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Abstract

The advent of advanced artificial intelligence tech-
nology has significantly accelerated progress in
protein structure prediction, with AlphaFold2
setting a new benchmark for prediction accu-
racy by leveraging the Evoformer module to
automatically extract co-evolutionary informa-
tion from multiple sequence alignments (MSA).
To address AlphaFold2’s dependence on MSA
depth and quality, we propose two novel mod-
els: AIDO.RAGPLM and AIDO.RAGFold, pre-
trained modules for Retrieval-AuGmented pro-
tein language model and structure prediction
in an AI-driven Digital Organism (Song et al.,
2024). AIDO.RAGPLM integrates pre-trained
protein language models with retrieved MSA, sur-
passing single-sequence protein language mod-
els in perplexity, contact prediction, and fit-
ness prediction. When sufficient MSA is
available, AIDO.RAGFold achieves TM-scores
comparable to AlphaFold2 while operating up
to eight times faster, and significantly outper-
forms AlphaFold2 when MSA is insufficient
(∆TM-score=0.379, 0.116 and 0.059 for 0, 5
and 10 MSA sequences as input). Addition-
ally, we developed an MSA retriever using
hierarchical ID generation that is 45 to 90
times faster than traditional methods, expanding
the MSA training set for AIDO.RAGPLM by
32%. Our findings suggest that AIDO.RAGPLM
provides an efficient and accurate solution
for protein structure prediction, particularly
in scenarios with limited MSA data. The
AIDO.RAGPLM model has been open-sourced
and is available on https://huggingface.co/genbio-
ai/AIDO.Protein-RAG-3B.
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1. Introduction
The advent of advanced artificial intelligence technology
has significantly accelerated progress in protein structure
prediction. AlphaFold2 (Jumper et al., 2021), a pioneering
method in this field, has set a new benchmark for predic-
tion accuracy. Multiple sequence alignment (MSA) plays
a crucial role in protein structure prediction. Unlike pre-
vious methods that required manual calculation of MSA
features (Senior et al., 2020), AlphaFold2 leverages the
Evoformer module to automatically extract co-evolutionary
information from MSA, thereby enhancing the efficiency of
information utilization.

However, the efficacy of structure prediction methods like
AlphaFold2 is heavily dependent on the depth and quality of
the MSA. Consequently, it is imperative to prepare an exten-
sive sequence database. When the number of homologous
sequences is insufficient, the performance of AlphaFold2 de-
teriorates significantly. To address this limitation, methods
based on large-scale pre-trained protein language models
have been proposed. For instance, ESMFold (Lin et al.,
2023), OmegaFold (Wu et al., 2022), ESM3 (Hayes et al.,
2024) and xTrimoPGLM-Fold (Chen et al., 2024b) have
demonstrated commendable results using a single sequence
as input. Nevertheless, even with 100-billion parameters,
models like xTrimoPGLM and ESM3 remain inferior to
AlphaFold2 in structure prediction when MSA is used as
input, underscoring the importance of MSA. Although sev-
eral PLM have attempted to integrate multiple sequences for
training (see Appendix A), there is currently no validation
for using retrieved augmented PLM for end-to-end protein
structure prediction.

In this paper, we integrate pre-trained protein language mod-
els with retrieved MSA to propose a novel approach termed
Protein Language Model with Retrieved Augmented MSA
(RAGPLM) (see Figure 1). This approach allows for the
incorporation of co-evolutionary information from MSA
in structure prediction while compensating for insufficient
MSA information through large-scale pre-training. We con-
catenate the query sequence with aligned homologous se-
quences into a long sequence (up to 12.8k) and perform
pre-training by column span mask strategy based on a trans-
former encoder framework. Our method surpasses single-
sequence protein language models in perplexity, contact
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prediction, and fitness prediction. Subsequently, we uti-
lized AIDO.RAGPLM as a feature extractor, integrating it
with the folding trunks and Structure Modules to achieve
end-to-end structural prediction (AIDO.RAGFold). Our
findings indicate that when sufficient MSA is available, our
method achieves results comparable to AlphaFold2 and is
eight times faster; when MSA is insufficient, our method
significantly outperforms AlphaFold2.

To expedite MSA acquisition, we also developed an MSA
retriever using hierarchical ID generation. This retriever is
45 to 90 times faster than traditional HHblits (Steinegger
et al., 2019) in MSA retrieval, which is used to expand the
MSA training set for AIDO.RAGPLM by 32%.

