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Abstract

Designing effective cell therapies requires under-
standing how transcriptional regulation within in-
fusion products influence patient outcomes. Here,
we propose a generative model that leverages
single-cell RNA sequencing (scRNA-seq) data
paired with clinical outcomes to learn the gene
regulatory networks within engineered Chimeric
Antigen Receptor (CAR) T cells. Using con-
ditional normalizing flows, our model captures
the high-dimensional distribution of gene activ-
ity while conditioning on patient and response-
specific features. This approach enables patient re-
sponse prediction with 73% accuracy and accurate
simulations of gene knockdown, knockouts, and
over-expression experiments. Our model identi-
fied function-recovering genetic modifications for
CAR T infusion products, which were validated
experimentally in the context of a genetic screen.

1. Introduction
1.1. Cell Therapy is a Complex Drug Design Problem

Chimeric Antigen Receptor (CAR) T cell therapies are en-
gineered T cells used in cancer treatment. Their efficacy
depends on complex factors, including infusion product
CAR T cell features (cell state), tumor features (e.g. target
expression), and clinical features (e.g. tumor burden). Un-
derstanding the precise transcriptional profile of an effective
CAR T cell is difficult because of complex T cell differen-
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tiation states, engineering trade-offs between cytotoxicity
and long-term persistence, and tumor antigen heterogeneity
(Srivastava & Riddell, 2018). Recent work aims to enhance
CAR T cell persistence by targeting relevant genes (Labib
et al., 2022; Institute, 2024; Zhou et al., 2025), such as
metabolic regulators (McPhedren et al., 2024), requiring an
understanding of gene interactions and perturbation effects.
However, identifying the determinants of a durable clinical
response based on the state of CAR T cells and a rational
design of CAR T cell infusion products based on primary
clinical data are emerging areas of research, with no end-to-
end methods available at the time of writing. Here we seek
to address this gap by introducing computational methods
for generalizable design of CAR T cell therapies.

1.2. Data

We use single-cell RNA sequencing data (scRNA-seq data),
represented as sparse matrices of normalized read counts,
to learn gene regulatory networks (GRNs) underlying CAR
T efficacy. Using patient outcome data collected from a
commercial therapy (Deng et al., 2020; Li et al., 2023), we
train generative models to impute masked expression and
estimate perturbation effects by conditioning these models
on whether a patient achieves a durable response (assessed
at 3 months) following CAR T cell therapy or not (i.e. no
treatment effect).

1.3. Contributions

We introduce fcelINF, a normalizing flow model framework
trained on gene expression of CAR T cells and treatment
outcomes. Our model combines established ML methods to
address the challenges arising with sScRNA-seq data (from
CAR T cell infusion products). It (i) mitigates confound-
ing variables by orthogonalizing them in an embedding
space, (ii) maps binary outcomes to a learnable continuum
of efficacy, and (iii) imputes gene expression to predict
perturbation impacts. Our model demonstrates that posing
therapeutic efficacy and drug design as a joint optimization
problem in cell embedding spaces of CAR T transcriptome
profiles can help rationally design therapies with desirable
infusion product phenotypes.
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2. Methods

Because of the high-dimensional and complex probabilistic
landscape of gene expression, we implement a modified
RealNVP (Dinh et al., 2017) architecture to disentangle
patient-specific and biological variation from scRNA-seq
data. We first provide a primer on normalizing flows and
then discuss adaptations of ReaINVP to our specific task.

2.1. Normalizing Flow Framework

Normalizing flows are a class of generative models that
learn invertible mappings between a simple base distribu-
tion (typically a normal distribution) and a complex target
distribution. Let x € RY represent a gene expression vector
with 1152 genes that were selected based on a differential ex-
pression analysis between the two clinical response groups,
and z € RP represent a latent variable following a standard
normal distribution p,(z) = N(0, I). The normalizing flow
defines an invertible transformation fy : R? — R” param-
eterized by 6, such that z = fy(x). The log probability
density of the observed data can be computed using the
Of9(x)

change of variables formula (1). where ’det T‘ is the

absolute value of the determinant of the Jacobian of fj.

