
A Unified Framework for Model Editing

Anonymous ACL submission

Abstract

ROME and MEMIT are largely believed to be001
two different model editing algorithms, with002
the major difference between them being the003
ability to perform batched edits. In this pa-004
per, we unify these two algorithms under a005
single conceptual umbrella, optimizing for the006
same goal, which we call the preservation-007
memorization objective. ROME uses an equal-008
ity constraint to optimize this objective to per-009
form one edit at a time, whereas MEMIT em-010
ploys a more flexible least-square constraint011
that allows for batched edits. We general-012
ize ROME and enable batched editing with013
equality constraint in the form of EMMET -014
an Equality-constrained Mass Model Editing015
algorithm for Transformers, a new batched016
memory-editing algorithm. EMMET can per-017
form batched-edits up to a batch-size of 10,000,018
with very similar performance to MEMIT019
across multiple dimensions. With the intro-020
duction of EMMET, we truly unify ROME021
and MEMIT and show that both algorithms022
are equivalent in terms of their optimization023
objective, their abilities (singular and batched024
editing), their model editing performance and025
their limitations.026

1 Introduction027

As new facts emerge constantly, it is crucial to028

keep models up-to-date with the latest knowledge.029

Model editing (Yao et al., 2023) gives us the abil-030

ity to edit facts stored inside a model as well as031

update incorrectly stored facts. In this paper, we032

focus on two of the most popular and best perform-033

ing model editing methods - ROME (Rank-One034

Model Editing) (Meng et al., 2022a) and MEMIT035

(Mass Editing Memory in Transformer) (Meng036

et al., 2022b). ROME and MEMIT directly up-037

date specific "knowledge-containing" parts of the038

model without requiring the need to train additional039

models (De Cao et al., 2021; Mitchell et al., 2021;040

Tan et al., 2023) and can be applied to any trans-041

former based large language model (LLMs). This 042

makes these algorithms really attractive for prac- 043

tical use cases. MEMIT also uniquely allows for 044

batched edits (appendix A.1). 045

ROME and MEMIT are largely considered dif- 046

ferent from each other, with one of their major dif- 047

ferences being that ROME allows for editing only 048

one fact at a time. In this paper, we present a unify- 049

ing conceptual framework for ROME and MEMIT 050

and show that both methods optimize the same 051

objective function. We call this the preservation- 052

memorization objective of model editing, where 053

new knowledge is injected or memorized such that 054

representations of certain vectors are preserved 055

through the editing process. We show that ROME 056

optimizes an equality-constrained version of the 057

objective whereas MEMIT optimizes a more re- 058

laxed least-squares version of the objective, which 059

allows for a simple closed-form solution for mak- 060

ing batched edits. We then highlight that MEMIT 061

consists of two separate steps - an optimization 062

objective and an algorithm that distributes the ed- 063

its into multiple layers. The power of MEMIT in 064

many cases comes from these edit-distribution 065

algorithms. 066

Finally, we present a closed-form solution for 067

making batched edits with equality-constraint un- 068

der the preservation-memorization objective in the 069

form of EMMET - an Equality-constrained Mass 070

Model Editing algorithm for Transformers. With 071

EMMET, batched edits can be performed for batch 072

sizes up to 10,000 with performance much similar 073

to MEMIT. We evaluate EMMET on three models 074

- GPT2-XL, GPT-J and Llama-2-7b on standard 075

model editing datasets - CounterFact and zsRE. En- 076

abling batched editing with equality-constraint in 077

the form of EMMET allows us to truly unify the 078

two algorithms and shows that both ROME and 079

MEMIT are essentially equivalent in terms of their 080

optimization objective, their abilities (performing 081

singular and batched editing), their model editing 082

1

Figure 1: A diagrammatic representation of the preservation-memorization objective.