2. Methods
Our method consists of three major components, MSA re-
triever, AIDO.RAGPLM and AIDO.RAGFold, which we
explain more details below.

2.1. MSA retriever

Searching for multiple sequence alignments (MSAs) in large
sequence databases is time-consuming. Inspired by (Wang
et al., 2023) that generates relevant document identifiers
by sequence-to-sequence network in document retrieval,
we developed an MSA retriever to generate hierarchical
identifiers for homologous sequences for a query protein
sequence (see Figure 3). The protocol comprises three
steps: (1) Construct hierarchical IDs for each sequence
in UniClust30 (UC30) (Mirdita et al., 2016) through hier-
archical K-means clustering of embedding; (2) Fine-tune
a pretrained casual language model with 3-billion param-
eters (CLM-3B, (Cheng et al., 2024)) to memorize the
ID of each sequence on UC30 dataset; (3) Continue to
fine-tune the model to generalize to IDs of homologous se-
quences on the HHblits MSA dataset. For detailed training
information, please refer to Appendix C. During inference,
the MSA retriever generates each ID token sequentially,
which corresponds to the nodes of the tree, until the UC30
node is reached. We perform multiple generations using
different parameters and aggregate all retrieved sequences.
Jackhmmer (Johnson et al., 2010) is then used to filter and
align the homologous sequences. We use MSA Retriever
to expand the MSA training data for AIDO.RAGPLM (see
Appendix D).

2.2. AIDO.RAGPLM

We fine-tuned a pretrained masked language model with
3-billion parameters (MLM-3B, (Cheng et al., 2024)) using
MSA data by concatenating the query sequence with homol-
ogous sequences (see Figure 1). We introduced several mod-
ifications to the standard BERT masking strategy (Devlin

et al., 2019): (1) We randomly sampled 0.05× L span posi-
tions from a query sequence of length L, with span lengths
following a geometric distribution (p=0.2), and capped the
maximum length at 10. Our experiments revealed that this
settings lead to an average of 15% of the query tokens were
masked. (2) To prevent information leakage, when a residue
was selected, all residues at the same index across all se-
quences (the column of the MSA matrix) were also masked.
(3) When a column of MSA was selected for masking, the
entire column was replaced with the <MASK> token in 80%
of cases, with random amino acids in 10% of cases, and
remained unchanged in the remaining 10% of cases. To
help the model distinguish which tokens are from the same
chain and which tokens have the same residue index, we use
2D rotary position embedding (Chen et al., 2024a; Su et al.,
2023) to encode the tokens (see Figure 4 and Appendix E).
For the details of training parameters, please refer to Table 6.

2.3. AIDO.RAGFold

Inspired by ESMFold (Lin et al., 2023), we use
AIDO.RAGPLM as a feature extractor, and added the fold-
ing trunks (AlphaFold2 Evorformer without the column
attention module) and Structure modules as a head to enable
end-to-end protein structure prediction. During training,
we also fine-tuned the AIDO.RAGPLM base model using
LoRA (Rank=16, Alpha=16). We experimented with var-
ious numbers of folding trunks and found that 24 blocks
were enough, which is half the number used in AlphaFold2
and ESMFold. Additionally, we replaced the ReLU activa-
tion function with GEGLU (Shazeer, 2020) in the transition
module to enhance model performance. Our training proce-
dure consists of two phases: initial training and fine-tuning.
Detailed training parameters are provided in Appendix 7.
Please refer to Appendix E for the details of the data de-
scription, model training and inference.

3. Results
Please refer to Appendix F for details of test datasets.

3.1. Comparing MSA retriever and HHblits
We employed HHblits and our MSA retriever to obtain
MSAs of the test sequences from the UC30 database. For
MSA retriever, we experimented with two sets of param-
eters: (1) beam search to generate 20 UC30 clusters; (2)
Top-K (K=10) sampling for 64 UC30 clusters. The results
were combined and used as input for AlphaFold2 (check-
point: model 3 ptm). Table 5 demonstrates that although
our results are not as favorable as those obtained with HH-
blits in terms of TM-score, our method is approximately 45
to 85 times faster. To address the issue of missing targets in
the retriever (Depth ≤ 10), we combined the MSA retriever
with HHblits. For samples with a depth of less than 10 in
the retriever’s results, we used HHblits to retrieve the MSA
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Figure 1. Schematic diagram of MSA retriever, AIDO.RAGPLM, and AIDO.RAGFold. (a) A decoder-only and an encoder-only
transformer model are trained using UniRef90 and ColabFold protein sequence databases with CLM and MLM losses, respectively. (b)
The MSA Retriever is fine-tuned on an MSA dataset to generate MSA sequence IDs from a query sequence, enabling the creation of a
UniRef50 MSA training dataset. (c) AIDO.RAGPLM is trained on the UniRef50 MSA dataset using column span masking and recovery
loss. (d) AIDO.RAGPLM acts as a feature extractor for protein structure prediction.

