Safe and Deployable LLLM Adaptation: Directional Deviation Index—Guided
Model Pruning

Shuang Ao, Sarvapali D. Ramchurn

Electronics and Computer Science
University of Southampton, UK

Abstract

Large Language Models (LLMs) adapted through Low Rank
Adaptation (LoRA) often exhibit weakened safety alignment,
even when fine tuned on benign datasets. Such degradation
poses significant risks for deployable Al systems, where pa-
rameter updates can unintentionally introduce unsafe or un-
stable behaviors. In this work, we propose Directional Devia-
tion Index Guided Pruning (DDI Pruning), a post hoc and data
free framework for diagnosing and mitigating unsafe LoRA
adaptations. DDI quantifies the spectral and directional devi-
ation of each LoRA updated layer relative to its pretrained
baseline, identifying layers that contribute most to instability
or misalignment. Layers with high DDI scores are selectively
pruned, improving both model robustness and computational
efficiency without additional training or supervision. We eval-
uate the proposed approach on multiple language generation
and agent planning benchmarks using several LLM back-
bones. Results show that DDI Pruning consistently reduces
harmful or adversarial behaviors while preserving task accu-
racy and coherence. Ablation studies further demonstrate that
each component of DDI contributes to capturing unsafe adap-
tation patterns, highlighting its interpretability and generality
across domains. Overall, DDI Pruning provides an effective
and practical mechanism for enhancing the safety alignment
of adapted LLMs and contributes to the development of reli-
able and deployable Al systems.

Introduction

Large Language Models (LLMs) have achieved remark-
able progress in natural language understanding, reason-
ing, and task completion (Touvron et al. 2023; Wei et al.
2024; Achiam et al. 2023; Bubeck et al. 2023). Building
upon these capabilities, they are increasingly deployed as
decision-support systems and autonomous agents that inter-
act with users, tools, and the physical environment (Wang
et al. 2024, Xi et al. 2025). As LLMs transition from labora-
tory research to real-world deployment, ensuring their safety
and reliability becomes a key requirement for deployable
Al (Yang et al. 2023; Hsu et al. 2024). Even subtle mis-
alignments or instability in parameter updates can manifest
as unsafe, biased, or inconsistent behaviors when deployed
at scale.
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Parameter-efficient fine-tuning (PEFT) methods such as
Low-Rank Adaptation (LoRA) (Hu et al. 2022) have
emerged as an effective way to adapt LLMs to new tasks
while maintaining computational efficiency. However, re-
cent studies (Qi et al. 2023; Yang et al. 2023; Zhan et al.
2023) reveal that LoRA fine-tuning can unintentionally
weaken the safety alignment of pretrained models, even
when trained on non-harmful data. Fine-tuned LLMs often
retain strong task performance but exhibit degraded adher-
ence to safety instructions, elevated exposure to adversar-
ial prompts, and reduced robustness to distributional shifts.
These vulnerabilities highlight a critical challenge for de-
ployable AI: identifying and mitigating unsafe adaptation
behaviors before deployment, especially when only the fine-
tuned model is available.

Existing safety alignment techniques typically rely on
paired checkpoints (base and instruction-tuned models) or
external calibration datasets to detect unsafe parameter re-
gions (Hsu et al. 2024; Ao et al. 2025). Such require-
ments limit their applicability in real-world settings where
only the adapted weights are accessible, as in many open-
weight or domain-specific LLMs. Moreover, these meth-
ods incur additional training or inference costs that hinder
lightweight deployment. A deployable diagnostic mecha-
nism must therefore operate efficiently, require no auxiliary
data, and preserve the performance benefits of LoRA adap-
tation.

