
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GUARANTEED GENERATION FROM
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) are increasingly used across various applica-
tions, there is a growing need to control text generation to satisfy specific con-
straints or requirements. This raises a crucial question: Is it possible to guarantee
strict constraint satisfaction in generated outputs while preserving the distribu-
tion of the original model as much as possible? We first define the ideal dis-
tribution — the one closest to the original model, which also always satisfies
the expressed constraint — as the ultimate goal of guaranteed generation. We
then state a fundamental limitation, namely that it is impossible to reach that goal
through autoregressive training alone. This motivates the necessity of combining
training-time and inference-time methods to enforce such guarantees. Based on
this insight, we propose GUARD, a simple yet effective approach that combines an
autoregressive proposal distribution with rejection sampling. Through GUARD’s
theoretical properties, we show how controlling the KL divergence between a spe-
cific proposal and the target ideal distribution simultaneously optimizes inference
speed and distributional closeness. To validate these theoretical concepts, we con-
duct extensive experiments on two text generation settings with hard-to-satisfy
constraints: a lexical constraint scenario and a sentiment reversal scenario. These
experiments show that GUARD achieves perfect constraint satisfaction while al-
most preserving the ideal distribution with highly improved inference efficiency.
GUARD provides a principled approach to enforcing strict guarantees for LLMs
without compromising their generative capabilities.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in generating human-
like texts across a wide range of applications (OpenAI, 2023; Jiang et al., 2023; Yoo et al., 2024).
Due to their usefulness, LLMs are being increasingly integrated into various downstream services
and critical decision-making processes (Zelch et al., 2023; Arora & Arora, 2023; Kung et al., 2023).
However, this widespread adoption raises concerns about both the reliability and the safety of LLM
outputs, especially in high-stake scenarios where unintended behaviors could have significant con-
sequences (Casper et al., 2023). Hence, it is crucial to address two key questions: (1) How can
we guarantee that all generated sequences from these powerful models meet specific constraints or
requirements? and (2) How can we achieve this while preserving the original model’s useful dis-
tribution as much as possible? These two primary questions naturally lead to a third, practically
important, question: (3) How can we simultaneously obtain the two previous properties at a limited
inference cost?

Similar issues have been studied in the context of controlled text generation (Zhang et al., 2024a),
where LLMs are conditioned on specific attributes to increase the likelihood of producing desired
outputs. However, the associated methods do not provide the means to ensure that all generated out-
puts strictly meet the desired constraints — a problem we refer to as guaranteed generation. This
is the gap we seek to address here. Our primary objective is then to study, in-depth, the character-
istics of guaranteed generation within theoretically tractable scenarios. We attempt to clarify, both
theoretically and experimentally, fundamental questions related to this critical topic, including how
strict constraint enforcement affects the original properties of LLMs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(1) Rejection sampling (2) Autoregressive training

Training

Inference

(3) GUARD

 cannot be reached

distance to target inference cost

Figure 1: GUARD overview. Rejection sampling (1) can directly emulate g from a, but it may incur a large
inference cost when constraint b is hard to satisfy. In the case of autoregressive training (2), it is in general
impossible for such a model to reach g (see Theorem 1). GUARD (3), on the other hand, first learns an approx-
imation a′ of g and then performs a simple form of rejection sampling using a′ as the proposal. This approach
yields a distribution g′ which (i) strictly satisfies constraint b, (ii) minimizes inference cost, and (iii) is highly
similar to g. Properties (ii) and (iii) are simultaneously enforced by minimizing KL(g||a′) as illustrated in the
rightmost diagram (see Theorem 2).

First, we formalize the concept of guaranteed generation over a base LLM by introducing the notion
of a gold distribution, g, i.e., the ideal distribution we target. It is represented by a filtered energy-
based model (EBM) (LeCun et al., 2006) that always satisfies the specified constraint b — e.g.,
a binary filter function — while minimally diverging from the original distribution a associated
with the base LLM. Although we can compute the probability g(y) for any arbitrary text y, this
does not imply the existence of an autoregressive model a′ with the same distribution as g. We
present an impossibility theorem (Theorem 1), demonstrating that in fact an exact match of this
ideal distribution g through an autoregressive model is generally impossible.

Still, as we will see, it is possible to train an autoregressive model to approximate g. However,
finding such an approximation that strictly satisfies b is far from obvious in both theory and practice.
This insight motivates the use of inference-time methods such as Monte-Carlo sampling techniques.
These methods exploit such approximations as proposal models and can strictly guarantee b, but
they typically come with high inference costs that make their adoption impractical.

In order to address these issues, we propose GUARD, 1 a simple framework for guaranteed generation
that combines approximation of the ideal distribution g into a proposal distribution a′ with rejection
sampling from the latter proposal. We establish a theorem (Theorem 2) about the relationship among
the proposal a′, the GUARD output g′, and the ideal distribution g through information geometry,
by using the Pythagorean theorem for Information Projections (I-projections) (Csiszár & Shields,
2004). As shown in Figure 1, this theorem states how it is possible to optimize both inference
speed at sampling time (by improving the acceptance rate) and distributional closeness while strictly
satisfying guarantees, by optimizing the approximation of the proposal a′ towards g. We present
several approaches for this approximation, stressing in particular the application to our situation of
the Distributional Policy Gradient (DPG) technique (Parshakova et al., 2019; Khalifa et al., 2021;
Korbak et al., 2022a;b; Go et al., 2023) for training a parametric model to approximate an arbitrary
unnormalized target distribution represented by an EBM.

To validate these theoretical concepts, we conduct experiments in scenarios where the base LLM a
rarely satisfies the constraint b. We evaluate how closely our GUARD-based g′ approximates the gold
distribution g while maintaining a high acceptance rate in two scenarios with extensive analysis: a
scenario with lexical constraints requiring specific strings to be included, and a sentiment reversal
scenario with a positive ending constraint for stories with a negative opening. We demonstrate the
effectiveness of GUARD in these scenarios and highlight the benefits of a novel warm-start variant
of DPG, which involves initializing the training of a′ using constraint-aware prompting to bypass
inefficient early stages of the proposal. Furthermore, we analyze how the original properties of the
base model are degraded when the proposal diverges from the ideal distribution, thus connecting our
theoretical results with empirical findings.

In summary, the main contributions of the paper are:

1. The definition of the distribution g as the ideal target for guaranteed generation; the proof
that g is, in general, unattainable by autoregressive models, and therefore by fine-tuning
alone; the need to complement training-time methods with inference-time methods.

1The implementation of our framework, along with the code to replicate our experiments, will be made
available with the final version of the paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2. The proposal of the GUARD framework, combining a method for approximating g by an
autoregressive model a′ with a rejection sampler for enforcing the constraint; a proof that
KL(g||a′) controls both the efficiency of this sampler and its divergence relative to g.

3. Experiments with lexical and positive ending constraints, demonstrating that using GUARD
leads to significantly improving the acceptance rate over rejection sampling from the base
LLM a, while providing an excellent approximation to g; an analysis of the DPG and
prompting approximation techniques, and the apparent limitations of prompting with re-
spect to the diversity of g in contrast to DPG; the warm-start combination of both tech-
niques to speed up the approximation process.

2 FORMALIZATION OF GUARANTEED GENERATION

2.1 DEFINITION OF THE GOLD MODEL

Suppose that we have an autoregressive language model a with vocabulary V , and let a(y) be the
probability of the output sequence y ∈ Y = V ∗.2 Our goal is to transform a into a model p such
that whenever p generates y, then y satisfies the hard constraint b, where b is a binary function over
Y . Formally, this means that p(y) > 0 ⇒ b(y) = 1 for any y ∈ Y . In other words, we want p to
filter out outputs that do not respect the constraint b.

Clearly, the above filtering requirement can be satisfied by many models; in particular, it would be
trivially satisfied by any model generating only a single sequence y fulfilling the constraint. So,
additionally, we desire the target model p to minimally distort the distribution associated with a.
This criterion naturally leads to the following model g, which we will refer to as the gold filtered
model, or simply gold model:

g(y) ∝ a(y) b(y), (1)

where g(y) is the normalized distribution proportional to the value a(y) b(y), in other words g(y) =
1
Z a(y) b(y), with Z =

∑
y∈Y a(y) b(y).

It is easy to see that g is simply the distribution a renormalized over the set of y’s that satisfy the
constraint b(y) = 1. We can characterize g equivalently as follows (see App. B.1 for details):

• g is the distribution a conditioned by the fact that y satisfies b, i.e., g(y) = a(y | [b(y) = 1]).
• g is the I-projection (Csiszár & Shields, 2004) of a on the linear space C of distributions p that

respect the constraint everywhere, that is, such that ∀y ∈ Y, p(y) > 0 ⇒ b(y) = 1 (in Figure 1,
C was informally denoted by “b = 1”). In other words, g is the distribution p in C that minimizes
the divergence KL(p||a).

2.2 FROM GOLD MODEL TO SAMPLER

While g is a well-defined distribution, it is not immediately associated with a sampler, that is, to a
procedure for generating samples following the distribution g. In particular, g is not defined in an
autoregressive form (which would directly result in a sampler), but in the form of an Energy-Based
Model (LeCun et al., 2006), as the distribution corresponding to the normalization of the product
a(y) b(y).3

In order to associate a sampler to g, several approaches are possible. The first one consists of trying
to find an autoregressive model (ARM) whose distribution is identical to g. Unfortunately, this is
impossible in general, as we show below. Alternatively, an ARM a′ could be considered in order
to provide a “good enough” approximation to g, but it is far from obvious how to ensure that such

2An autoregressive model such as a can be seen both as a generator of sequences y ∈ Y (that is, as a
sampler) and as a probability distribution over Y , where a(y) is the probability of y. We sometimes use the
notation a both for the generator and for the distribution, when there is no risk of confusion. Note that many
distributions, such as g below, do not have this double nature: g is not directly associated with a sampler.

3Formally, an EBM is any distribution p presented in the form p(y) ∝ e−E(y), where E(y) is the “energy”
of y. In other words, p(y) = 1

Z
e−E(y) where Z is a normalization constant. Equivalently, p can be presented

in the form p(y) ∝ P (y) where P is a nonnegative function of y (also called a “potential”). In our specific
case, this potential is equal to a(y) b(y).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

a sampler will both satisfy the constraint b and remain close to the gold model. A third approach
is to use the ARM a′ as a “proposal” inside some Monte-Carlo (MC) inference-time procedure.
The framework that we propose, GUARD, is of this kind. It strictly guarantees the constraint and
attempts to remain close to the gold model, while minimizing inference costs.

2.3 LIMITS OF AUTOREGRESSIVE MODELS FOR FILTERING PURPOSES

Let’s consider the following simple formal example, to build some intuition. Let a be a standard
ARM and suppose that our constraint b(y) is satisfied if and only if the sequence y does not contain
the token “bad”. Is it possible to find an ARM a′ such that the distribution associated to a′ is equal
to g? A first attempt could be to sample a large dataset of y’s from a, delete all y’s that do contain
the token “bad”, and fine-tune a on the resulting dataset to obtain a′. However, while a′ would tend,
to some extent, to avoid “bad” more often than a, it would not strictly guarantee this avoidance:
standard fine-tuning methods never result in a softmax that is exactly zero on any token, including
the token “bad”, implying that the generation of an invalid output would remain possible.4

However, fine-tuning is not the only way to produce autoregressive models. Another approach would
be as follows: we could, at each timestep t of the generation of y, remove the token “bad” from the
softmax vector p(·|y<t), and renormalize this vector to sum to 1. This would result in an ARM a′,
strictly satisfying the constraint, but would actually cause a′ to have a distribution different from g,
a phenomenon detailed in App. B.2.

