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ABSTRACT

Current multi-task adversarial text attacks rely on white-box access to shared in-
ternal features and assumption of homogeneous multi-task learning framework.
As a result, these attacks are less effective against practical scenarios involving
black-box feedback APIs and multi-model multi-task learning. To bridge this gap,
we introduce Cluster and Ensemble Mutil-task Text Adversarial Attack (CEMA),
an effective black-box attack that exploits the transferability of adversarial texts.
Specifically, we initially employ cluster-oriented substitute model training, as a
plug-and-play framework, to simplify complex multi-task scenarios into more
manageable text classification attacks and train the substitute model. Next, we
generate multiple adversarial candidate examples by applying various adversarial
text classification methods. Finally, we select the adversarial example that attacks
the most substitute models as the final attack output. CEMA is evaluated on two
primary multi-task objectives: text classification and translation. In the classifica-
tion task, CEMA achieves attack success rates that exceed 60% while reducing the
total number of queries to 100. For the text translation task, the BLEU scores of
both victim texts and adversarial examples decrease to below 0.36 with 100 queries
even including the commercial translation APIs, such as Baidu Translate and Ali
Translate.

1 INTRODUCTION

A multi-task textual adversarial attack misleads multiple tasks simultaneously through small pertur-
bations, increasing attack efficiency and impact. It poses significant risks to safety-critical systems,
leading to wrong decisions. Defending against such attacks is challenging due to the need for
multi-task robustness, making it a key issue in AI security (Liu et al., 2017; Lin et al., 2022).

Research on text multi-task adversarial examples typically concentrates on tasks of the same type,
particularly classification tasks (Liu et al., 2017). However, in real-world applications, multi-task
learning often involves tasks of different types. Existing adversarial attack methods generally assume
that attackers have access to the model architecture and shared layer information within a unified
model (Guo et al., 2020). However, most commercial and application-based models are proprietary,
with their architecture and parameters hidden from external attackers. Additionally, current multi-task
adversarial attack strategies primarily target models that employ a shared parameter approach for
managing multiple tasks. In contrast, multi-model multi-task learning approaches (Aoki et al., 2022)
handle each task with a separate model, without direct parameter sharing. As a result, most existing
adversarial methods, designed to attack shared parameter models, are ineffective against these systems
because of the absence of a common layer to target.

Our goal is to perform multi-task textual adversarial attacks in realistic scenarios. Based on the
previous analysis, such a scenario should encompass a variety of tasks, with black-box model feedback
being more reflective of real-world conditions. Moreover, both parameter-sharing multi-task learning
systems and multi-model multi-task learning systems must be considered. Additionally, limiting the
number of queries is essential to conserve resources and reduce the risk of detection, making it a
key aspect of practical attack scenarios. Therefore, this paper is driven by the following research
questions(RQ):
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RQ1: Can attackers craft the adversarial examples with a black-box multi-task learning model?
RQ2: How to craft the adversarial examples in multi-model multi-task learning model?
RQ3: How to craft the adversarial examples in few-shot queries?
RQ4: How to craft the adversarial examples in the mutil-task learning systems that encompass
a variety of tasks?

In limited-access scenarios, a straightforward strategy is the transfer attack, which crafts adversarial
examples in a substitute model. Training effective substitute models becomes challenging in the
absence of a well-trained substitute model, particularly in multi-task learning, where limited access
to input-output pairs and poor transferability between tasks in multi-model settings pose significant
difficulties. Rather than mimicking the entire multi-task model, we propose focusing on building a
substitute model with strong discriminability. This approach allows a single substitute model to
generate adversarial examples that target all tasks simultaneously, even when trained with limited
data.

We propose CEMA (Cluster and Ensemble Multi-task Text Adversarial Attack), a framework that
leverages a small set of auxiliary texts sharing characteristics with the victim’s texts. Using a pre-
trained model, we vectorize texts and their outputs, perform clustering, and train substitute models
on these auxiliary texts and cluster labels. This converts the multi-task attack into a single-task text
classification problem. Repeating this process, we can obtain multiple substitute models. During the
adversarial example generation phase for victim texts, for each victim text, adversarial candidates are
generated for each victim text. The final adversarial example is selected based on its success across
the most substitute models.

Although the substitute model trained by CEMA differs from the victim model trained through
multi-task learning, our substitute model, demonstrates strong discriminative capability. For task
A, if an adversarial attack on the substitute model f sub successfully changes the cluster label of text
xi from 0 to 1, the label yAi shifts accordingly, indicating a successful attack on task A. We derive
and demonstrate that adversarial examples based on cluster labels, when effective against multiple
substitute models, can also transfer effectively to other tasks B,C, . . . , N .

During the experiment, we focus on text classification and translation within a multi-task learning
framework. For the text classification task, CEMA achieves an attack success rate (ASR) of over
60% with only 100 queries. In the text translation task, CEMA reaches a BLEU score of 0.14. Even
with limited auxiliary data that differs significantly from the training dataset, CEMA maintains an
ASR of up to 66.40% for classification tasks and a BLEU score of 0.27 for translation tasks. The
primary contributions are summarized as follows: ❶ To the best of our knowledge, we are the
first to extend text adversarial attacks to the multi-task setting by training cluster-oriented substitute
models and employing transferability-oriented adversarial example selection. The proposed CEMA
method generates high-quality adversarial examples for multiple tasks simultaneously with very few
queries in black-box and multi-model multi-task learning scenarios. ❷ We present the first plug-
and-play framework that converts a multi-task attack into a single-task attack, enabling traditional
methods to be easily adapted to multi-task scenarios. Furthermore, our approach overcomes the
limitations of existing multi-task attack methods, which depend on shared layers in multi-task models.
CEMA effectively handles multi-task scenarios with multi-models, whether they involve related
or independent tasks. Additionally, we derive a theoretical lower bound for CEMA’s success rate,
showing that the probability of success increases with the number of substitute models used. ❸
We demonstrate the effectiveness of CEMA through rigorous mathematical derivations, as well as
comprehensive experiments. The experimental results show the proposed CEMA achieves an attack
success rate (ASR) of over 60% in text classification tasks and a BLEU score of less than 0.15 in
translation tasks, indicating effective adversarial attack performance in both cases.

2 PRELIMINARY

2.1 TRANSFERABILITY AND TRANSFER ATTACKS

Transfer attacks leverage adversarial examples to target different models without requiring direct
access, posing a significant security threat in black-box scenarios (Szegedy et al., 2014; Papernot
et al., 2017; Dong et al., 2018; Tramèr et al., 2017). Transferability refers to the phenomenon
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where adversarial examples crafted for one model can successfully compromise other models as
well (Zhang et al., 2020). Notably, several existing studies increase the amount of data available
to attackers (Mahmood et al., 2021a) or generate synthetic data (Zhou et al., 2020), significantly
advancing the development of transfer attacks. Meanwhile, Mahmood et al. (2021b) improve the
transferability and robustness of Vision Transformers to adversarial examples

2.2 MULTI-TASK LEARNING AND MULTI-MODEL MULTI-TASK LEARNING

Multi-Task Learning (MTL) involves simultaneously training multiple related tasks, enabling
models to share knowledge and improve generalization, particularly when data is limited. MTL
has been extensively applied in fields such as natural language processing and computer vision,
resulting in more robust models. However, challenges such as task interference and balancing
shared information across tasks remain. Recent advancements seek to mitigate these challenges and
enhance MTL’s overall effectiveness. Multi-Model Multi-Task Learning extends the traditional
MTL framework by utilizing separate models for each task, providing greater flexibility and better
handling of task heterogeneity. This approach minimizes negative transfer and allows for task-
specific optimizations. However, it also increases computational complexity and the difficulty of
integrating outputs from different models. Current research focuses on hybrid methods that balance
task specialization with shared learning, aiming to optimize model architectures and enhance resource
efficiency.