0fo(x)

log px(x) = log p4(fo(x)) + log

2.2. Patient-Invariant RealNVP Architecture

RealNVP consists of a sequence of coupling layers where
each layer transforms only a subset of the input dimensions,
keeping the others fixed. Each coupling layer follows:

Yi:d = X1:d

Yd+1:D = Xd+1:D © exp(s(X1:4,¢€)) + t(X1.4,€)

where x is the input, y is the output, s and ¢ are scale and
translation functions implemented as neural networks which
map the subsetted input, x1.4 into an internal representation
h, ® denotes element-wise multiplication, and c is a condi-
tion vector. The Jacobian determinant of this transformation
is

5 D
det 871 = H exp(s(X1:d,¢);)
i=d+1

The log-determinant is simply:

D

Z S(X1:d7C)i

i=d+1

log

dy
det 8)(‘ =

Successive coupling layers use alternating partitioning pat-
terns to ensure that all dimensions can be transformed.

2.3. Disentanglement of Biological and Patient-Specific
Variation

To disentangle patient-specific from biological variation, we
split the latent space z into two components:

z = [zbio; Zpatient]

where zy, € R%° represents biological variation and
Zpatient € IR Fpaient represents patient-specific variation, with
dpio + dpatiens = D. This separation is achieved through a
latent splitting network:

[Zbio; Zpalient] =3¢ (Z)

where g4 is a neural network parameterized by ¢.

2.4. Class Conditioning with Feature-wise Linear
Modulation (FiLM)

To condition the model on patient outcome we assign each
cell belonging to a given patient a binary outcome, “overall
response” (OR) or “no response” (NR) . Specifically, pa-
tients achieving complete or partial response at 3 months
were categorized as OR while those with stable or progres-
sive disease were labeled NR. We use FiLM (Perez et al.,
2018) conditioning in the coupling layers. For a class label
y € {0,1} (where O represents OR and 1 represents NR),
the condition embedding ¢ = hy(y) is obtained through an
embedding layer parameterized by .

The FiLM conditioning modifies the internal features h of
the scale and translation networks:

h’ =7(c) ©h + B(c)

where v and 3 are learnable functions that generate scale
and bias terms from the condition embedding.

2.5. Pretraining Objective

To ensure zy;, is invariant to patient-specific information
while retaining class information, we employed an adver-
sarial training approach. Two discriminator networks were
used:

1. A patient discriminator Dpa[iem(Zbio) that predicts patient
identity 2. A class discriminator Dqjyss(Zbio) that predicts
cell state (OR or NR). The total loss function for training is
given by (2).

L= ENLL + /\advﬁadv + )\classﬁclass (2)

where Ly = —Exop.[logpx(x)] is the negative log-
likelihood, Laay = Exrpy [DKL(Dpatient (Zbio)||11)] penal-
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izes deviation from a uniform patient distribution, and
Letass = Exrpua|— 108 Delass (Zbio )] 1s the class prediction
loss.

The patient discriminator minimizes the classification loss
of the patient-specific embeddings with patient id. This
adversarial setup encourages zy;, to contain biological infor-
mation relevant to the cell state while being uninformative
about patient identity. This enforces that patient-specific in-
formation is contained in an isolated portion of the embed-
ding.

The class discriminator enables conditional guidance on Zp;,
by minimizing the classification loss of response outcome
with a transform of the biological embedding. To motivate
the various loss terms including both FiLM-based class
conditioning and patient-adversarial training we conduct
ablation studies on model performance with and without
these components on several downstream tasks as detailed
below.

2.6. Conditional Generation and Inpainting with
Langevin Dynamics

We used Langevin dynamics, a gradient-based MCMC
method, to inpaint missing gene expression values by itera-
tively refining samples using the score function (the gradient
of the log-likelihood).