So, obtaining an ARM with distribution g is not obvious, even in very simple cases as above, and
we discuss in App. B.2 why this is a widespread problem in practice. As we mention there, we are
only aware of a few special cases where the problem is solvable, but, as we will now discuss, we do
have a clear negative result: the problem has no general solution.

A fundamental impossibility result We define a function from V ∗ to Rd as polynomial-time
computable (PTC) if and only if it can be computed in polynomial time relative to the length of its
argument. A binary predicate is said to be PTC if it is a PTC function of its argument. An ARM a is
considered PTC if and only if the computation of the softmax vector at each step t is a PTC function
of the prefix up to that step.

The following result was inspired by the pioneering work of Lin et al. (2020b) on the general limita-
tions of ARMs. See App. B.3 for a detailed statement and self-contained proof, adapted to the case
of filtered models.
Theorem 1. Under the assumption P ̸= NP , there exists a PTC ARM a and a PTC binary predicate
b such that no PTC ARM a′ has the same distribution as g.

Proof intuition. We construct an a that generates sequences encoding an instance of an NP-hard
problem followed by a candidate solution to that problem, and a b that checks (in polynomial time)
the validity of the proposed solution. Then g is a distribution whose support consists of all the
sequences encoding a problem instance and a valid solution. If a′ were an ARM that corresponded
to g, then it would be possible to check in polynomial time whether a given problem instance carried
a non-zero probability mass, and therefore to decide the satisfiability of the problem instance, in
contradiction to the generally accepted conjecture P ̸= NP .

Interpretation: In practice, the PTC condition is satisfied by all standard ARM architectures, from
Recurrent Neural Networks to Transformers of different flavors. Then, in essence, the theorem
implies that it is in general impossible to fit g with an ARM under such architectures.

2.4 CLAIM: INFERENCE-TIME METHODS ARE NEEDED

While it can be difficult or even impossible to exactly fit g with an ARM a′, it is still possible to
approximate it with such a model and this can be done with various approaches such as (i) training
a′ through Supervised Fine-Tuning (SFT) or DPG (Parshakova et al., 2019), or else (ii) through

4It should be noted more generally that because fine-tuning a model a into a′ never puts a zero probability
mass on any token, any sequence y such that a(y) > 0 is still such that a′(y) > 0, that is, fine-tuning can
never fully eliminate any sequence. This implies that all techniques relying solely on fine-tuning — e.g., PPO
(Schulman et al., 2017) or DPO (Rafailov et al., 2023) — are limited in their ability to enforce strict constraints.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

prompting a with an instruction or few-shot examples attempting to express the constraint b in nat-
ural language. While the resulting model a′ has the advantage that it can be used efficiently for
generation, it typically does not strictly enforce b, our primary requirement, and we are not aware of
general techniques that would allow an ARM a′ to strictly enforce b while simultaneously limiting
the distortion of a′ relative to g.

Claim: To achieve this objective, we posit that one has to rely on some inference-time Monte-Carlo
(MC) algorithm that exploits the ARM approximation a′ as a proposal sampler but only retains
samples satisfying the constraint b.

Such MC samplers can take different forms, from simple approaches such as Rejection Sampling to
more involved MCMC techniques such as Metropolis-Hastings (Metropolis et al., 1953). The sam-
pler used in GUARD, that we present now, is a basic form of rejection sampling, but with attractive
properties compared to other approaches.

3 THE GUARD FRAMEWORK AND ITS PROPERTIES

Inside the GUARD framework, we assume that a′ is some autoregressive approximation to g. The
GUARD sampler is then an elementary form of rejection sampling which can be described by the
following algorithm: sample y from a′ until b(y) = 1, then return this y (Algorithm 1). We assume
that there exists at least one y ∈ Y s.t. a′(y) > 0 and b(y) = 1. Such a procedure obviously
guarantees that any sample y satisfies the constraint, our fundamental requirement.

We remark that in the special case where a′ = a, we are simply sampling from a until we satisfy the
constraint, and it is then easy to show that the sampler we obtain has exactly the same distribution
as g (see App. B.4). In this case, the GUARD sampler meets two criteria: (1) it strictly satisfies
the constraint, and (2) its associated distribution is close to g — in fact, it is equal to g. However,
the third important criterion, efficiency, falls short when a rarely satisfies the constraint b, which is
equivalent to KL(g||a) being large (see Eq. 9 in App. B.5).

By approximating g with some a′ that has a small KL(g||a′) relatively to KL(g||a) — in other
words, a′ is a better approximation to g than a — we can greatly improve the efficiency of GUARD,
by sacrificing exact distributional match to g. Our core Theorem 2 below (see also the rightmost
panel of Figure 1) characterizes this trade-off formally. Here, for a given a′, g′ = g′a′ denotes both
the sampler resulting from Algorithm 1 and the associated distribution. ARa′

.
= Ey∼a′b(y) denotes

the acceptance rate of the algorithm, that is, the probability that a sample from a′ respects constraint
b and thus is accepted (see App. B.5).

Theorem 2. We have KL(g||a′) = KL(g||g′) + KL(g′||a′) = KL(g||g′)− logARa′ .

Proof sketch (see App. B.6 for details). The first equality results from the fact that g′ is the I-
projection of a′ on C and from the Pythagorean identity for I-projections (Csiszár & Shields, 2004).
The second identity is obtained from a simple derivation showing that KL(g′||a′) = − logZ ′ =
− logARa′ , where Z ′ is the partition function Z ′ .

=
∑

y∈Y a′(y) b(y).

Interpretation: KL(g||a′) is a measure of the divergence of a′ from g. As we saw earlier, it is
typically impossible to narrow it to 0, but we can reduce it by approximation techniques. KL(g||g′)
measures the divergence of the sampler g′ from the gold distribution g, and − logARa′ ∈ [0,∞)
measures the “inefficiency” of the sampler, where − logARa′ = 0 corresponds to a maximum
acceptance rate of 1. Because KL divergences are non-negative, KL(g||a′) is an upper bound of
both KL(g||g′) and − logZ ′, which means that controlling the approximation quality of a′ relative
to g is the key to both controlling the quality of g′ relative to g and also the efficiency of Algorithm 1.

Approximating the target distribution This last observation motivates the need to minimize
KL(g||a′) to obtain a suitable a′. We consider several methods to achieve this. (1) Prompting
can be used to encourage the output to respect the given constraint — a technique we refer to as
constraint-aware prompting (CAP). (2) Another approach consists in using Supervised Fine-Tuning
(SFT). This involves sampling a large number of y’s from a, filtering them based on b to create a
dataset representing the g distribution, and then fine-tuning a on this dataset. However, when ARa

is low, very few samples are retained, making this approach inefficient and difficult to use in prac-
tice, although it may still be useful for scientific analysis and comparisons. (3) The last method

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we consider is the Distributional Policy Gradient (DPG) technique for general EBMs (Parshakova
et al., 2019; Korbak et al., 2022b; Go et al., 2023) here applied to the specific case of filtered models.
This method samples y from a proposal a′ initialized with a and updates a′ by performing gradient
descent on KL(g||a′). It is important to mention that while both DPG and SFT seek to minimize
KL(g||a′) (see App. B.7 for more details), one key difference between them is that DPG is adaptive:
as the proposal a′ approaches g, the frequency and quality of gradient updates increase, making it
more efficient than SFT (Khalifa et al., 2021). While the original DPG technique shares SFT’s initial
low ARa during early training, we can improve this behavior by using constraint-aware prompting
for the initial proposal — a method we refer to as “warm-start DPG” — to accept a rich amount of
samples, thereby providing abundant gradient signals. Based on our experiments, this combination
appears to be the most effective for guaranteed generation, and it is the one that we advocate. The
full algorithm for warm-start DPG training in GUARD is provided in App. C as Algorithm 2.

GUARD vs. MCMC and related sampling techniques Simple rejection sampling as in Algo-
rithm 1 might at first sight seem naive relative to some more sophisticated techniques, such as
Markov Chain Monte Carlo (MCMC) approaches. One such technique, Independent Metropolis-
Hastings (IMH) (Robert & Casella, 2004), can use an autoregressive model as its proposal, and
construct a random walk that converges to g in the limit, while still guaranteeing a strict respect of
the constraint. On inspection, however, each individual move of this random walk implies — and
therefore is at least as costly as — a full run of Algorithm 1. We report in App. G experiments show-
ing that IMH converges very slowly, making it an impractical approach, and motivating our choice
of Algorithm 1 combined with a focus on finding a good approximator a′ to g. We also present in
App. G some experiments based on Quasi-Rejection Sampling (QRS) (Eikema et al., 2022) — a
technique also converging to g in the limit — which, while still being more costly than Algorithm
1, is shown to present certain advantages over IMH.

4 EXPERIMENTS

In this section, we describe the experiments conducted to evaluate the GUARD framework on simple
guaranteed generation scenarios. As discussed in the previous section, we compare three approxi-
mation methods within GUARD: CAP, SFT, and DPG.5 We have three main desiderata on GUARD’s
outputs: (1) strict adherence to constraint b, (2) similarity to the gold distribution g, and (3) limited
inference cost.6 Since g′ is filtered by rejection sampling in GUARD and thus satisfies the first cri-
terion by definition, our main metrics in the experiments are the distributional closeness KL(g||g′)
and the inference cost defined by the acceptance rate ARa′ . Additional details about our metrics are
provided in App. D.7

We are considering two scenarios, text generation under a lexical constraint (Section 4.1) and story
generation under a positive ending constraint for sentiment reversal (Section 4.2), where samples
from the base LLM a rarely respect the constraint b (i.e., KL(g||a) = − logARa is high).8

4.1 UNCONDITIONAL GENERATION WITH LEXICAL CONSTRAINTS

Task description Our first task is to generate a text under a lexical constraint, i.e., such that a
specific keyword is included in the generation. The LLM generates a text y of 30 tokens, starting
with the ⟨bos⟩ token. The lexical constraint b(y) then either rejects or accepts this generated text
based on whether it contains the string of the keyword. We use Gemma-2B (Riviere et al., 2024) as

5Training and evaluation were done using the disco toolkit: https://github.com/naver/disco.
6In terms of computation costs, reducing the inference cost related to the acceptance rate ARa′ is our main

focus, because this is the one involved in deployment. However, we also consider the training cost, in terms of
the sampling budget required for training the approximation a′, which is independent of the inference cost.

7Note that in this work our evaluation focus is in terms of the closeness of g′ to the target gold model g
rather than in terms of the performance of g′ on downstream tasks like the ones proposed in benchmarks such
as CommonGen (Lin et al., 2020a) — tasks that we see as directly influencing the design of the constraint b,
and therefore the gold model g, which is then approximated with g′.