3 THREAT MODEL

❶Victim Model: In this paper, we explore a more practical scenario of Multi-Model Multi-Task
Learnin, focusing on the tasks of text classification and translation. We utilize publicly available
APIs from the Hugging Face platform as the victim models for our attacks. Specifically, we target the
SST5 and Emotion datasets for text classification, and we select DistilBERT and RoBERTa models
trained on these datasets, referred to as dis-sst5, ro-sst5, dis-emotion, and ro-emotion, respectively.
For the translation task, we target the opus-mt model for English-to-Chinese translation and the
t5-small model for English-to-French translation. The URLs of these models are provided in Table 8
in the Appendix. Meanwhile, to simulate a more realistic attack scenario, we employ two commercial
translation APIs: Baidu Translate for English-to-French translation and Ali Translate for English-
to-Chinese translation. We design three multi-task victim models using these base models. Victim
Model A comprises two classification models and one translation model: dis-sst5, dis-emo, and opus-
mt. Victim Model B also comprises two classification models and one translation model: ro-sst5,
ro-emo, and t5-small. Victim Model C consists of two commercial translation APIs: Baidu Translate
and Ali Translate. ❷Attacks’s Goal The goal of our attack is to degrade the performance of all tasks
in a multi-task model. Adversarial examples are crafted to universally disrupt multiple tasks, not just
a single one. For text classification, the objective is to ensure differing output labels between the
original and adversarial inputs (i.e., yadv ̸= yori). For translation tasks, the aim is to induce significant
semantic divergence, minimizing BLEU scores between the original and adversarial outputs (i.e.,
argmin,BLEU(yadv, yori)). ❸ Adversary Capabilities: We analyze the adversary’s capabilities
from three perspectives: query access, API feedback, auxiliary data, and similarity constraint. (1)
Query Access: Query access refers to the adversary’s ability to interact with the target model before
delivering the final adversarial input. We assume the attacker has up to 100 opportunities to query
the victim model, with each query generating output results for all tasks. (2) API feedback: In a
practical multi-task text adversarial attack, the attacker has no access to the internal information of
the model and can only obtain the final output results of the model. Therefore, the API feedback
serves as a black-box response, providing predicted labels for the classification task and the translated
text (e.g., French output for English-to-French translation). (3) Auxiliary Data: From the perspective
of data quantity, we assume that the attacker can acquire only a limited amount of Auxiliary Data,
specifically 100 unlabeled texts. Regarding data distribution, we explore two scenarios: (a) The
100 unlabeled texts are sampled from the same distribution as the victim’s texts, such as the 100
unlabeled texts in the validation dataset. (b) The 100 unlabeled texts and the victim’s texts come from
datasets of the same nature but with different distributions. (4) Similarity Constraint: To enhance
the stealthiness of attacks, textual adversarial samples are constrained to maintain high similarity to
the original text, ensuring semantic and structural coherence. This approach balances modification
extent with attack effectiveness, preserving fluency and alignment with the original texts. In this
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Figure 1: The Overview of CEMA. ❶ CEMA assigns cluster labels to auxiliary texts through a
clustering method. These text-label pairs are then used to train the substitute model. This process
allows CEMA to efficiently transform a multi-task scenario into a single-task text classification
scenario, with only 100 queries to the black-box multi-task model. ❷ To improve attack effectiveness,
CEMA applies multiple attack methods to the substitute models, generating candidate adversarial
examples to refine the selection process. CEMA also trains several substitute models, selecting the
final adversarial example based on its success across the majority of them.

study, we enforce a similarity threshold of 0.85, computed using the Universal Sentence Encoder
(USE), a widely adopted method for reliable similarity measurement in text adversarial tasks.

4 METHOD

As shown in Figure 1, our method, CEMA, consists of the following steps: ❶ Representation
Learning (Section 4.1). We convert the auxiliary texts and their outputs from multiple tasks into
vector form using representation learning. ❷ Clustering to Generate cluster labels (Section 4.2).
After determining the optimal number of clusters, we apply a clustering algorithm to the vector
representations of the auxiliary texts and their outputs, assigning a cluster label to each auxiliary text.
❸ Training Substitute Models (Section 4.3). We train substitute models f sub using auxiliary texts as
input and their corresponding cluster labels as output. ❹ Generation of Adversarial Candidates
(Section 4.4). We apply various text adversarial attack methods to the substitute model f sub to
generate multiple adversarial candidates. ❺ Final Adversarial Example Selection (Section 4.5). By
repeating steps ❶, ❷, and ❸, we can train multiple substitute models, f sub

1 , f sub
2 , . . . , f sub

M . We select
the adversarial candidate that successfully attacks the most substitute models as the final adversarial
example.

4.1 REPRESENTATION LEARNING

In a multi-task model, both the input text and output labels need to be appropriately vectorized
to effectively capture the relevant information. This section details the specific approach used for
learning the representations of input text and output labels. Pre-trained models are extensively utilized
in NLP for textual feature extraction (Tabassum & Patil, 2020; Han et al., 2021). These models are
highly effective as they are trained on large-scale datasets, enabling them to learn general language
patterns and representations. Furthermore, concatenating multiple text representations allows for the
simultaneous encoding of multiple texts (Devlin et al., 2019). Accordingly, we leverage a pre-trained
model to vectorize both the input text and output labels, generating their respective embeddings.
These embeddings are subsequently concatenated to form a unified representation that captures the
information from both the input text and the output labels.

4
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Algorithm 1: The substitute model Training Process
Input: The dataset to be attacked D = {x1, x2, · · · , xn}, where xi is the input text; embedding

function fE ; clustering function fc; number of clusters k; training epoch emax; targeted
model ft

Output: The substitute model f sub

1 for i = 1 to n do
2 yAi , y

B
i , . . . , yNi = ft(xi) ▶ Input xi to the targeted model ft to obtain the corresponding

label yt
i

3 E(xi) = fE(xi) ; EyJ
i
= fpre(y

J
i )

4 Ei = Concat(Exi ,EyA
i
, . . . ,EyN

i
)

5 Eall = [E1,E2, · · · ,En] ▶ Representation learning
6 Perform a cluster analysis on Eall and refine the internal parameters of the clustering model fc
7 for i = 1 to n do
8 Input Ei into the clustering algorithm to generate the corresponding pseudolabel

ypse
i = fc(Ei) ▶ Obtaining cluster labels and pseudo labels

9 The victim text cluster label pairs data: PD = {(x1, y
pse
1 ), (x2, y

pse
2 ), · · · , (xn, y

pse
n )}

10 for i = 1 to emax do
11 Train the substitute model f sub on PD to adjust the parameters θf sub :

θf sub ← train(f sub,PD) ▶ Train substitute model
12 return The substitute model f sub = f sub(PD; θf sub)

As outlined in lines 1-5 of Algorithm 1, we begin by querying the multi-task model to retrieve the
output text for each task. Next, auxiliary text with corresponding output results are vectorized by
pre-trained models to extract relevant features for subsequent clustering process. We define the
multi-task model as fv, which deals with the set of tasks A,B, . . . , N . The pre-trained model is
defined as fpre. The attacker is assumed to have access to a small set of auxiliary texts X , which share
the same distribution as the victim texts. For each auxiliary text xi in X , we query fv to obtain the
corresponding outputs yAi , y

B
i , . . . , yNi . Next, we use the pre-trained model fpre to vectorize xi and

{yAi , yBi , . . . , yNi }, resulting in the vectors {Exi
,EyA

i
, . . . ,EyN

i
}. These vectors are concatenated

to form the final vector Ei, representing xi and its outputs yAi , y
B
i , . . . , yNi . Thus, Ei is defined as

follows:

Exi = fpre(xi),EyJ
i
= fpre(y

J
i ),Ei = Concat(Exi ,EyA

i
, . . . ,EyN

i
), (1)

where the Concat indicates the concatenation of {Exi ,EyA
i
, . . . ,EyN

i
}.

4.2 CLUSTER NUMBER AND CLUSTER LABELS

In Section 4.1, we obtain the representations for each text input and output. We then perform a
clustering analysis on these representations, with the number of clusters being a crucial parameter.
Before clustering, we determine the optimal number of clusters by selecting the value that maximizes
strong discriminative capability for each cluster group. When the number of clusters is 2, the two
clusters can be interpreted as class CA and CA. (Boongoen & Iam-On, 2018). Therefore, we set the
number of clusters to 2. After determining the number of clusters to be 2, we perform clustering
analysis on the 100 vectors using the Spectral clustering method (Zhang et al., 1996). For each
vector Ei, we derive its corresponding cluster label yclu

i , which is later assigned as the pseudolabel for
xi. With only 100 unlabeled texts, we cannot fully capture the dataset’s distribution. Therefore, we
perform multiple clustering runs and select the result that best approximates a uniform distribution
by maximizing entropy (i.e., ensuring the cluster sizes are as close to 50 as possible). The proof of
entropy maximization for a uniform distribution is in Section B of the appendix.

4.3 SUBSTITUTE MODEL TRAINING

Once the cluster labels are obtained, we employ the auxiliary texts paired with their respective cluster
labels to train a substitute model. This approach effectively converts the multi-task text adversarial

5
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attack scenario into a conventional text classification adversarial attack scenario. The substitute model
f sub is trained with the auxiliary texts serving as input data and the cluster labels as the corresponding
output labels. The process is shown in lines 10-12 of Algorithm 1. More details about the substitute
model architecture and substitute model training are presented in Appendix D.