We chose Langevin dynamics over deterministic optimiza-
tion for gene expression imputation because it samples from
the posterior distribution P(X,,|X,, ¢), where X,,, = X ® m,
X, = Xx® (1 — m) with m a binary mask and c a class condi-
tioning embedding. This provides uncertainty quantification
which is essential for biological interpretation. Additionally,
the stochastic exploration naturally handles multimodal pos-
teriors that arise from multiple stable gene regulatory states,
while respecting the complex correlation structures learned
by our Real-NVP model. The update rule is:

x(HD) = 50 4 %Vx log p(x]y) + v/ew,

where x(*) is the gene expression vector at step t, ¢; is the
step size, w; ~ N(0,1I), and y is the class label.

To inpaint only missing entries defined by a binary mask m
(m; = 1 if observed, O if missing), we use:

xtHD =x® 4 (1 -m)o (%Vx log p(x®|y)
+\/awt) +m © Xops

where Xqps contains the observed gene values.

To improve sample quality, we use annealed Langevin dy-
namics with a temperature schedule that gradually reduces

noise:

¢ 2
\/azo'max (1_T>

where o, 1S the initial noise scale, ¢ is the current step,
and T is the total number of steps.

When inpainting with only the biological component, the
gradient is computed as:

Ozvio 0z

Vx logpbio(x|y) = Vzb;0 Ing(zbio)E Ix

where p(zy;o) is the prior over the biological latent space,
and the Jacobians account for transformations from input
space to latent space.

2.7. Gene Perturbation Analysis

For gene perturbation analysis, we examined how altering
the expression level of a specific gene affects the likelihood
of a sample under the different class conditions. Hence,
P(c|x), where c is the class-conditioning (either "OR” or
”NR”), gives the posterior probability of the data x being
observed in the conditioned flow. For a gene expression
vector x and perturbation factor «, the perturbed expression
for gene i is X, = « - x;. The effect is quantified by the
change in log-likelihood: Alogp(OR|x) = logp(X'|ly =
0) — logp(x|y = 0) and Alogp(NR|x) = logp(x'|y =
1) —log p(x|y = 1). The overall effect of the perturbation
is given by (3).

Effect = Ex[Alogp(NR|x) — Alogp(OR|x)] (3)

A positive Effect indicates the perturbation shifts gene ex-
pression patterns toward the NR state, while a negative
Effect indicates a shift toward the OR state. The magnitude
of this effect is arbitrarily classified as:

* Strong: |Effect| > 0.5

* Moderate: 0.1 < |Effect| < 0.5

* Weak: |Effect| < 0.1
In the experiments discussed below, we negate this value
since we care about recovering cell function, and hence
maximizing log p(OR|x).
3. Experiments

In the subsequent experiments, we benchmark fcelINF on
both masked gene expression prediction, cell-level label
classification, and patient-level outcome classification. Im-
portantly, we note that for generalization to new patients,
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Figure 1. (a) UMAP of cells colored by original binary labels:
orange for P(OR) = 1, blue for P(OR) = 0. (b) Same UMAP
colored by tcellNF soft-labels under the OR condition using Eq. (2).
Log-likelihoods from class-conditioned flows serve as proxies for
patient response by averaging cell-level scores and applying a
threshold. Data includes 266,152 cells from 36 patients covering
1,152 differentially expressed genes.

we use only the learned biologically-relevant embeddings
(2Zvio) for the normalizing flow generative process as well as
cell-level classification.

3.1. Soft-labeling of Clinical Outcomes

We evaluate the predictive power of fcel/INF on resolving
binary labels ("OR” or "NR”) at the three-month time point.
tcelINF successfully represents infusion-product cells on
a continuum of ’goodness” (Fig. 1b), and can reconstruct
the original binary labels based on taking the dominant
log-likelihoods assigned to each cell under each condition.
(Table. 1).