To address this challenge, we propose Directional De-
viation Index—Guided Pruning (DDI-Pruning), a post-hoc
and data-free framework for enhancing the deployability and
safety of LoRA-adapted LLMs. Our key insight is that un-
safe adaptation often manifests as sharp and misaligned de-
viations in the LoRA update space relative to the pretrained
weight geometry. The Directional Deviation Index (DDI)
quantifies this deviation through a lightweight spectral anal-
ysis of each LoRA layer, measuring its sharpness, orienta-
tion, and magnitude without requiring base-instruct model
pairs or data. Layers with high DDI scores are identified as
potential sources of unstable or unsafe behavior and are se-
lectively pruned to restore alignment and stability. This pro-
cess improves both the safety and computational efficiency
of fine-tuned LLMs, making them more reliable for real-
world deployment.

Our main contributions are summarized as follows:



* We empirically show that LoRA fine-tuning can reduce
intrinsic safety alignment even when trained on benign
datasets, motivating the need for deployable diagnostic
methods.

¢ We introduce the Directional Deviation Index (DDI),
a lightweight, training-free metric that quantifies layer-
wise spectral and directional deviation in LoRA-adapted
weights.

* We develop DDI-Pruning, a post-hoc method that re-
moves spectrally unstable LoRA layers to improve safety
and robustness, enabling more deployable LLM adap-
tation without access to auxiliary data or paired check-
points.

Related Work
Safety Alignment in LoRA Based Adaptation

Maintaining safety alignment during LoRA fine tuning re-
mains difficult, as small parameter updates can unintention-
ally disturb the safeguards of pretrained models (Qi et al.
2023; Yang et al. 2023; Hsu et al. 2024). Previous stud-
ies show that even fine tuning on benign data can reduce
alignment and increase vulnerability to unsafe or adver-
sarial prompts. Recent works attempt to preserve safety
through projection based subspaces (Hsu et al. 2024), adver-
sarial training (Bianchi et al. 2023), or arithmetic interven-
tions that locate safety critical parameters (Wei et al. 2024;
Huang, Hu, and Liu 2025). However, these methods often
rely on paired checkpoints or additional datasets, which lim-
its their applicability when only the adapted model is avail-
able. Our work focuses on detecting unsafe LoRA updates
directly from the adapted weights without external supervi-
sion.

Spectral Analysis and Pruning for Deployable Al

Spectral analysis has been used to study weight dynamics
in neural networks, showing that dominant singular direc-
tions often correspond to unstable or over specialized be-
havior (Yunis et al. 2024; Hu et al. 2025; Han, Jung, and
Kim 2024). While these insights improve interpretability,
they seldom lead to direct mechanisms for improving safety
or robustness. Pruning methods such as LLM Pruner (Ma,
Fang, and Wang 2023) and LoRAPrune (Zhang et al. 2023)
improve efficiency but remain agnostic to safety concerns.
Our approach integrates these perspectives by using spectral
deviation as a signal for pruning, offering a simple and data
free way to enhance the stability of LoRA adapted models.

Methodology

This section introduces Directional Deviation Index—Guided
Pruning (DDI-Pruning), a post-hoc, data-free approach for
improving the stability and deployability of LoRA-adapted
LLMs. The proposed metric, the Directional Deviation In-
dex (DDI), quantifies how sharply each low-rank update de-
viates from its pretrained baseline in both magnitude and
orientation. Layers with large DDI values are considered
spectrally unstable and are pruned to reduce unsafe or over-
specialized adaptation effects.

Problem Statement

Parameter-Efficient Fine-Tuning (PEFT) methods such as
LoRA adapt pretrained LLMs by inserting low-rank train-
able matrices into frozen layers, greatly reducing fine-tuning
cost.In Transformer models, each block includes attention
projections for Q, K, V, and O, which we collectively refer
to as layer-wise components.

For the i-th layer, let the pretrained parameter matrix be
Wy € Rk where d and k denote the output and in-
put dimensions, respectively. During LoRA adaptation, the
weight is updated as W = Wy + AW = W, + AB, where
A € R¥" and B € R"** are trainable matrices with rank
r < min(d, k). The low-rank update AW fully encodes
task-specific adaptation since Wy remains frozen.

Our objective is to evaluate how strongly AW deviates
both spectrally and directionally from the geometry of Wj,.
Unless otherwise stated, we use a small constant ¢ = 10~
for numerical stability in all ratio computations.

