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Abstract

Existing causal inference (CI) models are often restricted to handling low-dimensional con-
founders and singleton actions. We propose an autoregressive (AR) CI framework capable
of handling complex confounders and sequential actions commonly found in modern ap-
plications. Our approach accomplishes this using sequencification, which transforms data
from an underlying causal diagram into a sequence of tokens. Sequencification not only
accommodates training with data generated from a large class of DAGs, but also extends
existing CI capabilities to estimate multiple causal quantities using a single model. We can
directly compute probabilities from interventional distributions, simplifying inference and
enhancing outcome prediction accuracy. We demonstrate that an AR model adapted for CI
is efficient and effective in various complex applications such as navigating mazes, playing
chess endgames, and evaluating the impact of certain keywords on paper acceptance rates.

1 Introduction

Modeling causal relationships is important across various fields for informed decision-making (Holland, 1986;
Cochran & Rubin, 1973; Pearl, 2010). However, existing causal inference (CI) algorithms are often limited
by their inability to handle high-dimensional covariates, actions, and outcomes (Louizos et al., 2017; Kumor
et al., 2021; Im et al., 2021; Lu et al., 2022; Zhong et al., 2022). This work aims to address these shortcomings
by designing a CI engine applicable for modern, complex data involving high-dimensional variables.

We propose to leverage autoregressive (AR) models for estimating causal effects. As demonstrated by large
language models (LLMs), AR models can capture complex relationships and scale effectively to large datasets.
Recent studies (Gupta et al., 2023; Zhang et al., 2024; Xu et al., 2024) show that fine-tuning pre-trained
LLMs utilizes knowledge from an internet-scale text corpus, enhancing performance on various tasks.

We demonstrate that AR models serve as an effective and efficient statistical engine by treating observations
as part of a data-generating process. To achieve this, we propose a method called sequencification for
representing data based on a known underlying causal diagram. A single model trained on sequencified
data can utilize learned statistical estimates to answer a variety of causal questions. During inference,
we can efficiently sample high-dimensional confounders and actions, enabling Monte Carlo estimation to
approximate causal effects.

We conduct empirical studies on causal effect estimation across a variety of exemplar tasks, such as navigating
mazes, playing chess endgames, and evaluating the impact of specific keywords on paper acceptance rates.
Our experiments show that AR models can (1) infer causal effects involving high-dimensional variables, (2)
generalize to unseen confounders and action sequences, and (3) leverage pre-trained LLMs to accurately
answer text-based causal questions. The results support the potential of AR models to solve a broader array
of CI problems.

2 Related work

Previous work has explored the use of AR models for estimating causal effects. Here, we provide a brief
overview of the relevant studies.
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Sequencification for statistical engines. Various machine learning fields have used linearized represen-
tations for tasks. In natural language processing (NLP), linearization (which we refer to as sequencification)
is used to convert a syntactic tree into a sequence for building language model-based parsers (Vinyals et al.,
2015; Liu et al., 2022; Sheng et al., 2023). In reinforcement learning (RL), an episode can be encoded as
a sequence of states, actions, and rewards. An autoregressive model is then trained on these sequences to
capture relationships among the variables (Chen et al., 2021; Janner et al., 2021). These instances suggest
that AR models trained on sequencified data can effectively learn statistical dependencies among multiple
high-dimensional variables.

Language models as causal engines. A key challenge in CI in high-dimensional spaces is satisfying
positivity constraints (D’Amour et al., 2021; Tu & Li, 2022; Egami et al., 2022; Gui & Veitch, 2022). Despite
this limitation, previous studies have used techniques from NLP, such as topic models (Sridhar & Getoor,
2019; Mozer et al., 2020), latent variable models (Keith et al., 2020), and contextual embeddings (Veitch
et al., 2019; 2020), to produce low-dimensional embeddings that can satisfy positivity.

In addition to using NLP techniques to reduce the dimensionality of observations, natural language can also
serve as a proxy for observed confounders. For example, Roberts et al. (2020) apply a text-matching algo-
rithm using contextual embeddings and topic models to estimate causal effects based on proxy texts. With
sufficiently large models and text corpora, LLMs can also generalize to previously unseen knowledge (Chowd-
hery et al., 2023). Thus, we leverage pre-trained LLMs to capitalize on prior model knowledge and enhance
the performance of statistical inference engines.

Deep learning for causal engines. Various deep neural network architectures have been proposed for
CI. Representation learning for CI often incorporates a regularization term that enhances generalization for
counterfactual actions (Shalit et al., 2017; Johansson et al., 2018; Wang & Jordan, 2021). Deep latent variable
CI models learn stochastic latent variables to model potential outcomes with a richer distribution (Louizos
et al., 2017; Kocaoglu et al., 2017; Im et al., 2021).

For deep autoregressive models, Monti et al. (2020) introduce an AR flow model that learns an invertible
density transformation between variables. Their approach enables direct computation of interventional and
counterfactual distributions without the need for complex latent variable manipulations. Garrido et al.
(2021) use neural AR density estimators (Larochelle & Murray, 2011) to model causal mechanisms and
predict causal effects using Pearl’s do-calculus (Pearl, 2009).