again. We found that the TM-score is comparable across
four datasets when using HHblits, while still maintaining a
5 to 70-fold increase in speed.

3.2. AIDO.RAGPLM
Perplexity (PPL): We randomly replace 15% of the tokens
in the sequence with <MASK> token. For MSA sequences,
residues at the same index (the column of MSA) of masked
query are also masked. We then calculate the perplexity of
the masked tokens from the query sequence using ESM2-
3B, MLM-3B, and AIDO.RAGPLM models. Table 4 shows
that PLMRAG has the lowest PPL across all datasets, and
as the number of homologous sequences increases, the PPL
decreases further.

Unsupervised Contact Prediction: Following the method-
ology of (Rao et al., 2021), we randomly selected 20 chains
as the training set and obtained H × L attention maps from
the model, where H is the number of heads and L is the num-
ber of layers. Each attention map was symmetrized and ad-
justed using the Average Product Correction (APC) indepen-
dently. Residue pairs with a distance of less than 8Å were
defined as contacts. Logistic regression was employed to
predict whether a residue pair is a contact (distance less than
8Å) using the H×L features as input. For AIDO.RAGPLM,
only the attention map of the query sequence part was uti-
lized. As shown in Table 1, AIDO.RAGPLM outperforms
the two single-sequence models, despite its base model,
MLM-3B, performing worse than ESM-3B on the CAMEO
and Recent datasets.

Supervised Contact Prediction: We utilized the contact

Table 1. Unsupervised contact prediction.
ESM-3B MLM-3B RAGPLM

Top L

CASP14 0.357 0.350 0.389
CASP15 0.420 0.427 0.451
CAMEO 0.493 0.483 0.513
Recent 0.452 0.433 0.477

Top L/5

CASP14 0.348 0.365 0.396
CASP15 0.381 0.380 0.415
CAMEO 0.444 0.441 0.470
Recent 0.436 0.403 0.443

prediction dataset from trRosetta (Yang et al., 2020) to fine-
tune the model. For all models, qkvo LoRA (Hu et al., 2021)
and MLP LoRA were applied with (Rank=16, Alpha=16).
The batch size was set to 8, and training was conducted for
25,000 steps. The checkpoint with the highest validation
Top L/5 accuracy was used to evaluate the model. As
shown in Table 2, AIDO.RAGPLM outperforms ESM2-3B
and MLM-3B on both the validation and test sets.

ProteinGym zero-shot prediction. We obtained the substi-
tutions dataset of Deep Mutational Scanning (DMS) assays
from the ProteinGym website (Notin et al., 2023). For each
mutation twt → tmut, we replace the wildtype token twt

with a special <MASK> token. We then computed the log
ratio log(Pθ(tmut)) − log(Pθ(twt)), where Pθ(tmut) rep-
resents the model’s probability of the mutated token given
the other tokens as input. To evaluate the model’s perfor-
mance, we calculated the Spearman correlation coefficient
between the log ratio and the ”DMS score” from the down-
loaded tables. As shown in Table 2, the AIDO.PLMRAG
model achieved a higher score compared to the other two
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Table 2. Result of supervised contact prediction and fitness pre-
diction. Supervised contact prediction: 1,512 samples for vali-
dation set and test set. Fitness prediction: Spearman correlation
coefficients of Deep Mutational Scanning (DMS) assays from
ProteinGym. The column labeled ”All” includes sequences with
single and multiple mutations, while the column labeled ”Single”
includes sequences with only a single mutation. The data size is
207.

Contact Fitness

Validation Test All Single

ESM2-3B 0.931 0.915 0.439 0.426

MLM-3B 0.916 0.910 0.430 0.408

PLMRAG 0.938 0.927 0.462 0.437

Table 3. TM-scores of AlphaFold2, AIDO.RAGFold, and ESM-
Fold on four test datasets. HHblits MSAs were used as input for
AlphaFold2 and AIDO.RAGFold. Nensemble = 4.

