performance is always
evaluated with respect to the optimal policy on the same sequence of inputs.
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lead to paradise or disaster and the agent has no way to predict which. In the real world, however,
one needn’t learn through pure trial-and-error: one can also ask for help. We think it is critical for
high-stakes AI applications to employ a designated supervisor who can be asked for help. Examples
include a human doctor supervising AI doctors, a robotic vehicle with a human driver who can take
over in emergencies, autonomous weapons with a human operator, and many more. We hope that our
work constitutes a small step in the direction of practical safety guarantees for such applications.

1.1 OUR MODEL

We propose an online learning model of avoiding catastrophe with mentor help. On each time step,
the agent observes an input, selects an action (or queries the mentor), and obtains a payoff. Each
payoff represents the probability of avoiding catastrophe on that time step (conditioned on no prior
catastrophe). The agent’s goal is to maximize the product of payoffs, which is equal to the overall
probability of avoiding catastrophe by the chain rule of probability.

The (possibly suboptimal) mentor has a fixed policy, and when queried, the mentor illustrates their
policy’s action for the current input. We desire an agent whose regret – defined as the gap between the
mentor’s performance and the agent’s performance – approaches zero as the time horizon T grows.
In other words, with enough time, the agent should avoid catastrophe nearly as well as the mentor.
We also expect the agent to become self-sufficient over time: formally, the number of queries to the
mentor should be sublinear in T , or equivalently, the rate of querying the mentor should go to zero.

1.2 OUR ASSUMPTIONS

The agent needs some way to make inferences about unqueried inputs in order to decide when to ask
for help. Much past work has used Bayesian inference, which suffers tractability issues in complex
environments.2 We instead assume that the mentor policy satisfies what we call local generalization:
informally, if the mentor told us that an action was safe for a similar input, then that action is probably
also safe for the current input (see Section 3 for a formal definition and further discussion). This
captures the intuition that one can transfer knowledge between similar situations. Unlike Bayesian
inference, local generalization only requires computing distances and is compatible with any input
space which admits a distance metric.

Unlike the standard online learning model, we assume that the agent does not observe payoffs. This
is because the payoff in our model represents the chance of avoiding catastrophe on that time step. In
the real world, one only observes whether catastrophe occurred, not its probability.3

1.3 STANDARD ONLINE LEARNING

An overview of standard online learning is in order before discussing our results. In the standard
model, the agent observes an input on each time step and must choose an action. An adversary then
reveals the correct action, which results in some payoff to the agent. The goal is sublinear regret
with respect to the sum of payoffs, or equivalently, the average regret per time step should go to 0 as
T →∞. Figure 1 delineates the precise differences between the standard model and our model.

If the adversary’s choices are unconstrained, the problem is hopeless: if the adversary determines
the correct action on each time step randomly and independently, the agent can do no better than
random guessing. However, sublinear regret becomes possible if (1) the hypothesis class has finite
Littlestone dimension (Littlestone, 1988), or (2) the hypothesis class has finite VC dimension (Vapnik
& Chervonenkis, 1971) and the input is σ-smooth4 (Haghtalab et al., 2024).

The goal of sublinear regret in online learning implicitly assumes catastrophe is impossible: the agent
can make arbitrarily many (and arbitrarily costly) mistakes as long as the average regret per time step
goes to 0. In contrast, we demand subconstant regret: the total probability of catastrophe should go
to 0. Furthermore, standard online learning allows the agent to observe payoffs on every time step,
while our agent only receives feedback on time steps with queries. However, access to a mentor (and

2For the curious reader, Betancourt (2018) provides a thorough treatment. See also Section 2.
3One may be able to detect “close calls” in some cases, but observing the precise probability seems unrealistic.
4Informally, the adversary chooses a distribution over inputs instead of a precise input. See Section 3.
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Objective Regret goal Feedback Mentor Local gen.
Standard model Sum of payoffs Sublinear Every time step No No

Our model Product of payoffs Subconstant Only from queries Yes Yes

Figure 1: Comparison between the standard online learning model and our model.

local generalization) allows our agent to learn without trying actions directly, which is enough to
offset all of the above disadvantages.

1.4 OUR RESULTS

At a high level, we show that avoiding catastrophe with the help of a mentor and local generalization
is no harder than online learning without catastrophic risk.

More precisely, we first show that in general, any algorithm with sublinear queries to the mentor
has arbitrarily poor regret in the worst-case (Theorem 4.1). This means that even when the mentor
can avoid catastrophe with certainty, any algorithm either needs excessive supervision or is nearly
guaranteed to cause catastrophe. Unlike online learning where the general impossibility result is
trivial (the agent might as well guess randomly given an unconstrained adversary), local generalization
significantly limits the adversary’s power and necessitates a careful analysis.

Next, we present a simple algorithm whose total regret and rate of querying the mentor both go
to 0 as T → ∞ when either (1) the mentor policy class has finite Littlestone dimension or (2) the
mentor policy class has finite VC dimension and the input sequence is σ-smooth. Our algorithm can
handle a multi-dimensional unbounded input space and does not need detailed access to the feature
embedding, instead using two simple operations. It does need to know the mentor policy class, as is
standard in online learning. We initially prove the theorem for binary actions (Theorem 5.2) and then
reduce learning with many actions to the binary action case (Theorem C.1).

Along the way, we prove that the same subconstant bound holds for standard additive regret (The-
orem 5.3). Essentially, our techniques are equally effective for maximizing the sum of payoffs
and the product of payoffs. We emphasize the multiplicative objective due to our motivation of
avoiding catastrophe, but our subconstant additive regret bound may also be of value. In summary,
the combination of a mentor and local generalization allows us to reduce the regret by an entire factor
of T , resulting in subconstant regret (multiplicative or additive) instead of the typical sublinear regret.

The rest of the paper is structured as follows. Section 2 discusses related work. Section 3 formally
defines our model. Section 4 presents our negative result for general mentor policies. Section 5
presents our positive result for simple mentor policy classes. Proofs are deferred to the appendix.

2 RELATED WORK

Learning with irreversible costs. Despite the ubiquity of irreparable/irreversible costs in the real
world, theoretical work on this topic remains limited. This may be due to the fundamental modeling
question of how the agent should learn about novel inputs or actions without actually trying them.

The most common approach is to allow the agent to ask for help. This alone is insufficient, however:
the agent must have some way to decide when to ask for help. A popular solution is to perform
Bayesian inference on the world model, but this has two tricky requirements: (1) a prior distribution
which contains the true world model (or an approximation), and (2) an environment where computing
(or approximating) the posterior is tractable. A finite set of possible environments satisfies both
conditions, but is unrealistic in many real-world scenarios. In contrast, our algorithm can handle
an uncountable policy class and a continuous unbounded input space, which is crucial for many
real-world scenarios in which one never sees the exact same input twice.

Bayesian inference combined with asking for help is studied by Cohen et al. (2021); Cohen & Hutter
(2020); Kosoy (2019); Mindermann et al. (2018). We also mention Hadfield-Menell et al. (2017);
Moldovan & Abbeel (2012); Turchetta et al. (2016), which utilize Bayesian inference in the context
of safe (online) reinforcement learning without asking for help (and without regret bounds).
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We are only aware of two papers which theoretically address irreversibility without Bayesian inference:
Grinsztajn et al. (2021) and Maillard et al. (2019). The former proposes to sample trajectories and
learn reversibility based on temporal consistency between states: intuitively, if s1 always precedes s2,
we can infer that s1 is unreachable from s2. Although the paper theoretically grounds this intuition,
there is no formal regret guarantee. The latter presents an algorithm which asks for help in the form of
rollouts from the current state. However, the regret bound and number of rollouts are both linear in the
worst case, due to the dependence on the γ∗ parameter which roughly captures how bad an irreversible
action can be. In contrast, our algorithm achieves good regret even when actions are maximally bad.

To our knowledge, we are the first to provide an algorithm which formally guarantees avoidance of
catastrophe (with high probability) without Bayesian inference. We are also not aware of prior results
comparable to our negative result, including in the Bayesian regime.

Constrained Markov Decision Processes (CMDPs). CMDPs (Altman, 2021; Puterman, 2014)
require the agent to maximize reward while also satisfying safety constraints. The two most relevant
papers are Liu et al. (2021) and Stradi et al. (2024), both of which provide algorithms guaranteed
to satisfy initially unknown safety constraints with high probability on every time step. However,
both papers assume that the agent knows a fully safe policy upfront. In contrast, the agent in our
setting has no prior knowledge. In this sense, our work complements theirs: our goal is essentially
to learn the baseline safe policy that their algorithms require. One can also view our problem as
the “pessimistic” model and their problem as the “optimistic” model, with some applications better
captured by our model while other applications are better captured by theirs.

Online learning. See Cesa-Bianchi & Lugosi (2006) and Chapter 21 of Shalev-Shwartz & Ben-David
(2014) for introductions to online learning. A classical result states that sublinear regret is possible
iff the hypothesis class has finite Littlestone dimension (Littlestone, 1988). However, even some
simple hypothesis classes have infinite Littlestone dimension, such as the class of thresholds on [0, 1]
(Example 21.4 in Shalev-Shwartz & Ben-David (2014)). Recently, Haghtalab et al. (2024) showed
that if the adversary only chooses a distribution over inputs rather than the precise input, only the
weaker assumption of finite VC dimension (Vapnik & Chervonenkis, 1971) is needed for sublinear
regret. Specifically, they assume that each input is sampled from a distribution whose concentration is
upper bounded by 1

σ times the uniform distribution. This framework is known as smoothed analysis,
originally proposed by Spielman & Teng (2004).

Multiplicative objectives. Although online learning traditionally studies the sum of payoffs, there is
some work on maximizing the product of payoffs, or equivalently the sum of logarithms (Chapter 9
of Cesa-Bianchi et al. (2017)). However, these regret bounds are still sublinear in T , in comparison
to our subconstant regret bounds. Also, that work still assumes that payoffs are observed on every
time step, while our agent only receives feedback in response to queries (Figure 1).

Barman et al. (2023) recently provided regret bounds for a multiplicative objective in a multi-armed
bandit problem, but their objective is the geometric mean of payoffs instead of the product. Interpreted
in our context, their regret bounds imply that the average chance of catastrophe goes to zero, while
we guarantee that the total chance of catastrophe goes to zero. This distinction is closed related to the
difference between subconstant and sublinear regret discussed in Section 1.3.

Active learning and imitation learning. Our assumption that the agent only receives feedback
in response to queries falls under the umbrella of active learning (Hanneke, 2014). This contrasts
with passive learning, where the agent receives feedback automatically. Although ideas from active
learning could be useful in our domain, we are not aware of any results from that literature which
account for irreversible costs. The process of the agent learning from a mentor is also reminiscent of
imitation learning (Osa et al., 2018), but we are not aware of any relevant technical implications.

3 MODEL

Inputs. Let N refer to the set of strictly positive integers and let T ∈ N be the time horizon. Let
X ⊆ Rn be the input space5 and let x = (x1, x2, . . . xT ) ∈ X T be the sequence of inputs. In the
adversarial setting, each xt can have arbitrary dependence on the events of prior time steps. In the
smoothed setting, the adversary only chooses the distribution xt from which xt is sampled. Formally,

5One could also allow a generic metric space; our assumption of X ⊆ Rn is only for convenience.
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a distribution D over X is σ-smooth if for any X ⊆ X , D(X) ≤ 1
σU(X). (In the smoothed setting,

we assume that X supports a uniform distribution U .6) If each xt is sampled from a σ-smooth Dt,
we say that x is σ-smooth. The sequence D = D1, . . . ,DT can still be adaptive, i.e., the choice of
Dt can depend on the events of prior time steps.

Actions. Let Y be a finite set of actions. There also exists a special action ỹ which corresponds to
querying the mentor. For k ∈ N, let [k] = {1, 2, . . . , k}. On each time step t ∈ [T ], the agent must
select an action yt ∈ Y ∪ {ỹ}, which generates payoff µ(xt, yt) ∈ [0, 1]. Unless otherwise noted, all
expectations are over the agent’s randomization (if any) and the randomization in x (if any).