4.4 CANDIDATE ADVERSARIAL EXAMPLE GENERATION

Once the substitute model is generated, we apply several adversarial text attack methods to f sub.
These methods produce multiple adversarial examples. We then define criteria to select the final
adversarial examples from the candidates generated. In this section, we begin by explaining the
importance of generating multiple adversarial candidate examples. We assume that m adversarial
text attack methods are used to generate m adversarial examples on the substitute model f sub

1 . These
adversarial examples are denoted as x∗1

i , x∗2
i , . . . , x∗m

i . Each example has a corresponding probability
of successfully attacking the victim model, denoted as p∗1i , p∗2i , . . . , p∗mi . The minimum probability
among these is denoted as p∗min, where p∗min = min(p∗1i , p∗2i , . . . , p∗mi ). We calculate the probability,
ps, that at least one of these adversarial examples successfully attacks the victim model as follows:

ps = 1− (1− p∗1i )(1− p∗2i ) · · · (1− p∗mi ) = 1−
m∏
j=1

(1− p∗ji ) (2)

We analyze the trend of ps as the number of adversarial examples, m, increases.

ps = 1− (1− p∗1i )(1− p∗2i ) · · · (1− p∗mi )

≥ 1− (1− p∗min)(1− p∗min) · · · (1− p∗min) = 1− (1− p∗min)
m (3)

As m increases, the probability (1− p∗min)
m decreases and approaches 0. Conversely, the probability

1 − (1 − p∗min)
m increases and approaches 1. Since ps is a probability, it must satisfy 0 ≤ ps ≤ 1

(Kolmogoroff, 1933). Combining this result with equation (3), we derive the following formula:

1− (1− p∗min)
m ≤ ps ≤ 1 (4)

As m increases towards infinity, equation (4) undergoes the following changes:

lim
m→∞

1− (1− p∗min)
m = 1, then 1 ≤ ps ≤ 1,which means ps = 1. (5)

Equation (5) demonstrates that as m approaches infinity, the probability of a successful attack reaches
100%. In contrast, (3) illustrates that the attack success rate increases gradually with the growth of m.
These findings emphasize the necessity and importance of generating multiple adversarial candidate
examples.

Remark The previous analysis assumes independence. In Section T of the appendix, we examine
the case of non-independence. We find that, in the non-independent scenario, using more methods to
generate adversarial examples increases the likelihood of successfully attacking the victim model.

4.5 TRANSFERABILITY-ORIENTED ADVERSARIAL EXAMPLE SELECTION

In Section 4.4, we demonstrate that generating additional adversarial candidate examples increases
the likelihood of finding a successful adversarial example, which can then effectively attack the
victim model. This section focuses on the process of selecting the most likely successful adversarial
example from the generated candidates. We explore the criteria and methods used to identify the
most effective example.

We first select the adversarial candidate with the highest transferability as the final example. To
evaluate transferability, we train multiple substitute models and count the number of successful
attacks against them. Ultimately, we choose the adversarial candidate that successfully attacks the
most substitute models as the final adversarial example. The detailed steps are presented as follows: ❶
Training Multiple Substitute Models: We randomly sample 80% of the 100 auxiliary text-cluster la-
bel pairs to form the training set for a new substitute model. This process is repeated w times, yielding
w substitute models, denoted as f sub

1 , f sub
2 , . . . , f sub

w . ❷ Calculating the Transferability Score: For
each victim text xk, we generate m adversarial candidate examples, denoted as {x∗1

k , x∗2
k , . . . , x∗m

k }.
The transferability score for x∗j

k is calculated as follows:

6
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Ikij =

 1, f sub
i

(
x∗j
k

)
̸= f sub

i (xk);

0, f sub
i

(
x∗j
k

)
= f sub

i (xk);
Ikj =

w∑
i=1

Ikij j = argmax
j

Ikj . (6)

where f sub
i

(
x∗j
k

)
represents the output label of x∗j

k is produced by the substitute model f sub
i . Sim-

ilarly, f sub
i (xk) is the output label of xk generated by the same model. If f sub

i

(
x∗j
k

)
̸= f sub

i (xk),

then x∗j
k successfully attacks the substitute model f sub

i . Therefore, Ikj measures the number of
substitute models that x∗j

k successfully attacks. The adversarial example that successfully attacks
the largest number of substitute models is then selected as the final adversarial example. In other
words, adversarial examples capable of attacking multiple substitute models demonstrate greater
transferability and higher probability of successfully attacking the victim model fv .

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Dataset: We evaluate the effectiveness of our method using the SST5 and Emotion datasets. The
Emotion dataset, containing six emotions, is sourced from Twitter. The SST5 dataset, used for
sentiment analysis, includes five categories from movie reviews. Detailed statistics are provided
in Appendix F, Table 7. Baselines: Since no prior black-box text adversarial attack focuses on
multi-task scenarios, we select traditional textual attack methods. For text classification, we use
BAE (Garg & Ramakrishnan, 2020), FD (Papernot et al., 2016), Hotflip (Ebrahimi et al., 2018b),
SememePSO (Zang et al., 2020), and TextBugger (Ren et al., 2019). For text translation, we select
Hotflip (Trans) (Ebrahimi et al., 2018b), kNN (Michel et al., 2019), Morphin (Tan et al., 2020),
RA (Zou et al., 2019), Seq2Sick (Cheng et al., 2020), and TransFool (Sadrizadeh et al., 2023). CEMA
operates with substantially fewer queries. For a fair comparison, we limit all baseline methods to
30 final queries when attacking the target text. Preliminary details about these methods are listed in
Tables 9a and 9b in Appendix H. Metrics: We use the following metrics to evaluate our method: ❶
ASR (Attack Success Rate): A higher ASR indicates a more effective attack. ❷ Average Query:
Fewer queries suggest a better attack method. ❸ BLEU (Bilingual Evaluation Understudy): A
lower BLEU score signifies a more successful disruption of translation quality.

5.2 COMPARISON OF RESULTS BETWEEN CEMA AND BASELINES

Given the absence of multi-task adversarial methods for black-box outputs in translation tasks, we
compare the CEMA method with existing adversarial techniques for text translation and classification.
The results, presented in Table 1 and Table 2, demonstrate that CEMA achieves state-of-the-art
(SOTA) performance in the SST5 and Emotion datasets across the victim models A, B, and C. For
each dataset, 100 queries are made per task, with SST5 containing 2, 210 texts and Emotion
2, 000, averaging 0.045 and 0.05 queries per task, respectively. Remarkably, in this black-box,
low-access scenario, CEMA achieved an ASR of over 59% on classification tasks, with a maximum
of 80.80%. Furthermore, in translation tasks, CEMA’s BLEU score was below 0.16, outperforming
the second-best method by a considerable margin. CEMA also achieved SOTA results against the
victim model C (Baidu and Ali Translate) using only 100 auxiliary texts. As commercial translators
are closed-source, we compared the black-box attack algorithms Morphin and TransFool. CEMA
consistently outperformed the second-best attack algorithm, with BLEU scores below 0.35, using
just 100 queries.

5.3 THE IMPACT OF CLUSTER NUMBER

In CEMA, we use two clusters. To assess the impact of increasing the number of clusters, we
also conducted experiments with three and four clusters. As illustrated in Figure 2, increasing the
number of clusters reduces attack performance. When the number of clusters increased from 2 to 4,
the average ASR decreased from 58.83% and 64.55% to 46.20% and 52.10%, respectively, while
the average BLEU score increased from 0.16 and 0.18 to 0.41 and 0.32. Clearly, the best attack
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Table 1: The attack performance of CEMA. Text classification tasks use the ASR(%)↑ metric, while
text translation tasks use the BLEU↓ metric. Other adversarial attack methods can only be applied to
their specific tasks, whereas CEMA simultaneously attacks all tasks.

Dataset SST5 Emotion

Victim Model Victim Model A Victim Model B Victim Model A Victim Model B

Text Classification dis-sst5 (A) ro-sst5 (B) dis-sst5 (A) ro-sst5 (B)

Metric ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓

Bae 42.71 21.43 39.14 21.48 31.55 26.98 28.50 25.31
FD 25.20 12.56 22.30 9.71 47.10 29.88 20.75 12.09

Hotflip 41.50 11.52 29.03 11.74 46.85 9.80 41.65 10.14
PSO 45.14 11.04 41.50 12.38 46.05 8.92 44.95 8.94

TextBugger 30.36 31.46 20.85 30.32 35.10 11.41 29.40 11.37
Leap 32.55 9.75 30.07 9.54 26.30 7.01 15.50 6.93

CT-GAT 29.37 20.92 24.80 37.54 25.90 21.42 26.75 21.33
HQA 46.11 29.35 39.64 29.08 37.35 29.74 35.85 21.47

CEMA 73.57 0.045 75.66 0.045 80.80 0.05 60.40 0.05

Text Classification dis-emotion (A) ro-emotion (B) dis-emotion (A) ro-emotion (B)

Metric ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓ ASR(%)↑ Queries↓

Bae 39.81 27.33 14.65 28.06 32.25 21.84 32.95 21.83
FD 35.43 29.22 9.55 16.54 22.30 12.81 17.50 18.43

Hotflip 33.39 10.86 22.80 12.28 29.00 14.28 28.05 14.40
PSO 41.90 9.02 35.25 9.45 39.50 11.83 37.65 12.10

TextBugger 30.00 11.35 40.95 11.35 20.85 30.32 21.45 30.33
Leap 21.00 6.93 26.00 7.01 40.58 9.73 37.65 9.78

CT-GAT 39.32 21.36 33.45 21.49 28.10 26.06 30.85 25.34
HQA 37.76 21.44 31.95 29.44 37.40 22.44 36.40 23.16

CEMA 62.27 0.045 64.01 0.045 65.40 0.05 59.6 0.05

Text Translation opus-mt(en-zh) (A) t5-small(en-fr) (B) opus-mt(en-zh) (A) t5-small(en-fr) (B)

Metric BLEU↓ Queries↓ BLEU↓ Queries↓ BLEU↓ Queries↓ BLEU↓ Queries↓

Hot-trans 0.24 9.76 0.24 9.45 0.20 9.36 0.19 9.81
KNN 0.31 6.19 0.31 6.19 0.61 13.34 0.28 6.08

Morphin 0.30 6.79 0.37 11.1 0.27 5.06 0.22 3.84
RA 0.25 3.18 0.19 4.26 0.23 2.79 0.21 2.11

Seq2sick 0.38 4.45 0.46 6.05 0.62 7.09 0.29 4.05
TransFool 0.77 3.32 0.44 3.91 0.81 3.89 0.67 3.58

CEMA 0.14 0.045 0.18 0.045 0.15 0.05 0.23 0.05

Table 2: Attack performance of different methods on victim model C. Victim model C consists of
two commercial closed-source translation models, namely Alibaba Translate and Baidu Translate.