Dataset AF2 AIDO.RAGFold ESMFold

CASP14 0.767 0.776 0.696

CASP15 0.728 0.726 0.639

CAMEO 0.864 0.871 0.854

Recent 0.824 0.823 0.775

single-sequence PLMs.

3.3. AIDO.RAGFold
We conducted a comparative analysis of TM-scores and
runtime between AIDO.RAGFold and AlphaFold2 (check-
point: model 3 ptm) using HHblits retrieved MSAs as input.
The number of recycle (Nrecycle) was fixed at three, and
the maximum context length for RAG was constrained up
to 25,600. Both AlphaFold2 and AIDO.RAGFold were
executed with varying Nensemble (1, 2 and 4), resulting in
AIDO.RAGPLM processing 4, 8, and 16 different MSAs, re-
spectively (see Algorithm 1). Table 3 and Table 12 presents
the TM-score of the two models. Table 10 presents the
inference time, RMSD and LDDT. Our findings indicate
that:

MSA ensembling enhances AIDO.RAGFold’s perfor-
mance: This improvement is primarily due to RAG’s lim-
ited MSA context usage. Increasing Nensemble allows
AIDO.RAGFold to use more homologous sequence infor-
mation.

AIDO.RAGFold’s performance is comparable to Al-
phaFold2: AIDO.RAGFold demonstrates a significantly
faster inference speed, ranging from 8 times faster.

AIDO.RAGFold outperforms ESMFold: The inclusion of
MSA significantly boosts AIDO.RAGFold’s performance
compared to ESMFold.

Figure 2. TM-scores of AlphaFold2 and AIDO.RAGFold on four
test datasets with limited MSA sequences as input. AlphaFold2
and AIDO.RAGFold are represented by blue and green bars re-
spectively. The x axis represents the upper bound of the MSA
number.

To investigate the impact of the number of MSAs on
AIDO.RAGFold’s structural prediction accuracy, we ran-
domly sampled 0, 5, 10, 25, 50, and 100 sequences
from the HHblits MSA as input for both AlphaFold2 and
AIDO.RAGFold. Table 11 and Figure 2 illustrate that
AIDO.RAGFold’s TM-scores surpass those of AlphaFold2
when the number of MSAs is limited. For instance, us-
ing the Recent PDB dataset, AIDO.RAGFold outperforms
AlphaFold2 by margins of 0.420, 0.155, 0.070, 0.016,
and 0.007 for 0, 5, 10, 25, 50, and 100 MSAs, respec-
tively. However, it is noteworthy that without any MSA
input, AIDO.RAGFold’s performance lags behind ESM-
Fold. Nevertheless, providing more than 5 MSAs enables
AIDO.RAGFold to match ESMFold’s performance, with
the exception of the CAMEO dataset.

4. Conclusion
Our study introduces a novel MSA retrieval method based
on ID generation, significantly accelerating MSA acqui-
sition compared to traditional approaches. Utilizing this
method, we expanded the existing MSA dataset and
trained an MSA retrieval-enhanced protein language model.
Our findings indicate that this model outperforms single-
sequence models in tasks such as contact prediction and fit-
ness prediction. Furthermore, we employed the embeddings
from this language model for downstream end-to-end struc-
ture prediction, achieving results comparable to AF2, but
with an approximately eightfold increase in speed. Notably,
in scenarios with insufficient MSAs, our model substan-
tially surpasses AF2, underscoring the critical importance
of pre-trained models.
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A. Retrieval Augmented Protein Language Models.
Recent advancements in protein language models have attempted to integrate multiple homologous sequences for training.
For example, the MSA Transformer (Rao et al., 2021), a model with 150 million parameters, utilizes aligned homologous
sequences as input and employs self-supervised learning through random masking. This model has demonstrated superior
performance compared to single-sequence models in downstream tasks such as fitness and contact prediction. Similarly,
PoET (au2 & Bepler, 2023), an autoregressive generative model, concatenates unaligned sequences and trains them using
next-token prediction. This enables the generation of entirely new sequences within the same family and the prediction of
variant fitness. RSA (Ma et al., 2023) retrieves homologous sequences of the query using its dense sequence retriever and
aggregates the information from the query and homologous sequences in pairs for downstream task prediction. This method
not only achieves a retrieval speed significantly faster than traditional MSA methods but also delivers superior results in
tasks such as fold classification, contact prediction, and localization. ProtMamba (Sgarbossa et al., 2024), leveraging the
Mamba framework, extends the maximum sequence length up to 131k. By integrating autoregressive modeling and masked
language modeling (MLM) with a fill-in-the-middle objective, ProtMamba can generate protein sequences and be utilized
for downstream tasks such as fitness prediction.