8If the acceptance rate of the base LLM a is high enough, we can simply perform rejection sampling on
proposal a without any training. However, when violations of constraint b are frequent, alternative methods are
needed. This is the setting we explore in our experiments.

6

https://github.com/naver/disco

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

−2 0 2 4 6

1

2

3

4

5

6

7

8

9

Gold g DPG-based g' CAP-based g'
0.0 0.2 0.4 0.6 0.8 1.0

Gold g
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

DPG-based g′
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0
CAP-based g′

0

1

2

3

4

5
Relative position of 'amazing' in the text.

Figure 2: Left: UMAP visualization of the samples generated by different approaches in the lexical constraint
scenario. Right: distribution of the relative position for the string “amazing” within the full sequences generated
by each method. (Best viewed in color.)

our base LLM a. We define the constraint b as the binary function that is equal to 1 if and only if
the generated text y contains the string “amazing”, following the experimental setup from Khalifa
et al. (2021). This constraint has an acceptance rate ARa of approximately 0.0023 (i.e., on average,
one sample is accepted every 435 samples drawn) under the original distribution a with ancestral
sampling and a temperature of 1.

10K 100K 200K 400K 800K
sampling budget

0

1

2

3

4

5

6

KL
(g

||a
')

Ideal sampler g
SFT
DPG initialized with a()
DPG initialized with a(|CAP)

Figure 3: Evolution of KL(g||a′) as a
function of the number of samples used
for training with lexical constraints.

Empirical results Figure 3 illustrates the learning curves
of KL(g||a′) for various methods according to the sampling
budget, i.e., the number of samples drawn from the proposal
during training. SFT, which involves sampling y from g,
struggles due to the low ARa, resulting in a limited supply of
training data, relatively to the budget. Moreover, as training
progresses, the increasing discrepancy between the policy a′

and the sampler a (due to the off-policy nature of SFT) causes
it to reach a plateau and stop improving after a certain point.
In contrast, DPG shows steady and stable improvement, ulti-
mately achieving a better KL(g||a′) than SFT. We explain this
superior performance through two key factors: (1) adaptive
proposal — the proposal distribution a′ in DPG adaptively
becomes closer to the target distribution g over time; and (2)
increasing ARa′ — as the proposal a′ becomes better, the
acceptance rate ARa′ increases, providing more samples and thus a richer signal for estimating gra-
dients. Additionally, warm-start DPG, i.e., initializing DPG with a(·|CAP) to leverage a constraint-
aware prompt, encourages the model to generate “amazing”, improves the initial acceptance rate,
and allows us to avoid the slow early exploration stage where training samples are scarce. This
results in consistently better performance throughout the whole training process.

0 2 4 6 8 10 12
KL(g||g')

0
1
2
3
4
5
6

KL
(g

'||
a'

) =
 -l

og
(A

R)

g

 a

...

KL(g||a')=2

KL(g||a')=3

KL(g||a')=4

...

CAP
DPG initialized with a(|CAP)
DPG initialized with a()
SFT

Figure 4: Results in terms of KL(g||g′)
(i.e., distributional distance) and
− log(ARa′) (i.e., inference cost) in
the lexical constraint scenario. The dot-
ted line indicates their sum, KL(g||a′),
as stated in Theorem 2.

Figure 4 depicts the results of the trade-off between ARa′

and KL(g||g′) under a fixed sampling budget (800K). The
point labeled as g̃ reflects the upper-bound performance as-
sociated to an ideal (but non-existent) sampler of the gold
model, which would have no distributional difference with g
while achieving an acceptance rate of 1 (i.e., a 435× improve-
ment with respect to a). Both DPG and SFT show signifi-
cantly improved acceptance rates in comparison to a. How-
ever, DPG consistently demonstrates superior distributional
similarity, as measured by KL(g||g′). Interestingly, the CAP
approach enforces a high acceptance rate without any training
procedure, but it results in distributions that greatly diverge
from the target g. Nevertheless, when DPG is initialized with
a(·|CAP), it leverages the high initial ARa′ to enable suffi-
cient sampling. This, in turn, allows for a rapid reduction of
KL(g||g′). As a result, the figure shows that this warm-start DPG strictly Pareto-dominates all SFT
points. This means that for any given point representing an SFT result, warm-start DPG offers a
better acceptance rate and a lower KL divergence simultaneously. In summary, the GUARD algo-
rithm increases the acceptance rate from 0.0023 to 0.416 (almost 180×) compared to the base LLM
a while maintaining minimal distributional distortion.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Analysis This section analyzes the deeper phenomena underlying the KL(g||g′) results shown
above. First, we visualize in Figure 2 the repartition of samples from the gold distribution g, DPG-
based g′, and CAP-based g′ using UMAP (McInnes et al., 2018) after embedding them through
DistilBERT (Sanh et al., 2019). DPG-based g′ and gold distribution g overlap in similar regions,
while the samples from CAP-based g′ cluster in a distinct area. This qualitative observation goes in
line with the quantitative results from Figure 4, which reported a better KL(g||g′) for DPG-based
g′ compared to CAP-based g′. Additionally, the CAP-based samples show reduced diversity (i.e.,
lower coverage). To quantify this loss of diversity, we measured Self-BLEU (Zhu et al., 2018), i.e.,
the n-gram similarity within the same sample group, and the average semantic similarity between
sample embeddings.

Approach Self-BLEU ↓ Semantic
similarity ↓2-gram 3-gram 4-gram 5-gram

Gold g 0.315 0.117 0.057 0.032 0.365
DPG-based g′ 0.342 0.124 0.067 0.040 0.372
CAP-based g′ 0.438 0.260 0.193 0.156 0.488

Table 1: Diversity of the samples gen-
erated by each approach in the lexical
constraint scenario. Lower scores indi-
cate a greater diversity.

As shown in Table 1, samples obtained from g and DPG-
based g′ exhibit similar diversity scores. However, samples
filtered through constraint-aware prompting show a signifi-
cantly narrower range of diversity. This reduced diversity is
also evident in the positional bias analysis in Figure 2, which
studies the relative position of the string “amazing” in the
generated text. Samples from g and DPG-based g′ show a rel-
atively uniform distribution of “amazing” across token posi-
tions, whereas samples prompted to include the string “amaz-
ing” led to a heavy concentration of this word in early positions. Additional experimental details
and analysis with other lexical constraints are provided in App. E, along with examples of generated
samples.

4.2 CONDITIONAL GENERATION WITH A POSITIVE ENDING CONSTRAINT

Task description Next, we consider a more general guaranteed generation scenario with two fac-
tors: (1) conditional generation with prefixes, and (2) threshold-based constraints. The common us-
age of LLMs often involves conditional generation based on prefixes (e.g., when a prompt is used),
and requirements are not always strictly binary by definition, as was the case for lexical constraints.
They could instead be the result of a thresholded real-valued function (e.g., to distinguish between
positive and negative sentiments). To reflect these two aspects, we investigate a story generation task
with a positive ending constraint for sentiment reversal. In this task, given a negative story opening
X , the LLM must generate a story continuation Y and a last sentence Z where the story ending Z
is highly positive (see Tables 8 and 9 for examples).

200K 400K 800K 1,5M
sampling budget

0

1

2

3

4

5

KL
(g

||a
')

Ideal sampler g
SFT
DPG initialized with a()
DPG initialized with a(|CAP)

Figure 5: Evolution of KL(g||a′) as a
function of the number of samples used
for training in sentiment reversal.

First, we prepared a positive sentiment scorer bscore(y) (Hart-
mann, 2022) and defined our binary, threshold-based con-
straint as bτ (y) = 1 if and only if bscore(y) > τ . We then
selected our set of openings X by collecting negative story
openings from the ROCStories test set (Mostafazadeh et al.,
2016), using only the first two sentences of stories for X and
imposing that bscore(X) < 0.05. To incorporate the domain
knowledge of ROCStories, we use GPT-2 (Radford et al.,
2019) fine-tuned on the ROCStories training set as our base
LLM a. In this task, given a negative opening X , a comple-
tion y = [Y ;Z] is accepted if its final sentence Z satisfies
bscore(Z) > 0.98. The acceptance rate for the base LLM a
is ARa = 0.005 (i.e., on average, one sample is accepted ev-
ery 200 samples drawn). In other words, rejection sampling from a approximately incurs a 200×
reduction in the acceptance rate compared to the ideal sampler g̃.

Empirical results The sentiment reversal experiment shows similar results as the lexical con-
straint experiment. As illustrated in Figure 5, SFT reaches a plateau and stops improving after
a certain point. In contrast, DPG continues to improve steadily as its proposal model adaptively
approaches the gold model g, ultimately outperforming SFT for a 1.5M sampling budget. Nonethe-
less, using a as the initial proposal in DPG results in inefficient learning due to rare gradient signals
stemming from a’s very low acceptance rate. However, we observe that initializing DPG with the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10

−1

0

1

2

3

4

5

6

Gold g DPG-based g' CAP-based g'
prefix 3 rd 4 th 5 th 6 th last

Sentence Position i th
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Po
sit

iv
en

es
s S

co
re

 o
f E

ac
h

Po
sit

io
n

Sentiment level of each sentence
Gold g
DPG-based g'
CAP-based g'

Figure 6: Left: UMAP visualization of the samples generated by
different approaches in the sentiment reversal scenario. Right:
average positivity scores for each sentence position in the com-
pletions generated by each method. (Best viewed in color.)

Approach Self-BLEU ↓ Semantic
similarity ↓2-gram 3-gram 4-gram 5-gram

Gold g 0.744 0.569 0.458 0.337 0.876
DPG-based g′ 0.753 0.578 0.469 0.344 0.868
CAP-based g′ 0.827 0.701 0.621 0.554 0.956

Table 2: Diversity of the samples gener-
ated by each approach in the sentiment
reversal scenario. Lower scores indicate
a greater diversity.

proposal a(·|CAP) results in the best training efficiency. This technique bypasses the inefficient
early exploration phase by leveraging a large amount of accepting samples thanks to prompting.

0 2 4 6 8
KL(g||g')

0

1

2

3

4

5

KL
(g

'||
a'

) =
 -l

og
(A

R)

g

 a

KL(g||a')=3

KL(g||a')=4

... CAP
DPG initialized with a(|CAP)
DPG initialized with a()
SFT

Figure 7: Results in terms of KL(g||g′)
(i.e., distributional distance) and
− log(ARa′) (i.e., inference cost) in
the sentiment reversal scenario.

As shown in Figure 7, constraint-aware prompting improves
the acceptance rate without any training, but results in a dis-
tribution that greatly diverges from g. Due to GPT-2 being a
smaller model than Gemma-2B, the AR improvement from
prompting is relatively less pronounced than in the lexical
constraint experiment. In contrast, SFT and DPG, which op-
timize KL(g||a′), demonstrate an increase in AR while si-
multaneously showing less divergence from the target distri-
bution. DPG, in particular, exhibits a distribution closer to
the gold model g. In summary, the GUARD algorithm yields
an AR improvement from 0.005 to 0.306 (almost 60×) com-
pared to a while preserving a high proximity to g.