Data Victim Model C Baidu Translate (en-fr) (C) Ali Translate (en-zh) (C)

Methods BLEU↓ Queries↓ BLEU↓ Queries↓

Morphin 0.54 40.48 0.60 48.45
SST5 TransFool 0.51 23.53 0.59 31.20

CEMA 0.29 0.045 0.15 0.045

Morphin 0.40 27.79 0.55 12.70
Emotion TransFool 0.36 12.70 0.49 30.91

CEMA 0.35 0.05 0.29 0.05

performance is achieved when using two clusters. As discussed in Section 4.2, two clusters provide
the highest discriminative ability and optimal attack performance in the binary-class substitute model.

5.4 THE IMPACT OF CANDIDATE ADVERSARIAL EXAMPLE NUMBER

CEMA utilizes three attack methods: DWB, FD, and Textbugger. Each method generates three
adversarial examples for each victim text. To assess the impact of reducing the number of examples,
we conducted experiments using only Textbugger. As shown in Table 3, attack performance declines
as the number of adversarial examples decreases. This reduction occurs because a smaller adversarial
space leads to lower ASR and higher BLEU scores, consistent with the analysis in Appendix D.
When the number of attack algorithms increases from one to three, the average ASR rises by 30.39%,
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Table 3: Performance of CEMA under different number setting of candidate adversarial examples.

Data Example
Number

Victim Model A Victim Model B

dis-sst5 (A) dis-emoton (A) opumt(en-zh) (A) ro-sst5 (B) ro-emotion (B) t5-small(en-fr) (B)

ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓

SST5 3 73.57 62.27 0.14 75.66 64.01 0.18
1 50.42 29.23 0.30 43.79 24.73 0.35

Emotion 3 80.80 65.40 0.15 60.40 59.60 0.23
1 29.20 34.80 0.31 39.20 47.20 0.39

Table 4: Performance of CEMA under various clustering methods.

Data Clustering
Method

Victim Model A Victim Model B victiom Model C

dis-sst5 dis-emotion opus-mt
(en-zh) ro-sst5 ro-emotion t5-small

(en-fr)

Baidu
Translate

(en-fr)

Ali
Translate
(en-zh)

ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ BLEU↓ BLEU↓

Spectral 73.57 62.27 0.14 75.66 64.01 0.18 0.29 0.13
Kmeans 72.97 61.17 0.12 74.96 63.63 0.17 0.32 0.11SST5
BIRCH 74.27 62.77 0.09 73.26 60.57 0.15 0.23 0.16

Spectral 80.80 65.40 0.15 60.40 59.60 0.23 0.35 0.21
Kmeans 77.20 50.80 0.18 59.30 61.65 0.23 0.37 0.15Emotion
BIRCH 76.35 52.65 0.13 64.01 56.55 0.27 0.43 0.21

while the average BLEU score decreases by 0.16. These results suggest that increasing the number of
attack algorithms enhances overall attack performance.

5.5 THE IMPACT OF CLUSTERING METHODS

In CEMA, we use spectral clustering as the primary method. To assess the impact of different

Figure 2: The average ASR and BLUE
of different numbers of clusters. Fewer
clusters result in better attack perfor-
mance.

clustering techniques on experimental results, we also im-
plement K-means (Krishna & Murty, 1999) and BIRCH
clustering (Zhang et al., 1996). As shown in Figure 3 and
Table 4, the ASR in the classification task shows minimal
variation across clustering methods. In contrast, the BLEU
score in the translation task fluctuates more significantly,
but no consistent pattern emerges. No clustering method
consistently achieves SOTA performance across all scenar-
ios. The average ASR for Spectral, KMeans, and BIRCH
are 67.71%, 65.21%, and 65.05%, respectively, with av-
erage BLEU scores of 0.21, 0.20, and 0.21. Therefore, we
conclude that while clustering methods do influence attack
performance, their impact is largely random and does not
consistently favor one method over another.

5.6 THE IMPACT OF VECTORIZATION METHODS

Given that our multi-task framework includes a translation task, we use the multilingual mT5 (Xue,
2020) for text vectorization, along with the XLM-R (Conneau, 2019) model and one-hot encoding
(Rodrı́guez et al., 2018). One-hot encoding converts categorical data into binary vectors, where
each category is represented by a unique vector with a single 1 and all other elements set to 0. To
mitigate data leakage, we limit one-hot encoding to 100 samples from the additional dataset. As
shown in Figure 3 and Table 5, different vectorization methods have no significant impact on attack
performance in the classification task. In the translation task, while vectorization methods cause
fluctuations in attack results, these variations are irregular, and no single method consistently achieves
SOTA performance across all datasets and victim models. Specifically, the average ASR for the
mT5, XLM-R, and one-hot vectorization methods is 67.71%, 65.81%, and 67.72%, respectively,
while the average BLEU scores are 0.21, 0.22, and 0.22, respectively. Therefore, we conclude that
vectorization methods do not substantially influence attack performance.
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Table 5: Performance of CEMA under various vectorization methods.

Data Vectorization
Method

Victim Model A Victim Model B Victim Model C

dis-sst5 dis-emotion opus-mt
(en-zh) ro-sst5 ro-emotion t5-small

(en-fr)

Baidu
Translate

(en-fr)

Ali
Translate
(en-zh)

ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ BLEU↓ BLEU↓

mT5 73.57 62.27 0.14 75.66 64.01 0.18 0.29 0.13SST5
XLM-R 73.55 61.09 0.17 74.90 63.44 0.19 0.38 0.11
one-hot 73.57 61.24 0.11 75.09 62.90 0.13 0.23 0.15

mT5 80.80 65.40 0.15 60.40 59.60 0.23 0.35 0.21Emotion
XLM-R 81.05 64.95 0.19 53.80 53.75 0.19 0.37 0.16
one-hot 81.05 65.65 0.18 62.35 59.90 0.27 0.43 0.25

Figure 3: The average ASR and BLUE of CEMA under various clustering and vectorization methods.
Table 6: Zero-shot attack performance of CEMA.

Victim Model A Victim Model B Victim Model C

dis-sst5 dis-emotion opus-mt
(en-zh) (A) ro-sst5 (A) ro-emotion (A) t5-small

(en-fr)
Baidu Translate

(en-fr)
Ali Translate

(en-zh)

Victim
Data

Access
Data ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ BLEU↓ BLEU↓

SST5 SST5 73.57 62.27 0.14 75.66 64.01 0.18 0.29 0.15
Emotion 64.00 60.80 0.18 59.20 52.00 0.22 0.36 0.27

Emotion Emotion 80.80 65.40 0.15 60.40 59.60 0.23 0.35 0.29
SST5 66.40 36.00 0.21 48.80 46.40 0.36 0.44 0.42

5.7 ZERO-SHOT ATTACK OF CEMA

In this section, we evaluate CEMA’s effectiveness under more stringent conditions, where the attacker
can only access data related to the training set. Both the SST5 and Emotion datasets are related
to sentiment analysis but differ significantly in label space and distribution. To test this, we used
100 unlabeled texts from the Emotion validation set as auxiliary data for the SST5 attack, and vice
versa. The results in Table 6 show that, despite limited auxiliary data and significant distribution
differences, CEMA achieves a 66.40% attack success rate and a BLEU score of 0.27. This suggests
that an attacker needs only partial knowledge of the training data and can collect relevant data from
the Internet to execute a successful attack on the multi-task system using CEMA.

6 CONCLUSION

In this paper, we present a more practical multi-task learning scenario where attackers can only access
final black-box outputs through limited queries. To address this challenge, we propose the CEMA
method, which achieves state-of-the-art (SOTA) performance in experimental evaluations with just
100 queries and black-box outputs. Furthermore, CEMA can incorporate any text classification attack
algorithm, and its performance improves as the number of attack algorithms increases. In the future,
we aim to extend CEMA to multi-task models across other modalities.
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This appendix includes our supplementary materials as follows:

- Related Work in Section A.