Causal Generative Models. Another approach to CI models data as part of a generative process and
learns a causal generative model. These methods typically parameterize relationships in a known causal
diagram using neural networks. For causal effect identification and estimation, Xia et al. (2023) use neural
causal models trained via gradient-based optimization with a minimization-maximization objective. Rahman
& Kocaoglu (2024) introduce a modular learning framework for optimizing causal generative models in semi-
Markovian settings by decomposing the data distribution into c-factors (Tian & Pearl, 2002). Their method
can use pre-trained generative models to learn individual conditional distribution components.

Existing limitations. Previous works exhibit notable weaknesses compared to our approach. First, most
methods are validated only on low-dimensional variables (tens of dimensions) and singleton actions. In
contrast, our AR model is designed to handle high-dimensional confounders and sequential actions where
the number of possible sequences grows exponentially. This makes it applicable to causal diagrams with a
large number of variables. Second, prior studies often focus on estimating specific causal effects or learning
generative models by optimizing individual components of the causal structure. We instead use a unified
end-to-end AR model that can estimate multiple identifiable causal queries. Third, we extend existing CI
capabilities by leveraging pre-trained language models for setting where autoregressive domain knowledge is
essential for accurate inference (e.g. NLP).
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Figure 1: Causal diagrams illustrating interventions on the action (a), partial action (b), and when condi-
tioning on a prefix of the confounders (c), where X, A, and Y denote the confounders, actions, and outcome
respectively. Bolded red arrows indicate the pathways blocked by the corresponding intervention. Potential
outcomes can be computed using the backdoor adjustment formula for each scenario.

3 Background

This section outlines the background knowledge of causal effect estimation and language models necessary
for understanding our methodology.

3.1 CI problem formulation

We study interactions between the following set of variables: an observable confounder X, action A, and
outcome Y . Causal relationships are represented as a directed acyclic graph (DAG), where edges denote
direct effects (cf. Figure 1a). By applying the backdoor adjustment formula (Pearl, 2009), we can compute
the potential outcome resulting from an intervention on the action:

EY [Y | do(A = a)] :=
∑
x,y

y · p(Y = y | A = a, X = x)p(X = x). (1)

The notation do(A = a) represents an intervention on A, setting its value to a. Typically, the confounder X
is assumed to be low-dimensional to avoid computing density estimates p(x) in high dimensions. Our goal
is to model causal effects when typical assumptions in prior CI work are violated, including settings with
complex confounders and combinatorially large action spaces.1

3.2 Language models

Language models (LMs) are designed to predict and generate text by learning linguistic patterns from a
training corpus. Let W denote the vocabulary of the text corpus, which includes special ⟨start⟩ and ⟨end⟩
tokens. LMs estimate the probability of a sequence of tokens w = (w1, · · · , wT ) ∈ WT in an autoregressive
manner. Let w1:t represent the first t tokens in v. The probability of the sequence w is decomposed into
the product of next-token probabilities:

p(w) = p(⟨start⟩) ·
T∏

t=1
p(wt|w1:t−1) · p(⟨end⟩|w).

4 Language models as statistical inference engines

As suggested by Equation 1, CI requires accurate estimation of statistical quantities to calculate causal
effects. In this section, we describe how an AR model can be adapted into a statistical inference engine for
any DAG involving a set of confounders, actions, and outcomes using sequencification.

1A combinatorially large action space refers to the number of possible action sequences.
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4.1 Causal graphs

We assume the underlying causal DAG G = (V, E) is known, where the vertices Vi ∈ V represent random
variables and the edges Ei→j ∈ E denote conditional dependencies. The joint probability distribution is

pG(V1, V2, . . . , VM ) =
M∏

i=1
pG(Vi | Pa(Vi)),

where Pa(Vi) = {Vj ∈ V | Ej→i ∈ E} is the set of parent nodes of Vi. We assume that the graph G is fully
specified and that all variables within G are observed.

4.2 Sequencification

Suppose Vi takes the value vi from its corresponding distribution. Let string(·) be an injective function that
maps vi to a sequence of tokens: string(vi) = (⟨starti⟩, w1, w2, . . . , wLvi

). Here, ⟨starti⟩ is a special token
indicating the beginning of the string representation for vi, and Lvi

is the length of string(vi) excluding
the ⟨starti⟩ token. We define ⟨starti⟩ uniquely for each i so that each random variable can be uniquely
identified from its string representation by its corresponding initial token.

Let t = (Vi1 , Vi2 , . . . , ViM
) be a permutation of the random variables. We say t is a topological ordering if Vi

precedes Vj in the ordering for all edges Ei→j . Let T denote the set of all topological orderings.2 Consider
N samples drawn from the underlying causal diagram G: (v(n)

1 , v(n)
2 , · · · , v(n)

M ) ∼ pG(V1, V2, · · · , VM ) for
n = 1, . . . , N . For each sample, we construct a string s(n) by concatenating the string representations of all
random variables according to a topological ordering t(n) selected uniformly at random from T . Formally,
t(1), t(2), . . . , t(N) i.i.d.∼ Uniform(T ) and

s(n) = string(v(n)
i1

) ⊕ string(v(n)
i2

) ⊕ · · · ⊕ string(v(n)
iM

) ⊕ ⟨end⟩,

where t(n) = (Vi1 , Vi2 , . . . , ViM
) and ⊕ denotes string concatenation. We refer to the process of converting

observed samples into a sequence of tokens as sequencification.