Analysis As with the lexical contraint experiments, we plot
in Figure 6 a UMAP visualization of the DistilBERT-embedded samples obtained from g, DPG-
based g′, and CAP-based g′. Similarly to these experiments, the samples from g and DPG-based g′

overlap in the same regions, while the samples from the CAP-based g′ result in a more restricted
coverage. This visualization confirms that while prompting can increase AR without sampling, it
also leads to a reduction in distributional diversity. To quantitatively measure this phenomenon, we
again calculated Self-BLEU scores and the average similarity between embeddings.

The results reported in Table 2 indicate that when conditioning on a specific prefix, the diversity is
relatively lower compared to unconditional generation (as seen in Table 1). Nonetheless, samples
from DPG-based g′ and g exhibit similar diversity levels. Instead, samples obtained through CAP
resulted in higher similarity, i.e., lower diversity. Figure 6 demonstrates that a positional bias is also
observed in the case of a sentiment constraint. Compared to g and DPG-based g′, when prompting to
include a positive ending, the story continuation shows a more abrupt early shift towards positivity.
This further confirms the existence of a positional bias in the constraint-aware prompting behavior —
similarly to the lexical constraint scenario — and illustrates how this bias leads to distributional
distortion. We provide additional details and results for this setting in App. F , including examples
of generated samples.

5 RELATED WORK

LLM alignment LLM alignment techniques are widely regarded as the de facto method for inte-
grating external desirable properties (e.g., helpfulness or harmlessness) into base language models.
These techniques require access to a preference dataset, which consists of prompts, each associated
with several completions, one of which is labeled as preferable based on criteria like human judg-
ment. Popular approaches in this family include RLHF (Ouyang et al., 2022), which trains a reward
model from the preference dataset and fine-tunes the LLM through PPO (Schulman et al., 2017), and
DPO (Rafailov et al., 2023), which combines these steps to directly fine-tune the model on the pref-
erence dataset. While these methods enable models to generate outputs that are better aligned with
the implicit properties and values expressed in the preference dataset, such as harmlessness, there
remains a gap between alignment and the goal of ensuring that all outputs are harmless. Alignment

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

does not provide a straightforward means to enforce explicit constraints, as required in our guaran-
teed generation task. Consequently, despite their effectiveness, these alignment techniques, when
used in a stand-alone manner (i.e., without additional inference-time processing), do not guarantee
the satisfaction of a specific property or constraint in all generated outputs.

Controlled text generation More closely related to our goal of guaranteed generation is the line
of work on controlled text generation, which explicitly defines conditions or constraints (e.g., in
the form of predicates) that outputs should satisfy. This topic gathers a large body of literature,
and we thus let the reader refer to Zhang et al. (2024a) for a more comprehensive survey. Existing
approaches include prompting to integrate the constraint (Zhang & Song, 2022; Yang et al., 2023),
training techniques related to reinforcement learning (Khalifa et al., 2021; Korbak et al., 2022b; Go
et al., 2023; Lu et al., 2022a) or learning local discriminators to encourage constraint satisfaction
(Meng et al., 2022), or else relying on inference-time methods to impose the conditions without
updating the original language model (Dathathri et al., 2019; Krause et al., 2020; Yang & Klein,
2021; Lu et al., 2022b; Liu et al., 2021; Eikema et al., 2022; Mireshghallah et al., 2022; Kim et al.,
2023; Mudgal et al., 2023; Chakraborty et al., 2024).

The previously cited papers do not focus on strictly enforcing constraint satisfaction. However, two
recent works (Zhang et al., 2023; 2024b) address this issue. Similarly to us, they are able to produce
outputs that strictly satisfy the constraint, while maintaining proximity to the original model. They
do so by approximating the LLM with a Hidden Markov Model (HMM), and by exploiting the
dynamic programming properties of HMMs. This approach enables the computation of a weighted
intersection of the HMM with a constraint over lexical items, resulting in a new HMM that always
respects the constraint. Two key differences between their approach and ours are that (i) we handle
arbitrary constraints — not necessarily of a lexical nature — which would be difficult to do through
HMMs or similar finite-state mechanisms, and (ii) our focus is on producing an efficient sampler that
is distributionally close to the gold target distribution g that intrinsically represents the constraint b.
In contrast, their focus is on producing a decoder that performs well on downstream tasks that have
a looser relation to the constraint. We provide more details on these and some other related works
in App. A.

6 CONCLUSION AND DISCUSSION

In this work, we formalize how to guarantee that LLMs perfectly meet specified requirements with-
out compromising their usefulness. We first present a theoretical foundation addressing this chal-
lenge and state that it cannot be resolved using autoregressive models alone. To overcome this
limitation, we introduce the GUARD framework, which approximates the gold distribution during
training and exploits rejection sampling at inference time. To validate it empirically, we conduct
experiments on two scenarios with hard-to-satisfy constraints, and confirm that outputs generated
through GUARD provide guaranteed generation with significantly faster inference, while closely
resembling the gold distribution.

The GUARD framework is potentially applicable to various crucial tasks that require strict compli-
ance with specified requirements without diminishing the model’s utility. For instance, in safety
alignment tasks, GUARD could ensure that the model generates content in accordance with ethical
guidelines and policy constraints, while achieving minimal loss of helpfulness. Similarly, in tack-
ling the issue of jailbreaking — where users attempt to manipulate language models into producing
prohibited or harmful content — GUARD could enforce compliance with safety protocols while
maintaining the quality and informativeness of the responses. By integrating GUARD into these
scenarios, we could effectively prevent the generation of undesirable outputs and enhance the relia-
bility of LLMs. We believe that GUARD has the potential to improve both the safety and efficacy of
language models across a wide range of applications.

Limitations It is important to acknowledge the limitations of the GUARD framework, in partic-
ular when the filtering model b fails to accurately assess the outputs relative to the true underlying
requirements. In such cases, GUARD, while respecting b, could still produce undesirable outputs.
The problem of designing the filter b in such a way that it is able to accurately identify such outputs
is undoubtedly important, but beyond the scope of the present work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anmol Arora and Ananya Arora. The promise of large language models in health care. The Lancet,
401(10377):641, 2023.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming Yin, Dinesh Manocha, Mengdi Wang, Am-
rit Singh Bedi, and Furong Huang. Transfer q star: Principled decoding for llm alignment. arXiv
preprint arXiv:2405.20495, 2024.

Imre Csiszár and Paul C. Shields. Information theory and statistics: A tutorial. Commun. Inf. Theory,
1(4):417–528, December 2004.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosin-
ski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. arXiv preprint arXiv:1912.02164, 2019.

Bryan Eikema, Germán Kruszewski, Christopher R Dance, Hady Elsahar, and Marc Dymetman.
An approximate sampler for energy-based models with divergence diagnostics. Transactions on
Machine Learning Research, 2022.

Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
man. Aligning language models with preferences through f-divergence minimization. arXiv
preprint arXiv:2302.08215, 2023.

Jochen Hartmann. Emotion english distilroberta-base. https://huggingface.co/
j-hartmann/emotion-english-distilroberta-base/, 2022.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. In The Twelfth
International Conference on Learning Representations, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.

Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
text generation. In International Conference on Learning Representations, 2021.

Minbeom Kim, Hwanhee Lee, Kang Min Yoo, Joonsuk Park, Hwaran Lee, and Kyomin Jung. Critic-
guided decoding for controlled text generation. In Findings of the Association for Computational
Linguistics: ACL 2023, pp. 4598–4612, 2023.

Tomasz Korbak, Hady Elsahar, German Kruszewski, and Marc Dymetman. Controlling conditional
language models without catastrophic forgetting. In International Conference on Machine Learn-
ing, pp. 11499–11528. PMLR, 2022a.

Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement learn-
ing and distribution matching for fine-tuning language models with no catastrophic forgetting.
Advances in Neural Information Processing Systems, 35:16203–16220, 2022b.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. Gedi: Generative discriminator guided sequence generation.
arXiv preprint arXiv:2009.06367, 2020.

11

https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/
https://huggingface.co/j-hartmann/emotion-english-distilroberta-base/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Germán Kruszewski, Jos Rozen, and Marc Dymetman. disco: a toolkit for distributional control of
generative models. arXiv preprint arXiv:2303.05431, 2023.

Tiffany H Kung, Morgan Cheatham, Arielle Medenilla, Czarina Sillos, Lorie De Leon, Camille
Elepaño, Maria Madriaga, Rimel Aggabao, Giezel Diaz-Candido, James Maningo, et al. Per-
formance of chatgpt on usmle: Potential for ai-assisted medical education using large language
models. PLoS digital health, 2(2):e0000198, 2023.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei Zhou, Chandra Bhagavatula, Yejin Choi, and
Xiang Ren. CommonGen: A Constrained Text Generation Challenge for Generative Common-
sense Reasoning. arXiv preprint arXiv:1911.03705, 2020a.

Chu-Cheng Lin, Aaron Jaech, Xin Li, Matthew R Gormley, and Jason Eisner. Limitations of autore-
gressive models and their alternatives. arXiv preprint arXiv:2010.11939, 2020b.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
arXiv preprint arXiv:2105.03023, 2021.

Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2004.

Ximing Lu, Sean Welleck, Liwei Jiang, Jack Hessel, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
arXiv preprint arXiv:2205.13636, 2022a.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. Neurologic a*esque decoding: Constrained text
generation with lookahead heuristics. In Proceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 780–799, 2022b.

Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Tao Meng, Sidi Lu, Nanyun Peng, and Kai-Wei Chang. Controllable text generation with neurally-
decomposed oracle. In Advances in Neural Information Processing Systems, volume 35, 2022.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor Berg-Kirkpatrick. Mix and match: Learning-
free controllable text generation using energy language models. arXiv preprint arXiv:2203.13299,
2022.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Lin-
guistics, 23(2):269–311, 1997.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James F. Allen. A corpus and cloze evaluation for deeper under-
standing of commonsense stories. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
839–849, 2016.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Tetiana Parshakova, Jean-Marc Andreoli, and Marc Dymetman. Distributional reinforcement learn-
ing for energy-based sequential models. arXiv preprint arXiv:1912.08517, 2019.

Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge
University Press, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, 2023.

Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer, 2004.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Brandon T. Willard and Rémi Louf. Efficient Guided Generation for Large Language Models. arXiv
preprint arXiv:2307.09702, 2023.

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, 2021.

Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong Yang, Mingfeng Xue, Boxing Chen, and Jun
Xie. Tailor: A soft-prompt-based approach to attribute-based controlled text generation. In Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 410–427, 2023.

Kang Min Yoo, Jaegeun Han, Sookyo In, Heewon Jeon, Jisu Jeong, Jaewook Kang, Hyunwook
Kim, Kyung-Min Kim, Munhyong Kim, Sungju Kim, et al. Hyperclova x technical report. arXiv
preprint arXiv:2404.01954, 2024.

Ines Zelch, Matthias Hagen, and Martin Potthast. Commercialized generative ai: A critical study of
the feasibility and ethics of generating native advertising using large language models in conver-
sational web search. arXiv preprint arXiv:2310.04892, 2023.