- Derivation of the maximum entropy distribution in Section B

- More Details of Theorem and Proof in Section C

- More Details of substitute model architecture in Section D

- More Details of Substitute Model Training in Section E

- More Details of Data in Section F

- Url of victim model used in Section G

- Details of Baselines in Section H

- Performance Evaluation on Six Downstream Tasks in Section I

- Performance Evaluation on Summary and Text to Image Tasks in Section J

- Evaluation on Few-Shot Learning and Additional Model Queries in Section K

- Revisit the Transfer Attack in Section L

- Evaluation with Sim and Total-Query Metrics in Section M

- Experiment Results with More Text Classification Baselines in Section N

- Performance with Transfer Attacks in Section O

- More Details of Defense Method in Section P

- Experiment Result of Random Shuffle in Section Q

- Definition of Text Classification Adversarial Examples and NMT Adversarial Examples in Section
R

- Experiment Result for Verifying Independence in Section S

- Supplementary Explanation for the Non-Independent Case in Section Candidate Adversarial Example
Generation in Section T

- More Details of MMMTL in Section U

A RELATED WORK

A.1 TEXT CLASSIFICATION ADVERSARIAL ATTACK

In historical textual adversarial research, the predominant methods revolve around scenarios with
singular output results (Waghela et al., 2024; Han et al., 2024; Zhu et al., 2024; Kang et al., 2024).
These studies focus on the techniques for morphing the original text into adversarial counterparts,
including the manipulation of pivotal chars (Ebrahimi et al., 2018b; Gil et al., 2019; Ebrahimi et al.,
2018a; Gao et al., 2018; Ren et al., 2019; Jin et al., 2020; Li et al., 2019), words (Wang et al.,
2022; Guo et al., 2021; Meng & Wattenhofer, 2020; Sato et al., 2018; Cheng et al., 2019; Lee et al.,
2022; Li et al., 2020a; Hu et al., 2024; Liu et al., 2024; 2023; Li et al., 2019) and sentence. These
methods are segmented into three distinct categories based on the response from the target model,
encompassing white-box attacks, soft-label black-box attacks, and hard-label black-box attacks. In
white-box attacks, adversaries gain full access to all relevant information about the target model.
The Hotflip (Ebrahimi et al., 2018b) sequentially replaces crucial words based on their calculated
importance scores. The FD method (Papernot et al., 2016) constructs adversarial examples depending
on the model’s gradient information. In soft-label black-box attacks, numerous methods are geared
towards disturbing the words in accordance with output probabilities (Lee et al., 2022; Maheshwary
et al., 2021b; Wang et al., 2021a; Li et al., 2020a). Bert-ATTACK (Li et al., 2020a) focuses on word
attacks using a refined Bert model. SememePSO (Zang et al., 2020) enhances the search landscape
to construct adversarial examples. Bae (Garg & Ramakrishnan, 2020) is an attack strategy centered
on BERT to replace words. Simultaneously, the DeepWordBug (DWB) method (Gao et al., 2018)
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prioritizes the words for assault based on the output probabilities. Hard-label adversarial attacks
present a more realistic scenario. HLGA (Maheshwary et al., 2021a) employs stochastic starting
words and employs a genetic algorithm to craft adversarial examples. HQA-attack (Liu et al., 2024)
starts by maximally restoring original words, reducing disruption. It then uses synonyms of remaining
altered words to enhance the adversarial example.

A.2 NEURAL MACHINE TRANSLATION ADVERSARIAL ATTACK

Neural Machine Translation (NMT) models, which automatically convert input sentences into trans-
lated output, have achieved remarkable results by employing deep neural networks like Transformers
(Bahdanau, 2014; Vaswani, 2017). These models are now extensively used across various applica-
tions due to their high performance. However, erroneous outputs generated by NMT models can
lead to significant risks, particularly in security-sensitive contexts. Recent research has explored
adversarial attacks targeting NMT models to address these concerns. Character-level NMT models
are highly vulnerable to character manipulations such as typos in a block-box setting (Belinkov
& Bisk, 2017; Ebrahimi et al., 2018a). as well as pushing/removing words from the translation.
However, character manipulations and typos are easily detected by humans or review strategies.
Hence, most adversarial attacks against NLP and NMT systems use a word replacement strategy
instead. Seq2sick (Cheng et al., 2020) proposes a projected gradient method combined with group
lasso and gradient regularization, conducting non-overlapping attacks and targeted keyword attacks.
Similarly, Transfool (Sadrizadeh et al., 2023) also uses the gradient projection method, defining
a new optimization problem and linguistic constraints to compute semantic-preserving and fluent
attacks against NMT models. Morphin (Tan et al., 2020) generates plausible and semantically similar
adversaries by perturbing the inflections in clean examples to investigate the robustness of NLP
models to inflectional perturbation. kNN (Michel et al., 2019)is a white-box untargeted attack against
NMT models that substitutes some words with their neighbors in the embedding space. RG (Zou
et al., 2019)investigates the issue by generating adversarial examples through a new paradigm based
on reinforcement learning, which generates more reasonable tokens and secures semantic constraints.

A.3 MUTIL-TASK ADVERSARIAL ATTACK

A Multi-task Adversarial Attack is an adversarial machine learning strategy designed to generate
examples that deceive multiple models or systems simultaneously (Guo et al., 2020; Ghamizi et al.,
2022), rather than just one. As far as we know, there is currently no related work on multi-task
adversarial attacks in the field of text. In other fields, MTA (Guo et al., 2020) is designed to generate
adversarial perturbations for all three pre-trained classifiers simultaneously by leveraging shared
knowledge among tasks. There is an attack method (Sobh et al., 2021) that targets visual perception
in autonomous driving, which is applied in a wide variety of multi-task visual perception deep
networks in distance estimation, semantic segmentation, motion detection, and object detection.
MTADV (Wang et al., 2024) is a multitask adversarial attack against facial authentication, which is
effective against various facial data sets.

A.4 TRANSFER ATTACK

Transfer attacks leverage adversarial examples to target different models without requiring direct
access, posing a significant security threat in black-box scenarios (Papernot et al., 2017; Dong et al.,
2018). Then, in the absence of a substitute model, several studies demonstrate that auxiliary data can
also facilitate successful attacks through training a substitute model and leveraging transfer attacks (Li
et al., 2020c; Sun et al., 2022). Additionally, more effective loss functions have been proposed to
train substitute models (Wang et al., 2021b; Li et al., 2020b; Naseer et al., 2019; Richards et al., 2021;
Huan et al., 2020), as well as techniques to refine substitute models (Xiaosen et al., 2023; Yuan et al.,
2021). Notably, several existing studies increase the amount of data available to attackers (Mahmood
et al., 2021a) or generate synthetic data (Zhou et al., 2020), significantly advancing the development
of transfer attacks. Meanwhile, Mahmood et al. (2021b) improve the transferability and robustness of
Vision Transformers to adversarial examples
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B DERIVATION OF THE MAXIMUM ENTROPY DISTRIBUTION

The aim of this section is to derive the probability distribution pi that maximizes entropy under
specific constraints. This derivation follows from the Maximum Entropy Principle, which asserts
that, given incomplete information, the probability distribution that best represents the current state
of knowledge is the one with the maximum entropy.

B.1 DEFINITION OF ENTROPY

The Shannon entropy for a discrete probability distribution is defined as:

S(p) = −
∑
i

pi log pi (7)

where pi represents the probability of state i, subject to the constraint that the probabilities sum to
one:

∑
i

pi = 1 (8)

C THEOREM AND PROOF

Theorem 1. For a discrete random variable X with k possible outcomes, the entropy H(X) is
maximized when X follows a uniform distribution.

Proof. Let X be a discrete random variable with probability distribution P = {p1, p2, . . . , pk},
where the entropy H(X) is defined as

H(X) = −
k∑

i=1

pi log pi. (9)

Our objective is to find the distribution P that maximizes H(X), subject to the constraints that∑k
i=1 pi = 1 and pi ≥ 0 for all i.

We apply the method of Lagrange multipliers, constructing the function

L = −
k∑

i=1

pi log pi + λ

(
k∑

i=1

pi − 1

)
, (10)

where λ is a Lagrange multiplier. Taking the partial derivative of L with respect to each pi and setting
it to zero yields

∂L
∂pi

= −(log pi + 1) + λ = 0. (11)

Solving this equation, we find that
log pi = λ− 1, (12)

which implies that all pi are equal.

Using the normalization constraint
∑k

i=1 pi = 1, we deduce that pi = 1
k for all i. Thus, the entropy

H(X) is maximized when X follows a uniform distribution.

Therefore, we apply the clustering process for a limited time, and the clustering function is selected
based on the results that most closely approximate a uniform distribution. This implies that the
number of texts in each cluster is close to n

k , where n is the total number of auxiliary texts and k is
the number of clusters.
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D SUBSTITUTE MODEL

D.1 SUBSTITUTE MODEL ARCHITECTURE

Our substitute model comprises 12 transformer blocks, each with 768 hidden units and 12 self-
attention heads. Each transformer block consists of the following substructures:

• Self-Attention Layer: The hidden size of the self-attention layer is 768.

• Position-wise Feed-Forward Network: The network first projects the output of the attention
layer to a 3072-dimensional space using a fully connected layer, followed by a ReLU
activation for non-linearity, and finally projects the 3072-dimensional space back to a
768-dimensional space via another fully connected layer.

• Layer Normalization and Residual Connection:

– Layer Normalization: Applied to the output of each sub-layer to stabilize training.
– Residual Connection: Adds the normalized output to the input of the sub-layer.