Sequencification supports any data that can be transformed into a linear sequence of tokens. For example,
tokens may represent specific values for numerical (e.g., binary) data or subwords for text, depending on
the problem domain. Our approach can also handle mixed data modalities, as different variables may have
separate tokenization strategies.

4.3 Randomized topological orderings

We randomize over topological orderings consistent with the causal graph to obtain robust estimates of
conditional probabilities. For instance, if a node in the graph has multiple independent parents, randomizing
the order in which the parents are sequenced helps prevent the model from overfitting to any particular
ordering. As a result, different samples may be concatenated using distinct topological orderings. However,
because the data is generated by ancestor sampling v(n)

i | Pa(v(n)
i ), values that causally influence string(v(n)

i )
will always appear earlier in s(n).

A natural question that may arise is how to obtain a good estimate when samples are sequencified according
to different topological orderings. This is achieved by using the special ⟨starti⟩ token at the start of each
variable Vi during sequencification, which indicates its position in the sequence (regardless of the topological
ordering used).

2T is guaranteed to be non-empty because all DAGs have a topological ordering.
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4.4 Autoregressive statistical inference engines

After sequentification, we can train an AR language model, parameterized by θ, on the sequencified dataset
D = {s(1), s(2), . . . , s(N)} by the minimizing negative log-likelihood:

L(θ) = − 1
N

N∑
n=1

log pθ(s(n)) = − 1
N

N∑
n=1

|s(n)|∑
t=1

log pθ

(
s(n)

t

∣∣∣ s(n)
1:t−1

)
(2)

where | · | denotes the length of a string and s(n)
t is the tth token in s(n). The trained model can estimate any

conditional probability on G by computing pG(Vi | Pa(Vi)) ≃ pθ(vi | Pa(vi)). This is efficiently done by au-
toregressively traversing the sequence and calculating next-token probabilities using Monte Carlo estimation
over the topological orderings.

5 Language models as causal inference engines

In this section, we illustrate how to infer causal effects by leveraging statistical quantities from a trained AR
model, thereby transforming it into a causal inference engine. After learning the conditional distribution over
G using an AR model, we can estimate causal quantities by deriving the appropriate identification formula
from the known causal diagram. Sequencification, combined with knowledge of G, allows us to estimate
various causal effects.

5.1 Estimating causal quantities

We express the CI problem as a language modeling task. Given our DAG that consists of three variables
(the observed confounder X, action A, and outcome Y ), we sequencify the data as follows:

s(n) = string(x(n)) ⊕ string(a(n)) ⊕ string(y(n)) ⊕ ⟨end⟩.

In our formulation, x(n) and a(n) can be high-dimensional vector values and the action space can be com-
binatorially large. Without loss of generality, we treat the outcome variable Y as a scalar, represented as a
single token.

We can use the trained AR model to compute the distribution of Y after intervening on A. This is typically
intractable when X is high-dimensional because computing a non-parametric density estimate is exponential
in the number of dimensions. However, we can efficiently approximate the interventional distribution by
sampling from pθ(X) and applying Monte Carlo estimation.

pθ(Y = y | do(A = a)) =
∑

x
pθ(y | A = a, x)pθ(x) ≃ 1

S

S∑
s=1

pθ(y | A = a, x(s)), (3)

where x(s) ∼ p(X).

Furthermore, we can intervene on a prefix subsequence of A even when the action space is large. By
expressing A = A1 ⊕ A2 and marginalizing out A2, we can compute the effect of intervening on only A1.

p(Y = y | do(A1 = a1)) =
∑

x

∑
a2

pθ(y | A1 = a1, A2 = a2, x)pθ(a2 | a1, x) pθ(x) (4)

≃ 1
S

S∑
s=1

pθ(y | a1, a
(s)
2 , x(s)), (5)

where x(s) ∼ p(X) and a
(s)
2 ∼ p(A2 | a1, x(s)). For combinatorially large action spaces, Equation 4 is

generally intractable because the marginalization requires exponentially many operations.
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Figure 2: Illustrations of the maze and chess experimental settings. In the maze experiment, we address
two questions: what is the potential outcome given (a) a complete path, and (b) a partial path? The blue
path represents the intervention, gray indicates a potential remaining path after a partial intervention, and
orange denotes the distance to the end. The chess experiment aims to determine which pieces Black should
move to checkmate White the quickest. In the example position shown in (c), the probability of moving the
Black king is 0.5, 0.25, and 0.8 with the RCT, non-RCT1, and non-RCT2 policies respectively.