Training Class Precision Recall F1 Acc.  Support
wio Conditionine. OR 0.000  0.000 0.000 0457 19338
o Londiionng. -\ 0457  1.000 0.627 0457 16253
wio Adv. OR 0.75 075 075 073 19338
: NR 0.70 069 070 073 16253

OR 0.83 085 084 082 19338

teellNF NR 0.81 079 080 082 16253

Table 1. Comparison of classification metrics for distinguishing
OR (0) and NR (1) on cell-level classification. Models trained with
and without adversarial training are evaluated on 35,591 cells from
a withheld test set of 11 patients. Without FiLM-conditioning sig-
nals, OR and NR samples are equally likely under the normalizing
flow yielding 50% classification accuracy.

3.2. Masked Gene Expression Prediction

We next evaluate the regression outcomes of predicting
masked gene expression. We evaluate the reverse process,
via Langevin dynamics, on a set of unseen cells to impute
randomly masked genes (30%). We use 10-fold cross val-
idation to fit predicted scores to the actual scores using a
linear model and report the average R? for all folds (Fig. 2).
tcelINF shows the ability to generalize to unseen cells (from
unseen patients) in the masked gene expression task.
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Figure 2. We plot a subset of a representative fold for clarity. a)
tcelINF vyielded an Average R? value ~ 0.7 and average Pearson
correlation r =~ 0.84. All gene expression values are normalized,
log, transformed. (c) Removing conditioning signals generally
does not seem to decrease performance on masked gene expression
prediction. By comparison, our ablations with removing adver-
sarial loss terms (b) significantly decrease regression accuracy
suggesting patient-specific features, if not correct for, are strongly
prominent in learned cell embeddings. Hence, generalization to
out-of-distribution (OOD) data remains poor without adjusting for
these effects.
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3.3. Patient Outcome Classification

We trained fcelINF with conditional information to cap-
ture gene expression variation linked to clinical outcomes.
To evaluate patient-level performance, we averaged log-
likelihoods across all cells for each patient under both OR
and NR conditions, using this to compute an aggregate
outcome score. To maintain a balanced outcome distribu-
tion, we fixed the test patient set. tcellNF outperformed
all baselines (Table 3), showing that outcome variation can
be effectively captured at the cell level with appropriate
soft-labeling.

Classifier Accuracy F1 AUROC AUPRC
tcelINF 0.73 0.80 0.73 0.72
LogisticRegression 0.60 0.65 0.62 0.63
KNeighborsClassifier 0.57 0.63 0.59 0.60
SvC 0.57 0.62 0.58 0.62
DecisionTreeClassifier 0.52 0.55 0.52 0.55
RandomForestClassifier 0.55 0.59 0.56 0.60
GaussianNB 0.57 0.66 0.60 0.64

Table 2. Validation metrics (Accuracy, F1, ROC AUC, AUPRC)
for various classifiers on held-out test set. Bold indicates best-
performing model. We train on cells from 26 patients and test on
11 unseen patients. During training we subsample the number of
cells from each patient so as to avoid patient-specific batch effects.
Dataset specification and cell counts for training and testing are
listed in Appendix B.

3.4. Perturbation Analysis and Validation

We simulate in silico perturbations by multiplying a gene’s
expression: 0.5x for knockdowns, 0.0x for knockouts, and
100x for overexpression. To account for GRN effects, we
mask 30% of other genes and run reverse inference. Per-
turbation impact is measured by the shift in log-likelihoods
under OR vs. NR; a shift favoring OR is considered function-
recovering (Fig. 3). We validate predictions against 25 ex-
perimentally perturbed genes (Table 3). fcellNF predicts di-
rectional effects and nominates candidates with known CAR
T relevance (Strijker et al., 2025; Wang et al., 2024; Wheeler
et al., 2023; Li et al., 2013; Sun et al., 2023). Though lim-
ited in predicting effect size (Spearman p = 0.24, p = 0.06,
Fig. 3b), predictions track experimental trends. See Ap-
pendix A for methods.