B. MLM-3B model and CLM-3B model
The MLM-3B model (Cheng et al., 2024)) is a transformer encoder framework with 2.8 billion parameters. We utilize the
same hyperparameters as ESM-3B, specifically: 36 layers, 40 heads, a hidden size of 2560, and an FFN hidden size of 6832.
The training data is a mixture of the UniRef database and ColabFoldDB. We follow the BERT masking strategy: 15% of the
tokens are selected for masking, with 80% replaced by special MASK tokens, 10% replaced by random amino acids, and the
remaining 10% left unchanged. The learning rate schedule includes a 3% warm-up phase from 0 to 2.5e-4 followed by
cosine decay from 2.5e-4 to 2.5e-5. Please refer to Table 6 for detailed information about MLM-3B. We train on 1,000
billion tokens and evaluate the model on two out-of-distribution datasets, with maximum identity to the training set being
less than 0.9 and 0.5, respectively. The results are presented in Table 5.

The CLM-3B model (Cheng et al., 2024)) is a transformer decoder framework. It shares the same hyperparameters as the
MLM-3B model and is trained on the same dataset. Our approach follows the training methodology of GPT, predicting the
next token based on the given prefix. For detailed information about CLM-3B, please refer to Table 6.

C. MSA retriever
As described in the main text, training the MSA retriever involves three steps. Below, we detail the methods for each step.

C.1. Construct Hierarchical IDs for Each Sequence in UniClust30 via Hierarchical K-means Clustering of
Embedding

The UC30 database (v2021 03) comprises 29 million clusters containing a total of 263 million sequences. The hierarchical
ID is a multi-layer tree structure (see Figure 3), with each node having no more than 64 child nodes. Each leaf node
corresponds to a sequence in UC30. To ensure the hierarchical ID reflects sequence similarity semantics (e.g., the similarity
between 23-43-52-0 and 23-43-52-1 is higher than that between 23-43-52-0 and 23-43-34-5), we assign the ID tokens by
clustering the embedding of sequences. So we use the MLM-3B model to generate embedding (dimension of 2560) for the
263 million sequences.

The ID of a sequence consists of two parts: (1) ID center: derived from clustering the 29 million cluster centers; (2)
ID member: derived from clustering the members within a UC30 cluster.

ID center: For each UC30 cluster, the longest sequence is selected as the representative sequence, and its embedding is
used as the representative embedding of the cluster. We perform hierarchical K-means clustering (K=64) on the 29 million
representative embedding, resulting in a tree with a degree of 64. We label all child nodes of each node from 0 to 63. Thus,
for any node, we traverse from the root node to it in sequence to obtain its hierarchical ID, which is ID center.

ID member: For UC30 clusters with more than 64 members, we perform the same hierarchical K-means clustering on all
members’ embeddings to build ID member.

The final ID for each sequence is obtained by concatenating ID center and ID member.
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C.2. Fine-tune the CLM-3B Model to Memorize the ID of Each Sequence

We first build a Seq-ID dataset from UC30 dataset. Each sample comprises the query sequence, a special <ID> token, the
hierachical ID tokens, and an <EOS> token. The CLM-3B model is trained with 500 billion tokens. After training, the
model can generate the ID tokens with the query sequence and the <ID> token as a prefix until the <EOS> token or the
UC30 cluster level token (purple circle in Figure 3). The learning rate is warmed up from 0 to 2.0e-5 for the first 2.5% of
training tokens and then decays to 0 using a cosine schedule.

C.3. Continue to fine-tune the model to Generalize to IDs of Homologous Sequences

We use HHblits to search for MSAs from UC30 using UniRef50 (UR50) as query sequences, obtaining 23.7 million MSAs.
We refer to this dataset as HHblits MSA. When fine-tuning CLM-3B on this dataset, each sample comprises a query
sequence, a special <ID> token, the ID tokens (randomly sampled from its homologous sequences), and a <EOS> token.
We train 10 billion tokens on this dataset. Please refer to Table 6 for detailed information.