Similarly, we can condition on a prefix of the confounder by letting X = X1 ⊕ X2 and marginalizing out X2.

p(Y = y | do(A = a), x1) =
X2∑
x2

pθ(y | A = a, x2, x1) pθ(x2 | x1) (6)

≃ 1
S

S∑
s=1

pθ(y | A = a, x
(s)
2 , x1) (7)

where x
(s)
2 ∼ p(X2 | X1 = x1). The causal diagrams for these scenarios are shown in Figure 1. Note that

we can only intervene on prefixes of the action A1 (or condition on prefixes of the confounder X1) because
this ensures the marginalization step samples A2 (or respectively X2) conditioned on preceding variables.

We emphasize that all causal quantities can be computed by a single language model trained on sequenci-
fied observations. Our approach enables efficient sampling and computation of conditional p(Y | A = a),
interventional p(Y | do(A = a)), partial interventional p(Y | do(A = a1)), and conditional interventional
p(Y | do(A = a), X1 = x1) distributions, all using a unified model. This provides an end-to-end framework
for computing a variety of causal queries using a single model.

While the partial interventional distribution p(Y | do(A1 = a1)) is computable by effectively discarding A2,
training an AR model on sequencified data that explicitly includes A1 and A2 is more flexible. Our approach
can efficiently estimate not only partial interventional distributions but also interventions on A1 and A2
simultaneously, providing a unified framework for handling multiple causal queries. A similar argument
holds for partially conditioning on the confounders.

6 Experiments

We demonstrate the effectiveness of our approach in estimating causal effects for sequential actions and high-
dimensional confounders while also assessing robustness to distribution shifts. Our experiments showcase
the ability to (1) infer potential outcomes with sequential actions and high-dimensional confounders, (2)
efficiently approximate potential outcomes via Monte Carlo sampling, and (3) leverage knowledge from
a pre-trained LLM. We evaluate our method across three environments: a maze setting for navigational
decision-making, a chess environment analyzing strategic moves in king vs. king-rook endgames, and the
PeerRead dataset which examines the impact of theorem presence on academic paper acceptance.
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Figure 3: Error distribution of potential outcome estimates for our AR model (blue) and the offline RL
baseline (green). We compute the effect of intervening on the complete path with and without conditioning
on the starting row X1. The plot depicts the distribution of errors across all 4096 possible paths of length
six, while the black dashed line represents the mean error. The AR and RL models exhibit comparable
performance across all settings, with our AR model performing marginally better.

The maze experiments demonstrate that our unified AR model can estimate interventions, partial inter-
ventions, and conditional interventions using Equations 3, 4, and 6, respectively. In contrast, a traditional
offline reinforcement learning (RL) model fails to capture all three causal effects. In the chess experiments,
we highlight the effectiveness of our method in estimating effects via Monte Carlo approximation using Equa-
tion 5 and its robustness to distribution shifts in the test data. Finally, the PeerRead setting demonstrates
that the AR model can estimate effects in high-dimensional confounder scenarios and leverage pre-trained
language models to improve text-based analysis.

These diverse settings enable a comprehensive evaluation of the effectiveness and robustness of our approach
for CI. All AR models are trained using a vanilla transformer (Vaswani et al., 2017) unless otherwise specified.
Additional details on the model architecture and training process can be found in Appendix A.3

6.1 Maze navigation experiments

In this experiment, we show that a unified AR model can estimate multiple types of causal queries using
Equations 3, 4, and 6. Compared to a baseline offline RL model, our approach offers greater flexibility for
causal inference tasks.

We generate a synthetic maze dataset to analyze the causal effect of traversing different paths. The goal is
to determine the distance to the exit after following a given path. The confounding variable X represents
the starting position, the action A is a sequence of moves, and the outcome Y denotes the distance from
the final position to the exit.4 We evaluate potential outcomes when intervening on a complete path (cf.
Figure 2a) or partial path (cf. Figure 2b). The obstacle positions are fixed but are not known to the
model. Our experiments demonstrate that a single AR model can accurately estimate interventional, partial
interventional, and conditional interventional distributions.

The end position is fixed at the bottom-right corner, while the starting position is randomly selected from
open spaces. The probability of choosing a starting square is proportional to its distance from the endpoint.

3All code and datasets will be made publicly available upon publication.
4Y is the shortest possible distance in the maze while avoiding obstacles, not necessarily the Hamming distance.
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Figure 4: Heatmap illustrating the error distribution of potential outcome estimates when intervening on
the first four moves in the path. Each row represents all possible actions for the first two moves, while
each column represents all possible subsequent two moves. Our AR model accurately estimates potential
outcomes for all four-move sequences by learning p(a2 | a1, x) to compute the estimate. The offline RL
baseline exhibits significant errors across nearly all interventions.

Moves in the path are determined by selecting a direction based on the current position. Let the current
square be in the ith row from the top and the jth column from the left. The next move is chosen according
to the probabilities:

pup = pleft = 0.1, pright = 0.8i

i + j
, pdown = 0.8j

i + j
.

This policy encourages paths to move towards the bottom-right corner. All actions are possible at any
position, however moves that would collide with obstacles or walls in the maze are treated as no action.
Paths are fixed to contain exactly six moves.

We train an AR model on sequencified data and use a deep Q-learning (DQL) model as an offline reinforce-
ment learning (RL) baseline. The AR model is given only the starting position and must infer the effect of
each move along the path. The DQL model follows the standard RL framework, where the current position
is known after each move.