Asking for help. The mentor is endowed with a (not necessarily optimal) policy πm : X → Y .
When action ỹ is chosen, the mentor informs the agent of the action πm(xt) and the agent obtains
payoff µ(xt, π

m(xt)). For brevity, let µm(x) = µ(x, πm(x)). The agent never observes payoffs: the
only way to learn about µ is by querying the mentor.

We would like an algorithm which becomes “self-sufficient” over time: the rate of querying the
mentor should go to 0 as T → ∞, or equivalently, the cumulative number of queries should be
sublinear in T . Formally, let QT (µ, π

m) = {t ∈ [T ] : yt = ỹ} be the random variable denoting the
set of time steps with queries. Then we say that the (expected) number of queries is sublinear in T if
supµ,πm E[|QT (µ, π

m)|] ∈ o(T ). In other words, there must exist g : N→ N such that g(T ) ∈ o(T )

and supµ,πm E[|QT (µ, π
m)|] ≤ g(T ).7 For brevity, we will usually write QT = QT (µ, π

m).

Local generalization. We assume that the mentor policy permits “local generalization”. Informally,
if the agent is given an input x, taking the mentor action for a similar input x′ is almost as good as
taking the mentor action for x. Formally, we assume there exists L > 0 such that for all x, x′ ∈ X ,
|µm(x)− µ(x, πm(x′))| ≤ L||x− x′||, where || · || denotes Euclidean distance. This represents the
ability to transfer knowledge between similar inputs:

| µ(x, πm(x))︸ ︷︷ ︸
Taking the “right” action

− µ(x, πm(x′))︸ ︷︷ ︸
Using what you learned in x′

| ≤ L||x− x′||︸ ︷︷ ︸
Similarity between x and x′

Borrowing knowledge from similar experiences seems fundamental to learning and is well-understood
in the psychology literature (Esser et al., 2023) and education literature (Hajian, 2019).

Crucially, our input space can be any feature embedding of the agent’s situation, not just its physical
positioning. Our algorithms will not require knowledge of the feature embedding and do not need
to know L, so it suffices that there exists some feature embedding which satisfies local generalization.
The agent does not even need to know which embedding it is. Finally, local generalization implies
the more familiar Lipschitz continuity for an optimal mentor (Proposition E.1).

Multiplicative objective and regret. If µ(xt, yt) ∈ [0, 1] is the chance of avoiding catastrophe on
time step t (conditioned on no prior catastrophe), then

∏T
t=1 µ(xt, yt) is the agent’s overall chance of

avoiding catastrophe.8 For a fixed x and agent actions y = (y1, . . . , yT ), the agent’s regret is

RT (x,y, µ, π
m) =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt)

We will usually write RT = RT (x,y, µ, π
m) for brevity. We will study the expected regret over any

randomness in x and/or y. We desire subconstant worst-case regret: the total (not average) expected
regret should go to 0 for any µ and πm. Formally, we want limT→∞ supµ,πm E[RT ] = 0.

The value of a bound on E[RT ] depends on the quality of the mentor. In particular, subconstant regret
becomes trivial if limT→∞ E

[∏T
t=1 µ

m(xt)
]
= 0. However, we think that high-stakes AI applica-

tions should ensure the presence of a mentor who is almost always safe, i.e., E
[∏T

t=1 µ
m(xt)

]
≈ 1.

6For example, X having finite Lebesgue measure is sufficient. Note that this does not imply boundedness.
Alternatively, σ-smoothness can be defined with respect to a different distribution, as long as the Radon-Nikodym
derivative is uniformly bounded; see Definition 1 of Block et al. (2022).

7One could instead consider the worst-case number of queries, but this distinction does not affect whether
subconstant regret is achievable (Proposition E.2).

8Conditioning on no prior catastrophe means we do not need to assume that these probabilities are independent
(and if catastrophe has already occurred, this time step does not matter). This is due to the chain rule of probability.
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If no such mentor exists for some application, perhaps it is better to avoid the application altogether.
Also, our regret bounds include rates of convergence, so even if the mentor policy is guaranteed to
eventually cause catastrophe, we can still bound how quickly the agent becomes unsafe.

VC and Littlestone dimensions. VC dimension (Vapnik & Chervonenkis, 1971) and Littlestone
dimension (Littlestone, 1988) are standard measures of learning difficulty which capture the ability of
a hypothesis class (in our case, a policy class) to realize arbitrary combinations of labels (in our case,
actions). We omit the precise dimensions since we only utilize these concepts via existing results.
See Shalev-Shwartz & Ben-David (2014) for a comprehensive overview.

Misc. The diameter of a set X ⊆ X is defined by diam(X) = maxx,x′∈X ||x− x′||. All logarithms
and exponents are base e unless otherwise noted.

4 AVOIDING CATASTROPHE IS IMPOSSIBLE IN GENERAL

We begin by showing that in general, any algorithm with sublinear mentor queries has arbitrary
poor regret in the worst-case, even when inputs are i.i.d. on [0, 1]. The result also holds even if the
algorithm knows L and x ahead of time.
Theorem 4.1. The worst-case expected regret of any algorithm with sublinear queries goes to 1 as T
goes to infinity. Formally, limT→∞ supµ,πm E[RT ] = 1.

4.1 INTUITION

We partition X into equally-sized sections that are “independent” in the sense that querying an input
in section i gives you no information about section j. The number of sections is determined by a
function f : N → N that we will choose. If |QT | ∈ o(f(T )), most of these sections will never
contain a query. When the agent sees an input in a section not containing a query, it essentially has to
guess, meaning it will be wrong a constant fraction of the time. Figure 2 fleshes out this idea.

Picking f(T ). A natural idea is to try f(T ) = T , but this doesn’t quite work: even if the
agent chooses wrong on every time step, the minimum payoff is still at least 1 − L

2T , and

limT→∞
∏T

t=1

(
1− L

2T

)
= limT→∞

(
1− L

2T

)T
= e−L/2. In order for the regret to approach 1, we

need f(T ) to be asymptotically between |QT | and T (xuch f must exist since |QT | ≤ g(T ) ∈ o(T )).
This leads to the following bound:

∏T
t=1 µ(xt, yt) ≤

(
1− L

Θ(f(T ))

)Θ(T )
. When f(T ) ∈ o(T ), the

right hand side converges to 0, while
∏T

t=1 µ
m(xt) = 1. In words, the agent is nearly guaranteed to

cause catastrophe, despite the existence of a policy which is guaranteed to avoid catastrophe.

VC dimension. The class of mentor policies induced by our construction has VC dimension f(T );
considered over all possible values of T , this implies infinite VC (and Littlestone) dimension. This is
necessary given our positive results in Section 5.

4.2 FORMAL DEFINITION OF CONSTRUCTION

Let X = [0, 1] and Dt = U for each t ∈ [T ]. Assume that L ≤ 1; this will simplify the math and
only makes the problem easier for the agent. We define a family of payoff functions parameterized by
a function f : N→ N and a bit string a = (a1, a2, . . . , af(T )) ∈ {0, 1}f(T ). The bit aj will denote
the optimal action in section j. Note that f(T ) ≥ 1 and since we defined N to exclude 0.

For each j ∈ [f(T )], we refer to Xj =
[
j − 1

f(T )
,

j

f(T )

]
as the jth section. Let mj =

j − 0.5

f(T )
be the

midpoint of Xj . Assume that each xt belongs to exactly one Xj (this happens with probability 1, so
this assumption does affect the expected regret). Let j(x) denote the index of the section containing
input x. Then µf,a is defined by

µf,a(x, y) =

1 if y = aj(x)

1− L

(
1

2f(T )
− |mj(x) − x|

)
if y ̸= aj(x)

Let πm be any policy which is optimal for µf,a. Note that there is a unique optimal action for each
xt, since each xt belongs to exactly one Xj ; formally, πm(xt) = aj(xt).

6
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x

µ

µ(x, 0)

µ(x, 1)

L

2f(T )

1
f(T )

2
f(T )

3
f(T )

f(T )−1
f(T )

. . . 10

1

Figure 2: An illustration of the construction we use to prove Theorem 4.1 (not to scale). The horizontal axis
indicates the input x ∈ [0, 1] and the vertical axis indicates the payoff µ(x, y) ∈ [0, 1]. The solid line represents
µ(x, 0) and the dotted line represents µ(x, 1). In each section, one of the actions has the optimal payoff of 1,
and the other action has the worst possible payoff allowed by L, reaching a minimum of 1− L

2f(T )
. Crucially,

both actions result in a payoff of 1 at the boundaries between sections: this allows us to “reset” for the next
section. As a result, we can freely toggle the optimal action for each section independently.

For any a ∈ {0, 1}f(T ), µf,a is piecewise linear (trivially) and continuous (because both actions have
payoff 1 on the boundary between sections). Since the slope of each piece is in {−L, 0, L}, µf,a is
Lipschitz continuous. Thus by Proposition E.1, πm satisfies local generalization.

5 AVOIDING CATASTROPHE ASSUMING FINITE VC OR LITTLESTONE
DIMENSION

Theorem 4.1 shows that avoiding catastrophe is impossible in general, which is also true in online
learning. What if we restrict ourselves to settings where standard online learning is possible?
Specifically, we assume that πm belongs to a policy class Π where either (1) Π has finite VC
dimension d and x is σ-smooth or (2) Π has finite Littlestone dimension d.9

This section presents a simple algorithm which guarantees subconstant regret and sublinear queries
under either of those assumptions. Our algorithm needs to know Π, as is standard in online learning.
The algorithm does not need to know σ (in the smooth case) or L, and can handle an unbounded input
space (the number of queries simply scales with the maximum distance between observed inputs).

For simplicity, we initially prove our result for Y = {0, 1}. Appendix C extends our result to many
actions using the standard “one versus rest” reduction.10

5.1 INTUITION BEHIND THE ALGORITHM

Algorithm 1 has two simple components: (1) run a modified version of the Hedge algorithm for
online learning, but (2) ask for help for unfamiliar inputs (specifically, when the current input is very
different from any queried input with the same action under the proposed policy). Hedge ensures that
the number of time steps where the agent’s action doesn’t match the mentor’s is small, and asking
for help for unfamiliar inputs ensures that when we do make a mistake, the cost isn’t too high. This
algorithmic structure seems quite natural: mostly follow a baseline strategy, but ask for help when
out-of-distribution.

Simple operations. The algorithm does not require detailed access to the input embedding, instead
relying on two simple operations: evaluating a policy on a particular input, and computing a nearest

9Recall from Section 1.3 that standard online learning becomes tractable under either of these assumptions.
10For each action y, we learn a binary classifier which predicts whether πm(x) = y. If every binary classifier

is correct, we can correctly determine πm(x). See, e.g., Chapter 29 of Shalev-Shwartz & Ben-David (2014).
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Algorithm 1 successfully avoids catastrophe assuming finite VC or Littlestone dimension.
1: function AVOIDCATASTROPHE(T ∈ N, ε ∈ R>0, d ∈ N, policy class Π)
2: if Π has VC dimension d then
3: Π̃← any smooth ε-cover of Π of size at most (41/ε)d ▷ See Definition 5.4
4: else
5: Π̃← any adversarial cover of size at most (eT/d)d ▷ See Definition 5.5
6: X ← ∅
7: w(π)← 1 for all π ∈ Π̃

8: p← 1/
√
εT

9: η ← max
(√p log |Π̃|

2T , p2

√
2

)
10: for t from 1 to T do ▷ Run one step of Hedge, which selects policy πt

11: hedgeQuery← true with probability p else false
12: if hedgeQuery then
13: Query mentor and observe πm(xt)

14: ℓ(t, π)← 1(π(xt) ̸= πm(xt)) for all π ∈ Π̃
15: ℓ∗ ← minπ∈Π̃ ℓ(t, π)

16: w(π)← w(π) · exp(−η(ℓ(t, π)− ℓ∗)) for all π ∈ Π̃
17: πt ← argminπ∈Π̃ ℓ(t, π)
18: else
19: P (π)← w(π)/

∑
π′∈Π̃ w(π′) for all π ∈ Π̃

20: Sample πt ∼ P

21: if min(x,y)∈X:y=πt(xt) ||xt − x|| > ε1/n then ▷ Ask for help if out-of-distribution
22: Query mentor and observe πm(xt)
23: X ← X ∪ {(xt, π

m(xt))}
24: else ▷ Otherwise, follow Hedge’s chosen policy
25: Take action πt(xt)

neighbor distance. The former seems necessary for any algorithm. The latter could be modeled as an
out-of-distribution detector score, for which many methods are available (see e.g., Yang et al. (2024)).

