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ABSTRACT

Adapting foundation models to new tasks often involves modifying all model
weights, leading to destructive interference such as catastrophic forgetting and
degraded multi-task performance. Sparse adaptation methods like Lottery Ticket
Adaptation (LoTA) mitigate these issues by optimizing only sparse subnetworks,
achieving better results and enabling model merging across dissimilar tasks. Con-
currently, the Dual Lottery Ticket Hypothesis (DLTH) states that randomly se-
lected subnetworks can be transformed to a trainable condition that matches the
performance of winning tickets. In this work, our goal is to explore the DLTH in
sparse transformer finetuning tasks. We introduce a novel approach that employs
expander graph masks to obtain an initial sparse subnetwork instead of random
selection. In the first stage by maintaining a high spectral gap through expander
masks, we transform randomly selected subnetworks into trainable ones. This
method not only improves accuracy over random pruning but also uses the same
mask across all layers, simplifying the adaptation process. This approach demon-
strates expander-based initial pruning enhances sparse adaptations in foundation
models, with the potential of addressing multi-task learning challenges without
destructive interference.

1 INTRODUCTION

Overparameterized neural networks have achieved remarkable success across various machine learn-
ing tasks. However, their significant computational and storage demands present considerable re-
source constraints. Pruning techniques have emerged to address this issue by eliminating less impor-
tant weights, resulting in sparse networks that are more efficient but often experience performance
degradation. The Lottery Ticket Hypothesis (LTH) |[Frankle & Carbin| (2018) provides a compelling
perspective by suggesting that within a randomly initialized dense network, there exists a sparse
subnetwork—a “winning ticket”’—that can be trained to match the performance of the original net-
work. While LTH focuses on finding these winning tickets through specific pruning methods, it
overlooks the potential of random subnetworks within the dense network. Addressing this gap, the
Dual Lottery Ticket Hypothesis (DLTH) proposes that randomly selected subnetworks can be trans-
formed into trainable ones, effectively turning “random tickets” into winning tickets (Xu & Zhang,
2024).

In another direction, adapting language models to new tasks often involves updating all model
weights, which can lead to issues like catastrophic forgetting and degraded performance in multi-
task learning scenarios (Hu et al.| 2021} Han et al., [2024). Lottery Ticket Adaptation (LoTA) |Panda
et al. (2024) has been proposed to mitigate these problems by optimizing only a sparse subnetwork
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within models like RoOBERTa|Liu| (2019)), thereby preserving performance across multiple tasks and
enabling model merging over dissimilar tasks. However, LoTA initially relies on randomly pruned
subnetworks, which may not capture the most effective sparse structures for training.

This gives rise to the question of how we can exploit the LTH and DLTH to obtain sparse masks
which can in turn be trained on new tasks to mitigate the effects of catastrophic forgetting and de-
graded performance. In this work, we establish the DLTH in the context of finetuning by introducing
a new approach that utilizes expander masks for pruning instead of random selection. By carefully
choosing our masks within language models like RoBERTa and Llama 3 we enhance adaptation
accuracy and efficiency. Notably, the same mask is used across all layers, simplifying the adaptation
process and reducing complexity.

Our conducted experiments demonstrate improvements over traditional random pruning and then
fientuning methods. The use of expander masks leads to better accuracy and more efficient sparse
adaptations, effectively addressing multi-task learning challenges without the detrimental effects of
destructive interference.

Our contributions are summarized as follows:

1. Establishing DLTH for finetuning with expander masks on RoBERTa and Llama
Models: We validate the Dual Lottery Ticket Hypothesis within the framework of Lot-
tery Ticket Adaptation by employing expander masks for pruning in RoOBERTa and Llama
models, enhancing the trainability of randomly selected subnetworks.

2. Improved Accuracy and Efficiency: By maintaining a high spectral gap through expander
masks, our method outperforms random pruning techniques in accuracy while using a con-
sistent mask across all network layers.

3. Advancements in Sparse Adaptation for Language Models: This approach enhances
sparse network training and adaptation methods, with the goal of mitigating issues like
catastrophic forgetting and destructive interference in multi-task learning scenarios.