6.1.1 Causal inference using sequential actions

We estimate potential outcomes for all paths of length six in a 4 × 4 maze using Equation 3. Additionally,
we compute potential outcomes conditioned on the starting row (from the top of the maze) X1 ∈ {1, 2, 3, 4}
using Equation 6. Ground truth values are computed using the corresponding equations with the outcome
outcome EY [Y | a, x] equal to the true number of additional moves required to reach the end of the maze
after starting in position x and taking path a. For the RL method, we predict the potential outcome as the
q-value after taking the final action in the intervention.

Figure 3 presents the error distribution for potential outcome estimates across all paths. In all settings, both
models produce estimates that closely match the ground truth. Our AR model performs comparably to the
offline RL baseline in terms of mean estimation error. The AR error distribution exhibits a large tail, which
can be attributed to differences in training setups. Unlike the RL model, which receives the intermediate
state after each move, the AR model must infer state transitions from scratch. Even without this knowledge,
our model achieves slightly better overall performance, with a higher proportion of interventions yielding
small errors. These results demonstrate that our approach can accurately predict both intervention and
conditional intervention queries.
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6.1.2 Causal inference using partial actions

In addition to computing complete interventions, we can also intervene on partial actions. To illustrate
this scenario, we estimate potential outcomes when intervening on the initial moves in a path. Specifically,
we decompose A = A1 ⊕ A2, where A1 represents the first four moves and A2 the remaining two moves,
and compute p(Y | do(A1 = a1)). Ground truth potential outcomes are calculated using Equation 4 by
marginalizing over all possible remaining paths A2. For the RL method, we intervene on the first four
moves, while the remaining path is determined according to the learned policy.

Figure 4 shows the error distribution for potential outcome estimates across all possible four-move interven-
tions. Our AR model accurately computes these estimates using Equation 4. In contrast, the offline RL
model does not learn the distribution p(a2 | a1, x) but instead optimizes for the best policy. As a result, it
fails to predict partial interventions without modifications, such as discarding information about A2 during
training. This highlights the greater flexibility of our AR framework, which allows interventions on any
subset of initial moves with a single model.

6.2 Chess endgame experiments

In this section, we evaluate the performance of our AR model with Monte Carlo sampling, following Equa-
tion 5, and assess its robustness to distribution shifts. To explore these aspects in a more complex two-player
setting, we use a synthetic chess dataset featuring king vs. king-rook endgames, where White moves first and
Black holds the rook. We demonstrate that our AR model can accurately compute causal effects and identify
optimal action sequences by comparing potential outcome estimates. Additionally, we leverage Monte Carlo
sampling to refine estimates when only partial data is available and introduce a distribution shift between
training and testing data to assess generalization.

To formulate our causal query, we ask: on average, across all starting positions, which pieces should Black
move on the first two turns to checkmate White as quickly as possible? Our question aims to uncover a general
strategy for king vs. king-rook endgames, much like how controlling the center is a fundamental principle
in the opening. More broadly, it parallels causal inference in scenarios with multiple initial conditions,
where the objective is to identify the most effective strategy across a wide range of situations rather than an
individual configuration.

Each endgame comprises a two-move chess game, potentially incomplete. The covariate X is the initial piece
positions. The action A = a1, a2, a3, a4 represents alternating White and Black moves. Since we consider
Black’s perspective, we are interested in causal quantities involving a2 and a4. We assume Black plays
optimally after selecting which piece to maneuver, so each action only dictates whether to move the king or
the rook, but not to which location. The outcome variable y is the number of additional moves required to
checkmate with optimal play.5 Formally, we are interested in finding

(a∗
2, a∗

4) = arg min
a2,a4∈{king,rook}

EY [Y | do(a2, a4)] = arg min
a2,a4∈{king,rook}

∑
x,y

y · p(Y = y | x, a2, a4)p(x).

We evaluate the ground truth outcome using the chess engine Stockfish6. An example endgame is shown in
Figure 2c.

We construct three training datasets: one Randomized Control Trial (RCT), which selects each action
uniformly at random between moving the king or the rook, and two non-RCT datasets, labeled non-RCT1
and non-RCT2, with distinct action policies. The policy functions for non-RCT1 and non-RCT2 are defined
as follows, where d is the Hamming distance between the kings:

π1(a2, a4 = king) = d

16 , π2(a2, a4 = king) =
{

0.8 if black king is in center 4 × 4 square
0.2 otherwise

5In the event of a draw, the outcome is set to 50 due to the 50-move rule.
6Stockfish is available at https://github.com/official-stockfish/Stockfish.
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Figure 5: Potential outcome estimates for rook-king. The exact model estimate uses all 223,660 valid starting
positions as test samples, while the approximate and Monte Carlo estimates use 1,000 randomly selected
samples. Each Monte Carlo estimate was repeated 1,000 times, with error bars representing one standard
deviation. By sampling from pθ(X), the AR Monte Carlo estimate approaches the AR exact estimate. In
contrast, the MLP model cannot perform sampling on pθ(X).