Limitations. This study has several limitations. First, we
note that our validation protocol was based on a fixed subset
of held-out patients, which may overestimate generalizabil-
ity. Future work requires more robust evaluation strategies,
such as repeated random subsampling of both patients and
cells. Second, our gene set was selected based on differen-
tial expression analysis, which may have inadvertently in-
troduced data leakage and biased classification performance.
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Figure 3. (a) Experimentally observed log, fold changes from var-
ious perturbations. Here we only show knockdowns. (b) Compari-
son of observed log, fold changes and computationally predicted
shifts in log-likelihood. (c) Computationally predicted directional
outcomes for knockdown perturbations. (d) 5 of the top nomina-
tions for perturbations to recover cell function (i.e. increase the
likelihood of OR).

Perturbation Type  tcelINF  w/o Adv. (%)  w/o Conditioning (%)  Support
Knockdown 70.6 353 58.8 17
Knockout 47.1 52.9 52.9 17
Overexpression 66.7 41.7 583 12
Overall 60.9 435 56.5 46

Table 3. Directional accuracy (%) and support (number of per-
turbations) by perturbation type, comparing models trained with
adversarial training, without adversarial training, and a degener-
ate model that always predicts OR. While the degenerate model
achieves moderately high accuracy by exploiting class imbalance,
it fails to capture true directionality.

Adapting the model to include more genes and particularly
those relevant to T cell metabolism or function as opposed
to arbitrary ribosomal, mitochondrial, and mitotic genes
is likely to nominate more interesting and candidates with
regard to the study of CAR T cell behavior. Finally, we also
note that the dataset analyzed was relatively limited in scope
and does not fully represent of the broader CAR T therapy
patients. Validation across larger and more demographically
diverse cohorts will be critical for assessing the robustness
and translational utility of our approach.
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Interpreting clinical correlative data. The work pre-
sented here details methods for inferring CAR T design
principles from low-sample clinical correlative datasets.
Without requiring explicit training on masked gene expres-
sion, fcelINF can effectively impute gene expression values
and shows strong predictive ability on characterizing direc-
tional outcomes of in vitro perturbations. By disentangling
confounding patient-specific variables from biologically-
relevant features in the learned embedding space, our frame-
work enables soft-labeling of binary clinical outcomes and
the recovery of binary label classification at the cell-level
and patient-level. This work highlights the underutilized
power of clinical correlative data in guiding therapeutic and
experimental design. More broadly, we demonstrate that
efficient, high dimensional models can be built from limited
patient samples to nominate actionable perturbations for
improving next-generation cell and gene therapies.

References

Deng, Q., Han, G., Puebla-Osorio, N., Ma, M. C. J,,
Jiang, N., Yang, H., Sun, J., Gu, S., Zhang, Q., Pan,
S., Chen, G., Chen, M., Ma, J., Chen, B., Song, P,
Song, R., Davis, E., Diehl, M., Wang, Y., Zhang, S.,
Winer, R. E., Champlin, R., Davis, R. E., Neelapu, S. S.,
Wang, L., and Green, M. R. Characteristics of anti-
cd19 car t cell infusion products associated with effi-
cacy and toxicity in patients with large b cell lymphomas.
Nature Medicine, 26:1878—-1887, 2020. doi: 10.1038/
s41591-020-1061-7. URL https://www.nature.
com/articles/s41591-020-1061-7.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using real nvp. In 5th International Confer-
ence on Learning Representations (ICLR), 2017. URL
https://arxiv.org/abs/1605.08803.

Institute, N. C. Gene fusion from cancerous t cells may
boost t-cell therapy. Cancer Currents Blog, 2024. URL

https://www.cancer.gov/news—events/
cancer—-currents—-blog/2024/

gene—alteration-boosts-t-cell-therapy.
Published March 20, 2024.