Hedge. Hedge (Freund & Schapire, 1997) is a standard online learning algorithm which ensures
sublinear regret when the number of hypotheses (in our case, the number of policies in Π) is finite.11

We would prefer not to assume that Π is finite. Luckily, any policy Π can be approximated within ε
when either (1) Π has finite VC dimension and x σ-smooth or (2) Π has finite Littlestone dimension.
Thus we can run Hedge on this approximative policy class instead.

One other modification is necessary. In standard online learning, losses are observed on every time
step, but our agent only receives feedback in response to queries. To handle this, we modify Hedge to
only perform updates on time steps with queries and to issue a query with probability p on each time
step. Continuing our lucky streak, Russo et al. (2024) analyzes exactly this modification of Hedge.

We prove the following theorem parametrized by ε:
Theorem 5.1. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d, x
is σ-smooth, and εT log T > 12σd log(4e2/ε) or (2) Π has finite Littlestone dimension d. Then for
any T ∈ N and ε > 0, Algorithm 1 satisfies

E [RT ] ∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)
E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)

In Case 1, the expectation is over the randomness of both x and the algorithm, while in Case 2,
the expectation is over only the randomness of the algorithm. Also, RT and QT clearly have no
dependence on σ in Case 2, but we include σ anyway to avoid writing two separate bounds.

11See Chapter 5 of Slivkins et al. (2019) and Chapter 21 of Shalev-Shwartz & Ben-David (2014) for modern
introductions to Hedge.
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To obtain subconstant regret and sublinear queries, we can choose ε = T
−2n
2n+1 . This also satisfies the

requirement of εT log T > 12σd log(4e2/ε) for large enough T .
Theorem 5.2. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E [RT ] ∈ O

(
dL

σ
T

−1
2n+1 log T

)
E[|QT |] ∈ O

(
T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))
Although our focus is the product of payoffs, Algorithm 1 also guarantees subconstant additive regret:
Theorem 5.3. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
∈ O

(
dL

σ
T

−1
2n+1 log T

)

5.2 PROOF SKETCH

The formal proof of Theorem 5.1 can be found in Appendix B, but we outline the key elements here.
The regret analysis consists of two ingredients: analyzing the Hedge component, and analyzing the
“ask for help when out-of-distrubtion” component. The former will bound the number of mistakes
made by the algorithm (i.e., the number of time steps where the agent’s action doesn’t match the
mentor’s), and the latter will bound the cost of any single mistake. We must also carefully show that
the latter does not result in excessively many queries, which we do via a novel packing argument.

We begin by formalizing two notion of approximating a policy class:

Definition 5.4. Let U be the uniform distribution over X . For ε > 0, a policy class Π̃ is a smooth
ε-cover of a policy class Π is for every π ∈ Π, there exists π̃ ∈ Π̃ such that Prx∼U [π(x) ̸= π̃(x)] ≤ ε.

Definition 5.5. A policy class Π̃ is an adversarial cover of a policy class Π is for every x ∈ X T and
π ∈ Π, there exists π̃ ∈ Π̃ such that π(xt) = π̃(xt) for all t ∈ [T ].

The existence of small covers is crucial:
Lemma 5.1 (Lemma 7.3.2 in Haghtalab (2018)12). For all ε > 0, any policy class of VC dimension
d admits a smooth ε-cover of size at most (41/ε)d.
Lemma 5.2 (Lemmas 21.13 and A.5 in Shalev-Shwartz & Ben-David (2014)). Any policy class of
Littlestone dimension d admits an adversarial cover of size at most (eT/d)d.

An adversarial cover is a perfect cover by definition. The following lemma establishes that a smooth
ε-cover is a good approximation for any sequence of σ-smooth distributions.

Lemma 5.3 (Equation 2 and Lemma 3.3 in Haghtalab et al. (2024)). Let Π̃ be a finite smooth
ε-cover of Π and let D = D1, . . . ,DT be a sequence of σ-smooth distributions. If εT log T >

12σd log(4e2/ε), then E
x∼D

[
sup
π∈Π

min
π̃∈Π̃

∑T
t=1 1(π(xt) ̸= π̃(xt))

]
∈ O

(
1
σTε log T

√
d log(1/ε)

)
.

We will run a variant of Hedge on Π̃. The vanilla Hedge algorithm operates in the standard online
learning model where on each time step, the agent selects a policy (or more generally, a hypothesis),
and observes the loss of every policy. In general the loss function can depend arbitrarily on the time
step, the policy, and prior events, but we will only use the indicator loss function ℓ(t, π) = 1(π(xt) ̸=
πm(xt)). Crucially, whenever we query and learn πm(xt), we can compute ℓ(t, π) for every π ∈ Π̃.

12See also Haussler & Long (1995) or Lemma 13.6 in Boucheron et al. (2013) for variants which are less
convenient for our purposes.
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We cannot afford to query on every time step, however. Recently, Russo et al. (2024) analyzed a
variant of Hedge where losses are observed only in response to queries, which they call “label-efficient
feedback”. They proved a regret bound when a query is issued on each time step with fixed probability
p. Lemma 5.4 restates their result in a form that is more convenient for us (see Appendix B for
details). Although their result is stated for non-adaptive adversaries, we explain in Appendix B.3 how
their argument easily generalizes to adaptive adversaries. Full pseudocode for HEDGEWITHQUERIES
can also be found in the appendix (Algorithm 2).

Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)). Assume Π̃ is finite. Then for any loss function
ℓ : [T ]× Π̃→ [0, 1] and query probability p, HEDGEWITHQUERIES enjoys the regret bound

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

ℓ(t, π) ≤ 2 log |Π̃|
p2

where πt is the policy chosen at time t and the expectation is over the randomness of the algorithm.

We apply Lemma 5.4 with ℓ(t, π) = 1(π(xt) ̸= πm(xt)) and combine this with Lemmas 5.1
and 5.3 (in the σ-smooth case) and with Lemma 5.2 (in the adversarial case). This yields a
O
(
d
σTε log(1/ε) log T

)
bound on the number of mistakes made by Algorithm 1 (Lemma B.1).

The other key ingredient of the proof is analyzing the “ask for help when out-of-distribution” compo-
nent. Combined with the local generalization assumption, this allows us to fairly easily bound the
cost of a single mistake (Lemma B.2). The trickier part is bounding the number of resulting queries.
It is tempting to claim that the inputs queried in the out-of-distribution case must all be separated by
at least ε1/n and thus form an ε1/n-packing, but this is actually not true. Instead, we provide a novel
method for bounding the number of data points (i.e., queries) needed to cover a set with respect to
the realized actions of the algorithm (Lemma B.7). This is in contrast to vanilla packing arguments
which consider all data points in aggregate. Our method may be useful in other contexts where a
more refined packing argument is needed.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a model of avoiding catastrophe in online learning. We showed that
achieving subconstant regret in our problem (with the help of a mentor and local generalization) is no
harder than achieving sublinear regret in standard online learning.

There remain some technical questions within this paper’s model. One question is whether the time
complexity of Algorithm 1 be improved, which currently stands at Ω(|Π̃| ·T ) plus the time to compute
the ε-cover. Also, we have not resolved whether our problem is tractable for finite VC dimension and
fully adversarial inputs (although Appendix D shows that the problem is tractable for at least some
classes with finite VC but infinite Littlestone dimension).

We are also interested in alternatives to the local generalization assumption. We should expect some
assumption to be necessary: if not, the payoff function µ(x, y) = 1(πm(x) = y) means the agent
essentially has to make zero mistakes, which turns out to be impossible even for σ-smooth x and
finite VC dimension (Theorem E.3). One possible alternative is Bayesian inference. We intentionally
avoided Bayesian approaches in this paper due to tractability concerns, but it seems premature to
abandon those ideas entirely.

Finally, we are excited to apply the ideas in this paper to Markov Decision Processes (MDPs):
specifically, MDPs where some actions are irreversible (“non-communicating”) and the agent only
gets one attempt (“single-episode”). In such MDPs, the agent must not only avoid catastrophe but also
obtain high reward. As discussed in Section 2, very little theory exists for RL in non-communicating
single-episode MDPs. Can an agent learn near-optimal behavior in high-stakes environments while
becoming self-sufficient over time? Formally, we pose the following open problem:

Is there an algorithm for non-communicating single-episode undiscounted MDPs which ensures that
both the regret and the number of mentor queries are sublinear in T?

10
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A PROOF OF THEOREM 4.1

A.1 PROOF ROADMAP

Throughout the proof, let Vj be the set of time steps t ≤ T where |mj − xt| ≤
1

4f(T )
. In words, xt

is relatively close to the midpoint of Xj . This will imply that the suboptimal action is in fact quite
suboptimal. This also implies that xt is in Xj , since each Xj has length 1/f(T ).

The proof proceeds via the following steps:

1. Prove that f(T ) =
√

(|QT |+ 1)T is asymptotically between |QT | and T (Lemma A.1).
2. Provide a simple variant of the Chernoff bound which we will apply multiple times

(Lemma A.2).
3. Show that with high probability,

∑
j∈A |Vj | is adequately large (Lemma A.3).

4. The key lemma is Lemma A.4, which shows that a randomly sampled a produces poor agent
performance with high probability. The central idea is that at least f(T )− |QT | sections
are never queried (which is large, by Lemma A.1), so the agent has no way of knowing the
optimal action in those sections. As a result, the agent picks the wrong answer at least half
the time on average (and at least a quarter of the time with high probability). Lemma A.3
implies that a constant fraction of those time steps will have quite suboptimal payoffs, again
with high probability.

5. Finally, sup
µ

E
x∼UT ,y

RT (x,y, µ, π
m) ≥ E

a∼U({0,1}f(T ))
E

x∼UT ,y
RT (x,y, µf,a, π

m),

where U({0, 1}f(T )) is the uniform distribution over bit strings of length f(T ). This
is essentially an application of the probabilistic method: if a randomly chosen µf,a has high
expected regret, then the worst case µ also has high expected regret.

Note that x,y, and a are random variables, so all variables defined on top of them (xuch as Vj) are
also random variables. In contrast, the partition X = {X1, . . . , Xf(T )} and properties thereof (like
the midpoints mj) are not random variables.

Lastly, while the intuition provided in Section 4.1 is accurate, the analysis will mostly occur in log
space, so the bounds will look different. However, bounds of the form discussed in Section 4.1 can
still be found as an intermediate step in Part 4 of the proof of Lemma A.4.

A.2 PROOF

Lemma A.1. Let a, b : N → N be functions such that a(x) ∈ o(b(x)). Then c(x) =
√
a(x)b(x)

satisfies a(x) ∈ o(c(x)) and c(x) ∈ o(b(x)).

Proof. Since a and b are strictly positive (and thus c is as well), we have

a(x)

c(x)
=

a(x)√
a(x)b(x)

=

√
a(x)

b(x)
=

√
a(x)b(x)

b(x)
=

c(x)

b(x)

Then a(x) ∈ o(b(x)) implies

lim
x→∞

a(x)

c(x)
= lim

x→∞

c(x)

b(x)
= lim

x→∞

√
a(x)

b(x)
= 0

as required.

Lemma A.2. Let z1, . . . , zn be i.i.d. variables in {0, 1} and let Z =
∑n

i=1 zi. If E[Z] ≥ M , then
Pr
[
Z ≤M/2

]
≤ exp(−M/8).