2 BACKGROUND AND METHODOLOGY

We briefly explain some of the background details and terms we have used in this work. Further
details can be found in the appendix [A]and in the references mentioned therein.

1. Expander An expander is a highly connected and yet sparse graph structure which allows
efficient flow of information in between the nodes.

2. Lottery tickets Lottery tickets refer to subnetworks within dense neural networks that can
be pruned yet still achieve high performance when trained independently.

3. Dual lottery tickets Dual lottery tickets extend the original Lottery Ticket Hypothesis by
proposing that randomly selected subnetworks from a dense, randomly initialized network
can be transformed into trainable structures.

Now we describe the sparse network masks used in our approach. The method of sequential fine-
tuning using the sparse subnetworks obtained by applying the mask is described next.

2.1 RANDOM MASKS

Random masks are applied to model parameters with a specified sparsity, focusing on the query,
key, and value matrices of each layer of the transformer models. For each task the model needs to be
finetuned on, a distinct adapter is trained. These adapters use random sparse networks to tailor the
model’s parameters to the specific task. The adapter weights pertaining to the mask are zeroed out
using RST and only the non-masked weights are updated in order to fine-tune the model for the task
at hand. Hence only a small portion of the model weights are updated for the task while maintaining
performance close to or better than full fine tuning. By training a separate adapter for each task,
we maintain task-specific adjustments while preserving the base model’s shared knowledge. The
fine-tuning process is conducted by only modifying the weights within the mask. This enables us to
obtain a dual lottery ticket, where a sparse subnetwork, identified by the random masks, can achieve
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performance comparable to that of the dense model. The combination of sparse network masking
and task-specific adapter training ensures that each task is optimally finetuned within the sparsity
constraints.

2.2 EXPANDER MASKS

We move from random masking to using structured masks derived from expander graphs. Expander
graphs are known for their excellent sparsity and connectivity properties, which make them highly
suitable for constructing efficient sparse networks. To generate the masks, we treat the bi-adjacency
matrix of the stacked bipartite expander graph as the mask itself. This bi-adjacency matrix inherently
captures the sparse yet highly connected nature of the expander graph. We apply the same adjacency
matrix-derived mask uniformly across all layers and across the query, key, and value matrices. This
approach allows us to investigate whether structured sparsity, imposed by expander graph connec-
tivity, leads to more efficient fine-tuning without compromising model performance. By using a
consistent mask across the model, we also explore how uniform sparse subnetworks affect the over-
all generalization capabilities of the model across different tasks. Recently, there has been a flurry
works on expander masks and lottery tickets.

2.3 SEQUENTIAL TRAINING

In our sequential training approach, we extend the use of expander graphs to handle multiple tasks
in a sequential manner. To achieve this, we choose two distinct expander graphs whose edges have
very small intersection (< 10%). This ensures that the masks formed from these graphs do not
overlap much, maintaining separate sparse subnetworks for each task.

The training begins with the first task, where the mask for this task is derived from the first expander
graph. After completing the training on the first task, the weights corresponding to the masked
connections are frozen, preserving the learned parameters for that task.

For the second task, we introduce the mask formed from the second expander graph, ensuring that
it does not interfere with the previously learned weights. This sequential training method allows
the model to adapt to multiple tasks while preserving knowledge from earlier tasks, thanks to the
mutually exclusive nature of the expander graph-derived masks.

Apply o [ o Transform

Figure 1: (1) Mask calibration using Random masks or Expander graphs. (2) Subnetwork extraction
using RST. (3) Winning Lottery Ticket (wp represents the base weights of the model)

3 EXPERIMENTS

3.1 GLUE TASKS

In order to evaluate the effectiveness of our method, we conducted experiments using the RoOBERTa
model on a subset of tasks from the GLUE (General Language Understanding Evaluation) bench-
mark. Our experiments were carried out on both the RoOBERTa base and RoBERTa large models
to examine the impact of model size on performance. For all experiments, we used a batch size of
16 and a learning rate of 1 X 10~%. The tasks included in our evaluation are CoLA, RTE, MRPC,
STS-B, SST-2, and QNLI. Due to time constraints, we omitted SST-2 and QNLI from the RoBERTa
large model, as well as the MNLI and QQP tasks from our evaluation.
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3.2 GENERATIVE TASKS

We evaluate our methodology by training meta-llama/Meta-Llama-3-8B model on five fronts:
instruction following, mathematics, programming, summarisation, and reasoning. We will now
succinctly examine each capacity, the datasets utilised for fine-tuning and evaluating the proposed
methodologies, and the rationale for their selection.