D.2 SUBSTITUTE MODEL TRAINING

We provide a detailed description of the training of the substitute model with the transformer-based
architecture. This substitute model consists of 12 hidden layers with a dimensionality of 768. The
activation function “GELU” is used, The dropout rate is 0.4. The training process is optimized with
the AdamW optimizer (Yao et al., 2021), with batch size set to 64 and learning rate set to 6e − 3,
over 5 epochs.

E COMPUTATION OVERHEAD OF THE SUBSTITUTE MODEL TRAINING

We train five substitute models on a server equipped with a 24 GB NVIDIA 3090 GPU. Each model
is trained over two epochs using a dataset containing 100 samples. The training time for a single
model is approximately 4 minutes, and the size of each trained model is 418 MB.

F DETAILS OF DATA

Table 7: The statistics of datasets.

Dataset Train Test classes Labels name

SST5 8544 2210 5 Very positive, Positive, Neutral, Negative, Very negative
Emotion 16000 2000 6 Sadness, Joy, Love, Anger, Fear, Surprise

G THE URL OF THE VICTIM MODELS

Table 8: The URL of the Victim Models

Model Url

dis-sst5(A) https://huggingface.co/SetFit/distilbert-base-uncased__sst5__all-train
dis-emotion(A) https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion

opus-mt(en-zh)(A) https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
ro-sst5(B) https://huggingface.co/Unso/roberta-large-finetuned-sst5

ro-emotion(B) https://huggingface.co/SamLowe/roberta-base-go_emotions
t5-small(en-fr)(B) https://huggingface.co/Alexle/T5-small-en-fr

Baidu Translate (en-fr) (C) https://api.fanyi.baidu.com/
Ali Translate (en-zh) (C) https://translate.alibaba.com/
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H DETAILS OF BASELINES

Table 9: The details of the methods employed in the baseline comparisons. The Perturbed Level
indicates the target of the attack methods, where “word” denotes the specific words targeted for
perturbation, and “char” refers to the characters within a word that are altered by the attack method.

(a) Information on the classification attack method used as the baseline.

Methods Perturbed Level Gradient Soft-labels Hard-labels Knowledge

Bae Word % " " black-box
FD Char " " " white-box

Hotflip Char " " " white-box
PSO Word % " " black-box

TextBugger Char+Word " " " white-box
Leap Word % " " black-box

CT-GAT Word % " " black-box
HQA Word % " " black-box

CEMA Char+Word % % " black-box

(b) Information on the translation attack method used as the baseline.

Methods Perturbed Level Gradient Soft-labels Hard-labels Knowledge

Hot-trans Char " % % white-box
kNN Word " % % white-box

Morphin Word % % " black-box
RA Word " % % white-box

Seq2Sick Word " % " white-box
TransFool Word % % " black-box

CEMA Char+Word % % " black-box

I PERFORMANCE EVALUATION ON SIX DOWNSTREAM TASKS

Table 10: The results of six tasks

ASR(%) BLEU
Data dis-emotion ro-emotion dis-sst5 ro-sst5 opus-mt t5-small
SST5 75.91 74.90 67.04 62.82 0.18 0.22

Emotion 83.25 66.85 71.35 68.40 0.17 0.27

We increase the number of tasks to six downstream tasks, consisting of four classification tasks and
two translation tasks, with the corresponding experimental results presented in Table 10. The victim
models include dis-emotion, ro-emotion, dis-sst5, ro-sst5, opus-mt, and t5-small. We observe that
CEMA achieves an ASR of over 60% on both the SST5 and Emotion datasets, with all BLEU scores
below 0.3. These results suggest that the CEMA method can be effectively extended to multi-task
learning systems with a broader range of tasks.
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J PERFORMANCE EVALUATION ON SUMMARY AND TEXT TO IMAGE TASKS

Table 11: The results of translation, summary, and text to image tasks.

Data Task Metric Score

Pokemon
Translation BLEU 0.24
Summary ROUGE Drop Percentage 47%

Text to Image CLIP Drop Percentage 56%

We use the Pokemon dataset as the victim text, with the downstream tasks being translation, summa-
rization, and text-to-image generation. The corresponding victim models are t5-small, distilbart-cnn,
and Stable Diffusion V2, respectively. BLEU, ROUGE Drop Percentage, and CLIP Drop Percentage
are selected as evaluation metrics for the attack. The experimental results, presented in Table 11,
indicate that CEMA demonstrates effective attack performance across all tasks, including translation,
summarization, and text-to-image generation. These results suggest that CEMA can be effectively
extended to other tasks.

K EVALUATION ON FEW-SHOT LEARNING AND ADDITIONAL MODEL
QUERIES

Influenced by these works (Mahmood et al., 2021a; ?), we investigate the attack performance of
CEMA under both higher and lower query counts in this section. We set the number of queries and
the amount of available training data to 10, 50, 100, 1000, and 2000, respectively. The experimental
results are presented in Table 12. Our findings indicate that the attack effectiveness increases with
the number of queries. Notably, even with just 10 queries, CEMA achieves an attack success rate
exceeding 30%.

Table 12: The results of few-shot and additional queries

Model Victim Model A Victim Model B

dis-sst5 dis-emotion opus-mt dis-sst5 dis-emotion opus-mt ro-sst5 ro-emotion t5-small ro-sst5 ro-emotion t5-small

Data SST5 Emotion SST5 Emotion

Shot-Size ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓ ASR(%)↑ ASR(%)↑ BLEU↓

2000 87.56 83.27 0.1 91.7 81.45 0.1 86.46 78.47 0.15 67.45 69.55 0.16
1000 83.04 76.76 0.11 88.25 76.15 0.12 84.16 73.49 0.16 66.35 67.05 0.17
100 73.57 62.27 0.14 80.8 65.4 0.15 75.66 64.01 0.18 60.4 59.6 0.23
50 63.71 45.64 0.15 71.05 53.55 0.18 71.69 59.38 0.19 58.65 57.9 0.24
10 38.38 32.06 0.19 43.35 37.7 0.21 59.28 46.51 0.21 46.15 41.75 0.27

L REVISIT THE TRANSFER ATTACK

Transfer attacks involve an attacker generating adversarial examples using a substitute model, which
are then successfully applied to attack multiple target models. These target models may differ in
architecture or training data from the substitute model. This type of attack exploits the shared
characteristics of adversarial examples across models, allowing these samples to transfer and affect
multiple models. The success of a transfer attack typically depends on the degree of similarity
between the substitute model and the target model. Consequently, even if the attacker cannot access
the internal information of the target model, they can still use adversarial examples generated from
the substitute model to successfully attack the target model.
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M EVALUATION WITH SIM AND TOTAL-QUERY METRICS

Table 13: Experiment results with similarity and total-query metrics for models A and B

Dataset SST5 Emotion

Victim Model Victim Model A Victim Model B Victim Model A Victim Model B

Text Classification dis-sst5 (A) ro-sst5 (B) dis-sst5 (A) ro-sst5 (B)

Metric Sim↑ Total Qry↓ Sim↑ Total Qry↓ Sim↑ Total Qry↓ Sim↑ Total Qry↓

Bae 0.888 47360 0.887 47471 0.925 59626 0.924 55935
FD 0.939 27758 0.982 21459 0.948 66035 0.979 26719

Hotflip 0.951 25459 0.951 25945 0.942 21658 0.952 22409
PSO 0.954 24398 0.954 27360 0.945 19713 0.964 19757

TextBugger 0.978 69527 0.978 67007 0.981 25216 0.981 25128
Leap 0.953 21548 0.944 21083 0.934 15492 0.939 15315

CT-GAT 0.939 46233 0.926 82963 0.916 47338 0.927 47139
HQA 0.936 64864 0.929 64267 0.934 65725 0.925 47449

CEMA 0.934 100 0.927 100 0.926 100 0.931 100

Text Classification dis-emotion (A) ro-emotion (B) dis-emotion (A) ro-emotion (B)

Metric Sim↑ Total Qry↓ Sim↑ Total Qry↓ Sim↑ Total Qry↓ Sim↑ Total Qry↓

Bae 0.894 60399 0.896 62013 0.926 48266 0.923 48244
FD 0.921 64576 0.934 36553 0.932 28310 0.982 40730

Hotflip 0.943 24001 0.946 27139 0.949 31559 0.949 31824
PSO 0.968 19934 0.940 20885 0.952 26144 0.951 26741

TextBugger 0.972 25084 0.986 25084 0.978 67007 0.978 67029
Leap 0.968 15315 0.947 15492 0.926 21503 0.911 21614

CT-GAT 0.927 47206 0.924 47493 0.904 57593 0.906 56001
HQA 0.945 47382 0.931 65062 0.912 49592 0.911 51184

CEMA 0.934 100 0.927 100 0.926 100 0.931 100

Text Translation opus-mt(en-zh) (A) t5-small(en-fr) (B) opus-mt(en-zh) (A) t5-small(en-fr) (B)

Metric Sim↑ Total Qry↓ Sim↑ Total Qry↓ Sim↑ Total Qry↓ Sim↑ Total Qry↓

Hot-trans 0.846 21570 0.842 20885 0.859 20686 0.854 21680
KNN 0.873 13680 0.883 13680 0.935 29481 0.906 13437