Proof. By the Chernoff bound for i.i.d. binary variables, we have Pr[Z ≤ E[Z]/2] ≤
exp(−E[Z]/8). Since −E[Z] ≤ −M and exp is an increasing function, we have exp(−E[Z]/8) ≤
exp(−M/8). Also, M/2 ≤ E[Z]/2 implies Pr[Z ≤ M/2] ≤ Pr[Z ≤ E[Z]/2]. Combining these
inequalities proves the lemma.
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Lemma A.3. let A ⊆ [f(T )] be any nonempty subset of sections. Then

Pr

∑
j∈A

|Vj | ≤
T |A|
4f(T )

 ≤ exp

(
−T

16f(T )

)

Proof. Fix any j ∈ [f(T )]. For each t ∈ [T ] , define the random variable zt by zt = 1 if t ∈ Vj

for some j ∈ A and 0 otherwise. We have t ∈ Vj iff xt falls within a particular interval of length
1

2f(T )
. Since these intervals are disjoint for different j’s, we have zt = 1 iff xt falls within a portion

of the input space with total measure
|A|

2f(T )
. Since xt is uniformly random across [0, 1], we have

E[zt] = |A|
2f(T ) . Then E[

∑T
t=1 zt] = E[

∑
j∈A |Vj |] = T |A|

2f(T ) . Furthermore, since x1, . . . , xT are
i.i.d., so are z1, . . . , zT . Then by Lemma A.2,

Pr

∑
j∈A

|Vj | ≤
T |A|
4f(T )

 ≤ exp

(
−T |A|
16f(T )

)
≤ exp

(
−T

16f(T )

)
with the last step due to |A| ≥ 1.

Lemma A.4. Independently sample a ∼ U({0, 1}f(T )) and x ∼ UT .13 Then with probability at
least 1− exp

( −T
16f(T )

)
− exp

(
− f(T )−|QT |

16

)
,

T∏
t=1

µf,a(xt, yt) ≤ exp

(
−LT (f(T )− |QT |)

27f(T )2

)

Proof. Part 1: setup. Let J¬Q = {j ∈ [f(T )] : xt ̸∈ Xj ∀t ∈ QT } be the set of sections that are
never queried. Since each query appears in exactly one section (because each input appears in exactly
one section), |J¬Q| ≥ f(T )− |QT |.
For each j ∈ J¬Q, let yj be the action taken most frequently among time steps in Vj :

yj = argmax
y∈{0,1}

∣∣∣{t ∈ Vj : y = yt}
∣∣∣

Let J̄ = {j ∈ J¬Q : aj ̸= yj}. For each j ∈ J̄ , let V ′
j = {t ∈ Vj : yt ̸= aj} be the set of time steps

where the agent chooses the wrong action (assuming payoff function µf,a).

Part 2: J̄ is not too small. Define a random variable zj = 1j∈J̄ for each j ∈ J¬Q. By definition,
if j ∈ J¬Q, no input in Xj is queried. Since queries outside of Xj provide no information about
aj , the agent’s actions must be independent of aj . In particular, the random variables aj and yj are
independent. Combining that independence with Pr[aj = 0] = Pr[aj = 1] = 0.5 yields Pr[zj =
1] = 0.5 for all j ∈ J¬Q. Furthermore, since a1, . . . , af(T ) are independent, the random variables

{zj : j ∈ J¬Q} are also independent. Since E[|J̄ |] = E[
∑

j∈J¬Q
zj ] = |J¬Q|/2 ≥

f(T )− |QT |
2

,
Lemma A.2 implies that

Pr

[
|J̄ | ≤ f(T )− |QT |

4

]
≤ exp

(
−f(T )− |QT |

16

)
Part 3: |V ′

j | ≥ |Vj |/2. Since j ∈ J¬Q, the mentor is not queried on any time step t ∈ Vj , so
yt ∈ {0, 1} for all t ∈ Vj . Since the agent chooses one of two actions for each t ∈ Vj , the more
frequent action must be chosen chosen at least half of the time: yt = yj for at least half of the time
steps in Vj . Since aj ̸= yj for j ∈ J̄ , we have yt = yj ̸= aj for those time steps, so |V ′

j | ≥ |Vj |/2.

Part 4: a bound in terms of J̄ and Vj . Consider any j ∈ J̄ and t ∈ V ′
j ⊆ Vj . By definition of Vj ,

we have |mj − xt| ≤ 1
4f(T ) . Then by definition of µf,a,

µf,a(xt, yt) = 1− L

(
1

2f(T )
− |xt −mj |

)
13That is, the entire set {a1, . . . , af(T ), x1, . . . , xT } is mutually independent.
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≤ 1− L

(
1

2f(T )
− 1

4f(T )

)
= = 1− L

4f(T )

Now aggregating across time steps,

T∏
t=1

µf,a(xt, yt) ≤
∏
j∈J̄

∏
t∈V ′

j

µf,a(xt, yt) (µf,a(xt, yt) ∈ [0, 1] for all t)

≤
∏
j∈J̄

(
1− L

4f(T )

)|V ′
j |

(bound on µf,a(xt, yt) when t ∈ V ′
j )

≤
∏
j∈J̄

(
1− L

4f(T )

)|Vj |/2

(|V ′
j | ≥ |Vj |/2)

The last step also relies on 1− L

4f(T )
∈ [0, 1], which is due to L ≤ 1 and f(T ) ≥ 1. Converting into

log space and using the standard inequality log(1 + x) ≤ x for all x ∈ R, we have

log

T∏
t=1

µf,a(xt, yt) ≤ log
∏
j∈J̄

(
1− L

4f(T )

)|Vj |/2

=
∑
j∈J̄

|Vj |
2

log

(
1− L

4f(T )

)

≤ −
∑
j∈J̄

L|Vj |
8f(T )

Part 5: putting it all together. By Lemma A.3, Part 2 of this lemma, and the union bound, with

probability at least 1 − exp
( −T
16f(T )

)
− exp

(
− f(T )−|QT |

16

)
we have

∑
j∈J̄ |Vj | ≥

T |J̄ |
4f(T )

for all

j ∈ [f(T )] and |J̄ | ≥ f(T )− |QT |
4

. Assuming those inequalities hold, we have

log

T∏
t=1

µf,a(xt, yt) ≤ −
∑
j∈J̄

L|Vj |
8f(T )

≤ − L

8f(T )
· T |J̄ |
4f(T )

≤ − L

8f(T )
· T

4f(T )
· f(T )− |QT |

4

= − LT (f(T )− |QT |)
27f(T )2

Exponentiating both sides proves the lemma.

Let α(T ) = exp
( −T
16f(T )

)
+ exp

(
− f(T )−|QT |

16

)
for brevity.

Theorem 4.1. The worst-case expected regret of any algorithm with sublinear queries goes to 1 as T
goes to infinity. Formally, limT→∞ supµ,πm E[RT ] = 1.

Proof. If the algorithm has sublinear queries, then there exists g(T ) ∈ o(T ) such that |QT | ≤ g(T )

always. Let f(T ) =
√

(g(T ) + 1)T . Then by Lemma A.1, g(T ) ∈ o(f(T )) and f(T ) ∈ o(T ).
Combining this with |QT | ≤ g(T ), we get limT→∞ α(T ) = 0. Also, since g(T ) ∈ o(f(T )), there

16
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exists T0 such that |QT | ≤ g(T ) ≤ f(T )/2 for all T ≥ T0. Combining this with Lemma A.4 and
noting that

∏T
t=1 µf,a(xt, yt) ≤ 1, we have

E
a∼U({0,1}f(T ))

E
x∼UT ,y

T∏
t=1

µf,a(xt, yt)

≤ α(T ) · 1 +
(
1− α(T )

)
exp

(
−LT (f(T )− |QT |)

27f(T )2

)
≤ α(T ) +

(
1− α(T )

)
exp

(
−LTf(T )/2

27f(T )2

)
= α(T ) +

(
1− α(T )

)
exp

(
− LT

28f(T )

)
whenever T ≥ T0. Since

∏T
t=1 µ

m
f,a(xt) = 1 always, we have14

sup
µ

E
x∼UT ,y

RT (x,y, µ, π
m) ≥ E

a∼U({0,1}f(T ))
E

x∼UT ,y
RT (x,y, µf,a, π

m)

= E
a∼U({0,1}f(T ))

E
x∼UT ,y

[
T∏

t=1

µm
f,a(xt)−

T∏
t=1

µf,a(xt, yt)

]

≥ 1− α(T )−
(
1− α(T )

)
exp

(
− LT

28f(T )

)
Therefore

lim
T→∞

sup
µ

E
x∼UT ,y

RT (x,y, µ, π
m) ≥ 1− lim

T→∞
α(T )−

(
1− lim

T→∞
α(T )

)
· exp

(
lim

T→∞
− LT

28f(T )

)
= 1− 0− (1− 0) · exp(−∞)

= 1

as required.

B PROOF OF THEOREM 5.2

B.1 CONTEXT ON LEMMA 5.4

Before diving into the main proof, we provide some context on Lemma 5.4 from Section 5:

Lemma 5.4 (Lemma 3.5 in Russo et al. (2024)). Assume Π̃ is finite. Then for any loss function
ℓ : [T ]× Π̃→ [0, 1] and query probability p, HEDGEWITHQUERIES enjoys the regret bound

T∑
t=1

E[ℓ(t, πt)]−min
π̃∈Π̃

T∑
t=1

ℓ(t, π) ≤ 2 log |Π̃|
p2

where πt is the policy chosen at time t and the expectation is over the randomness of the algorithm.

Lemma 5.4 is a restatement and simplification of Lemma 3.5 in Russo et al. (2024). First, Russo
et al. (2024) parametrize their algorithm by the expected number of queries k̂ instead of the query
probability p = k̂/T . Second, Russo et al. (2024) include a second parameter k, which is the eventual
target number of queries for their unconditional query bound. In our case, an expected query bound is
sufficient, so we simply set k = k̂. Third, Russo et al. (2024) provide a second bound which is tighter
for small k; that bound is less useful for us so we omit it. Fourth, their number of actions n is equal to
|Π̃| in our setting. (Their actions correspond to policies in Π̃, not our actions in Y .) Since Russo et al.

(2024) set η = max
(

1
T

√
k̂ logn

2 , kk̂√
2T 2

)
, we end up with η = max

(√
p log |Π̃|

2T , p2

√
2

)
. Algorithm 2

provides precise pseudocode for the HEDGEWITHQUERIES algorithm to which Lemma 5.4 refers.

14Fubini’s theorem means we need not worry about the order of the expectation operators.
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Algorithm 2 A variant of the Hedge algorithm which only observes losses in response to queries.

1: function HEDGEWITHQUERIES(p ∈ (0, 1], finite policy class Π̃, unknown ℓ : [T ]×Π̃→ [0, 1])
2: w(π)← 1 for all π ∈ Π̃

3: η ← max
(√p log |Π̃|

2T , p2

√
2

)
4: for t from 1 to T do
5: hedgeQuery← true with probability p else false
6: if hedgeQuery then
7: Query and observe ℓ(t, π) for all π ∈ Π̃
8: ℓ∗ ← minπ∈Π̃ ℓ(t, π)

9: w(π)← w(π) · exp(−η(ℓ(t, π)− ℓ∗)) for all π ∈ Π̃
10: Select policy argminπ∈Π̃ ℓ(t, π)
11: else
12: P (π)← w(π)/

∑
π′∈Π̃ w(π′) for all π ∈ Π̃

13: Sample πt ∼ P
14: Select policy πt

B.2 MAIN PROOF

We use the following notation throughout the proof:

1. For each t ∈ [T ], let Xt refer to the value of X at the start of time step t.

2. Let VT = {t ∈ [T ] : πt(xt) ̸= πm(xt)} be the set of time steps where Hedge’s proposed
action doesn’t match the mentor’s. Note that |VT | upper bounds the number of mistakes the
algorithm makes (the number of mistakes could be smaller, since the algorithm sometimes
queries instead of taking action πt(xt)).

3. For X ⊆ X , let vol(X) denote the n-dimensional Lebesgue measure of X .

4. With slight abuse of notation, we will use inequalities of the form f(T ) ≤ g(T ) +O(h(T ))
to mean that there exists a constant C such that f(T ) ≤ g(T ) + Ch(T ).