Labib, 1., El Hajj, H., El Hajj, R., Khalife, J., El Sabban,
M., Bazarbachi, A., and El Hajj, H. Advances in car-t
cell genetic engineering strategies to overcome hurdles
in solid tumors treatment. Frontiers in Immunology, 13:
830292, 2022. doi: 10.3389/fimmu.2022.830292. URL
https://www.frontiersin.org/articles/
10.3389/fimmu.2022.830292/full.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, G, Liang, X., and Lotze, M. T. Hmgbl1: The central
cytokine for all lymphoid cells. Frontiers in Immunology,
4:68, 2013. doi: 10.3389/fimmu.2013.00068.

Li, X., Henderson, J., Gordon, M. J., Sheikh, 1., Nastoupil,
L. J., Westin, J., Flowers, C., Ahmed, S., Wang, L.,
Neelapu, S. S., Strati, P, Deng, Q., and Green, M. R.
A single-cell atlas of cd19 chimeric antigen receptor
t cells. Cancer Cell, 41(11):1835-1837, 2023. doi:
10.1016/j.ccell.2023.08.015.  URL https://www.
sciencedirect.com/science/article/
pii/S15356108230031617?via%3Dihub.

McPhedren, T. et al. Metabolic engineering for opti-
mized car-t cell therapy. Nature Reviews Immunology,
2024. URL https://pubmed.ncbi.nlm.nih.
gov/38388705/.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general
conditioning layer. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32, 2018. URL
https://arxiv.org/abs/1709.07871.

Roth, T. L., Puig-Saus, C., Yu, R., Shifrut, E., Carnevale,
J., Li, P. J., Hiatt, J. B., Saco, J., Krystofinski, P,
Li, H., Tobin, V., Nguyen, D. N., Gate, D., and
Marson, A.  Reprogramming human t cell func-
tion and specificity with non-viral genome targeting.
Nature, 559(7714):405-409, 2018. doi: 10.1038/
s41586-018-0326-5. URL https://www.nature.
com/articles/s41586-018-0326-5.

Srivastava, S. and Riddell, S. R. Car t cell therapy: Chal-
lenges to bench-to-bedside efficacy. The Journal of
Immunology, 200(2):459-468, 2018. doi: 10.4049/
jimmunol.1701155.


https://www.nature.com/articles/s41591-020-1061-7
https://www.nature.com/articles/s41591-020-1061-7
https://arxiv.org/abs/1605.08803
https://www.cancer.gov/news-events/cancer-currents-blog/2024/gene-alteration-boosts-t-cell-therapy
https://www.cancer.gov/news-events/cancer-currents-blog/2024/gene-alteration-boosts-t-cell-therapy
https://www.cancer.gov/news-events/cancer-currents-blog/2024/gene-alteration-boosts-t-cell-therapy
https://www.frontiersin.org/articles/10.3389/fimmu.2022.830292/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.830292/full
https://www.sciencedirect.com/science/article/pii/S1535610823003161?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1535610823003161?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1535610823003161?via%3Dihub
https://pubmed.ncbi.nlm.nih.gov/38388705/
https://pubmed.ncbi.nlm.nih.gov/38388705/
https://arxiv.org/abs/1709.07871
https://www.nature.com/articles/s41586-018-0326-5
https://www.nature.com/articles/s41586-018-0326-5

Normalizing Flows for Designing Cell Therapies

Strijker, J. G., Pascual-Pasto, G., Grothusen, G. P., Kalmei-
jer, Y. J., Kalaitsidou, E., Zhao, C., McIntyre, B., Matlaga,
S., Visser, L. L., Barisa, M., Himsworth, C., Shah, R.,
Muller, H., Schild, L. G., Hains, P. G., Zhong, Q., Red-
del, R. R., Robinson, P. J., Catena, X., Soengas, M. S.,
Margaritis, T., Dekker, F. J., Anderson, J., Molenaar, J. J.,
Bosse, K. R., Wu, W., and Wienke, J. Blocking mif secre-
tion enhances car t-cell efficacy against neuroblastoma.
European Journal of Cancer, 218:115263, 2025. doi:
10.1016/j.ejca.2025.115263.