Hanqing Zhang and Dawei Song. Discup: Discriminator cooperative unlikelihood prompt-tuning
for controllable text generation. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 3392–3406, 2022.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable
text generation using transformer-based pre-trained language models. ACM Comput. Surv., 56(3):
64:1–64:37, 2024a.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-
toregressive language generation. In International Conference on Machine Learning, pp. 40932–
40945, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck, and Nanyun Peng. Adapt-
able Logical Control for Large Language Models. arXiv preprint arXiv:2406.13892, 2024b.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen:
A benchmarking platform for text generation models. In Proceedings of the 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1097–1100,
2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A COMPLEMENTS ON RELATED WORK

Relation of our work to Zhang et al. (2023; 2024b) Similar to us, the approach from Zhang et al.
(2023) is able to produce outputs that always satisfy the constraint, while maintaining proximity to
the original model. It does so by approximating the LLM with an HMM, which, in contrast to the
LLM, supports a dynamic programming approach to complying with lexical constraints over the
output, and therefore the ability to weigh the long-term consequences of local next-token choices
relative to these constraints. When the HMM approximation to the LLM is good enough (which
depends in particular on the number of states of the HMM), the same HMM can be used at inference
time with different lexical constraints without need of retraining.

While such an approach is relevant for guaranteed generation, we note several fundamental differ-
ences with what we do:

1. We handle arbitrary logical constraints (that is, binary predicates), not necessarily of a
lexical nature, which would be difficult to handle through HMMs or similar finite-state
mechanisms.

2. We give a central status to the “gold” constrained distribution g, which is the distribution
that minimally deviates from the original distribution while still fully satisfying the con-
straint, and we evaluate the quality of our sampler in terms of distributional distance to this
distribution g. Zhang et al. (2023) do not focus on the evaluation of a sampler relative to
a reference distribution, but rather on the evaluation of a decoder in terms of downstream
tasks which have a looser relation with the constraint.

3. We study the trade-off between the quality of the sampler and its efficiency in the context
of a simple rejection sampling mechanism based on an autoregressive approximation a′

of g and show that quality and efficiency are both directly controlled by the divergence
KL(g||a′). This in turns motivates our interest in an approximation technique that focuses
on minimizing this divergence, such as DPG.

The work from Zhang et al. (2023) is extended in a follow-up (Zhang et al., 2024b) which considers
lexical constraints defined through deterministic finite automata. As a side observation, in App. B.2
(Solvable instances of the problem), we have briefly mentioned that in case the base ARM and the
lexical constraint are based on weighted finite state automata, the intersection of these automata
could be constructed and sampled from. We note that such weighted automata are naturally very
much related to HMMs, and might be interesting to study in their own right.

NADO sampler (Meng et al., 2022) The NADO distribution introduced in Meng et al. (2022) is
trained with an objective similar to ours — namely, it tries to approximate a distribution compara-
ble to our gold filtered distribution g. As a training method to obtain an autoregressive distribution
similar to our a′, it has some analogies with (i) SFT, by training on samples from the filtered distri-
bution, and (ii) DPG, by also performing a kind of distributional matching, but with more emphasis
on local (i.e., token-level) decisions. Contrary to DPG, NADO does not directly have the objective
of minimizing the divergence KL(g||a′), which is the determining factor for the success of GUARD
as shown in Theorem 2. Using NADO for a′ would nonetheless be interesting as a follow-up work,
to see whether the value of its divergence is competitive with the cases we have explored, leading to
improved performance for GUARD.

B ADDITIONAL BACKGROUND AND THEORETICAL DETAILS

B.1 CHARACTERIZATION OF g

We have defined the distribution g through the formula g(y) = 1
Z a(y) b(y), with Z =∑

y∈Y a(y) b(y). It is straightforward to see that g is simply the distribution of a renormalized
over the subset Y1

.
= {y ∈ Y : b(y) = 1} and equivalently that g is the distribution of a conditioned

on b(y) = 1, in other words g(y) = a(y | [b(y) = 1]).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A less obvious observation is the fact that g is also the I-projection (Csiszár & Shields, 2004, Section
3) of a on the space C of all distributions over Y that satisfy the constraint b(y) = 1 everywhere.9
Thus, according to the definition of I-projection, g is the distribution p in this space that minimizes
the divergence KL(p||a). In other words, g is, among the distributions that fully satisfy the con-
straint, the one that minimally distorts a, in terms of KL divergence — a fact that further supports
our characterization of g as the ideal guaranteed model associated with a and b.

Let’s provide a self-contained proof of that fact. We have:

KL(g||a) = Ey∼g log
g(y)

a(y)
= Ey∼g log

a(y)b(y)

Z a(y)
= − logZ + Ey∼g log b(y) = − logZ, (2)

KL(p||g) = Ey∼p log
p(y)

g(y)
= Ey∼p log

Z p(y)

a(y)b(y)
= logZ + Ey∼p log

p(y)

a(y)
= logZ + KL(p||a).

(3)

Hence we have KL(p||a) = KL(p||g)+KL(g||a), and because KL divergences are nonnegative, we
see that KL(g||a) ≤ KL(p||a) which proves that g is the unique10 distribution p in C that minimizes
KL(p||a), namely, that g is the I-projection of a on C.

B.2 ON THE LIMITATIONS OF AUTOREGRESSIVE MODELS IN REPRESENTING g

We start the discussion with two simple examples illustrating the difficulty of representing g with an
autoregressive model.

Avoidance example First, we come back to the situation described in the main text where the
constraint b prohibits the token “bad” to appear in y. We saw that fine-tuning could not completely
guarantee this constraint, because it would never put zero mass on the token “bad”. Furthermore,
fine-tuning would be pretty inefficient, even as an approximator, for this “avoidance” situation:
a huge dataset would probably be necessary for significantly reducing the probability of “bad”,
because the fine-tuning process would only see examples not containing “bad”, with no explicit
negative examples. As mentioned in the text, another approach, not involving fine-tuning, would
be, at each timestep t during the generation of y, to remove the token “bad” from the softmax
vector p(·|y<t), and renormalize this vector to sum to 1.11 This would result in an autoregressive
model a′ that always respects the constraint, but whose distribution would differ from g. Intuitively,
this would be because the distribution for g, which corresponds to natural sequences from a not
containing “bad”, would anticipate early on, for the initial tokens of y, the fact that “bad” cannot
appear later, while a′ would ignore any such influence.12

Enforcement example Conversely, rather than trying to avoid a certain token such as “bad”, we
could try to enforce the presence of a token such as “good” somewhere in the sequence y. In other
words, we would have b(y) = 1 iff y contains the token “good”. Here, we could again sample
a large dataset from a, keep only the sequences containing “good”, and fine-tune an ARM a′ on
the resulting dataset. However, while a′ would be better than a at producing sequences containing
“good”, it could still produce other sequences, and therefore would not strictly guarantee the con-
straint (although this fine-tuning would probably be more effective as an approximator than in the
previous example of avoiding “bad”, because at least it could rely on instances explicitly contain-
ing the token). Again, we could try another autoregressive approach: we could, at each step of the
generation of y, check whether we have already produced the token “good”, and if not, continue

9C can also be seen, in the terminology of (Csiszár & Shields, 2004), as the linear variety of distributions
p that satisfy the expectation constraint (also called moment constraint) Ey∼pb(y) = 1, because here b is a
function with values in {0, 1}, and therefore such p’s are identical with p’s that satisfy the constraint on all y’s.

10Uniqueness comes from the fact that any p such that KL(g||a) = KL(p||a) is also such that KL(p||g) =
0 — because of the identity above — and therefore is such that p = g.

11This is a special case of a more general technique based on lexical constraints described by finite-state
automata, see e.g. Willard & Louf (2023).

12The intuition may be clearer with a more situation-specific word such as “malaria”: in order to eliminate
sequences containing this word from a, g has to depreciate the probability of prefixes that naturally lead to that
word — such as “This proliferation of mosquitoes raises the risk of” — while an a′ intervening on the local
generation of “malaria” would not perform such anticipation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the generation of y (i.e., prevent the generation of an ⟨eos⟩ token). This would result in an ARM
a′, which would guarantee strict satisfaction of the constraint, but the distribution of the sequences
produced by a′ would be very different from g. This is because, similarly to the previous case, while
g would anticipate in its distribution over early tokens the necessity to produce “good” at a later
stage, a′ would totally ignore such influence of “good” over the early tokens. We intuitively expect
that a′ would tend to produce longer sequences than g, because there would be little incentive to
produce “good” early on during the generation.13 This was verified through a simple experiment
in App. E (Comparison to a heuristic sampler), which confirmed that such an approach does not
provide a satisfactory approximation to g.

In the two previous examples, of course, we did not provide a proof that modeling g with an autore-
gressive model was impossible, but what we can say is that we are unaware of a technique for doing
so, in both cases, and are skeptical about its existence.

Solvable instances of the problem For these two examples, the situation with standard LLMs
such as a, built over neural networks, contrasts strongly with what would be the case if a were an
n-gram language model. In that case, a would be equivalent to a probabilistic weighted finite-state
automaton (WFSA) (Mohri, 1997), a classical form of autoregressive model, and such constraints
as the presence or absence of a specific token could be realized through intersection between such
automata, resulting in another probabilistic automaton, with the same distribution as g. However,
such intersections, which rely on dynamic programming over the finite set of states of these models,
are unavailable in the domain of neural LMs.14

Thus, to summarize, if a were an n-gram language model, where b was a constraint similar to
those considered in the two examples above, the problem of modeling g through an ARM would be
solvable. Another instance where this problem is solvable — staying this time in the familiar domain
of neural language models — is when a is a standard LLM, and b is the constraint which imposes the
presence of a certain prefix [y1; . . . ; yt] at the beginning of the generated sequence y. It is easy to see
that the generative process that samples yt+1 ∼ a(·|[y1; . . . ; yt]), yt+2 ∼ a(·|[y1; . . . ; yt+1]), and so
on, in the standard way, corresponds to an autoregressive model a′ that has the same distribution as
g. However, again, this is a very special case, and as soon as the constraint does not refer to such an
initial section of y, the problem becomes much more challenging.

No general solution exists To conclude, we see that in practice, even in quite simple cases, it
seems challenging to model g with an ARM. Theorem 1 actually proves that the general problem is
unsolvable, by relying on a more abstract mathematical situation.

B.3 DETAILS ABOUT THEOREM 1

A more precise statement of Theorem 1 is provided below:
Theorem 1’. Under the assumption P ̸= NP , there exists a polynomial-time computable (PTC)
ARM a and a PTC binary predicate b such that no PTC ARM a′ has the same support15 as the gold
model g, and in particular, has the same distribution as g.

In this statement, when we speak of an “autoregressive model”, we mean a model m over sequences
y ∈ V ∗, with V a finite vocabulary of tokens, which generates y in the following way:

1. At each time-step t, given the prefix y<t = [y1; . . . ; yt−1] of already generated tokens, a
function f is applied on the prefix, where f(y<t) ∈ R|V |. In other words, the value of the
function is a vector of real numbers over the vocabulary V .

13Again, the intuition might be clearer if the constraint was about producing a rarer word than “good”,
associated with a specific situation, for instance “trophy”. Sequences from a containing this word, which
would be selected by g, would tend to start differently than generic sequences from a, but a′ would not show
this kind of influence.