5. We will use “Case 1” to refer to finite VC dimension and σ-smooth x and “Case 2” to refer to
finite Littlestone dimension. In Case 1, expectations are over the randomness of both x and
the algorithm, while in Case 2, expectations are over just the randomness of the algorithm.
When we need to distinguish, we use Ey to denote the expectation over randomness of the
algorithm and Ex∼D to denote the expectation over x.

Lemma B.1. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E[|VT |] ∈ O

(
d

σ
Tε log(1/ε) log T

)

Proof. Define ℓ : [T ]× Π̃→ [0, 1] by ℓ(t, π) = 1(π(xt) ̸= πm(xt)), and let wh and πh
t denote the

values of w and πt respectively in HEDGEWITHQUERIES, while w and πt refer to the variables in
Algorithm 1. Then w and wh evolve in the exact same way, so the distributions of πt and πh

t coincide.
Thus by Lemma 5.4,

E
y

[
T∑

t=1

ℓ(t, πt)

]
−min

π̃∈Π̃

T∑
t=1

ℓ(t, π̃) ≤ 2 log |Π̃|
p2

= 2Tε log |Π̃|

Since Lemma 5.4 holds for any loss function, the bound above holds for any x ∈ ST , so the
bound also holds in expectation over x ∼ D (which is needed for Case 1). Next, observe that
|VT | =

∑T
t=1 1(πt(xt) ̸= πm(xt)) =

∑T
t=1 ℓ(t, πt), so

E
y
[|VT |] ≤ 2Tε log |Π̃|+min

π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

18
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Case 1: Since Π̃ is a smooth ε-cover of Π, we have

E
x∼D

[
min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

]
≤ E

x∼D

[
sup
π∈Π

min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= π(xt))

]

∈ O

(
1

σ
Tε log T

√
d log(1/ε)

)
with the first step due to πm ∈ Π and the second step due to Lemma 5.3. The last component we need
is that |Π̃| ≤ (41/ε)d by construction (and such a Π̃ is guaranteed to exist by Lemma 5.1). Combining
the above inequalities and taking the expectation over x ∼ D (in addition to the randomness of the
algorithm), we get

E
x∼D,y

[|VT |] ≤ 2Tε log |Π̃|+ E
x∼D

[
min
π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

]

≤ 2dTε log(41/ε) +O

(
1

σ
Tε log T

√
d log(1/ε)

)
∈ O

(
d

σ
Tε log(1/ε) log T

)
Case 2: Since Π̃ is an adversarial cover of Π and πm ∈ Π, there exists π̃ ∈ Π̃ such that∑T

t=1 1(π̃(xt) ̸= πm(xt)) = 0. Since |Π̃| ≤ (eT/d)d (with such a Π̃ guaranteed to exist by
Lemma 5.2),

E
y
[|VT |] ≤ 2Tε log |Π̃|+min

π̃∈Π̃

T∑
t=1

1(π̃(xt) ̸= πm(xt))

≤ 2Tεd ln(eT/d)

∈ O

(
d

σ
Tε log(1/ε) log T

)
as required.

Lemma B.2. For all t ∈ [T ], µ(xt, yt) ≥ µm(xt)− Lε1/n.

Proof. Fix any t ∈ [T ]. If t ∈ QT , then µ(xt, yt) = µm(xt), so assume t ̸∈ QT . Let (x′, y′) =
argmin(x,y)∈Xt:πt(xt)=y ||xt − x||. Since t ̸∈ QT , we must have ||xt − x′|| ≤ ε1/n.

We have y′ = πm(x′) by construction of Xt and πt(xt) = y′ by construction of y′. Combining these
with the local generalization assumption, we get

µ(xt, yt) = µ(xt, πt(xt)) = µ(xt, π
m(x′)) ≥ µm(xt)− L||xt − x′|| ≥ µm(xt)− Lε1/n

as required.

Lemma B.3. Assume a1, . . . , aT , b1, . . . , bT ∈ [0, 1] and at ≥ bt for all t ∈ [T ]. Then

T∏
t=1

at −
T∏

t=1

bt ≤
T∑

t=1

at −
T∑

t=1

bt

Proof. We proceed by induction on T . The claim is trivially satisfied for T = 1, so suppose T > 1

and assume that
∏T−1

t=1 at −
∏T−1

t=1 bt ≤
∑T−1

t=1 at −
∑T−1

t=1 bt. Then

T∑
t=1

at −
T∑

t=1

bt −
T∏

t=1

at +

T∏
t=1

bt = aT

T−1∑
t=1

at − bT

T−1∑
t=1

bt − aT

T−1∏
t=1

at + bT

T−1∏
t=1

bt

= aT

(
T−1∑
t=1

at −
T−1∏
t=1

at

)
− bT

(
T−1∑
t=1

bt −
T−1∏
t=1

bt

)
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Since T > 1 and at ∈ [0, 1] for all t ∈ [T ], we have
∑T−1

t=1 at ≥ a1 ≥
∑T−1

t=1 at. Thus
∑T−1

t=1 at −∏T−1
t=1 at ≥ 0. Combining this with aT ≥ bT , we get

T∑
t=1

at −
T∑

t=1

bt −
T∏

t=1

at +

T∏
t=1

bt = aT

(
T−1∑
t=1

at −
T−1∏
t=1

at

)
− bT

(
T−1∑
t=1

bt −
T−1∏
t=1

bt

)

≥ bT

(
T−1∑
t=1

at −
T−1∏
t=1

at

)
− bT

(
T−1∑
t=1

bt −
T−1∏
t=1

bt

)

= bT

(
T−1∑
t=1

at −
T−1∏
t=1

at −
T−1∑
t=1

bt +

T−1∏
t=1

bt

)
≥ 0

The last step is due to bT ≥ 0 and our assumption of
∏T−1

t=1 at −
∏T−1

t=1 bt ≤
∑T−1

t=1 at −
∑T−1

t=1 bt.

Lemma B.4. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E [RT ] ∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)
E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)

Proof. We first claim that yt = πm(xt) for all t ̸∈ VT . If t ∈ QT , the claim is immediate; if not, we
have yt = πt(xt), and πt(xt) = πm(xt) due to t ̸∈ VT . Thus min(µm(xt), µ(xt, yt)) = µm(xt) for
t ̸∈ VT .

We next claim that µm(xt)−min(µm(xt), µ(xt, yt)) ≤ Lε1/n for all t ∈ [T ]. If µ(xt, yt) ≤ µm(xt),
this follows from Lemma B.2. If µ(xt, yt) > µm(xt), then µm(xt) − min(µm(xt), µ(xt, yt)) =
0 ≤ Lε1/n. Therefore

T∑
t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤
∑
t∈VT

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤
∑
t∈VT

Lε1/n

= |VT |Lε1/n

Now let at = µm(xt) and bt = min(µm(xt), µ(xt, yt)) for all t ∈ [T ]. Then by Lemma B.3,

T∏
t=1

µm(xt)−
T∏

t=1

min(µm(xt), µ(xt, yt)) ≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
Since µ(xt, yt) ≥ min(µm(xt), µ(xt, yt)) for all t ∈ [T ], we have

RT =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt)

≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ |VT |Lε1/n

Since we also have
∑T

t=1 µ
m(xt)−

∑T
t=1 µ(xt, yt) ≤

∑T
t=1(µ

m(xt)−min(µm(xt), µ(xt, yt))),

E[RT ] ≤ Lε1/n E
[
|VT |

]
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E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
≤ Lε1/n E

[
|VT |

]
Applying Lemma B.1 completes the proof.

Definition B.1. Let (K, || · ||) be a normed vector space and let δ > 0. Then X ⊆ K is a δ-packing
of K if for all x, y ∈ X , ||x− y|| > δ. The δ-packing number of K, denotedM(K, || · ||, δ), is the
maximum cardinality of any δ-packing of K.

In this paper, we only consider the Euclidean distance norm, so we just write M(K, || · ||, δ) =
M(K, δ).

Lemma B.5 (Theorem 14.2 in Wu (2020)). If K ⊂ Rn is convex, bounded, and contains a ball with
radius δ > 0, then

M(K, δ) ≤ 3n vol(K)

δn vol(B)

where B is a unit ball.

Lemma B.6 (Jung’s Theorem (Jung, 1901)). If X ⊂ Rn is compact, then there exists a closed ball
with radius at most diam(X)

√ n

2(n+ 1)
containing X .

Lemma B.7. Under the conditions of Theorem 5.1, Algorithm 1 satisfies

E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)

Proof. If t ∈ QT , then either hedgeQuery = true or min(x,y)∈Xt:πt(xt)=y ||xt − x|| > r. The
expected number of time steps with hedgeQuery = true is pT =

√
T/ε, so let X̂ = {xt :

t ∈ QT and min(x,y)∈Xt:πt(xt)=y ||xt − x|| > r)}. We further subdivide X̂ into X̂1 = {xt ∈ X̂ :

πt(xt) ̸= πm(xt)} and X̂2 = {xt ∈ X̂ : πt(xt) = πm(xt)}. Since X̂1 ⊆ VT , Lemma B.1 implies
that E[|X̂1|] ∈ O

(
d
σTε log(1/ε) log T

)
.

Next, fix an y ∈ Y and let Xy = {x ∈ x : πm(x) = y} be the set of observed inputs which share
a mentor action. We claim that X̂2 ∩ Xy is a packing of Xy. Suppose instead that there exists
x, x′ ∈ X̂2 ∩ Xy, with ||x − x′|| ≤ ε1/n. WLOG assume x was queried after x′ and let t be the
time step on which x was queried. Then (x′, πm(x′)) ∈ Xt. Also, x, x′ ∈ X̂2 ∩Xy implies that and
πt(xt) = πm(xt) = y = πm(x′). Therefore

min
(x′′,y′′)∈Xt:y′′=πt(xt)

||xt − x′′|| ≤ ||xt − x′|| ≤ ε1/n

which contradicts xt ∈ X̂ . Thus X̂2 ∩Xy is a ε1/n-packing of Xy .

By Lemma B.6, there exists a ball B1 of diameter diam(x)
√

n
2(n+1) which contains x. Let R =

diam(x)
√

n
8(n+1) denote the radius of B1. Let B2 be the ball with the same center as B1 but with

radius max(R, ε1/n). Since Xy ⊂ x ⊂ B1 ⊂ B2, X̂2 ∩Xy is also a ε1/n-packing of B2. Also, B2

must contain a ball of radius ε1/n, so Lemma B.5 implies that

|X̂2 ∩Xy| ≤M(B2, ε
1/n)

≤ 3n vol(B2)

ε vol(B)

=
(
max(R, ε1/n)

)n 3n vol(B)

ε vol(B)

= max

(
diam(x)n

(
n

8(n+ 1)

)n/2

, ε

)
3n

ε
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≤ O

(
diam(x)n

ε
+ 1

)
(The +1 is necessary for now since diam(x) could theoretically be zero.) Therefore

E[|QT |] =
√

T

ε
+ E[|X̂|]

=

√
T

ε
+ E[|X̂1|] + E

∑
y∈Y
|X̂2 ∩Xy|


≤
√

T

ε
+O

(
d

σ
Tε log(1/ε) log T

)
+
∑
y∈Y

O

(
diam(x)n

ε
+ 1

)

≤
√

T

ε
+O

(
d

σ
Tε log(1/ε) log T

)
+ |Y| ·O

(
diam(x)n

ε
+ 1

)
≤ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)
as required.