D. AIDO.RAGPLM training dataset
We utilized sequences from UniRef50 as queries to search for homologous sequences in UniClust30, subsequently con-
structing multiple sequence alignments (MSAs). UniRef50 comprises a total of 53.6 million sequences. Using HHblits,
we searched all sequences, identifying over 25 homologous sequences for 23.7 million of them. This dataset was directly
used as the training set, referred to as HHblits MSA. The remaining 29.9 million sequences were input into MSA Retriever,
resulting in 7.7 million sequences with more than 25 homologous sequences. This dataset was designated as Retriever MSA.
During training, AIDO.RAGPLM randomly sampled from the two datasets with probabilities of 0.75 and 0.25, respectively.
Detailed information is provided in Figure 8.

E. Detailed description of AIDO.RAGFold architecture and inference.
We used the PDB database (release prior to January 1, 2024), the AlphaFold Database (with mean pLDDT ≥ 90) and
OpenProteinSet residues with pLDDT ≥ 90 (Ahdritz et al., 2023) as the training set. Detailed information about the data is
provided in Table 9. We ensured that all samples with sequence identity greater than 0.5 with the test set were excluded. The
open-source OpenFold framework was employed to train our RAG-Fold model.

To feed the query tokens (∈ RL, where L is the length of the query sequence) and MSA tokens (∈ RN×L, where L is the
length of the query sequence) into the AIDO.RAGPLM model, the MSA tokens are flattened into the shape of RNL. We
initialize a 2D positional encoding (∈ R2×L), where the first dimension represents the residue index for each sequence and
the second dimension represents the sequence index (Chen et al., 2024a). To reduce the length of the sample, we remove G
gap tokens that contain no information in the sequence. This adjustment changes the dimension of the sample to RNL−G

and the dimension of the positional encoding to R2×(NL−G). Figure 4 illustrates this process.

The output of the AIDO.RAGPLM model includes the embeddings of homologous sequences. We retain only the hidden
states corresponding to the query tokens and input them into the downstream modules. Linear modules are employed
to transform these hidden states into the MSA representation and Pair representation of folding trunks. For a detailed
description, please refer to Algorithm 1.

During inference, due to the limitation of the input sample length (up to 25,600), the information from homologous sequences
that the AIDO.RAGPLM model can utilize is restricted. To address this, we adopted the MSA ensembling method from
AlphaFold2. Specifically, we sample a subset of up to 25,600 sequences from the all MSA sequences each time and run
the AIDO.RAGPLM Nensemble times to average the resulting representations. This approach enables us to maximize the
utilization of information from homologous sequences.

F. Test datasets
• CASP14 (N=50): Protein targets obtained from the CASP14 website, accompanied by ground-truth structures.

• CASP15 (N=53): Protein targets sourced from the CASP15 website, with corresponding ground-truth structures.

• CAMEO (N=194): Protein domains retrieved from the CAMEO website, covering the period from July 1, 2021, to
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Table 4. Perplexity of various models and inputs across six sequence datasets. (N) denotes the dataset size, while (D) represents the
number of homologous sequences used as input for AIDO.RAGPLM.

CASP14 CASP15 CAMEO Recent PDB MaxID0.5 MaxID0.9

N 50 53 194 107 5,012 6,907

ESM2-3B 10.658 5.963 5.959 6.223 10.753 6.703

MLM-3B 8.905 6.355 5.631 5.671 10.959 6.816

RAGPLM (D=1) 10.114 6.599 6.321 6.357 10.718 6.816

RAGPLM (D=8) 9.303 6.360 6.212 5.999 10.222 6.494

RAGPLM (D=16) 8.980 6.167 6.167 5.666 9.989 6.317

RAGPLM (D=64) 8.724 5.803 5.995 5.329 9.381 5.840

RAGPLM (D=128) 8.391 5.612 5.707 5.296 9.341 5.833
RAGPLM (D=256) 8.072 5.741 5.635 5.266 9.359 5.871

Table 5. Performance Comparison of Various MSA Search Tools. In the case of Ours + hhblits, Ours MSAs with a depth of fewer than 10
were replaced with HHblits MSAs.