14Zhang et al. (2024b) recently proposed a technique with some similarities to what we are describing here,
by performing the intersection of an HMM (a formalism with strong connections with WFSAs) with a finite-
state automaton imposing lexical constraints. In order to apply this technique to a standard neural LLM, the
authors propose to first approximate this LLM with an HMM, before applying the finite-state constraints. See
Section 5 and App. A for more details on that work.

15The support of a distribution p over Y is the set of y’s such that p(y) > 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2. A softmax transformation is applied to the vector f(y<t), yielding a probability distribution
over V .

3. The token yt is sampled from this distribution, and the generation proceeds recursively.

As for the PTC qualification, we say that a function is PTC iff it can be computed in polynomial
time relative to the length of its argument. In particular, the function f is PTC iff it is computable in
polynomial time relative to the length t− 1 of the prefix y<t, and the binary predicate b is PTC iff it
is computable in polynomial time relative to the length of y.

The PTC assumption about f is essential here. It is satisfied by all standard implementations of
autoregressive models, from RNNs to Transformers of different flavors. As for the PTC assumption
about b, without it, the theorem would be devoid of interest.

B.3.1 PROOF SKETCH

Consider any NP-complete problem, for instance 3SAT (Karp, 2010), a problem also con-
sidered by (Lin et al., 2020b). Now consider a textual sequence y of the following form:
problem#assignment, where the first part is some encoding of a 3SAT problem instance over
k boolean variables, and the second part is the encoding of a candidate assignment (i.e. 0 or 1) for
each of the k variables.

Two examples of such sequence encodings would be:16

x1 ∨ ¬x2 ∨ x3 ;¬x1 ∨ ¬x3 # 1 1 0

x1 ∨ ¬x2 ∨ x3 ;¬x1 ∨ ¬x3 # 0 1 0

where the candidate assignment in the first example satisfies the problem instance
(is “valid”), while it does not in the second example (is “invalid”).

As is obvious, it is possible to check the validity of the assignment relative to the problem instance
in polynomial time relative to the length of y. On the other hand, under the standard conjecture
that P ̸= NP , it is impossible, by looking at the problem instance, to check in polynomial time
whether this problem instance is satisfiable. In other words, it is impossible to check whether there
exists an assignment that is valid relative to this problem instance.

Now consider a PTC autoregressive model a that is able to generate, possibly among other se-
quences, all sequences that cover any syntactically well-formed problem#assignment, even
if the assignment is only a possible candidate, but does not actually satisfy the problem in-
stance.17 Whatever the exact nature of a, the key point is that, for any sequence y encoding a
well-formatted problem#assignment, we have a(y) > 0. Crucially, this is true whether or not
the assignment is actually valid relative to the problem.

Given this a, now consider a predicate b(y) that checks two aspects, a syntactic one and a semantic
one:

1. Syntactic check: whether y respects the format problem#assignment, and if not, re-
jects y.

2. Semantic check: assuming that the first check was successful, b now checks that the
assignment satisfies the problem.

Both checks can be done in polynomial time, as could be easily shown by being more precise on
the exact nature of the encoding done, and by constructing small programs that would perform both
checks. We do not go into the details here, that are both lengthy and straightforward.

16Here the token vocabulary would be V = {x, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,∨,¬, ;,#}.
17Such an a could be trivial, for instance it could generate all sequences of finite length over a vocabulary

of tokens relevant for encoding the problem instance and the candidate assignment, even those that do not
respect the proposed format, but it could also easily be much more focused on generating sequences of the
proper syntactic format, for instance by being fine-tuned on such sequences. However, we do not want to
require that a only generates sequences of the proper syntactic format, because, although it is the case that this
requirement can be fulfilled by certain autoregressive models, it requires more sophisticated machinery than
what we actually need for our proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Based on these a and b, g(y) is a distribution that gives positive probability to any y of the form
problem#assignment, where the assignment satisfies the problem, and a zero probability
to any other y. Thus the support of g is the set of problem#assignment y’s that are valid.

Now suppose that there exists some PTC autoregressive model a′ such that the support of a′ is equal
to the support of g. Then y is generated by a′ iff y is of the form problem#assignment, where
assignment satisfies problem. In particular, this means that a′ starts by generating a problem
that is satisfiable, and furthermore, that it can only generate satisfiable problems. Now, this provides
us with a decision procedure to determine whether a given problem is satisfiable or not, namely,
we give the problem as a prefix to a′, and ask a′ whether it gives a zero probability or a positive
probability to this prefix. This can be done by running a′ autoregressively over this prefix.

The time complexity of that decision procedure can be computed as follows. Let us write the pre-
fix pref in the form pref = [x1; . . . ;xpl], with pl denoting the prefix length. Then we have
a′(pref) = a′(x1)·a′(x2|x1)·. . . ·a′(xpl|[x1; . . . ;xpl−1]), where at each step a′(xt|[x1; . . . ;xt−1])
we invoke the autoregressive model to compute the probability of xt given the previous tokens. This
computation occurs in polynomial time relative to t. Therefore, the whole autoregressive computa-
tion of a′(pref) is performed in polynomial time relative to the length of the prefix pl.

Overall, we now have a polynomial time algorithm that decides whether the problem, as encoded
by pref is satisfiable. This contradicts the P ̸= NP conjecture, and we conclude that the support
of a′ is different from the support of g, and in particular that, as distributions, a′ ̸= g, which ends
the proof.

Note. We believe both the statement of the theorem and its proof have some novelty relative to
previous discussions of the limitations of autoregressive models. First, concerning the statement,
our focus is on filtered autoregressive models, that is, conceptually very simple modifications of a
base model. Indeed, we are just speaking of a model a being conditioned by a predicate b. This
may allow a clearer intuition of what is really going on. Second, concerning the proof, we take care
(1) to avoid a delicate (albeit possible) autoregressive characterization of syntactically well-formed
y’s of the form problem#assignment, by delegating the syntactic verification to b, an obvi-
ously polynomial-time check; and, more importantly, (2) to avoid looking for a proof relying on the
impossibility of finding in polynomial time a valid assignment for a satisfiable problem instance,
because this would involve a preliminary distinction between satisfiable and unsatisfiable instances,
something that cannot be done in polynomial time. Our proof avoids this issue completely, by focus-
ing on full problem#assignment pairs, of which the validity is easily checked in polynomial
time.

B.4 CHARACTERIZATION OF g′

Let P ′(y)
.
= a′(y)b(y) and p′(y) be the distribution such that p′(y) ∝ P ′(y). Then p′(y) = 1

Z′P
′(y)

with Z ′ .
=

∑
y∈Y P ′(y). We have P ′(y) ≤ a′(y) · 1, and r(y)

.
= P ′(y)

a′(y)·1 = b(y). According to
the fundamental result about rejection sampling, see (Liu, 2004, Section 2.2), p′ is the distribution
obtained by sampling y ∼ a′ and accepting y with probability r(y), which in our case is either 0 or
1. This is exactly what Algorithm 1 does, and therefore g′ has the same distribution as p′, in other
words:

g′(y) =
1

Z ′ a
′(y)b(y), (4)

∝ a′(y)b(y). (5)

We finally note that when a′ = a, Eq. 5 implies that the distribution g′ associated with Algorithm 1
is actually equal to the gold model g.

B.5 RELATIONSHIP BETWEEN KL(g′||a′) AND ACCEPTANCE RATE ARa′

By the same reasoning as in App. B.4, applied to a′, we see that g′(y) ∝ a′(y)b(y), and therefore
g′(y) = 1

Z′ a
′(y)b(y) where Z ′ =

∑
y∈Y a′(y)b(y).

It is easy to see that Z ′ is also the probability that a sample from a′ is accepted by Algorithm 1,
namely the acceptance rate ARa′ , and therefore ARa′ = Z ′.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: (Same as right panel of Figure 1.) The g′ distribution is the I-projection of a′ onto the space C
of distributions respecting the constraint, that is, g′ is the distribution p in C that minimizes KL(p||a′). The
Pythagorean theorem says that, for any such distribution p, KL(p||a′) = KL(p||g′) + KL(g′||a′), in particular
KL(g||a′) = KL(g||g′) + KL(g′||a′). Independently of this fact, we also have KL(g′||a′) = − logARa′ ,
where ARa′ is the acceptance rate associated with Algorithm 1.

We then have KL(g′||a′) = Ey∼g′ log g′(y)
a′(y) , hence:

KL(g′||a′) = Ey∼g′ log
b(y)

Z ′ = Ey∼g′ log
1

Z ′

= − logZ ′ (6)
= − logARa′ . (7)

Because a and g are special cases of a′ and g′ respectively, we also have:
KL(g||a) = − logZ (8)

= − logARa . (9)

B.6 CORE THEOREM ABOUT GUARD

The fact that
KL(g||a′) = KL(g||g′) + KL(g′||a′)

is a consequence of the Pythagorean Identity for I-projections, as stated in Theorem 3.2 of Csiszár &
Shields (2004). In order to apply the theorem, we observe that the set C of distributions p such that
p(y) > 0 ⇒ b(y) = 1 is identical to the linear family of distributions that respect the expectation
constraint Ey∼pb(y) = 1, because in our case b(y) can only take the values 0 or 1. The distribution
g′ is the I-projection of a′ onto C, and according to the theorem, for any distribution p ∈ C, we have
KL(p||a′) = KL(p||g′) + KL(g′||a′). Because g is in C, we can conclude (see Figure 8).

We can also provide a simple, direct proof of this equality for our specific case. We have:

KL(g||g′) = Ey∼g log
g(y)

g′(y)
= Ey∼g log

Z ′g(y)

a′(y)b(y)

= logZ ′ + Ey∼g log
g(y)

a′(y)
= logZ ′ + KL(g||a′).

KL(g′||a′) = Ey∼g′ log
g′(y)

a′(y)
= Ey∼g′ log

a′(y)b(y)

Z ′a′(y)

= − logZ ′.

Hence KL(g||a′) = KL(g||g′) + KL(g′||a′).
We then apply the identity from Eq. (7) and conclude the proof.

B.7 MINIMIZATION OF KL(g||a′)

As discussed in Section 3 and in the interpretation of Theorem 2, minimizing KL(g||a′) results in
finding a suitable a′ for GUARD. In this section, we show that both the SFT and DPG approximation
techniques seek to minimize this objective.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Algorithm 2 GUARD training with warm-start DPG

1: Input: a(·), b(·), CAP, total sampling budget BG, CAP sampling budget bg
2:
3: ▷ Initialization with CAP proposal
4: πθ ← a(·) ▷ Policy
5: D ← ∅ ▷ Dataset of CAP samples
6: Sample {y1, . . . , yi, . . . , ybg} from a(·|CAP)
7: for i = 1 to bg do
8: if b(yi) = 1 then
9: Append yi to D

10: Fine-tune policy πθ on dataset D
11:
12: ▷ Training with πθ proposal
13: P (y)← a(y)b(y) ▷ Unnormalized target
14: Z ← 0 ▷ Partition function
15: N ← 0 ▷ Sample count
16: while N < BG− bg do ▷ Remaining sampling budget BG− bg
17: Sample y from πθ

18: N ← N + 1

19: Z ←
(N−1)Z+

a(y)b(y)
πθ(y)

N ▷ Moving average estimate of Z
20: p(y)← P (y)/Z

21: θ ← θ + α p(y)
πθ(y)

∇θ log πθ(y) ▷ Core DPG update rule

22: Output: πθ

The SFT loss corresponds to the cross-entropy of the model a′ to be learned, using samples from g,
i.e.,−Ey∼g log a

′(y). Minimizing this term with respect to a′ is equivalent to minimizing KL(g||a′)
since KL(g||a′) = Ey∼g log

g(y)
a′(y) = Ey∼g log g(y)−Ey∼g log a

′(y) = Hg −Ey∼g log a
′(y) where

Hg is the entropy of g, which is a constant independent of a′.