Instruction following: For this purpose, we train models to data from UltraFeedback (Cui
et al., 2024), which encompasses a variety of data points addressing truthfulness, honesty, and
helpfulness, with instruction adherence. We assess the instruction-following capability using the
length-controlled AlpacaEval2 Win Rate (Dubois et al., |2025)), which we denote as “winrate”. A
high success rate indicates that GPT-4 favours the replies generated by our model on a selection of
typical prompts compared to its own responses. Winrate is the measure most strongly associated
with human rating preference.

Reasoning: We train our model on 8 reasoning datasets: Boolq (Clark et al., |2019), PIQA
(Bisk et al., |2019), SocialQA (Sap et al., |2019), Hellaswag (Zellers et al.,|2019), Winogrande (ai2}
2019), Arc-Easy (Clark et al., 2018), Arc-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov
et al.| 2018) and report the exact match accuracy.

Math: We train our model on the gsm8k (Cobbe et al., 2021) dataset and report the accu-
racy of the model.

Code generation: We use the SQL-create-context (b mc2, [2023) dataset that contains in-
struction prompts for the model to write SQL queries and report the ROUGE-F1 score on the test
set.

Summarization: We utilise Samsum (Gliwa et al., |2019) dataset and present the ROUGE-1
F1 score for the test set.

3.3 RESULTS

We first compare the performances of random masks and expander masks for the RoOBERTa base
(Table [T), and RoBERTa large (Table [2) models on the GLUE tasks. The sparsity, denoting the
fraction of masked parameters, is set to 99%. It can be observed the expander mask outperforms the
random mask for all the tasks.

Table 1: Results on GLUE Tasks on RoOBERTa Base with 99% Sparsity
Task CoLA | RTE | MRPC | STS-B | SST-2 | QNLI
Random Mask | 0.244 | 0.559 | 0.828 0.876 | 0.926 | 0.893
Expander Mask | 0.566 | 0.720 | 0.833 0.896 | 0.928 | 0.916

Table 2: Performance on GLUE Tasks on RoBERTa large with 99% Sparsity
Task CoLA | RTE | MRPC | STS-B

Random Mask | 0.655 | 0.815 | 0.889 0911

Expander Mask | 0.677 | 0.837 | 0.892 0914

Next, we study viability of sequential training on a pair of tasks while using the expander masks.
The sequential tasks were performed with a sparsity of 90% on the RoOBERTa base model achieved
by applying the expander masks. Table [3] show the performance metrics for individual tasks in a
task pair after the model was finetuned sequentially for the task pair. We observe a slight drop in the
performance of the Task 1 in each case, but not a catastrophic degradation.
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Table 3: Performance on sequential training on RoBERTa Base with 99% sparsity obtained using
expander masks. (Task-1 trained first followed by Task-2. Evaluation metrics computed for each
task after training on both tasks.)

Tasks Task-1 metric | Task-2 metric
MRPC-CoLA 0.686 0.570
RTE-MRPC 0.498 0.867
CoLA-RTE 0.109 0.776
CoLA-MRPC 0.160 0.877
MRPC-RTE 0.344 0.758
RTE-CoLA 0.462 0.572

Following this, we apply our methodology to the meta-llama / meta-lama-3-8B model to train the
model on the tasks mentioned earlier, and the results are shown in table 4l The results for LoTA and
our method use a mask with 10% sparsity and a learning rate of 1e-6, whereas the hyperparameters
used for LoRA have been taken from [Panda et al.| (2024))

Table 4: Performance of meta-llama/Meta-Llama-3-8B model on various tasks using expander
masks with 10% sparsity, best results have been mentioned in bold.