Theorem 5.1 follows from Lemmas B.4 and B.7:
Theorem 5.1. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d, x
is σ-smooth, and εT log T > 12σd log(4e2/ε) or (2) Π has finite Littlestone dimension d. Then for
any T ∈ N and ε > 0, Algorithm 1 satisfies

E [RT ] ∈ O

(
dL

σ
Tε1+1/n log(1/ε) log T

)
E[|QT |] ∈ O

(√
T

ε
+

d

σ
Tε log(1/ε) log T +

diam(x)n

ε

)

We then perform some arithmetic to get Theorem 5.2:
Theorem 5.2. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E [RT ] ∈ O

(
dL

σ
T

−1
2n+1 log T

)
E[|QT |] ∈ O

(
T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))
Proof. We have

E [RT ] ∈ O

(
dL

σ
T 1− 2n

2n+1−
2

2n+1 log(1/ε) log T

)
= O

(
dL

σ
T

−1
2n+1 log T

)
and

E[|QT |] ∈ O

(√
T 1+ 2n

2n+1 +
d

σ
T 1− −2n

2n+1 log(T
2n

2n+1 ) log T + T
2n

2n+1 diam(x)n
)

= O

(
T

2n+0.5
2n+1 +

d

σ
T

1
2n+1 log T + T

2n
2n+1 diam(x)n

)
≤ O

(
T

4n+1
4n+2

( d
σ
log T + diam(x)n

))

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

If we instead use the second bound from Lemma B.4, the same arithmetic gives us:

Theorem 5.3. Let Y = {0, 1}. Assume πm ∈ Π where either (1) Π has finite VC dimension d and
x is σ-smooth or (2) Π has finite Littlestone dimension d. Then for any T ∈ N, Algorithm 1 with
ε = T

−2n
2n+1 satisfies

E

[
T∑

t=1

µm(xt)−
T∑

t=1

µ(xt, yt)

]
∈ O

(
dL

σ
T

−1
2n+1 log T

)

B.3 ADAPTIVE ADVERSARIES

If st is allowed to depend on the events of prior time steps, we say that the adversary is adaptive.
In contrast, a non-adaptive or “oblivious” adversary must choose the entire input upfront. This
distinction is not relevant for deterministic algorithms, since an adversary knows exactly how the
algorithm will behave for any input. In other words, the adversary gains no new information during
the execution of the algorithm. For randomized algorithms, an adaptive adversary can base the choice
of st on the results of randomization on previous time steps (but not on the current time step), while
an oblivious adversary cannot.

In the standard online learning model, Hedge guarantees sublinear regret against both oblivious
and adaptive adversaries (Chapter 5 of Slivkins et al. (2019) or Chapter 21 of Shalev-Shwartz &
Ben-David (2014)). However, Russo et al. (2024) state their result only for oblivious adversaries. In
order for our overall proof of Theorem 5.1 to hold for adaptive adversaries, Lemma 5.4 (Lemma 3.5
in Russo et al. (2024)) must also hold for adaptive adversaries. In this section, we argue why the
proof of Lemma 5.4 (Lemma 3.5 in their paper) goes through for adaptive adversaries as well. For
this rest of Appendix B.3, lemma numbers refer to the numbering in Russo et al. (2024).

The importance of independent queries. Recall from Appendix B.1 that Russo et al. (2024) allow
two separate parameters k and k̂, which we unify for simplicity. Recall also that Lemma 3.5 refers to
the variant of Hedge which queries with probability p = k̂/T = k/T independently on each time
step (Algorithm 2. More precisely, on each time step t, the algorithm samples a Bernoulli random
variable Xt ∼ Ber(p) and queries if Xt = 1. The key idea is that Xt is independent of events on
previous time steps. Thus even conditioning on the history up to time t, for any for any random
variable Yt we can write

E[Yt] = (1− p)E[Yt | Xt = 0] + pE[Yt | Xt = 1]

This insight immediately extends Observation 3.3 to adaptive adversaries (with the minor modification
that queries are now issued independently with probability p on each time step instead of issuing k
uniformly distributed queries). Specifically, using the notation from Russo et al. (2024) where it
is the action chosen at time t, i0t is the action chosen at time t if a query is not issued, and i∗t is the
optimal action at time t, we have

E[ℓt(it)] = (1− p)E[ℓt(i0t )] + pE[ℓt(i∗t )] =
(
1− k

T

)
E[ℓt(i0t )] +

k

T
E[ℓt(i∗t )]

The same logic applies to other statements like E[ℓ̂t(i) | X≤t−1, I≤t−1] = ℓt(i) − ℓt(i
∗
t ) and

immediately extends those statements to adaptive adversaries as well.

Applying Observation 3.3. The other tricky part of the proof is applying Observation 3.3 using a new
loss function ℓ̂ defined by ℓ̂t =

T
k̂
(ℓt(i)− ℓt(i

∗
t ))1(Xt = 1). To do so, we must argue that standard

Hedge run on ℓ̂ is the “counterpart without queries” of HEDGEWITHQUERIES. Specifically, both
algorithms must have the same weight vectors on every time step, and the only difference should be
that HEDGEWITHQUERIES takes the optimal action on each time step independently with probability
p (and otherwise behaves the same as standard Hedge). On time steps with Xt = 0, standard Hedge
observes ℓ̂t(i) = 0 for all actions i and thus makes no updates, and HEDGEWITHQUERIES makes
no updates by definition. On time steps with Xt = 1, both algorithms perform the typical updates
wt+1(i) = wt(i) · exp(−η(ℓ̂t(i)− ℓ̂t(i

∗
t ))). Thus the weight vectors are the same for both algorithms

on every time step. Furthermore, HEDGEWITHQUERIES takes the optimal action at time t iff Xt = 1,
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Algorithm 3 extends Algorithm 1 to many actions.
1: function AVOIDCATASTROPHEMANYACTIONS(T ∈ N, ε ∈ R>0, d ∈ N, policy class Π)
2: for y ∈ Y do
3: if Π has VC dimension d then
4: Π̃y ← any smooth ε-cover of Π of size at most (41/ε)d
5: else if Π has Littlestone dimension d then
6: Π̃y ← any adversarial ε-cover of size at most (eT/d)d

7: for t from 1 to T do
8: for y ∈ Y do
9: byt ← action from running one step of Algorithm 1 on Πy (with the same T, ε, d)

10: if byt ̸= ỹ ∀y ∈ Y and ∃a ∈ Y : byt = 1 then
11: Take any action y with byt = 1
12: else
13: Query the mentor

which occurs independently with probability p on each time step. Thus standard Hedge run on ℓ̂ is
the “counterpart without queries” of HEDGEWITHQUERIES.

The rest of the proof. The other elements of the proof of Lemma 3.5 are as follows:

1. Lemma 3.1, which analyzes the standard version of Hedge (i.e., no queries and losses are
observed on every time step).

2. Applying Lemma 3.1 to a ℓ̂.

3. Arithmetic and rearranging terms.

The proof of Lemma 3.1 relies on simple arithmetic properties of the Hedge weights. Regardless
of the adversary’s behavior, ℓ̂ is a well-defined loss function, so Lemma 3.1 can be applied. Step 3
clearly has no dependence on the type of adversary. Thus we conclude that Lemma 3.5 extends to
adaptive adversaries.

C GENERALIZING THEOREM 5.2 TO MANY ACTIONS

We use the standard “one versus rest” reduction (see, e.g., Chapter 29 of Shalev-Shwartz & Ben-David
(2014)). For each action y, we will learn a binary classifier which predicts whether action y is the
mentor’s action. Formally, for each y ∈ Y , define the policy class Πy = {πy : π ∈ Π and πy(x) =
1(π(x) = y)) ∀x ∈ X}. Informally, for each policy π : X → Y in Π, there exists a policy
πy : X → {0, 1} in Πy such that πy(x) = 1(π(x) = y) for all x ∈ X .

Algorithm 3 runs one copy of our binary-action algorithm Algorithm 1 for each action y ∈ Y . At
each time step t, the copy for action y returns an action byt , with byt = 1 indicating a belief that
y = πm(xt) and byt = 0 indicating a belief that y ̸= πm(xt). (Note that byt = ỹ is also possible,
indicating that the mentor was queried.)

The key idea is that if byt is correct for each action y, there will be exactly one y such that byt = 1,
and specifically it will be y = πm(xt). Thus we are guaranteed to take the mentor’s action on such
time steps. The analysis for Theorem 5.2 (specifically, Lemma B.1) bounds the number of time steps
when a given copy of Algorithm 1 is incorrect, so by the union bound, the number of time steps
where any copy is incorrect is |Y| times that bound. That in turn bounds the number of time steps
where Algorithm 3 takes an action other than the mentor’s. Similarly, the number of queries made by
Algorithm 3 is at most |Y| times the bound from Theorem 5.2. The result is the following theorem:

Theorem C.1. Assume πm ∈ Π where either (1) Πy has finite VC dimension d and x is σ-smooth or
(2) Πy has finite Littlestone dimension d for all y ∈ Y . Then for any T ∈ N, Algorithm 3 with T and
ε = T

−2n
2n+1 satisfies

E [RT ] ∈ O

(
|Y|dL
σ

T
−1

2n+1 log T

)
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E[|QT |] ∈ O

(
|Y|T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))
We use the following terminology and notation in the proof of Theorem C.1:

1. We refer to the copy of Algorithm 1 running on Πy as “copy y of Algorithm 1”.

2. Let πy
t and Xy

t refer to the values of πt and Xt for copy y of Algorithm 1.

3. Let πmy : X → {0, 1} be the policy defined by πmy(x) = 1(πm(xt) = y). Note that
querying the mentor tells the agent πm(xt), which allows the agent to compute πmy(xt):
this is necessary when Algorithm 1 queries while running on some Πy .

4. Let V y
T = {t ∈ [T ] : byt ̸= πmy(xt)} be the set of time steps where πy

t does not correctly
determine whether the mentor would take action y and let VT = {t ∈ [T ] : yt ̸= πm(xt)}
be the set of time steps where the agent’s action doesn’t match the mentor’s.

Lemma C.1. We have |VT | ≤
∑

y∈Y |V
y
T |.

Proof. We claim that VT ⊆ ∪y∈YV
y
T . Suppose the opposite: then there exists t ∈ VT such

that byt = πmy(xt) for all y ∈ Y . Since πm(xt) ∈ Y , there is exactly one y ∈ Y such that
1(πm(xt) = y) = πmy(xt) = byt = 1. Specifically, this holds for y = πm(xt). But then
Algorithm 3 takes action min{y ∈ Y : byt = 1} = πm(xt), which contradicts t ∈ VT . Therefore
VT ⊆ ∪y∈YV

y
T , and applying the union bound completes the proof.

Lemma C.2. For all t ∈ [T ], µm(xt)− µ(xt, yt) ≤ Lε1/n.

Proof. The argument is similar to the proof of Lemma B.2. If µm(xt) ̸= µ(xt, yt), then yt = y for
some y ∈ Y where byt = 1. Therefore copy y of Algorithm 1 did not query at time t and πy

t (xt) = 1.
Let (x′, y′) = argmin(x,y)∈Xy

t :π
y
t (xt)=y ||xt − x||. Then ||xt − x′|| ≤ ε1/n and y′ = πy

t (xt) = 1.

By construction of Xy
t , y′ = πmy(x′) so πmy(x′) = 1 which implies πm(x′) = y. Then by the local

generalization assumption,

µ(xt, yt) = µ(xt, y) = µ(xt, π
m(x′)) ≥ µm(xt)− L||xt − x′|| ≥ µm(xt)− Lε1/n

as required.

Theorem C.1. Assume πm ∈ Π where either (1) Πy has finite VC dimension d and x is σ-smooth or
(2) Πy has finite Littlestone dimension d for all y ∈ Y . Then for any T ∈ N, Algorithm 3 with T and
ε = T

−2n
2n+1 satisfies

E [RT ] ∈ O

(
|Y|dL
σ

T
−1

2n+1 log T

)
E[|QT |] ∈ O

(
|Y|T

4n+1
4n+2

(
d

σ
log T + diam(x)n

))

Proof. Theorem 5.2 implies that each copy of Algorithm 1 makes O
(
T

4n+1
4n+2

(
d
σ log T + diam(x)n

))
queries in expectation, so by linearity of expectation, the expected number of queries made by
Algorithm 3 is O

(
|Y|T

4n+1
4n+2

(
d
σ log T + diam(x)n

))
. Using the same argument as in the proof of

Lemma B.7 (with Lemma C.2 replacing Lemma B.2), we get

RT =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt)

≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ |VT |Lε1/n
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Then by Lemma C.1, RT ≤ Lε1/n
∑

y∈Y |V
y
T |. Taking the expectation and applying Lemma B.1 to

each V y
T gives us

E[RT ] ≤ Lε1/n
∑
y∈Y

O

(
d

σ
Tε log(1/ε) log T

)
= O

(
|Y|Lε1/n d

σ
Tε log(1/ε) log T

)
as required.