Unlike prior safety-aligned subspace methods requiring
multiple model checkpoints, DDI-Pruning analyzes only the
pretrained weights Wy and their corresponding LoRA up-
date AW . The following subsections detail the computation
of DDI, composed of three interpretable components: spec-
tral sharpness, directional deviation, and relative magnitude.

Directional Deviation Index—Guided Pruning

Directional Sharpness of LoRA Updates For the LoRA
update AW = AB, the nonzero singular values of AW co-
incide with the square roots of the eigenvalues of the com-
pact r x r Gram matrix:

G =BTATAB. )

Here, A € R*" and B € R"**, g0 that AW € R4xk,
This compact formulation avoids computing the full singular
value decomposition of AW while preserving its spectral
structure, since

AWTAW = BTATAB =G.

Let Amax(G) denote the largest eigenvalue and tr(G) the
trace. The ratio between them quantifies how concentrated
the spectral energy is in a few dominant directions:

/\max(G)

S:tr(G)Jre’ =

S<1. 2)

Since A\pax(G) < tr(G) for any positive semidefinite G,
the value of S is naturally bounded in [0, 1]. From a statisti-
cal and spectral perspective, the boundedness of Apax (G) <
tr(G) follows directly from the classical Courant-Fischer
(min-max) theorem (Siegel 1935), which states that the
largest eigenvalue of a symmetric matrix is upper bounded
by its trace. Moreover, the ratio Apax(G)/tr(G) can be in-
terpreted as a measure of spectral concentration related to
the concept of stable rank in matrix statistics, defined as
srank(B) = ||B||%/||B]|? (Tropp et al. 2015), which quan-
tifies how evenly spectral energy is distributed across singu-
lar values. These results justify the use of .S as a normalized,
bounded indicator of anisotropy in LoRA updates.



A high S value indicates concentrated and anisotropic up-
dates that may lead to unstable adaptation, whereas a low
S reflects more uniform and well-conditioned parameter
changes. When AW = 0, both numerator and denomina-
tor vanish, yielding .S = 0 under e-regularization.

Directional Deviation from Baseline Subspace To as-
sess orientation misalignment, we approximate the domi-
nant right-singular subspace of the pretrained weight matrix
Wy € R4*F using a single-pass randomized range finder
rather than a full SVD. Let ¢ be the target subspace di-
mension (default ¢ = r; ¢ = 2r improves robustness) and
draw a random test matrix € RF*(*+9) with oversam-
pling ¢ € {8,16}. Compute Y = WyQ € R¥*(+9) and
its thin QR factorization Y = @R, yielding an orthonor-
mal basis Q € R%** that approximates the column space
of Wy. The corresponding projector onto this subspace is
P, =QQ" € R¥x4,

Using this projector, the fraction of update energy that lies
outside the pretrained subspace is

|PAW | _ ItrA)BlE

O=1-"2F g ,
AW + ¢ tr(G) + ¢

0 €10,1].

(3)
Large O values indicate that the update moves in directions
poorly aligned with the pretrained weight geometry. For ef-
ficiency,  (and hence F;) is cached per layer type, shape,
dtype, and device, and reused across layers of identical

configuration.

Relative Magnitude Normalization To ensure layer-wise
comparability and prevent scale distortion in the overall DDI
score, we normalize the update magnitude relative to the
base weight and bound its range. The unbounded normal-
ization is given by

AW+ w0
M = = . 4
Wollr +2  TWallr +< @

Here, M > 0 represents the normalized energy of the adap-
tation: smaller values imply mild parameter adjustments,
whereas larger values correspond to more aggressive up-
dates that may destabilize pretrained representations.

Since ||AW||r can vary substantially across layers, di-
rectly multiplying M into DDI may distort its magnitude. To
maintain consistent scaling, we additionally use a bounded
normalization for stability:

AW ]| M

Mo — _ |
o Wollp + 1AWl +e 1+ M

5
Unless otherwise specified, Mom is used in Eq. (6) to pre-
vent layers with extremely large updates from dominating
the DDI score, ensuring a balanced contribution from all
components.