Average time (s) #(Depth ≥ 100) ↑ #(Depth ≤ 10) ↓ AlphaFold2
TM-score ↑

CASP14

hhblits 899 27 9 0.757
Ours 19 31 11 0.696

Ours + hhblits 172 31 7 0.748

CASP15

hhblits 2928 47 2 0.731
Ours 32 42 8 0.668

Ours + hhblits 94 46 2 0.723

CAMEO

hhblits 2761 172 5 0.865
Ours 43 163 24 0.831

Ours + hhblits 127 171 5 0.862

Recent PDB

hhblits 3138 91 1 0.824

Ours 43 94 10 0.783

Ours + hhblits 104 96 1 0.827

June 1, 2022.

• Recent PDB (N=107): Protein chains extracted from the PDB database, with release dates ranging from January 1,
2024, to July 1, 2024. The following criteria were applied to filter the chains: (1) a length range between 50 and 1500
residues; (2) exclusion of sequences containing non-standard amino acid types; (3) removal of sequences with repeat
fragments, defined as having a bi-gram entropy greater than 4; (4) exclusion of sequences with more than 50% identity
to the training set; (5) clustering of sequences at a 50% identity cutoff, selecting one representative sequence per cluster.
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Table 6. Detailed training information of MLM-3B, CLM-3B, MSA Retriever and AIDO.RAGPLM.
MLM-3B CLM-3B Retriever

Step 1
Retriever
Step 2

RAGPLM

Training data UniRef +
ColabFoldDB

UniRef +
ColabFoldDB

UniClust30 HHblits MSA HHblits MSA
Retriever MSA

Initial params Random Random CLM-3B Retriever
Step 1

MLM-3B

Learning rate 2.5e-4 1.2e-4 2e-4 1.2e-4 1e-4

Training tokens 1000B 2300B 300B 10B 100B

Batch size 2560 2048 2048 1024 256

Micro batch size 4 4 4 4 1

Sample length 1024 2048 2048 1024 12800

Attention Bi-directional Causal Causal Causal Bi-directional

Table 7. Detailed training information of AIDO.RAGFold
Initial training Fine-tuning

Sequence crop size 256 368

Maximum context length of RAG 16,384 12,800

Exponential moving average Enabled Enabled

Learning rate of LoRA A: 1e-4, B: 1.6e-3 A: 1e-4, B: 1.6e-3

Learning rate of folding trunks Structural modules First 90%: 1e-3
Last 10%: 5e-4

5e-4

Batch size First 90%: 128
Last 10%: 256

256

Warm up First 2000 steps N/A

Structural violation loss weight 0 0.1

”Experimentally resolved” loss weight 0 0.01

Training samples (million) 10 6

Table 8. Training data of AIDO.RAGPLM. 23.7 million MSAs are collected by HHblits and 7.7 million MSAs are collected by MSA
Retriever.

#Seqs #Query tokens Sample Weight
HHblits MSA 23.7M 6.5B 0.75

Retriever MSA 7.7M 2.4B 0.25

Table 9. Training data of AIDO.RAGFold.
Dataset #Chains #Clusters Sample ratio

PDB 440,952 34,961 25%

AlphaFold DB Distil 4,457,794 1,829,120 N/A

OpenProteinSet Distil 259,343 242,079 N/A

Distil mixed 4,711,621 2,002,005 75%
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Table 10. Inference time, RMSD and LDDT of AlphaFold2 (AF2), AIDO.RAGFold (AIDO.RF), and ESMFold on four test datasets.
Dataset

ens=1
AF2

ens=2 ens=4 ens=1
AIDO.RF

ens=2 ens=4
ESMFold

Inferene Time
(wo MSA search)

CASP14 93.9 121.9 163.8 8.7 17.5 34.4 8.3

CASP15 95.4 127.4 171.6 11.4 22.8 45.2 8.5

CAMEO 90.0 116.1 149.3 11.3 22.5 44.5 6.0

Recent 99.6 130.2 175.4 11.7 23.2 45.9 9.1

RMSD

CASP14 6.152 5.767 5.726 6.788 6.521 6.281 8.558

CASP15 15.479 15.387 15.351 12.375 13.451 12.930 16.055

CAMEO 3.555 3.607 3.597 3.670 3.635 3.633 4.131

Recent 5.428 5.431 5.213 6.263 6.161 6.071 7.080

LDDT

CASP14 0.784 0.794 0.797 0.795 0.804 0.813 0.732

CASP15 0.841 0.843 0.842 0.836 0.840 0.840 0.777

CAMEO 0.890 0.890 0.890 0.893 0.894 0.896 0.876

Recent 0.893 0.893 0.893 0.891 0.894 0.893 0.853

Table 11. TM-scores of AlphaFold2, AIDO.RAGFold, and ESMFold on four test datasets with limited MSA sequences as input.
#MSA=0 #MSA=5 #MSA=10 #MSA=25 #MSA=50 #MSA=100