The objective of DPG is also to minimize the KL divergence (or equivalently, the cross-entropy)
between the target distribution g and the learned policy a′ = πθ as detailed in Parshakova et al.
(2019, Section 3.2). The derivation can be summarized as follows: ∇θKL(g||πθ) = ∇θ(Hg −
Ey∼g log πθ(y)) = −Ey∼g∇θ log πθ(y) = −Ey∼πθ

g(y)
πθ(y)

∇θ log πθ(y), where the last step is ob-
tained by applying importance sampling using πθ as the proposal. Performing gradient descent
on −Ey∼πθ

g(y)
πθ(y)

∇θ log πθ(y) leads to the DPG update rule shown at Line 21 of Algorithm 2 (see
below).

C GUARD’S TRAINING ALGORITHM

Algorithm 2 illustrates the GUARD training process with DPG. The optional orange-colored steps —
which correspond to what we are referring to as the warm-start initialization of DPG — focus on
increasing the ARπθ

through the CAP proposal, while the remaining steps follow the version of
the DPG algorithm presented in Go et al. (2023, Algorithm 1). By initializing DPG training with
a high-AR πθ obtained through CAP, we can supply a large number of samples to the KL(g||a′)
minimization process, leading to more efficient training.

D ADDITIONAL METRICS DETAILS

Acceptance Rate ARa′ represents the proportion of outputs y sampled from a′ that satisfy the
constraint b(y). Formally ARa′ is defined as the expected value of the constraint function b(y)
under the language model distribution a′, which is given by ARa′ = Ey∼a′ [b(y)]. Higher ARa′

indicates the sampler has a faster inference speed.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Distributional Closeness In Theorem 2, we aim to minimize the KL divergence between the gold
distribution g and the distribution g′ produced by our framework. We can estimate the quality of
GUARD, represented by KL(g||g′), by using the following identity:

KL(g||g′) = Ey∼g log
g(y)

g′(y)
= Ey∼g log

a(y)b(y)

Z

Z ′

a′(y)b(y)
= Ey∼g log

a(y)

a′(y)
− log

Z

Z ′ , (10)

where the expectations relative to g can be estimated by obtaining samples from g through sampling
from a and filtering with b, and where the values of Z and Z ′ can be obtained by exploiting the
equalities Z = ARa, Z

′ = ARa′ (see App. B.5) and by estimating these acceptance rates.

In practice, these computations were performed using the disco (Kruszewski et al., 2023) toolkit18

and the estimations are made using 220 (i.e., approximately 1M) samples from a. After filtering with
b, we obtained around 2,300 samples from g in the lexical constraints experiment (ARa = 0.0023)
and 5,000 samples from g in the sentiment reversal experiment (ARa = 0.005).

Self-BLEU BLEU evaluates how similar a language model’s output is to candidate references
using n-gram matching. Similarly, Self-BLEU Zhu et al. (2018) measures the diversity of generated
outputs by selecting K samples from the model’s output and calculating the average BLEU score of
each sample against the remaining K − 1 samples. In this paper, we measured Self-BLEU using a
set of K = 100 outputs.

Semantic Similarity First, we extract 500 outputs from each approach’s guaranteed output dis-
tribution (g or g′). We then randomly select 10,000 pairs of outputs from these 500 samples and
embed them to measure their cosine similarity in the embedding space. The average of these sim-
ilarity scores is then calculated. For the lexical constraint experiment, we encoded the Gemma-2B
model outputs using the Gemma-7B model. In the sentiment reversal experiment, we encoded the
GPT-2 model outputs using BERT.

E LEXICAL CONSTRAINT EXPERIMENT

Additional details For the lexical constraint experiment, we use Gemma-2B (Riviere et al., 2024)
to generate 30 tokens through ancestral sampling, starting with ⟨bos⟩ or a specific prompt in the case
of the CAP baseline. We chose ancestral sampling because it generates from the LLM’s original
distribution without distortion, unlike top-k or nucleus sampling. The sampling budget is defined as
the number of samples drawn from proposal a, a(·|CAP) or a′19 for training purposes. For DPG,
this is #samples per step × step size, while for SFT, it is batch size × step size. In the case of SFT,
sampling is done only from a, so the expected training set size is sampling budget×ARa. For DPG,
as the adaptive proposal gradually approaches g, the number of samples increases with each step
during training. Naturally, ARa′ is initially low, resulting in fewer samples, but this disadvantage can
be mitigated by sampling from a(·|CAP) in the early stage. Detailed hyperparameters are provided
in Table 3, and the list of constraint-aware prompts used in the experiments can be found in Table 4.

Additional analysis Based on the experiments discussed in the main body of the paper, we analyze
how the phenomena observed in the analysis are reflected in the actual text. As shown in Table 5,
texts generated from the DPG-based g′ feature the word “amazing” in various positions, discussing
specific topics. However, when forced to include “amazing” through CAP, the generated texts tend
to include the word “amazing” early on while remaining generic and without delving into specific
subjects. This positional bias occurs not only with the string “amazing” but also with other strings
such as “restaurant” and “world” as shown in Figure 9.

Comparison to a heuristic sampler We performed a simple experiment using the heuristic sam-
pler for keyword enforcement described in the Enforcement example paragraph of App. B.2, using
“amazing” as the keyword to include in a 30-token generated text as in the experimental setting of

18https://github.com/naver/disco
19More precisely, the evolving a′ – in other words what is denoted by πθ in Algorithm 2.
20https://huggingface.co/google/gemma-2b

22

https://github.com/naver/disco
https://huggingface.co/google/gemma-2b

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Hyperparameter Value

Base LLM a(·) Gemma-2B20

Max sequence length 30
Learning rate 1.41e-5
Optimizer Adam
DPG #samples per step {2000, 5000, 10000}
SFT batch size per step {16, 32, 64}
Sampling budget used with a(·|CAP) 10000
Prompt used for warm-start proposal a(·|CAP) Next sentence should contain “amazing”.

Table 3: Hyperparameters used for the lexical constraint experiment.

Next sentence should contain ’amazing’.

Write sentences with the given words.
diagnosis: Assessment of microscopical and clinical parameters in the diagnosis of
diabetes mellitus.
pandas: Column headings differ in spreadsheet that is merged with pandas data.
change: How to change the decimal separator in MS Word?
amazing:

Write a text containing “amazing”, as shown below.

It is a really amazing day.

Amazing, amazing and amazing.

Truly amazing.

The following sentence contains the keyword ’amazing’.

This is an example of texts with the string ’amazing’

A paragraph with ‘amazing’:

Text examples with ’amazing’.

The following sentence contains the keyword ’amazing’.

Table 4: Constraint-aware prompts used for the lexical constraint experiment.

Section 4.1. We define a sampler s that checks whether we have already produced the string “amaz-
ing” within the first 29 tokens, and if not, forces the generation of “amazing” as the last token. With
the Gemma-2B tokenizer, the string “amazing” can be generated with the single token [amazing]
(along with [ama, zing], etc.), and we can easily design the sampler to produce this token as the 30th
token if “amazing” does not appear earlier. For such a sampler s, we found that KL(g||s) = 6.06,
which is a significantly larger divergence than KL(g||g′) = 0.633 for warm-start DPG-based g′ as
reported in Figure 4. More generally, the divergence KL(g||s) is much greater than the divergences
obtained for any g′ based on DPG or SFT, whose values are always smaller than 3. This result ap-
pears to be consistent with the behavior we had anticipated in App. B.2, namely the poor ability of
s to approximate g due to the biased positioning of “amazing” in the generated sequence.

F SENTIMENT REVERSAL EXPERIMENT

Additional details The lexical constraint experiment was set in an unconditional generation con-
text (i.e., without any prefix), which makes the distortion due to prompting particularly severe.
Therefore, it is necessary to thoroughly examine the phenomena that occur when KL(g||g′) in-
creases in a conditional generation setting. For this experiment, we selected negative story openings
from the ROCStories test set (Mostafazadeh et al., 2016). We retained only the first two sentences of
all stories and chose five that had the lowest positive scores. The hyperparameters, constraint-aware

21https://huggingface.co/msintaha/gpt2-finetuned-rocstories

23

https://huggingface.co/msintaha/gpt2-finetuned-rocstories

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8

Gold g
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8
CAP-based g′

0.0

0.5

1.0

1.5

2.0

2.5
Relative position of 'restaurant' in the text

0.0 0.2 0.4 0.6 0.8 1.0

Gold g
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
CAP-based g′

0.0

0.5

1.0

1.5

2.0

2.5
Relative position of 'world' in the text

Figure 9: Additional positional bias analysis using the “restaurant” and “world” strings.

DPG-based g′ CAP-based g′

To be successful when tackling difficult prob-
lems and amazing your customers you need a
space to think and solve these concerns. At
CKWI, our expert and

1. amazing ads on TV: They broke the adver-
tising law and added more than 5 5 numbers to
admit simulation! 2. Agata

Staten Island is world renowned for its dog-
friendly beaches and amazing shops. The zoo
park is always a hit for residents and tourists
alike. Visits

3 most amazing facts about marine animals.
paragraphs: paragraph, paragraph. extension:
zoom calculations: result of calculation appli-
cation programming: application

Welcome Guest,
We do believe having a great relationship with
clients is invaluable, therefore we strive to
make your playing experience as comfortable,
amazing and exciting

Things wouldn’t be so amazing without all that
PERFECTNESS which we call ’Love’......
Thanks Vernachael, I’m dropping by

Join us on an amazing journey In Southern
Uzbekistan.
17 days Arrive in Tashkent and upon arrival,
we will pick you up from the Airport

I agree, that is truly amazing. I like the fact it
is all customisable.
That’s nice bet it stinks out the exhaust fumes

Table 5: Example of generated samples for the lexical constraint experiment. Red-colored text indicates the
occurrence of the required string “amazing”.

prompts, and negative story openings used in this experiment are respectively shown in Tables 6,
7, and 8. To define b(y), i.e., to accept or reject a generated story, we used a threshold criterion
based on an existing emotion text classifier22 using the “joy” class probability output. Specifically,
we accepted stories where the “joy” class probability of the last sentence exceeded 0.98.

Additional analysis The generated samples in Table 9 show patterns similar to those observed
with the lexical constraint scenario. The stories obtained from the DPG-based g′ have a natural flow
like the original g, while the samples obtained from CAP exhibit abrupt sentiment changes, losing
specificity in the process. This leads to significant differences in KL divergence between g and g′.