Directional Deviation Index (DDI) The three compo-
nents are integrated into the overall Directional Deviation
Index:

DDI=S5x 0O x M. (6)

Muorm € (0,1).

Since S,0 € [0,1] and M > 0, the range is DDI €
[0, 00), with DDI = 0 when AW = 0. For bounded com-
parison, we additionally report

DDI
1+ DDI’
which preserves ranking while improving interpretability.
High DDI values indicate layers with strong, anisotropic,

and misaligned updates, which are often linked to reduced
robustness and potential safety risks.

DDInorm = DDInorm S (0; 1)> (7)

DDI-Guided Layer Pruning After computing DDI for
each LoRA-updated layer, we rank all layers in descending
order and prune the top-7 layers (7 € N) with the largest
deviation scores:

rune W, if DDI € top-T,
R(W) = {p P (®)

keep W,  otherwise.

Alternatively, a threshold 6 can be applied: prune if DDI >
0 (or DDIoim > 6norm)- Pruning is implemented by zeroing
out W. This eliminates unsafe adaptation directions with-
out modifying the pretrained backbone, thereby enhancing
robustness and reducing deployment risk.

Computational Efficiency. All DDI components involve
only low-rank operations and small eigenvalue problems.
For each layer, building G = BT AT AB costs O(dr? +
kr?), its eigendecomposition O(r3), and evaluating BP;
and A(-) costs O(krt+drt). Constructing the projector Y =
W, € and QR factorization Y = QR costs O(dk(t+q)) but
is performed once per layer shape and cached. No full SVDs
of W or AW are required, making DDI-Pruning practical
for large-scale and resource-constrained deployments.

Experiments
Datasets and Baselines

We evaluate our method on two representative downstream
settings: dialogue summarization and agent planning. For
the dialogue summarization task, we use the Dialogue Sum-
mary dataset as the main benchmark, and a variant com-
bined with the PureBad dataset (Qi et al. 2023) to ex-
amine safety degradation under benign but adversarially
mixed fine-tuning data. The PureBad dataset contains 100
harmful samples collected through red-teaming. For the
mixed setting, we randomly sample 1,000 dialogue instances
from Dialogue Summary and combine them with all 100
PureBad samples. Evaluation is performed on the test set
of 1,500 samples. The LoRA fine-tuning experiments use
two open-weight models: LLaMA-3.2-1B-Instruct (Touvron
et al. 2023) and Gemma-7B-it (Team et al. 2024).

For the agent planning task, we adopt the Planner: In-
struction Tuning 2K dataset (Xu et al. 2023), which con-
tains 2,000 reasoning trajectories constructed for multi-step
planning under the ReWOO framework. We use an 80/20
train-test split and perform LoRA-based adaptation without
PureBad augmentation to isolate planning-specific safety ef-
fects. The DeepSeek-R1 model (Guo et al. 2025) is used as
the backbone for all agent planning experiments. We further
evaluate the Planner Instruction Tuning dataset within the



Table 1: Comparison of LoRA-based safety adaptation methods on the Dialogue Summary dataset using LLaMA-3.2-1B-
Instruct and Gemma-7B-it. ASR (Attack Success Rate) and HS (Harmfulness Score) measure safety, while all other metrics
reflect task utility. Higher values (1) indicate better task performance, and lower values () indicate improved safety. All results
except HS are reported as percentages.