AF2 RAG AF2 RAG AF2 RAG AF2 RAG AF2 RAG AF2 RAG ESMFold
CASP14 0.298 0.604 0.584 0.692 0.672 0.728 0.716 0.735 0.726 0.744 0.740 0.748 0.696
CASP15 0.290 0.624 0.583 0.652 0.614 0.666 0.645 0.678 0.666 0.697 0.701 0.697 0.639
CAMEO 0.330 0.787 0.690 0.822 0.777 0.834 0.820 0.844 0.840 0.851 0.843 0.853 0.854
Recent 0.292 0.712 0.618 0.773 0.714 0.784 0.769 0.798 0.790 0.806 0.800 0.807 0.775

Table 12. TM-scores of AlphaFold2, AIDO.RAGFold, and ESMFold on four test datasets. HHblits MSAs were used as input for
AlphaFold2 and AIDO.RAGFold. ”ens” denotes the number of MSA ensembles.

Dataset
ens=1

AF2
ens=2 ens=4 ens=1

AIDO.RAGFold
ens=2 ens=4

ESMFold

CASP14 0.754 0.766 0.767 0.752 0.764 0.776 0.696

CASP15 0.725 0.727 0.728 0.722 0.727 0.726 0.639

CAMEO 0.864 0.863 0.864 0.868 0.869 0.871 0.854

Recent 0.824 0.823 0.824 0.820 0.823 0.823 0.775
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Figure 3. Schematic Diagram of Hierarchical ID of UniClust30 Sequences. The UC30 sequences are organized into a tree structure with a
branching factor of 64. Each leaf node represents an individual sequence, while each UC30 cluster corresponds to an internal node of the
tree. The hierarchical ID of a sequence is determined by traversing from the root node to the corresponding leaf node.

Figure 4. Schematic Diagram of AIDO.RAGPLM input.
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Algorithm 1 AIDO.RAGFold
Input: query tokens ∈ {0, . . . , 20}L {L: Number of residues}
Input: msa tokens ∈ {0, . . . , 20}N×L {N : Number of sequences}
Input: Nrecycle {Number of recycles}
Input: Nensemble {Number of ensemble}
msa emb prev, pair emb prev, cbeta prev = 0, 0, 0
for i rec ∈ 0, . . . , Nrecycle do

msa emb, pair emb = 0, 0
for i ens ∈ 1, . . . , Nensemble do

msa tokens ens = GreedyMaxSample(msa tokens) {GreedyMaxSample sample a subset of MSA with maximum
diversity}
msa emb, pair emb += RAGPLM-Embedder(query tokens, msa tokens ens)

end for
msa emb, pair emb /= Nensemble

msa emb, pair emb += RecyclingEmbedder(msa emb prev, pair emb prev, cbeta prev)
msa emb, pair emb = FoldTrunk(msa emb, pair emb)
atom pos, plddt = StructureModule(msa emb, pair emb)
msa emb prev, pair emb prev, cbeta prev = msa emb, pair emb, get cbeta(atom pos)

end for
Output: atom pos, plddt

Algorithm 2 RAGPLM-Embedder
Input: query tokens ∈ {0, . . . , 20}L {L: Number of residues}
Input: msa tokens ∈ {0, . . . , 20}N×L {N : Number of sequences}
hid stat = RAGPLM (query tokens, msa tokens) {hid stat ∈ R(NL−G)×D}
hid stat = hid stat[:L] {hid stat ∈ RL×D}
msa emb = MSA Transform(hid stat) {msa emb ∈ RL×256}
pair emb = PAIR Transform(hid stat) {pair emb ∈ RL×L×128}
pair emb + = relpos(res ind) {res ind is short for residue index}
msa emb + = aa embedder(query tokens)
Output: msa emb, pair emb

Algorithm 3 MSA Transform
Input: hid stat ∈ RL×D

msa emb = Linear(hid stat) {msa emb ∈ RL×256}
Output: msa emb

Algorithm 4 PAIR Transform
Input: hid stat ∈ RL×D

hid stat = LayerNorm(hid stat)
pair emb = OuterAdd(Linear(hid stat), Linear(hid stat)) {pair emb ∈ RL×L×128}
Output: msa emb
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