Morphin 0.894 15006 0.907 24531 0.869 11183 0.887 8486
RA 0.872 7028 0.865 9415 0.852 6166 0.865 4663

Seq2sick 0.881 9835 0.926 13371 0.945 15669 0.892 8951
TransFool 0.949 7337 0.894 8641 0.962 8597 0.924 7912

CEMA 0.934 100 0.927 100 0.926 100 0.931 100

Table 14: Experiment results with similarity and total-query metrics for models A and B

Data Victim Model C Baidu Translate (en-fr) (C) Ali Translate (en-zh) (C)

Methods Sim↑ Total Qry↓ Sim↑ Total Qry↓

Morphin 0.904 89461 0.931 107075
SST5 TransFool 0.921 52001 0.928 68952

CEMA 0.934 100 0.934 100

Morphin 0.897 61416 0.915 28067
Emotion TransFool 0.903 28067 0.923 68311

CEMA 0.931 100 0.931 100

We introduce two novel evaluation metrics: the similarity between adversarial examples and the
original text, and the number of queries to the victim model. Specifically, sim represents the similarity
between an adversarial example and the original text, while Total Qry indicates the number of queries
made to the victim model. The results are presented in Tables 13 and 14. Our results show that
CEMA does not achieve state-of-the-art (SOTA) performance in every scenario. However, in those
scenarios where it does not reach SOTA, the similarity remains high. Furthermore, CEMA performs
attacks in a black-box setting, where only 100 queries to the victim model are allowed. Given these
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stringent attack conditions, we argue that a slight sacrifice in similarity is acceptable in exchange for
achieving SOTA performance in the ASR, BLEU, and Query metrics.

N THE RESULTS WITH MORE TEXT CLASSIFICATION BASELINES

We incorporate additional methods for adversarial attacks in text classification, such as FGPM,
Genetic, and PWWS. The experimental results are presented in Table 15. Compared to these three
methods, CEMA also achieves state-of-the-art (SOTA) attack results.

Table 15: The Results of more text classification attack methods

Data Method dis-sst5 ro-sst5 dis-emotion ro-emotion
ASR(%)↑ Query ASR(%)↑ Query ASR(%)↑ Query ASR(%)↑ Query

SST5

FGPM 30.57 29.31 29.52 30.95 36.49 31.56 30.56 30.54
Genetic 38.46 20.35 32.31 17.50 28.53 16.49 23.58 24.24
PWWS 33.49 18.93 31.27 23.17 34.53 21.30 42.94 28.36
CEMA 73.57 0.045 75.66 0.045 62.27 0.045 64.01 0.045

Emotion

FGPM 30.57 29.31 29.52 30.95 36.49 31.56 30.56 30.54
Genetic 38.46 20.35 32.31 17.50 28.53 16.49 23.58 24.24
PWWS 33.49 18.93 31.27 23.17 34.53 21.30 42.94 28.36
CEMA 80.80 0.05 60.40 0.05 65.40 0.05 59.60 0.05

O PERFORMANCE WITH TRANSFER ATTACKS

Table 16: The results of transfer attack and CEMA

Dataset SST5 Emotion
Victim Model Victim Model A Victim Model B Victim Model A Victim Model B

Text Classification dis-sst5 ro-sst5 dis-sst5 ro-sst5
Metric ASR(%)↑ ASR(%)↑ ASR(%)↑ ASR(%)↑

Bae 29.73 26.73 17.65 16.7
FD 8.48 12.07 12.05 9.5

Hotflip 16.66 12.31 14.85 15.65
PSO 21.88 19.16 15.55 15.9

TextBugger 19.86 12.47 22.4 8.5
Leap 14.57 27.23 15.5 9.65

CT-GAT 12.33 17.16 9.65 13.65
HQA 24.70 16.50 13.85 15.25

CEMA 73.57 75.66 80.8 64.4
Text Classification dis-emotion ro-emotion dis-emotion ro-emotion

Metric ASR(%)↑ ASR(%)↑ ASR(%)↑ ASR(%)↑
Bae 29.49 5.77 16.75 12.05
FD 19.56 68.6 9.15 7.5

Hotflip 19.11 14.84 10.8 10.65
PSO 29.86 24.34 19.9 18.55

TextBugger 16.89 22.89 10.95 10.3
Leap 16.5 14.11 22.05 10.85

CT-GAT 19.92 24.15 13.85 7.8
HQA 17.88 18.44 18.46 17.7

CEMA 62.27 64.01 65.40 59.6
Text Translation opus-mt t5-samll opus-mt t5-samll

Metric BLEU↓ BLEU↓ BLEU↓ BLEU↓
Hot-trans 0.32 0.35 0.36 0.33

KNN 0.43 0.40 0.81 0.44
Morphin 0.46 0.50 0.39 0.42

RA 0.40 0.32 0.56 0.47
Seq2scik 0.50 0.57 0.87 0.53
TransFoll 0.94 0.58 0.93 0.87
CEMA 0.14 0.18 0.15 0.23
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We use the sst5-setfit-model and bert-emotion models as substitute models
for the SST5 and Emotion datasets, respectively. The model URLs for bert-sst5 and
bert-emotion are https://huggingface.co/addy88/sst5-setfit-model and
https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion,
respectively. Additionally, we select t5-base as the substitute model for the translation task,
with the model available at https://huggingface.co/google-t5/t5-base. We apply
various attack algorithms to generate adversarial samples for each model, and then use these
adversarial samples to attack the target model. The experimental results, shown in Table 16, indicate
that CEMA achieves state-of-the-art (SOTA) attack results compared to transfer attacks.

P DEFENSE METHOD

We initiate an extensive exploration of defensive strategies to counter CEMA. In practical systems,
we thoroughly investigate various defense mechanisms, including train-free adjustments(Preceding
Language Modifier) and adversarial training.

P.1 PRECEDING LANGUAGE MODIFIER

The victim models used in our study are after-trained models sourced from the Huggingface website,
Ali Translator, and Baidu Translator. Since the training details of these pre-trained models are not
publicly available, re-training them using adversarial training is infeasible. Consequently, we adopt
training-free defense methods. Specifically, we implement the same approach proposed by (Wang
et al., 2023) and apply prompt learning techniques to large language models (LLMs) to mitigate
adversarial text inputs. For this, we provide CoEdIT-XXL (a LLM used for correcting text errors).
The prompt is as follows: “Please revise the text for grammatical errors, improve the spelling,
grammar, clarity, concision, and overall readability.” The results are presented in Table 20.

“w/o” indicates the absence of a defense method, whereas “w” denotes the use of the CoEdIT-XXL
model as a modifier for defense. Even after applying defense mechanisms using large language
models, CEMA’s attack effectiveness decreases but still maintains a significant level of performance.

Table 17: The results of Preceding Language Modifier

Victim Model Dataset Metric w/o w

Victim A

SST5
dis-sst5 ASR(%)↑ 73.57 40.52

dis-emotion ASR(%)↑ 62.27 36.38
opus-mt BLEU↓ 0.14 0.38

Emotion
dis-sst5 ASR(%)↑ 80.80 32.75

dis-emotion ASR(%)↑ 65.40 30.41
opus-mt BLEU↓ 0.15 0.41

Victim B

SST5
ro-sst5 ASR(%)↑ 75.66 27.62

ro-emotion ASR(%)↑ 64.01 28.80
t5-small BLEU↓ 0.18 0.24

Emotion
ro-sst5 ASR(%)↑ 60.40 31.15

ro-emotion ASR(%)↑ 59.60 33.25
t5-small BLEU↓ 0.23 0.53

Victim C
SST5 Baidu Translate BLEU↓ 0.29 0.57

Ali Translate BLEU↓ 0.15 0.49

Emotion Baidu Translate BLEU↓ 0.35 0.72
Ali Translate BLEU↓ 0.29 0.53

P.2 ADVERSARIAL TRAINING

We train four classification models as victim models and conduct adversarial training to evaluate the
impact of adversarial training on CEMA’s attack effectiveness. All four models are based on the
BERT architecture and are labeled Bert1, Bert2, Bert3, and Bert4. Specifically, Bert1 and Bert3 are
trained on the SST5 dataset, while Bert2 and Bert4 are trained on the Emotion dataset. The results
are presented in Table 18. “w/o” indicates the absence of adversarial training, while “w” represents
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the application of adversarial training. Although adversarial training reduces attack effectiveness,
CEMA still demonstrates considerable performance.

Table 18: The results of Preceding Language Modifier

Data Model W/O W

SST5 Bert1 76.27 31.31
Bert2 79.81 28.94

Emotion Bert3 76.35 35.65
Bert4 71.50 26.15

Q THE RESULTS OF RANDOM SHUFFLE

We employ DWB and TextFooler as attack methods for CEMA, allowing them to shuffle between
two models during querying and attack phases (Mahmood et al., 2021b). The experimental results,
presented in Table 19, demonstrate that Random Shuffle reduces CEMA’s attack effectiveness.
Nevertheless, CEMA still maintains a reasonably effective level of attack performance under the
Random Shuffle defense.