Model \ Method \ Utility Metrics (1) | Safety Metrics ({)
‘ ‘ ROUGE METEOR AUARC ‘ ASR HS
Baseline 22.58 30.32 72.43 6.24 1.34
LoRA 30.94 41.12 80.46 22.52 2.62
LLaMA-3.2 | SafeLoRA 31.67 42.23 82.03 9.46 1.89
1B-Instruct SPLoRA 31.25 41.56 82.32 7.23 1.65
Ours 31.54 42.67 82.12 6.71 1.71
Baseline 23.64 25.23 72.21 9.46 1.83
LoRA 32.86 35.65 81.98 20.46 2.84
Gemma SafeLoRA 32.54 36.42 82.62 10.56 1.73
7B-it SPLoRA 3343 36.45 83.43 9.65 1.52
Ours 34.52 34.33 83.25 8.64 1.38

Table 2: Comparison of LoRA-based safety adaptation methods on the Dialogue Summary plus PureBad dataset using LLaMA-
3.2-1B-Instruct. ASR (Attack Success Rate) and HS (Harmfulness Score) measure safety, while all other metrics reflect task
utility. Higher values (1) indicate better task performance, and lower values ({) indicate improved safety. All results except HS
are reported as percentages.

Model \ Method \ Utility Metrics (1) | Safety Metrics ()
‘ ROUGE METEOR AUARC ‘ ASR HS
LoRA 31.25 40.56 79.23 32.64 3.23
SafeLoRA 30.25 41.32 82.57 15.32 2.76
LLMAS® | SPLoRA | 3128 4108 8304 | 1631 28]
Ours 30.76 42.24 82.97 11.23 2.54
RC Curve on DS RC Curve on DS with PB RC Curve on Planner
931 —— SPLoRA —— SPLORA o871 —— SPLORA
0.371 SafeLoRA 0341 SafeLoRA 0.804 SafeLoRA
036{ —*— LORA osl T LoRA —=— LoRA
9 —=— Ours g Ours Y0781 —e— OQOurs
& 035 c c
g 034 g 0301 g 0.76
0.32 072
0.31 0261
0.304 0.24 4 o
° * Refer tc[;.[‘Experts ° * ° . Refer toMExperts * * ° o Refer toMExperts ° °*

Figure 1: Risk—Coverage Curves comparing LoRA, SafeLoRA, SPLoRA, and our proposed DDI- Pruning method. The x-axis
(“Refer to experts”) denotes the proportion of samples with the highest uncertainty scores, while the y-axis shows the model
accuracy on the remaining samples. The left plot corresponds to the Dialogue Summary dataset using the Gemma model, the
middle plot to the Dialogue Summary combined with PureBad using the LLaMA3 model, and the right plot to the Instruction
Tuning 2K dataset using the DeepSeek model.

complete agent framework by integrating the solver compo- ing baselines:

nent, enabling assessment of end-to-end execution perfor- )
mance on HotpotQA (Yang et al. 2018) and TriviaQA (Joshi 1. LoRA (Hu et al. 2022): standard low-rank fine-tuning
et al. 2017). method without any safety intervention.

We compare our proposed DDI-Pruning with the follow- 2. SafeLoRA (Hsu et al. 2024): projects LoRA weights into



Table 3: Performance of different LoRA-based safety adaptation methods on the Planner Instruction Tuning 2K dataset. The
Planner setting evaluates planning accuracy, while the Solver setting measures end-to-end agent performance on downstream
tasks. ASR (Attack Success Rate) and HS (Harmfulness Score) assess safety, whereas SR (Success Rate) and F1 evaluate
execution effectiveness. Higher values (1) indicate better task utility, and lower values ({) indicate improved safety. All metrics

except HS are reported as percentages.

Planner: Instruction Tuning 2K Dataset Solver

Category Utility Metrics (1) Safety Metrics ({) HotpotQA TriviaQA

ROUGE METEOR AUARC | ASR HS SR F1 SR F1
Zero-shot Baseline 20.92 23.89 57.03 3.65 1.95 22.64 2042 | 5233 41.82
PEFT LoRA 69.89 70.76 89.70 2.36 2.01 4336 41.28 | 72.54 65.21
PEFT SafeLoRA 68.81 69.85 90.72 1.62 1.42 42.31 40.56 | 73.16 65.04
with Safety [ SPLoRA 69.27 69.86 91.56 1.57 1.31 4296 40.68 | 72.89 64.92
Alignment Ours 69.81 70.94 93.08 1.23 1.15 44.52 40.86 | 72.96 65.02

a predefined safety subspace to mitigate unsafe behav- Results

iors.