A note about the Story Infilling task of (Hu et al., 2024) Our sentiment reversal experiment
bears some connections with the Story Infilling task from Hu et al. (2024, Section 4.2), where the
authors consider the task of generating the middle (fourth) sentence of a story, given the first three
and the last (fifth) sentence of the story, using the ROCStories dataset for training and for test.
They use the GFlowNet amortization framework (Bengio et al., 2021) to fine-tune their base model
towards generating the middle sentence. Our task is similar in spirit, because we try to complete
the start of a story in such a way that the story ends on a positive sentence (instead of ending with
a fully specified sentence). In other words, our version of the task can be considered as soft Story
Infilling. Additionally, the base model a we use is GPT-2 fine-tuned on the ROCStories training set,
as in Hu et al. (2024). However, our approach is quite different both in the goal and in the method
used. We are trying to obtain a sampler g′ that produces texts coming from a distribution close to
the gold distribution g — where g is the distribution a filtered by the positive-ending constraint —

22https://huggingface.co/michellejieli/emotion_text_classifier

24

https://huggingface.co/michellejieli/emotion_text_classifier

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Hyperparameter Value

Base LLM a(·) GPT2-Finetuned-ROCStories21

Max sequence length 80
Learning rate 1.41e-5
Optimizer Adam
DPG #samples per step 10000
SFT batch size per step 64
Sampling budget used with a(·|CAP) 10000
Prompt used for warm-start proposal a(·|CAP) This is a happy ending story:

Table 6: Hyperparameters used for the sentiment reversal experiment.

This is a happy ending story:

In the end, it was a story that had a truly happy ending,

This is my positive ending story,

Eventually, it turned into a really fantastic day:

Here is an example of a paragraph starting up with a negative sentiment but ending positively:

Happy ending story:

Eventually, it turned into a really happy day!

There was a little bit of bad luck, but it was a happy day!

I was so lucky even there were some obstacles.

Table 7: Constraint-aware prompts used for the sentiment reversal experiment.

and we insist on only sampling texts with a positive ending. In contrast, they do not try to filter texts
from a by the constraint that they end on a specific sentence, but only use a as the starting point
for their GFlowNet amortization, trained on the ROCStories dataset. They evaluate their results in
terms of the similarity of the generated middle sentence to the middle sentence in the ROCStories
test set, while we evaluate our results in terms of the divergence with the gold distribution g and of
the efficiency of the sampler in producing positive endings.

G DISCUSSION OF ADDITIONAL SAMPLING TECHNIQUES: IMH AND QRS

This section contrasts the efficiency of GUARD at inference time with one MCMC technique, IMH
(Robert & Casella, 2004), and one variant of rejection sampling, QRS (Eikema et al., 2022). It com-
pares outputs from these different sampling methods, starting with a specific proposal distribution
a′: rejection sampler g′ as in GUARD, IMH sampler, and QRS sampler. QRS is an extension of re-
jection sampling that offers two benefits over IMH as a sampler for GUARD: (1) It produces outputs
y that more closely approximate the target distribution g; (2) It still enables tractable measurement
of the distance from g, similarly to rejection sampling in Algorithm 1.23 by allowing quantification
of the output probability of y.

QRS implements the acceptance criterion corresponding to accepting y with probability
min(1, g(x)

βa′(x)), where β is a positive hyperparameter with the following properties:

1. As β approaches 0, QRS becomes equivalent to the GUARD form of rejection sampling
(Algorithm 1).

2. As β increases, QRS more closely approximates g, but at the cost of additional inference
time.

23Note that, in the experiments below, in order to compare IMH and QRS, we use an approximate measure
available for both.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

My uncle couldn’t afford health care. He got sick last year.

Kevin’s dad had raised him alone after his mom left them. When his dad grew old and
ill, Kevin was unhappy.

Allie came home late last night. Her mother was very mad at her.

Mike was a bad kid. He never followed his parents advice.

Bobby registered his son for tee ball. His son wasn’t having a good time.

Table 8: Negative story openings used for the sentiment reversal experiment.

DPG-based g′ CAP-based g′

My uncle couldn’t afford health care. He got
sick last year. His aunt bought him medicine
for his sick days. My aunt bought him some
and started treating him. He has much better
health than he had before. He is very grateful,
and is doing better everyday.

My uncle couldn’t afford health care. He got
sick last year. I hope someday he gets better.
I hope my grandma gets better soon. Best of
luck! Ever!

My uncle couldn’t afford health care. He got
sick last year. The only way around it was by
prescription. A doctor arranged to have me
take antiretrovirals and a lot of painkillers. He
had a wonderful 18 month treatment and I feel
much better today.

My uncle couldn’t afford health care. He got
sick last year. Luckily he got home healthy. It
was wonderful to be able to share our kitchen
with our children. It feels so much better than
we ever knew.

Mike was a bad kid. He never followed
his parents advice. He was misbehaving and
frightened. He tried to learn from his own mis-
takes. Eventually, he was a very good boy. He
is very grateful. This gift has made a huge dif-
ference to my son.

Mike was a bad kid. He never followed his
parents advice. However, he did learn a new
trick. He learned how to play the guitar. I can’t
wait to see how he plays! I hope all that gets
passed on to Mike someday!

Allie came home late last night. Her mother
was very mad at her. She put a basket of
cookies on the kitchen table. She went to the
kitchen to make her dinner. She made sev-
eral small cuts, then her mother ate her favorite
slice. So she and her mom were very happy!

Allie came home late last night. Her mother
was very mad at her. She decided to surprise
her grandma and surprise her. Allie packed her
things and got ready to go. Everyone had a
great day!

Table 9: Example of generated stories for the sentiment reversal experiment. Blue-colored text corresponds to
the imposed negative opening prefix, and red-colored text indicates the final sentence of the story, on which
sentiment positivity is required.

This comparison permits an analysis of the trade-off between sampling accuracy and computational
cost across these different methods.

G.1 EXPERIMENTAL SETTING

Directly comparing the GUARD sampler with MCMC methods like IMH is challenging. When
we run the IMH algorithm for a certain number of steps n, we obtain a distribution denoted as p(n).
While we can sample from p(n), we cannot evaluate p(n)(x) for a given x (see Eikema et al. (2022)),
which presents a significant obstacle to estimating the KL divergence.

Although we cannot directly calculate p(n), we could estimate it using the law of large numbers.
However, this becomes problematic when the sample space X is very large, as in text generation
cases. In contrast, if our sample space X was small (e.g., X = {1, 2, ..., 10}) and we had 10,000
samples from a given sampler π, we could estimate π(2) by counting the relative frequency of 2’s
in the sample, and similarly for any x in this space.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0
Relative Position in Texts

0%

2%

5%

8%

10%

12%

15%

18%

W
ei

gh
t

Position of "amazing"

(a) Distribution g′

~0.1 0.1~0.2 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7 0.7~0.8 0.8~0.9 0.9~1.0
Relative Position in Texts

0%

2%

4%

6%

8%

10%

12%

W
ei

gh
t

Position of "amazing"

(b) Gold distribution g

Figure 10: Two base (projected) distributions for comparing with QRS and IMH. Starting from the distribution
in (a), the goal of each statistical sampler is to generate a similar distribution to (b). For a clearer analysis of
the phenomenon, we conducted experiments using a proposal a′ with a relatively large divergence, resulting in
KL(g||g′) ≈ 2.

Based on this insight, we propose the following approach for providing at least an approximate
estimation of KL(p||p(n)):24

1. We build a small finite partition X̄ of 10 bins for the textual space X , with a projection
mapping f(x) = x̄ from the large space X to the low-dimensional space X̄ .

2. We generate a sample of 1000 points from p and use f to project these points into points x̄
of X̄ . We get an estimate p̄(x̄) for any x̄ in X̄ .

3. We do the same for p(n), obtaining estimates p̄(n)(x̄).

4. We can then estimate KL(p̄||p̄(n)).
5. Then, by considering different values of n (but keeping the projection f fixed), we can

monitor how KL(p̄||p̄(n)) evolves with n. It is expected to decrease with n.

In this experiment, we focus on the lexical constraint scenario. Then, for the projection f , we can
use the position of “amazing” in the generated text. We can project the texts from g and g′ based on
which of the 10 bins the relative position of “amazing” falls into (see Figure 10). Using this method
enables us to compute a form of KL divergence for IMH and to use this form for comparison with
QRS as shown in Figure 11.

G.2 EXPERIMENTAL RESULTS

Figure 11 illustrates the quality/AR trade-off results. Both QRS and IMH demonstrate improved
output quality at the cost of additional inference time. However, QRS consistently Pareto-dominates
IMH across the tested hyperparameters.

In the case of QRS and especially IMH, the quality gains come at a high cost in terms of additional
inference time: to halve the projected KL divergence — which is a lower bound of the true KL
divergence, see Footnote 24 — QRS requires 1.36 times the inference cost of Algorithm 1, while
IMH requires 10 times the cost. Moreover, to reduce the KL divergence to 10% of the original KL,
QRS uses almost 10 times the inference cost of Algorithm 1, while IMH consumes 50 times this
cost. This experiment demonstrates that the random walk nature of MCMC methods can struggle to
efficiently mimic the gold distribution. This result highlights why accurately approximating g with
the proposal distribution is crucial: it can lead to more efficient sampling that diverges less from the
target distribution without incurring the extreme computational costs associated with methods like
IMH.

24Actually, this technique provides a lower-bound of the true KL divergence, a consequence of the Data
Processing Inequality (DPI) of Information Theory (Polyanskiy & Wu, 2023).

25IMH performs a random walk n times on an initially accepted sample to improve its quality, where n is a
hyperparameter, and where the last y in the random walk is returned. For comparison with the rejection-based
samplers, we therefore consider the “acceptance rate” of IMH to be 1/n.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1 2 3 4

Log scale of AR degradation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

KL
_D

iv
er

ge
nc

e
wi

th
 P

ro
je

ct
io

n

= Z

g′

g

AR/Quality Trade-off from QRS and IMH
IMH
QRS

Figure 11: Starting from the top-left point (i.e., initial g′), this figure illustrates the improvement of the projected
KL over KL(ḡ||ḡ′) for both IMH and QRS and the associated additional inference costs. We note that QRS
achieves a reasonable compromise when β = Z.25

28

	Introduction
	Formalization of Guaranteed Generation
	Definition of the Gold Model
	From Gold Model to Sampler
	Limits of autoregressive models for filtering purposes
	Claim: inference-time methods are needed

	The Guard framework and its properties
	Experiments
	Unconditional generation with lexical constraints
	Conditional generation with a positive ending constraint

	Related Work
	Conclusion and Discussion
	Complements on Related Work
	Additional Background and Theoretical Details
	Characterization of g
	On the limitations of autoregressive models in representing g
	Details about Theorem 1
	Proof sketch

	Characterization of g'
	Relationship between KL(g'||a') and Acceptance Rate ARa'
	Core theorem about Guard
	Minimization of KL(g||a')

	Guard's Training Algorithm
	Additional Metrics Details
	Lexical Constraint Experiment
	Sentiment Reversal Experiment
	Discussion of Additional Sampling Techniques: IMH and QRS
	Experimental Setting
	Experimental Results