π1 encourages the two kings to be closer while π2 pushes the Black king towards the edge of the board, both
of which are required for checkmate. We use different RCT and non-RCT data to demonstrate robustness
in the presence or absence of X → A and under varying action assignment mechanisms.

The testing dataset consists of all 223,660 valid starting positions. To assess out-of-distribution general-
ization, we use two distinct policies for White in the training and testing phases. White plays uniformly
at random over non-optimal moves (unless no such legal moves are available) during training and plays
optimally at test time. This introduces a distribution shift, which we use to evaluate generalization and
robustness to new settings. Additionally, we show that our proposed AR framework produces more accurate
causal estimates by using Monte Carlo sampling from pθ(X) when given only a subset of the testing data.

We compute the ground truth potential outcomes for all actions and compare them with three different
model estimates: the exact model estimate using the entire test dataset, the approximate model estimate
using a subset of the test data, and the Monte Carlo model estimate, which also uses the same data subset
but additionally generates samples from the model. The approximate and Monte Carlo estimates reflect
real-world scenarios, where obtaining a large number of RCT samples is often difficult. We train a non-
autoregressive multilayer perceptron (MLP) as a baseline for comparison.

Figure 5 presents our three model estimates for the AR and MLP model. As the number of samples in
the Monte Carlo approximation increases, the potential outcome estimate converges to the exact estimate.
Our results demonstrate that potential outcomes can be efficiently and accurately approximated with an
AR model using only a fraction of the test data. Additionally, there is a gap between the AR exact model
estimate and the ground truth, caused by the distribution shift in how White plays between the training
and test data. The potential outcomes for the remaining actions are provided in Appendix B. By comparing
all potential outcome estimates, we can answer our causal question and conclude that, aggregated across all
starting positions, moving the rook twice initially is the best strategy for Black.

6.3 PeerRead experiments

We use the PeerRead dataset (Kang et al., 2018) to estimate causal effects in a semi-realistic setting with
high-dimensional text confounders. Our results demonstrate that an AR model can leverage pre-trained
language models to enhance CI in text-based settings. The dataset consists of paper draft submissions
to top computer science conferences, such as NeurIPS, ICML, and ICLR, along with their acceptance or
rejection decisions. We investigate the impact of including “theorems” on acceptance likelihood and evaluate
how well our model captures this causal effect. Building on prior work, we focus on computational linguistics,
machine learning, and artificial intelligence papers submitted between 2007 and 2017 (Veitch et al., 2020).
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Table 1: PeerRead ATT performance across low, medium, and high confounding levels, with relative error
indicated in parentheses. Our Deep Autoregressive Causal Inference Engine BERT (DARCIE-BERT) model
achieves the lowest relative error, followed by DARCIE-GPT. Both models show significant improvement
over other methods. Training DARCIE-GPT from scratch fails to identify causal effects due to its lack of
understanding of the text.

Confounding level
Low (β = 1) Medium (β = 5) High (β = 25)

Ground truth 0.062 0.059 0.028
Computed biased 0.065 (4.8%) 0.097 (68%) 0.160 (470%)

Reported biased (Veitch et al., 2020) 0.08 (30%) 0.15 (150%) 0.16 (471%)
MLP ψ̂Q 0.05 (20%) 0.10 (70%) 0.30 (970%)

C-BERT ψ̂plugin 0.10 (61%) 0.09 (53%) 0.05 (78%)
C-BERT ψ̂Q 0.09 (45%) 0.07 (19%) 0.04 (42%)

DARCIE-GPT (No pre-train) 0.001 (98%) 0.002 (97%) 0.001 (96%)
DARCIE-BERT (Ours) 0.052 (16%) 0.050 (15%) 0.023 (18%)
DARCIE-GPT (Ours) 0.050 (20%) 0.044 (25%) 0.020 (29%)

The covariate X represents the paper’s abstract text, the action A is a binary variable indicating the presence
of the keyword “theorem”, and the outcome Y is a binary variable indicating acceptance or rejection.
Since real-world counterfactual outcomes are inaccessible, we follow prior methods by generating synthetic
outcomes based on the action A and the title buzziness Z (i.e., whether the title contains “deep”, “neural”,
“embed”, or “adversarial net”). For example, z = 1 and a = 1 likely correspond to a deep learning paper
that includes a theorem, while z = 0 and a = 1 may represent a theoretical machine learning paper or a
deep learning paper with a theorem but without a buzzy title.

Define the propensity function π(z) as the proportion of data samples with ai = 1 among those satisfying
zi = z. Let β be a parameter controlling the level of confounding between title buzziness and the outcome.
Following Veitch et al. (2020), we generate outcomes using the model:

Yi ∼ Bernoulli(σ(0.25ai + β(π(zi) − 0.2))).

Since evaluating any causal effect model requires counterfactual outcomes that are inaccessible in real-world
data, we use a semi-synthetic setting, where the covariates are real-world data and the labels are generated
according to patterns in the data, albeit synthetically. Veitch et al. (2020) have established a correlation
between title buzziness and the text.