D THERE EXIST POLICY CLASSES WHICH ARE LEARNABLE IN OUR SETTING
BUT NOT IN THE STANDARD ONLINE MODEL

This section presents another algorithm with subconstant regret and sublinear queries, but under
different assumptions. The primary takeaway here is that our algorithm can handle the class of
thresholds on [0, 1], which is known to have infinite Littlestone dimension and thus be hard in the
standard online learning model. (Example 21.4 in Shalev-Shwartz & Ben-David (2014)).

Specifically, we assume a 1D input space and we allow the input sequence to be fully adversarial
chosen. Instead of VC/Littlestone dimension, we consider the following notion of simplicity:
Definition D.1. Given a mentor policy πm, partition the input space X into intervals such that all
inputs within each interval share the same mentor action. Let {X1, . . . , Xk} be a partition that
minimizes the number of intervals. We call each Xj a segment. Let f(πm) denote the number of
segments in πm.

Bounding the number of segments is similar conceptually to VC dimension in that it limits the ability
of the policy class to realize arbitrary combinations of labels (i.e., mentor actionx) on x. For example,
if Π is the class of thresholds on [0, 1], every π ∈ Π has at most two segments, and thus the positive
result in this section will apply. This demonstrates the existence of policy classes which are learnable
in our setting but not learnable in the standard online learning model, meaning that the two settings
do not exactly coincide.

We prove the following result:
Theorem D.2. For any x ∈ X T , any πm with f(πm) ≤ K, and any function g : N→ N, Algorithm 4

makes at most (diam(x) + 4)g(T ) queries and satisfies RT ≤
2LKT

g(T )2
.

Choosing g(T ) = T c for c ∈ (1/2, 1) is sufficient to subconstant regret and sublinear queries:
Theorem D.3. For any c ∈ (1/2, 1), Algorithm 4 with g(T ) = T c makes O(T c(diam(x) + 1))
queries and satisfies

lim
T→∞

sup
x∈XT

sup
µ

sup
πm:f(πm)≤K

RT = 0

Our algorithm does not need to know L or the number of segments; it only needs to know T .

D.1 INTUITION BEHIND THE ALGORITHM

The algorithm maintains a set of buckets which partition the observed portion of the input space.
Each bucket’s length determines the maximum loss in payoff we will allow from that subset of the
input space. As long as the bucket contains a query from a prior time step, local generalization allows
us to bound µm(xt)− µ(xt, yt) based on the length of the bucket containing xt. We always query if
the bucket does not contain a prior query

The granularity of the buckets is controlled by a function g, with the initial buckets having length
1/g(T ). Since we can expect one query per bucket, we need g(T ) ∈ o(T ) to ensure sublinear queries.

Regardless of the bucket length, the adversary can still place multiple segments in the same bucket
B. A single query only tells us the optimal action for one of those segments, so we risk a payoff as
bad as µm(xt)−O(len(B)) whenever we choose not to query. We can endure a limited number of
such payoffs, but if we never query again in that bucket, we may suffer Θ(T ) such payoffs. Letting
µm(xt) = 1 for simplicity, that would lead to

∏T
t=1 µ(xt, yt) ≤

(
1− 1

O(g(T ))

)Θ(T )
, which converges

to 0 (i.e., guaranteed catastrophe) when g(T ) ∈ o(T ).
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Algorithm 4 achieves subconstant regret when the mentor’s policy has a bounded number of segments.
1: function AVOIDCATASTROPHE(T ∈ N, g : N→ N)
2: XQ ← ∅ ▷ Previously queried inputs
3: π ← ∅ ▷ Records πm(x) for each x ∈ XQ

4: B ← ∅ ▷ The set of active buckets
5: for t from 1 to T do
6: EVALUATEINPUT(xt)

7: function EVALUATEINPUT(x ∈ X )
8: if s ̸∈ B for all B ∈ B then ▷ No bucket containing x: create a new bucket and try again
9: B ←

[
j−1
g(T ) ,

j
g(T )

]
for j ∈ Z such that x ∈ B

10: B ← B ∪ {B}
11: nB ← 0 ▷ Number of time steps that have used B
12: EVALUATEINPUT(x)
13: else
14: B ← any bucket containing x
15: if XQ ∩B = ∅ then ▷ No queries in this bucket
16: Query mentor and observe πm(x)
17: π(x)← πm(x)
18: XQ ← XQ ∪ {x}
19: nB ← nB + 1
20: else if nB < T/g(T ) then ▷ Bucket has a query and isn’t full: take that action
21: Let x′ ∈ XQ ∩B
22: Take action π(x′)
23: nB ← nB + 1
24: else ▷ Bucket is full: split bucket and try again
25: B = [a, b]

26: (B1, B2)←
( [

a, a+b
2

]
,
[
a+b
2 , b

] )
27: (xB1

, xB2
)← (0, 0)

28: B ← B ∪ {B1, B2} \B
29: EVALUATEINPUT(x)

This failure mode suggests a natural countermeasure: if we start to suffer significant (potential)
losses in the same bucket, then we should probably query there again. One way to structure these
supplementary queries is by splitting the bucket in half when enough time steps have involved that
bucket. It turns out that splitting after T/g(T ) time steps is a sweet spot.

D.2 NOTATION FOR THE PROOF

We will use the following notation throughout the proof of Theorem D.2:

• Let VT = {t ∈ [T ] : µ(xt, yt) < µm(xt)} be the set of time steps with a suboptimal payoff.
• Let Bt be the bucket that is used on time step t (as defined on line 14 of Algorithm 4).
• Let d(B) be the depth of bucket B

– Buckets created on line 9 are depth 0.
– We refer to B1, B2 created on line 26 as the children of the bucket B defined on line

14.
– If B′ is the child of B, d(B′) = d(B) + 1.

– Note that len(B) =
1

g(T )2d(B)
.

• Viewing the set of buckets are a binary tree defined by the “child” relation, we use the terms
“ancestor” and ”descendant” in accordance with their standard tree definitions.

• Let BV = {B : ∃t ∈ VT s.t. Bt = B} be the set of buckets that ever produced a suboptimal
payoff.

• Let B′V = {B ∈ BV : no descendant of B is in BV }.
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D.3 PROOF ROADMAP

The proof proceeds in the following steps:

1. Bound the total number of buckets and therefore the total number of queries (Lemma D.1).

2. Bound the suboptimality on a single time step based on the bucket length and L
(Lemma D.2).

3. Bound the sum of bucket lengths on time steps where we make a mistake (Lemma D.4),
with Lemma D.3 as an intermediate step. This captures the total amount of suboptimality.

4. As in the proof of Theorem 5.2, Lemma B.3 transforms the multiplicative objective into an
additive form. Lemma D.5 bounds the additive objective using Lemmas D.2 and D.4.

5. Combining Lemmas D.5 and B.3 bounds the regret (Lemma D.6).

6. Theorem D.2 directly follows from Lemmas D.1 and D.6.

D.4 PROOF

Lemma D.1. Algorithm 4 performs at most (diam(x) + 4)g(T ) queries.

Proof. Algorithm 4 performs at most one query per bucket, so the total number of queries is bounded
by the total number of buckets. There are two ways to create a bucket: from scratch (line 9), or by
splitting an existing bucket (line 26).

Since depth 0 buckets overlap only at their boundaries, and each depth 0 bucket has length 1/g(T ),
at most g(T )maxt,t′∈[T ] |xt − xt′ | = g(T ) diam(x) depth 0 buckets are subsets of the interval
[mint∈[T ] xt,maxt∈[T ] xt]. At most two depth 0 buckets are not subsets of that interval (one at each
end), so the total number of depth 0 buckets is at most g(T ) diam(x) + 2.

We split a bucket B when nB reaches T/g(T ), which creates two new buckets. Since each time
step increments nB for a single bucket B, and there are a total of T time steps, the total number of
buckets created via splitting is at most

2T

T/g(T )
= 2g(T ). Therefore the total number of buckets ever

in existence is (diam(x) + 2)g(T ) + 2 ≤ (diam(x) + 4)g(T ), so Algorithm 4 performs at most
(diam(x) + 4)g(T ) queries.

Lemma D.2. For each t ∈ [T ], µ(xt, yt) ≥ µm(xt)− L len(Bt).

Proof. If we query the mentor at time t, µ(xt, yt) = µm(xt). Thus assume we do not query the
mentor at time t: then there exists x′ ∈ Bt (as defined on line 21 of Algorithm 4) such that yt =
π(x′) = πm(x′). Since xt and x′ are both in Bt, |xt−x′| ≤ len(Bt). Then by the local generalization
assumption, µ(xt, yt) = µ(xt, π

m(x′)) ≥ µm(xt)− L||xt − x′|| ≥ µm(xt)− L len(Bt).

Lemma D.3. If πm has at most K segments, |B′V | ≤ K.

Proof. Now consider any B ∈ B′V . By definition of B′V , there exists t ∈ VT such that xt ∈ B. Then
there exists x′ ∈ B (as defined in Algorithm 4) such that yt = π(x′) = πm(x′). Since t ∈ VT ,
we have πm(xt) ̸= yt = πm(x′). Thus xt and x′ are in different segments, but are both in B.
Therefore any B ∈ B′

V must intersect at least two segments. Since B is an interval, if it intersects
two segments, it must intersect two adjacent segments Xj and Xj+1. Furthermore, B must contain
an open neighborhood centered on the boundary between Xj and Xj+1.

Now consider some B′ ∈ B′V with B ̸= B′. We |B ∩B′| ≤ 1: otherwise one must be the descendant
of the other, which contradicts the definition of B′V . Suppose B′ also intersects both Xj and Xj+1:
since B′ is also an interval, B′ must also contain an open neighborhood centered on the boundary
between those two segments. But then |B ∩B′| > 1, which is a contradiction.

Therefore any pair of adjacent segments Xj and Xj+1, there is at most one bucket in B′V which
contains an open neighborhood around their boundary. Since there are at most K−1 pairs of adjacent
segments, we have |B′V | ≤ K − 1 ≤ K.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Lemma D.4. We have
∑

t∈VT

len(Bt) ≤
2KT

g(T )2
.

Proof. For every t ∈ VT , we have Bt = B for some B ∈ BV , so∑
t∈VT

len(Bt) =
∑

B∈BV

∑
t∈VT :B=Bt

len(Bt)

Next, observe that every B ∈ BV \ B′
V must have a descendent in B′V : otherwise we would have

B ∈ B′V . Let A(B) denote the set of ancestors of B, plus B itself. Then we can write∑
t∈VT

len(Bt) ≤
∑

B′∈B′
V

∑
B∈A(B′)

∑
t∈VT :B=Bt

len(Bt)

=
∑

B′∈B′
V

∑
B∈A(B′)

|{t ∈ VT : B = Bt}| · len(Bt)

For any bucket B, the number of time steps t with B = Bt is at most T/g(T ). Also recall that
len(B) =

1

g(T )2d(B)
. Therefore∑
B∈A(B′)

|{t ∈ VT : B = Bt}|
g(T )2d(B)

≤ T

g(T )2

∑
B∈A(B′)

1

2d(B)

=
T

g(T )2

d(B′)∑
d=0

1

2d
≤ T

g(T )2

∞∑
d=0

1

2d
=

2T

g(T )2

Then by Lemma D.3, ∑
t∈VT

len(Bt) ≤
∑

B′∈B′
V

2T

g(T )2
=

2T |B′V |
g(T )2

≤ 2KT

g(T )2

as claimed.

Lemma D.5. Under the conditions of Theorem D.2, Algorithm 4 satisfies
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ 2LKT

g(T )2

Proof. For t ̸∈ VT we have min(µm(xt), µ(xt, yt)) = µm(xt) by definition, and Lemma D.2
implies that min(µm(xt), µ(xt, yt)) ≥ L len(Bt) for all t ∈ [T ]. Thus
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤
∑
t∈VT

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ L

∑
t∈VT

len(Bt)

Then by Lemma D.4,
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
≤ 2LKT

g(T )2

as required.

Lemma D.6. Under the conditions of Theorem D.2, Algorithm 4 satisfies RT ≤ 2LKT
g(T )2 .