Sun, P, Zhang, H., Shi, J., Xu, M., Cheng, T., Lu, B.,
Yang, L., Zhang, X., and Huang, J. Krtcap2 as an im-
munological and prognostic biomarker of hepatocellular

carcinoma. Colloids and Surfaces B: Biointerfaces, 222:
113124, 2023. doi: 10.1016/j.colsurfb.2023.113124.

Takacsi-Nagy, O. and Satpathy, A. T. Non-viral
intron knockins enable simplified and flexible tar-
geting of endogenous genes in primary human t
cells. bioRxiv, 2024. doi:  10.1101/2024.03.
05.582227. URL https://www.biorxiv.org/
content/10.1101/2024.03.05.582227v2.

Wang, X., Fu, S.-Q., Yuan, X, Yu, F, Ji, Q., Tang, H.-
W., Li, R.-K., Huang, S., Huang, P.-Q., Qin, W.-T., Zuo,
H., Du, C,, Yao, L.-L., Li, H., Li, J., Li, D.-X., Yang,
Y., Xiao, S.-Y., Tulamaiti, A., Wang, X.-F., Dai, C.-H.,
Zhang, X., Jiang, S.-H., Hu, L.-P., Zhang, X.-L., and
Zhang, Z.-G. A gapdh serotonylation system couples
cd8+ t cell glycolytic metabolism to antitumor immunity.
Molecular Cell, 84(4):760-775.e7, 2024.

Wheeler, B. D., Gagnon, J. D., Zhu, W. S., Muiioz-Sandoval,
P., Wong, S. K., Simeonov, D. R., Li, Z., Debarge, R.,
Spitzer, M. H., Marson, A., and Ansel, K. M. The Incrna
malat] inhibits mir-15/16 to enhance cytotoxic t cell ac-
tivation and memory cell formation. eLife, 12:RP87900,
2023. doi: 10.7554/eLife.87900.

Zhou, Y., Wang, S., Wang, Y., Zhang, Y., and Zhang,
J.  Car-t cell therapy: developments, challenges
and expanded applications from cancer to autoim-
munity. Frontiers in Immunology, 15:1519671,
2025. doi: 10.3389/fimmu.2024.1519671. URL
https://www.frontiersin.org/articles/
10.3389/fimmu.2024.1519671/full.

A. Experimental Methods
Primary Human T cell Culture and Editing

Following an approved Institution Blood Center IRB pro-
tocol, human T cells were isolated from peripheral blood
mononuclear cells (PBMCs) collected from healthy human
donors. Density centrifugation and CD3-based selection
were applied in the isolation procedure, using Ficoll (Lym-
phoprep, StemCell) within SepMate tubes (StemCell) and
the Human CD3 T Cell Enrichment kit (StemCell), respec-
tively, according to manufacturer instructions.

The isolated T cells were counted (Countess, Thermo) and
activated with anti-human CD3/CD28 Dynabeads (Cell
Therapy Systems, Thermo) at a 1:1 ratio, in XVivo 15 media
(Lonza) supplemented with 5% fetal bovine serum (FBS;
MilliporeSigma) and 50 U mL ! of human IL-2 (Peprotech).
Forty-eight hours after activation, T cells were de-beaded
(EasySep Magnet, StemCell), pelleted, and resuspended in
Lonza P3 Buffer at a density of 2 x 106 cells / 20 L buffer.

A total of 50 x 10° bulk T cells from two donors were
each electroporated (Gen2 Lonza 4D electroporation sys-
tem, Lonza) on day 0 with 0.5 pg of 1 ug pL.—! Midiprep-
generated (Zymo) HDRT plasmid DNA library and Cas12a-
encoding mRNA. Edited cells were recovered in XVivo 15
media and incubated for 15 minutes at 37 °C before being
transferred to tissue culture flasks.