3. SPLoRA (Ao et al. 2025): performs distance-guided
pruning of LoRA layers to improve safety alignment.

Evaluation Metrics

We evaluate both the utility and safety of all models. Util-
ity is measured by BLEU, ROUGE-1 F1, and METEOR
scores, which capture the similarity between generated
outputs and ground-truth references. Reliability is quanti-
fied using the Area Under the Accuracy-Rejection Curve
(AUARC) (Nadeem, Zucker, and Hanczar 2009), following
prior work (Kuhn, Gal, and Farquhar 2023; Lin, Trivedi, and
Sun 2023; Kossen et al. 2024), and uncertainty is estimated
using semantic entropy probes'.

Safety is evaluated by the Attack Success Rate (ASR) and
the Harmfulness Score (HS). An attack is deemed success-
ful if the generated response lacks explicit refusal phrases,
with the refusal list provided in the Appendix. Harmfulness
is scored by GPT-5 on a five-point scale, where lower values
indicate safer behavior. For the agent planning task, we fur-
ther report Success Rate (SR), defined as the proportion of
completed tasks, and token-level F1 for execution accuracy.

Implementation Details

All experiments are conducted using Hugging Face? imple-
mentations of pre-trained models. LoRA is applied to the
attention projections (g_proj, k-proj, v.proj, o_proj)
with rank 8. Fine-tuning runs for 5 epochs using AdamW
optimization. For Dialogue Summary and Dialogue Sum-
mary+PureBad, we use LLaMA-3.2-1B with a learning rate
of 3e-5 and Gemma-7B-it with Se-4. For the planner dataset,
DeepSeek-R1 is fine-tuned with a learning rate of Se-5.
All training and pruning experiments are performed on two
NVIDIA RTX A6000 GPUs (48GB each). After fine-tuning,
we compute DDI for each LoRA layer and prune the top
7 = 10 layers with the highest DDI values to improve sta-
bility and safety while retaining generalization performance.

Uhttps://github.com/OATML/semantic-entropy-probes
“https://huggingface.co/

Table 1 and Table 2 summarize the performance of differ-
ent LoRA-based adaptation methods across dialogue sum-
marization settings, with and without adversarial contam-
ination. As expected, standard LoRA achieves the high-
est raw utility but shows clear safety degradation, reflected
by elevated Attack Success Rate (ASR) and Harmfulness
Score (HS). The results confirm the known vulnerabil-
ity of LoRA fine-tuning, where even benign updates can
weaken alignment safeguards. In contrast, the proposed
method consistently lowers both ASR and HS while main-
taining strong utility, indicating that targeted removal of
high-deviation layers effectively stabilizes model adapta-
tion. Figure 1 further supports this trend, where the proposed
approach achieves a larger risk—coverage area than all base-
lines, reflecting higher reliability under uncertainty-aware
evaluation.

Across both LLaMA3 and Gemma backbones, the
method achieves safer behavior without excessive regular-
ization. In the clean Dialogue Summary task, it maintains
a better safety—utility balance compared with SafeLoRA
and SPLoRA, which either constrain updates too aggres-
sively or fail to generalize across model architectures. When
mixed with PureBad data, the approach produces the most
pronounced safety improvement, reducing harmful genera-
tions while preserving competitive ROUGE and METEOR
scores. The results suggest that the layer-wise directional de-
viation measure can effectively detect misaligned updates
caused by noisy or adversarial data.