Proof. Let at = µm(xt) and bt = min(µm(xt), µ(xt, yt)) for all t ∈ [T ]. Then by Lemma B.3,
T∏

t=1

µm(xt)−
T∏

t=1

min(µm(xt), µ(xt, yt)) ≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
Since µ(xt, yt) ≥ min(µm(xt), µ(xt, yt)) for all t ∈ [T ], we have

RT =

T∏
t=1

µm(xt)−
T∏

t=1

µ(xt, yt) ≤
T∑

t=1

(
µm(xt)−min(µm(xt), µ(xt, yt))

)
Applying Lemma D.5 completes the proof.
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Theorem D.2 follows from Lemma D.1 and Lemma D.6.

E OTHER PROOFS

Proposition E.1 states that Lipschitz continuity implies local generalization when the mentor is
optimal.
Proposition E.1. Assume that for all x, x′ ∈ X and y ∈ Y , |µ(x, a)− µ(x′, a)| ≤ L||x− x′||. Also
assume that µ(x, πm(x)) = maxy∈Y µ(x, y) for all x ∈ X . Then πm satisfies local generalization
with constant 2L.

Proof. For any x, x′ ∈ X , we have

µ(x, πm(x′)) ≥ µ(x′, πm(x′))− L||x− x′|| (Lipschitz continuity of µ)

≥ µ(x′, πm(x))− L||x− x′|| (πm is optimal for x′)

≥ µ(x, πm(x))− 2L||x− x′|| (Lipschitz continuity of µ again)

= µm(x)− 2L||x− x′|| (Definition of µm(x))

Since πm is optimal for x, we have

µm(x) + 2L||x− x′|| ≥ µm(x) ≥ µ(x, πm(x′))

Thus −2L||x−x′|| ≤ µ(x, πm(x′))−µm(x) ≤ 2L||x−x′||. This is equivalent to |µ(x, πm(x′))−
µm(x)| ≤ 2L||x− x′||, completing the proof.

Proposition E.2 states that the achievability of subconstant regret does not depend on whether we
require expected sublinear queries or worst-case sublinear queries.
Proposition E.2. Suppose an algorithm satisfies limT→∞ supµ,πm E[RT ] = 0 and
supµ,πm E[|QT |] ∈ o(T ). Then there exists h : N → N such that (1) h(T ) ∈ o(T ) and (2)
if the algorithm is modified to simply stop querying if the number of queries reaches h(T ), the
algorithm still satisfies limT→∞ supµ,πm E[RT ] = 0.

Proof. We use QT , RT to refer to the queries and regret of the original algorithm, and Q′
T , R

′
T to

refer to the queries and regret of the modified algorithm.

Since supµ,πm E[|QT |] ∈ o(T ), there exists g : N → N such that supµ,πm E[|QT |] ≤ g(T ) and
g(T ) ∈ o(T ). Let h(T ) =

√
g(T )T ; then h(T ) ∈ o(T ) by Lemma A.1. Markov’s inequality implies

that

Pr
[
|QT | > h(T )

]
≤ E[|QT |]

h(T )
≤ g(T )√

g(T )T
=

√
g(T )

T

Let ξ denote the event that at some point, the original algorithm would query, but the modified
algorithm cannot because |Q′

T | = h(T ). Then Pr[ξ] ≤ Pr[|QT | > h(T )] (the inequality is because
the modified algorithm might not want to query more anyway). Also note that the algorithms are
equivalent if ξ does not occur, so E[R′

T | ¬ξ] = E[RT ]. Hence

E[R′
T ] = E[R′

T | ¬ξ] Pr[¬ξ] + E[R′
T | ξ] Pr[ξ]

≤E[RT ] · 1 + 1 · Pr[ξ]

≤ E[RT ] +

√
g(T )

T

Since g(T ) ∈ o(T ), we get

lim
T→∞

sup
µ,πm

E[R′
T ] ≤ lim

T→∞
sup
µ,πm

(
E[RT ] +

√
g(T )

T

)

= lim
T→∞

sup
µ,πm

E[RT ] + lim
T→∞

√
g(T )

T
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= 0

as required.

Theorem E.3 shows that avoiding catastrophe is impossible without local generalization, even when x
is σ-smooth and Π has finite VC dimension. The first insight is that without local generalization, we
can define µ(x, y) = 1(y = πm(x)) so that a single mistake causes

∏T
t=1 µ(xt, yt) = 0. To lower

bound Pr
[∏T

t=1 µ(xt, yt) = 0
]
, we use a similar approach to the proof of Theorem 4.1: divide

X = [0, 1] into f(T ) independent sections with |QT | << f(T ) << T , so that the agent can only
query a small fraction of these sections. However, the proof of Theorem E.3 is a bit easier, since we
only need the agent to make a single mistake.

The proof of Theorem E.3 assumes sublinear queries unconditionally, but recall from Proposition E.2
that the distinction between worst-case sublinear queries and expected sublinear queries is not
significant.
Theorem E.3. Let X = [0, 1] and Y = {0, 1}. Assume each input is sampled i.i.d. from the
uniform distribution on X and define the mentor policy class by the set of intervals within X , i.e.,
Π = {π : ∃a, b ∈ [0, 1] s.t π(x) = 1(x ∈ [a, b]) ∀x ∈ X}. Then without the local generalization
assumption, any algorithm with sublinear queries satisfies limT→∞ supµ,πm E[RT ] = 1.

Proof. Part 1: Setup. Consider any algorithm which makes sublinear worst-case queries: then there
exists g : N→ N where supµ,πm |QT | ≤ g(T ) and g(T ) ∈ o(T ). Define f(T ) :=

√
(g(T ) + 1)T ;

by Lemma A.1, g(T ) ∈ o(f(T )) and f(T ) ∈ o(T ). Divide X into f(T ) equally sized sections
X1, . . . , Xf(T ) in the exactly the same way as in Section 4.2; see also Figure 2. Assume that each xt

is in exactly one section: this assumption holds with probability 1, so it does not affect the regret.

We use the probabilistic method: sample a segment jm ∈ [f(T )] uniformly at random, define πm by
πm(x) = 1(x ∈ Xjm), and define µ by µ(x, y) = 1(y = πm(x)). In words, the mentor takes action
1 iff the input is in section jm, and the agent receives payoff 1 if its action matches the mentor’s and
zero otherwise. Since any choice of jm defines a valid µ and πm, we have

sup
µ,πm

E
x,y

[RT (x,y, µ, π
m)] ≥ E

jm
E
x,y

[RT (x,y, µ, π
m)]

Let J¬Q = {j ∈ [f(T )] : xt ̸∈ Xj ∀t ∈ QT } be the set of sections which are never queried. Let
j1, . . . , jk be the sequence of sections queried by the agent: then k ≤ |QT | ≤ g(T ).

Part 2: The agent is unlikely to determine jm. By the chain rule of probability,

Pr[jm ∈ J¬Q] = Pr
[
ji ̸= jm ∀i

]
=

k∏
i=1

Pr
[
ji ̸= jm | jr ̸= jm ∀r < i

]
Now fix i and assume jr ̸= jm ∀r < i. Queries in sections other than jm provide no information
about the value of jm, so jm is uniformly distributed across the set of sections not yet queried, i.e.,
{j ∈ [f(T )] : jr ̸= j ∀r < i}. There are at least f(T ) − i + 1 such sections, since there are i − 1

prior queries at this point. Thus Pr[ji ̸= jm | jr ̸= jm ∀r < i] ≤ f(T )−i
f(T )−i+1 (the inequality is

because it could also be 0 if ji = jr for some i < r). Therefore

Pr
[
jm ∈ J¬Q

]
≤

k∏
i=1

f(T )− i

f(T )− i+ 1

=
f(T )− 1

f(T )
· f(T )− 2

f(T )− 1
. . .

f(T )− k + 1

f(T )− k + 2
· f(T )− k

f(T )− k + 1

=
f(T )− k

f(T )

≥ 1− g(T )

f(T )

Part 3: If the agent fails to determine jm, it is likely to make at least one mistake. For each
j ∈ J¬Q, let Vj = {t ∈ [T ] : xt ∈ Xj} be the set of time steps with inputs in section j. By
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Lemma A.3, Pr[|Vjm | = 0] ≤ exp
(

T
16f(T )

)
. Then by the union bound, Pr[jm ∈ J¬Q and |Vjm | >

0] ≥ 1− g(T )
f(T ) − exp

( −T
16f(T )

)
. For the rest of Part 3, assume jm ∈ J¬Q and |Vjm | > 0.

Since jm ∈ J¬Q, the agent has no information about jm other than that it is in J¬Q. This means that
for all j ∈ J¬Q and t ∈ Vj , jm is conditionally (under the condition of jm ∈ J¬Q) independent of
yt. We proceed by case analysis.

Case 1: For all j ∈ J¬Q, t ∈ Vj , we have yt = 0. In particular, this holds for j = jm, and we know
there exists at least one t ∈ Vjm since |Vjm | > 0. Then yt ̸= πm(xt), so µ(xt, yt) = 0 and thus

Pr
[∏T

r=1 µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
= 1.

Case 2: There exists j ∈ J¬Q, t ∈ Vj with yt = 1. Then µ(xt, yt) = 0 unless j = jm, so

Pr

[
T∏

r=1

µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ Pr

[
µ(xt, yt) = 0 | jm ∈ J¬Q and |Vjm | > 0

]
= Pr

[
j ̸= jm | jm ∈ J¬Q and |Vjm | > 0

]
Conditioned on jm ∈ J¬Q, jm is uniformly distributed across J¬Q, so

Pr

[
T∏

r=1

µ(xr, yr) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ 1− 1

|J¬Q|
≥ 1− 1

f(T )− g(T )

Combining Case 1 and Case 2, we get the overall bound of

Pr

[
T∏

t=1

µ(xt, yt) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
≥ 1− 1

f(T )− g(T )

and thus

Pr

[
T∏

t=1

µ(xt, yt) = 0

]
≥ Pr

[
T∏

t=1

µ(xt, yt) = 0 and jm ∈ J¬Q and |Vjm | > 0

]

= Pr

[
T∏

t=1

µ(xt, yt) = 0
∣∣∣ jm ∈ J¬Q and |Vjm | > 0

]
· Pr

[
jm ∈ J¬Q and |Vjm | > 0

]
≥
(
1− 1

f(T )− g(T )

)(
1− g(T )

f(T )
− exp

(
−T

16f(T )

))
For brevity, let α(T ) denote this final bound. Since g(T ) ∈ o(f(T )) and f(T ) ∈ o(T ), we have

lim
T→∞

α(T ) = lim
T→∞

(
1− 1

f(T )− g(T )

)(
1− g(T )

f(T )
− exp

(
−T

16f(T )

))
= (1− 0)(1− 0− 0)

= 1

Part 4: Putting it all together. Since
∏T

t=1 µ(xt, yt) ≤ 1 always, we have

E
jm

E
x,y

[
T∏

t=1

µ(xt, yt)

]
= E

jm
E
x,y

[
T∏

t=1

µ(xt, yt)
∣∣∣ T∏

t=1

µ(xt, yt) = 0

]
· Pr

[
T∏

t=1

µ(xt, yt) = 0

]

+ E
jm

E
x,y

[
T∏

t=1

µ(xt, yt)
∣∣∣ T∏

t=1

µ(xt, yt) ̸= 0

]
· Pr

[
T∏

t=1

µ(xt, yt) ̸= 0

]

≤ 0 · Pr

[
T∏

t=1

µ(xt, yt) = 0

]
+ 1 ·

(
1− Pr

[
T∏

t=1

µ(xt, yt) = 0

])
≤ 1− α(T )
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Since
∏T

t=1 µ
m(xt) = 1 always, we have

sup
µ,πm

E
x,y

[RT (x,y, µ, π
m)] ≥ E

jm
E
x,y

[RT (x,y, µ, π
m)]

= 1− E
jm

E
x,y

[
T∏

t=1

µ(xt, yt)

]
≥ α(T )

Therefore limT→∞ supµ,πm E[RT ] ≥ limT→∞ α(T ) = 1, as required.
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