Table 19: The Results of Random Shuffle

Victim Model Dataset Metric w/o w

Victim A

SST5
dis-sst5 ASR(%)↑ 50.58 21.53

dis-emotion ASR(%)↑ 43.02 21.61
opus-mt BLEU↓ 0.17 0.28

Emotion
dis-sst5 ASR(%)↑ 68.45 37.50

dis-emotion ASR(%)↑ 40.25 23.20
opus-mt BLEU↓ 0.19 0.36

Victim B

SST5
ro-sst5 ASR(%)↑ 58.67 32.67

ro-emotion ASR(%)↑ 55.32 35.64
t5-small BLEU↓ 0.23 0.44

Emotion
ro-sst5 ASR(%)↑ 55.10 39.15

ro-emotion ASR(%)↑ 41.40 21.85
t5-small BLEU↓ 0.28 0.51

R DEFINITION OF TEXT CLASSIFICATION ADVERSARIAL EXAMPLES AND
NMT ADVERSARIAL EXAMPLES

R.1 DEFINITION OF NMT ADVERSARIAL EXAMPLES

We define the source language space as X and the target language space as Y , examining two NMT
systems: the source-to-target model Mx→y, which maps X to Y to maximize P (yref | x), and the
target-to-source model My→x, which performs the reverse mapping. After training, these models can
reconstruct original sentences as x̂ = g(f(x)). We propose black-box adversarial testing for NMT
using auxiliary data by selecting test sentences from T ⊂ X and generating adversarial cases δ ∈ ∆
to perturb inputs x′ = x+ δ such that f(x′) diverges significantly from f(x).

NMT Adversarial Example: An NMT adversarial example is a sentence in

A = {x′ ∈ X | ∃x ∈ T } ,
here ∥x′ − x∥ < ϵ ∧ St (y, yref) ≥ γ ∧ St (y

′, yref) < γ′ (13)

where function f represents the NMT model. The variables x and x′ represent the original text
and the adversarial test case, respectively, while y and y′ stand for their respective translations. In
detail, y = f(x) and y′ = f(x′). The function St(·, ·) gauges the similarity between two sentences.
Additionally, γ and γ′ denote thresholds for acceptable translation quality. Translation quality is
deemed unacceptable if γ′ drops below γ.
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R.2 DEFINITION OF TEXT CLASSIFICATION ADVERSARIAL EXAMPLES

Definition of Text Classification Adversarial Examples: Let X = {x1, x2, . . . , xn} denote a set
of text inputs, where each xi is a text document (e.g., sentence or paragraph). Let f(·) represent a
text classification model, where:

f : X → Y

is a mapping from the input space X to the label space Y , with Y = {y1, y2, . . . , ym} representing
the set of possible class labels (e.g., positive, negative, neutral).

Given an input x ∈ X and its corresponding true label ytrue = f(x), an adversarial example x̂ is
a perturbed version of the input x that is intentionally crafted to cause the model to misclassify it,
while remaining perceptually and semantically similar to the original text. Formally, an adversarial
example is defined as:

x̂ = x+ δ

where δ is a small perturbation that satisfies:

∥δ∥ ≤ ϵ

Here, ∥δ∥ represents the magnitude of the perturbation (e.g., measured in terms of the number of word
substitutions or sentence modifications), and ϵ is a threshold that bounds the maximum allowable
perturbation.

Additionally, we impose a semantic similarity constraint, ensuring that the perturbation δ does not
alter the meaning of the input significantly. This is formalized as:

Sim(x, x̂) ≤ γ

where Sim(x, x̂) denotes a semantic similarity measure (such as cosine similarity) between the origi-
nal input x and the adversarial example x̂, and γ is a predefined threshold that controls the acceptable
level of semantic similarity. This ensures that the adversarial example x̂ remains semantically close
to x, while still leading to a misclassification.

The adversarial example x̂ causes the model to output a different class than the true label:

f(x̂) ̸= ytrue and f(x) = ytrue

x̂ = argminx′∈XL(f(x′), ytrue) subject to ∥x′ − x∥ ≤ ϵ and Sim(x, x′) ≥ γ

where L(·) is the loss function used to measure the discrepancy between the predicted label f(x′)
and the true label ytrue.
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S THE EXPERIMENT FOR VERIFYING INDEPENDENCE

Table 20: The experimental results for verifying independence.

Method A Method B P(A) P(B) P(A)*P(B) P(AB) P(A)*P(B)-P(AB)
DWB FD 52.50% 40.50% 21.26% 19.00% 2.26%
DWB Textbugger 52.50% 72.50% 38.06% 35.50% 2.56%
DWB Hotflip 52.50% 72.50% 38.06% 37.00% 1.06%
DWB PSO 52.50% 76.50% 40.16% 35.00% 5.16%

FD Textbugger 40.50% 72.50% 29.36% 31.00% -1.64%
FD Hotflip 40.50% 72.50% 29.36% 31.50% -2.14%
FD PSO 40.50% 76.50% 30.98% 30.50% 0.48%

Textbugger Hotflip 72.50% 72.50% 52.56% 57.50% -4.94%
Textbugger PSO 72.50% 76.50% 55.46% 54.00% 1.46%

Hotflip PSO 72.50% 76.50% 55.46% 58.00% -2.54%
Average 39.07% 38.90% 0.17%

We employ the DWB, FD, TextBugger, Hotflip, and PSO methods to generate adversarial examples.
Since the exact success probabilities of each method’s attacks are unavailable, we estimate these prob-
abilities based on the observed frequency of successful attacks. In the table, we report the frequency
P (AB) of both methods successfully attacking, as well as the individual success frequencies P (A)
for Method A and P (B) for Method B. Our findings indicate that P (AB) closely approximates
P (A)× P (B), with the average deviation P (A)× P (B)− P (AB) being just 0.17%. The detailed
experimental results are provided in Table 20. Event independence is defined as the occurrence of
event A having no effect on the occurrence of event B. Therefore, we assume that the success of
adversarial examples generated by Method A does not influence the success of those generated by
Method B.

T SUPPLEMENTARY EXPLANATION FOR THE NON-INDEPENDENT CASE IN
SECTION CANDIDATE ADVERSARIAL EXAMPLE GENERATION

The probability of successfully attacking the victim model using adversarial examples generated by
methods 1, 2, ..., n is greater than or equal to the probability of successfully attacking the victim
model using adversarial examples generated by method 1 alone. This is because, when only method 1
is used, there is only one candidate adversarial example per victim text. In contrast, when n methods
are employed, there are n candidate adversarial examples for each victim text, including the one
generated by method 1. Therefore, the probability of successfully attacking the victim model using
adversarial examples generated by n methods is greater than or equal to the probability of successfully
attacking the victim model using adversarial examples from method 1 alone. The probabilities are
equal only when method 1 achieves the maximum success rate for all victim texts. However, the
SST5 and Emotion datasets contain 2,210 and 2,000 victim texts, respectively, making it unlikely
that method 1 will achieve the maximum success rate across all victim texts. Thus, we conclude that,
in most cases, the probability of successfully attacking the victim model using adversarial examples
generated by n methods is greater than when using adversarial examples generated by method 1
alone.

Furthermore, based on this property, we can deduce that, in most cases, the probability of successfully
attacking the victim model using adversarial examples generated by methods 1, 2, ..., n is greater than
when using adversarial examples generated by methods 1, 2, ..., m, where n > m. In other words,
employing more methods to generate adversarial examples increases the likelihood of a successful
attack on the victim model.

U MULTI-MODEL MULTI-TASK LEARNING (MMMTL)

Multi-model Multi-task Learning (MMMTL) is a machine learning method that combines multi-
ple learning models with multiple tasks. It is a combination of Multi-task Learning (MTL) and
Multi-model Learning, aiming to improve model performance by jointly optimizing multiple tasks,
especially when dealing with multiple related tasks.
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U.1 KEY CONCEPTS

U.1.1 MULTI-TASK LEARNING (MTL)

In traditional machine learning, each model typically handles a single task. In contrast, Multi-task
Learning (MTL) involves jointly training multiple related tasks with a shared model. The goal
is to allow the model to simultaneously optimize multiple objectives by sharing representations,
knowledge, or parameters. Common applications include sentiment analysis and text classification,
where the same features can be used for multiple tasks (e.g., predicting sentiment labels and classifying
news articles). For instance, training a neural network to simultaneously perform two tasks: image
classification and object detection.

U.1.2 MULTI-MODEL LEARNING

Unlike traditional single-model approaches, Multi-model Learning uses multiple independent or
combined models to solve a problem. Each model may focus on different aspects of the problem
or apply different algorithms to address the same task. For example, using multiple models such
as neural networks, decision trees, and support vector machines to handle the same task, thereby
leveraging the strengths of each model.

U.1.3 MULTI-MODEL MULTI-TASK LEARNING (MMMTL)

MMMTL is a method that combines Multi-task Learning and Multi-model Learning. The core idea is
to use multiple models (e.g., neural networks, decision trees, support vector machines, etc.) to learn
multiple related tasks, with these models sharing some information or parameters. This means that
during training, MMMTL models handle multiple tasks and models simultaneously, enabling each
model to learn across multiple tasks while sharing representations and knowledge between tasks.
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