Following the original experimental design, we report the Average Treatment Effect on the Treated (ATT),

ATT := p(Y = 1 | do(A = 1), A = 1) − p(Y = 1 | do(A = 0), A = 1),

across three confounding levels: low, medium, and high. A positive ATT indicates that including a theorem
increases a paper’s chance of acceptance. For larger values of β, the outcome becomes more correlated with
title buzziness Z rather than the action A, so the ground truth ATT is smaller.

We compare our proposed approach to a non-autoregressive MLP baseline and Causal-BERT (C-BERT)
from Veitch et al. (2020).7 Like C-BERT, we fine-tune a pre-trained BERT model on our sequencified
representations for a fair comparison. Additionally, we evaluate GPT-2 (referred to as GPT), another pre-
trained LLM with a comparable parameter size to BERT (Radford et al., 2019).

BERT is trained using masked language modeling (MLM) and next-sentence prediction objectives. MLM
randomly masks a fraction of input tokens and trains the model to predict them. GPT is trained with a
next-token prediction objective. To adapt BERT for this setting, we randomly sample subsection of the
abstract during training and mask the final token to fine-tune it as a next-token prediction model.

7C-BERT learns causally sufficient embeddings—low-dimensional document representations that preserve sufficient informa-
tion for causal identification and enable efficient causal effect estimation.
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As shown in Table 1, our approach significantly outperforms C-BERT and other benchmarks, including the
baseline MLP.8 The primary distinction between our approach and C-BERT is that we jointly learn repre-
sentations and outcome predictions within a single model, whereas C-BERT uses additional architectural
layers for multiple objective functions.

Our proposed framework leverages the existing knowledge in pre-trained LLMs to accurately estimate causal
quantities. While fine-tuning GPT yields successful results, training the model from scratch fails to identify
causal effects because the model lacks prior understanding of the text domain. We also demonstrate that
our results are robust to the size of the pre-trained LLM in Appendix C. By utilizing pre-trained language
models, our approach outperforms non-autoregressive causal methods and proves more effective for a wider
range of CI tasks.

7 Conclusion

In this work, we introduce an AR framework for CI that handles high-dimensional confounders and combi-
natorially large action spaces. Our proposed method, called sequencification, transforms data into a linear
sequence of tokens based on a known causal diagram. By training a single AR model on sequencified data,
we learn conditional distributions between variables in the graph. The framework enables efficient sampling
and approximation of several interventional distributions in a unified manner.

We validate the effectiveness of our method in inferring causal effects across three diverse settings: maze
navigation, chess endgames, and paper acceptance rates. By accommodating high-dimensional confounders
and combinatorially large action sequences, our framework improves the flexibility of CI for a broader range
of applications.

Our approach has two main limitations. First, it requires the full causal graph to be known exactly, with all
variables observed. A possible solution for handling unobserved values is to impute unconfounded missing
data using a mask token. Second, our method supports conditioning or intervening only on variable prefixes.
While non-prefix interventions is difficult, prior work has explored strategies to address this challenge (Don-
ahue et al., 2020; Welleck et al., 2019; Berenberg et al., 2022). We leave the investigation of solutions to
these limitations for future work.
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A Appendix

The maze experiments were conducted on a single NVIDIA Tesla T4. All models for the chess and PeerRead
experiments were trained on a single NVIDIA GeForce RTX 3090 in four and eight hours respectively.

Maze experiments. The maze dataset comprises 10,000 sequencified data points. We use a vanilla trans-
former with 3 layers, 8 attention heads, and a hidden dimension of 64. For training, we use the Adam
optimizer with a batch size of 64. The CI model is trained for 6,250 iterations, while the offline RL model
is trained for 5,000 iterations.

Chess endgame experiments. We use a 512-dimensional vanilla transformer with 6 layers and 8 attention
heads. The model is trained on a next-token prediction task using the sequencified representation. Training
runs for 200 epochs with the Adam optimizer, a batch size of 4096, and a learning rate chosen to be as large
as possible without overfitting.

For the training dataset, we sample 500,000 two-move chess games per dataset based on Black’s policy
function. The test dataset includes every game from all 223,660 legal starting positions and all four possible
Black actions (king-king, king-rook, rook-king, rook-rook). We sequencify the data by assigning a unique
token to each square, legal king and rook move, and outcome.

PeerRead experiments. We fine-tuned our models using pre-trained BERT and GPT base model check-
points.9 For BERT, we employed a two-phase training process similar to C-BERT. In the first phase, we
trained BERT to generate abstracts, followed by a second phase where it learned to generate full sequences,
including both actions and outcomes. GPT, having been pre-trained on next-token prediction, required only
a single training phase. This approach ensures a gradual refinement of the generative capabilities specifically
tailored to the PeerRead corpus. For all training phases, we trained for 100 epochs using the Adam optimizer
with a batch size of 16. The learning rate was set as high as possible without overfitting.

B Chess endgame potential outcome estimates

Table 2 compares the potential outcome values for all actions, presenting both exact model estimates and
approximate model estimates. Our AR model performs similarly to the baseline across both metrics. Predic-
tions from the model aligns with the ground truth answer to our counterfactual query: on average, moving
the rook twice leads to the fastest checkmate.