On the Planner Instruction Tuning 2K dataset (Table 3),
similar patterns emerge. The method achieves the low-
est ASR and HS while maintaining or slightly improving
task success metrics (SR and F1). The consistent gains
in AUARC indicate that pruning unstable layers produces
more reliable decision boundaries during multi-step plan-
ning. As shown in Figure 1, the DeepSeek variant maintains
a stable risk—coverage curve even under extended reason-
ing chains, underscoring the method’s robustness in long-
horizon decision-making. Compared with SafeLoRA, the
approach avoids the drop in utility often associated with
strong projection constraints, while outperforming SPLoRA
in both safety and cross-task consistency. The planner re-
sults further demonstrate that deviation-based pruning helps



Table 4: Impact of layer pruning threshold of DDI. Utility and safety metrics on the Dialogue Summary dataset using the
LLaMA3-1B-Instruct model, evaluated under different pruning thresholds based on the number of pruned layers.

Model | Pruned | Threshold |

Utility Metrics (1)

| Safety Metrics (1)

| Layers | Value | ROUGE METEOR AUARC | ASR  HS

Slayers | 047 3103 4114 8117 | 735 234

LLaMA-3 | 10layers | 045 3154 4267 8212 | 671 171
IB-Instruct | 15 layers 0.43 31.12 42.07 80.32 1.41 2.58
20 layers | 0.41 3006 4039 7925 | 1.54 297

Table 5: Comparison of inference time and trainable param-
eters before and after pruning on the Dialogue Summary
dataset. "Per Sample” indicates the inference time per in-
stance, and "% Param” denotes the percentage of trainable
parameters.

Model Method Per Sample (s) % Param
BS 1.56 100
LLaMA3 b hed 121 112
Gemma2 BS 0.74 100
Pruned 0.65 1.24

eliminate unstable adaptation patterns that might otherwise
propagate through reasoning steps and lead to unsafe or in-
consistent outputs.

Overall, the findings indicate that the proposed approach
provides a practical and balanced solution for improving
both safety and utility in LoRA-based adaptation. Its post-
hoc, training-free design makes it well-suited for deployable
large language models in safety-critical applications.

Ablation Study

To evaluate the sensitivity and efficiency of the proposed
pruning strategy, we examine how different layer thresholds
affect performance and how pruning impacts inference effi-
ciency and parameter count.

Table 4 analyzes the effect of the pruning threshold on
model performance. As the number of pruned layers in-
creases, safety metrics (ASR and HS) improve due to the re-
moval of high-deviation components, while excessive prun-
ing leads to a gradual decline in utility scores such as
ROUGE and METEOR. The model achieves the best bal-
ance at ten pruned layers, corresponding to a threshold
of 0.45, which preserves strong generation quality while
substantially reducing harmful responses. This trend indi-
cates that moderate pruning captures unstable adaptation di-
rections without over-trimming essential layers, achieving
safety gains without sacrificing generalization.

Table 5 reports inference efficiency and parameter reduc-
tion before and after pruning. The results show that prun-
ing decreases both per-sample latency and the proportion
of trainable parameters across models, with an average re-
duction of approximately 17%. Despite these reductions,
the pruned models maintain comparable utility, suggest-

ing that removing redundant or misaligned components im-
proves both safety and deployability. Overall, these findings
confirm that the proposed pruning strategy enhances safety
alignment while providing tangible computational benefits
for real-world deployment.

Discussion and Conclusion

We proposed a post-hoc framework that enhances the safety
and deployability of LoRA-based LLM adaptation through
the Directional Deviation Index (DDI). By identifying and
pruning layers with high deviation from the pretrained
geometry, our method improves safety alignment without
compromising task performance. As results shown in Ta-
bles 1, 2, 3 and Figure 1, and extensive ablation studies
of 4, 5, the method consistently improves safety metrics, re-
duces harmful responses, and lowers inference cost across
dialogue and planning tasks.

The approach is model-agnostic and data-free, requiring
no paired checkpoints or external supervision, making it
efficient for real-world deployment. However, the pruning
threshold currently relies on empirical tuning, and behav-
ioral alignment is inferred indirectly from parameter space.
Future work will integrate adaptive thresholding and behav-
ioral feedback to strengthen this link.

Overall, the study provides a simple and effective mech-
anism for safer parameter-efficient adaptation, bridging the
gap between model reliability and deployable Al systems.
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