Task FFT | LoRA | LoTA | Our Method
gsm8k 63.4 62.3 63.2 66.4
Reasoning 84.8 84.1 84.4 98.53
SQL 99.4 98.7 99.0 98.9
Summarisation 53.6 523 52.3 54.8
Instruction following | 17.61 14.2 18.0 14.9

4 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we explored the Dual Lottery Ticket Hypothesis (DLTH) in the context of finetuning,
with specialised sparsification as an effective alternative to random pruning. Expander masking is
found to improve sparse adaptation methods in foundation models like RoOBERTa and Llama. Our
results demonstrate that expander sparsification, improve both accuracy and parameter efficiency
over random masking methods, especially in scenarios involving high sparsity. Additionally, we
showed that it is possible to maintain task-specific learning while mitigating issues like catastrophic
forgetting and destructive interference in multi-task learning.

There are several avenues for future work that we aim to explore. One of the primary directions
is extending our methodology to vision models, other LLMs and MLLMs. The current findings
suggest that expander-based pruning could generalize well to these larger architectures, potentially
providing a solution to the growing computational complexity and efficiency demands in adapting
LLMs to multiple tasks. We also plan to further investigate the impact of structured sparsity on more
complex multi-task learning scenarios, as well as improve the sequential training process by refining
mask calibration techniques.
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A APPENDIX

Expanders An expander is a highly connected and yet sparse graph structure which allows effi-
cient flow of information in between the nodes. Intuitively, it is a finite, undirected multigraph in
which every subset of the vertices that is not “’too large” has a ”large” boundary. This is mathemati-
cally quantified via the Cheeger constants. A graph G = (V, E) is an e-vertex expander if for every

non-empty subset X C V with | X| < L‘;\ we have % > ¢, where 0(X') denotes the outer vertex

boundary of X i.e., the set of vertices in I' which are connected to a vertex in X but do not lie in X.

As X runs over all subsets of 1, the infimum of ‘6‘(;(('” satisfying the conditions above is known as

the vertex Cheeger constant and is denoted by h(I"). Thus, a large vertex Cheeger constant implies
that it is difficult to disconnect the graph by small cuts. More details on expanders can be found
in |Alon| (1986)); Hoory et al.| (2006) etc. In this work we shall mainly be concerned with bipartite
expanders i.e., sparse bipartite graphs which are expanders.

Lottery tickets Lottery tickets refer to subnetworks within dense neural networks that can be
pruned yet still achieve high performance when trained independently. This concept stems from the
Lottery Ticket Hypothesis (LTH), which posits that a dense neural network contains sparse subnet-
works ("winning tickets”) that can perform as well as, or even better than, the original model. Find-
ing lottery tickets involves training the dense network, pruning parameters based on their magnitude,
and resetting the remaining weights to their original values for retraining. This iterative train-prune-
retrain process helps identify the winning ticket with minimal complexity and high computational
efficiency. See |Frankle & Carbin|(2018).

Dual lottery tickets Dual lottery tickets extend the original Lottery Ticket Hypothesis by
proposing that randomly selected subnetworks from a dense, randomly initialized network can be
transformed into trainable structures. This approach, called the Dual Lottery Ticket Hypothesis
(DLTH), shifts the focus from identifying pre-existing winning tickets to transforming random
subnetworks into high-performing ones. This transformation is achieved using regularization
techniques that refine the selected subnetwork for improved performance. DLTH is crucial because
it generalizes the sparse training process, offering flexibility and eliminating the need for pretraining
dense networks, thus reducing computational costs while maintaining strong performance. See |Bai
et al.[(2022).

Random Sparse Network Transformation (RST) RST is a training strategy aimed at transform-
ing randomly selected sparse subnetworks into trainable structures by leveraging information from
the rest of the network. The process involves applying a regularization term to extract useful in-
formation from the masked weights (the non-trainable part of the network) and transfer it to the
unmasked weights (the trainable subnetwork). The regularization term gradually suppresses the
magnitude of the masked weights while optimizing the overall loss function, ensuring that the un-
masked weights receive the necessary information for training. As the training progresses, the im-
portance of the masked weights diminishes, while the unmasked parameters become increasingly
important. After sufficient training, the masked weights are removed, leaving a refined sparse net-
work that is finetuned for final evaluation. In this way, the RST transforms a random subnetwork,
or “random ticket”, into a high-performing “winning ticket” by utilizing information from the entire
network. See|Bai et al.| (2022) for details.
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