Table 2: Chess endgame potential outcome estimates for all actions. The outcome represents the number of
additional moves required to checkmate White. Since Black aims to achieve checkmate as quickly as possible,
lower values are desired.

Potential outcome (Error %)
king-king king-rook rook-king rook-rook

Ground truth 22.76 20.18 20.48 17.27
RCT 22.51 (1.1%) 19.96 (1.1%) 19.85 (3.1%) 17.08 (1.1%)

MLP exact non-RCT1 22.40 (1.6%) 19.85 (1.6%) 20.01 (2.3%) 17.10 (1.0%)
non-RCT2 22.24 (2.3%) 19.90 (1.4%) 19.69 (3.9%) 17.14 (0.8%)

RCT 22.17 (2.6%) 19.45 (3.6%) 17.72 (13%) 16.18 (6.3%)
MLP approx. non-RCT1 22.04 (3.2%) 19.32 (4.3%) 17.91 (13%) 16.12 (6.6%)

non-RCT2 21.86 (4.0%) 19.31 (4.3%) 17.86 (13%) 16.18 (6.3%)
RCT 22.38 (1.7%) 19.75 (2.1%) 19.96 (2.5%) 16.95 (1.9%)

AR exact non-RCT1 22.48 (1.2%) 19.87 (1.5%) 20.08 (2.0%) 17.08 (1.1%)
non-RCT2 22.05 (3.1%) 19.88 (1.5%) 19.80 (3.3%) 17.17 (0.6%)

RCT 21.90 (3.8%) 19.19 (4.9%) 17.62 (14%) 15.97 (7.5%)
AR approx. non-RCT1 22.03 (3.2%) 19.33 (4.2%) 17.95 (12%) 16.15 (6.5%)

non-RCT2 21.79 (4.3%) 19.29 (4.4%) 17.54 (14%) 16.31 (5.6%)

9BERT-Base is available at https://huggingface.co/google/bert_uncased_L-12_H-768_A-12, and GPT is available at
https://huggingface.co/openai-community/gpt2.
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In Figure 6, we present the potential outcome graphs for the remaining three actions: king-king, king-rook,
and rook-rook. The model behavior on these actions closely aligns with the observations for rook-king in
Figure 5. Across multiple interventions, Monte Carlo sampling improves potential outcome estimates when
only a subset of the test data is available. Thus, our approach not only effectively models outcomes but also
leverages Monte Carlo sampling to enhance predictions in limited data scenarios.

(a) King-king potential outcome estimates.

(b) King-rook potential outcome estimates.

(c) Rook-rook potential outcome estimates.

Figure 6: Potential outcome estimates for (a) king-king, (b) king-rook, and (c) rook-rook actions. Similar
to the rook-king intervention, sampling from pθ(X) enables the AR Monte Carlo estimate to approach the
AR exact estimate.
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Table 3: Accuracy and balanced
accuracy of title buzziness pre-
diction from the abstract using
logistic regression.

Acc. Balanced acc.
BoW 87.95% 73.27%

BERT 88.57% 77.91%
GPT2 89.18% 81.00%

Table 4: PeerRead ATT estimates for GPT small, medium, and large,
with relative error shown in parentheses.

Confounding level
# params Low Medium High

Ground truth 0.062 0.059 0.028
GPT-small 117M 0.050 (20%) 0.044 (25%) 0.020 (29%)
GPT-medium 345M 0.052 (16%) 0.053 (10%) 0.038 (36%)
GPT-large 774M 0.051 (18%) 0.054 (8%) 0.021 (25%)

C PeerRead extra experiments

To illustrate the positive predicted ATT on the PeerRead dataset, we compare pθ(Y = 1 | A = 1, X) and
pθ(Y = 1 | A = 0, X) predicted by GPT in Figure 7. Our model consistently favors papers containing
theorems regardless of title buzziness.

Furthermore, we examine why our model performs well when the outcome is generated from Z and A while
the input is derived from X and A. To quantify the correlation between title buzziness and the abstract,
we train a logistic regression model to predict Z from X. For each model, we extract the final hidden
layer output as a dense vectorized representation of the abstract. As a baseline, we train a separate logistic
regression model using the bag-of-words (BoW) representation of X. Table 3 shows a strong correlation
between X and Z, explaining the high accuracy of our potential outcome estimations.

We also examine the impact of pre-trained language model size on effect estimation accuracy using three
versions of GPT . Table 4 indicates that larger models generally yield more accurate estimates.

Figure 7: Conditional outcome distributions given A = 0 vs. A = 1 for medium confounding data.

18


	Introduction
	Related work
	Background
	CI problem formulation
	Language models

	Language models as statistical inference engines
	Causal graphs
	Sequencification
	Randomized topological orderings
	Autoregressive statistical inference engines

	Language models as causal inference engines
	Estimating causal quantities

	Experiments
	Maze navigation experiments
	Causal inference using sequential actions
	Causal inference using partial actions

	Chess endgame experiments
	PeerRead experiments

	Conclusion
	Appendix
	Chess endgame potential outcome estimates
	PeerRead extra experiments