In Vitro Toledo DLBCL Challenge Assay

CD19-expressing Toledo Diffuse Large B-cell Lymphoma
(DLBCL) cells, generously donated by the Crystal Mackall
group, were expanded and cultured in RPMI supplemented
with 10% FBS, HEPES, and 100x Pen/Strep, and passaged
every 2-3 days to maintain a density of approximately 1.5 x
106 cells per mL.

An in vitro assay, as described in (Takacsi-Nagy & Satpathy,
2024), was performed in which edited T cells were chron-
ically stimulated over the course of 14 days via repetitive
co-culture with target cells, simulating chronic antigen chal-
lenge within tumors. The chronic stimulation assay was
conducted between days 6 and 20, with re-seeding at an
effector-to-target ratio of 1:8 for each donor, based on pilot
screen results showing efficient clearing of CD19% Toledo
cells at lower ratios.

Pooled Screening

Pooled knockin screens were conducted via a non-viral elec-
troporation editing system first described in (Roth et al.,
2018). Primary human T cells were transduced with 652
unique CAR constructs from the CRISPR-AII Cell Therapy
Universal Screening (CACTUS) library. CACTUS com-
prises a pooled library of approximately 130 overexpression
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targets, 230 knockdown targets, and 230 knockout targets,
identified from literature on effector function-enhancing ge-
netic modifications in both native and engineered human T
cells.

Approximately 37 additional constructs were added to the
original 652-member library based on clinical profiling of
responders and non-responders in CD19-directed CAR clin-
ical trials. Gene sequences were sourced from the Ensembl
genome database and codon-optimized. These were synthe-
sized into a high-copy, kanamycin-resistant cloning vector
of pMBI origin (Twist Bioscience).

Genomic DNA was isolated from the expanded T cell pop-
ulations at both the start (D6) and end (D21) of the assay.
Next-generation sequencing (NGS) was used to compare
barcode readouts before and after the chronic stimulation
challenge.

B. Data
B.1. Splits and Cell Counts

Below we list the train:test split used to evaluate all models.
We randomly crafted a split that would yield an approxi-
mately equal balance of "OR” cells and "NR” cells. Because
we downsampled patients to avoid overfitting to those pa-
tients with significantly more cells, our final training data
ended up using much fewer cells that was actually available
in the dataset. It is interesting to note that even in this low-
sample paradigm, tcelINF performs well on classification
and regression tasks.

Patient ID  Split ~ Cell Count  3-Month Response
ac05 Test 2090 OR
ac09 Test 2090 OR
aclO Test 2090 OR
acll Test 2090 NR
acl7 Test 2090 NR
acl8 Test 2090 NR
ac22 Test 2090 NR
ac24 Test 2090 NR
ac28 Test 2090 OR
ac37 Test 2090 OR
ac39 Test 2090 OR
ac01 Train 3574 OR
ac02 Train 3574 NR
ac03 Train 3574 NR
ac04 Train 3574 NR
ac07 Train 3574 OR
ac08 Train 3574 OR
acl2 Train 3574 OR
acl3 Train 3574 NR
acl4 Train 3574 OR
acl5 Train 3574 NR
acl6 Train 3574 OR
acl9 Train 3574 NR
ac20 Train 3574 OR
ac21 Train 3574 NR
ac23 Train 3574 NR
ac25 Train 3574 NR
ac26 Train 3574 NR
ac27 Train 3574 OR
ac29 Train 3574 OR
ac30 Train 3574 OR
ac32 Train 3574 OR
ac33 Train 3574 OR
ac34 Train 3574 OR
ac38 Train 3574 NR

Table 4. 3-Month patient responses across training and test sets.
Train set contains 39,314 NR cells and 46,462 OR cells. Test set
contains 10,450 NR cells and 12,540 OR cells.