performance and their limitations. EMMET serves083

as a cornerstone in completing this larger picture.084

The code for EMMET can be found here1.085

The main contributions of our paper are:086

• We unify two popular model editing tech-087

niques (ROME and MEMIT) under the088

preservation-memorization objective and089

show that these algorithms are equivalent in090

terms of their optimization objective and in091

practice.092

• We disentangle the MEMIT objective from093

the MEMIT algorithm which distributes edits094

within multiple layers. This allows for a fair095

comparison of MEMIT and ROME.096

• We present a closed-form solution to equality-097

constrained memorization in the form of EM-098

MET, a batched version of ROME. EMMET is099

a new batched-editing algorithm that achieves100

symmetry in usage and performance between101

the two algorithms and shows that batched102

edits can be made using both objectives.103

2 Background104

Facts for model editing are usually represented in105

a key-value format where the key vector has max-106

imal correspondence to retrieval of a fact and the107

value vector enables us to get the target output after108

editing (Meng et al., 2022a; Geva et al., 2020). As109

an example, let us say we are editing a new fact110

into the model - "The president of USA is John111

Cena". In this fact, ke is the vector representation112

1https://github.com/myanonymousrepo/unified_
model_editing

of the phrase - "The president of USA is," and ve is 113

the vector representation of the output at the layer 114

being edited such that "John Cena" is produced as 115

output at the final layer of the model. This is picto- 116

rially represented in step 2 in Figure 1. For a more 117

detailed explanation of the creation of key-value 118

vectors, we refer readers to (Meng et al., 2022a). 119

The success of model editing is measured using 120

standard model editing metrics (Meng et al., 2022a; 121

Yao et al., 2023) described below: 122

• Efficacy Score (ES) indicates if an edit has 123

been successfully made to a model. It is 124

measured as the percentage of edits where 125

P (new fact) > P (old fact) for a query 126

prompt used to edit the model. 127

• Paraphrase Score (PS) represents the gen- 128

eralization ability of model under an edit. 129

It is measured as the percentage of edits 130

where P (new fact) > P (old fact) under para- 131

phrases of the query prompt. 132

• Neighborhood Score (NS) represents locality 133

of model editing. In other words, it measures 134

if editing of a fact affects other facts stored 135

inside a model. NS represents the percentage 136

of facts in the neighborhood of the edited fact 137

that remain unaltered post-edit. 138

• Generation Entropy (GE) represents the flu- 139

ency of a model post edit. It is calculated by 140

measuring the weighted average of bi-gram 141

and tri-gram entropies of text generated by an 142

edited model. This quantity drops if the gener- 143

ated text is repetitive, a common failure case 144

2

https://github.com/myanonymousrepo/unified_model_editing
https://github.com/myanonymousrepo/unified_model_editing

Figure 2: Figure shows a diagrammatic representation of a transformer layer. The layer being edited by ROME,
MEMIT and EMMET is the projection weight matrix inside the MLP layer (Wproj).

of model editing (Meng et al., 2022a; Gupta145

and Anumanchipalli, 2024).146

• Score (S) is a quantify defined by (Meng et al.,147

2022a) to represent a combination of edit suc-148

cess, generalization and locality. It is the har-149

monic mean of ES, PS, and NS.150

3 Preservation-Memorization : A151

Unifying Framework for ROME and152

MEMIT153

Both ROME and MEMIT base their work on view-154

ing the weights of the feed-forward layer in a trans-155

former as linear associative memories (Kohonen,156

1972; Anderson, 1972). Under this paradigm, lin-157

ear operations in a transformer (feed-forward lay-158

ers) are viewed as a key-value store for information.159

In this section, we re-introduce both ROME and160

MEMIT in a new light - a unifying conceptual161

framework of the preservation-memorization ob-162

jective.163

Let W represent the weights of the feed-forward164

layer we want to edit2, and let k be a key-vector165

representative of a fact that we are either editing or166

preserving, and is the input vector to W . The layers167

being edited are shown in an expanded diagram of168

a transformer layer (Vaswani et al., 2017) in Figure169

2. In the model editing process, the weights of an170

intermediate layer of the model are changed from171

W0 to Ŵ (W0 represents the original weights of172

the Wproj matrix), where k0 is used to indicate a173

key-vector representing facts we want to preserve174

from the original model, and ke being key-vectors175

representing facts we want to insert into the model.176

Let ve be the desired output at the layer being edited177

corresponding to input ke such that the correct fact178

is recalled by the model when finally generating179

text. A detailed explanation on creation of key-180

2These layers are found by causal tracing methods (Meng
et al., 2022a,b)

vectors and value-vectors is given in Appendix A.3 181

and is also briefly depicted in Figure 1. 182

Our objective is then to preserve the represen- 183

tations of selected input vectors before and after 184

editing, or in other words, minimize the error be- 185

tween W0k0 and Ŵk0, while forcing the output 186

representation of the vector ke to be ve, or in other 187

words - memorizing the fact represented by (ke, 188

ve). This process is shown pictorially in Figure 1. 189

In ROME-style, this objective of model editing 190

is optimized by the following equation: 191

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥2
F︸ ︷︷ ︸

preservation

s.t. Ŵke = ve︸ ︷︷ ︸
memorization

(1) 192

where K0 = [k01 |k02 | . . . | k0N] is a matrix con- 193

taining all the vectors whose representations we 194

want to preserve in a row. 195

We call this the preservation-memorization ob- 196

jective of model editing because it allows us to 197

retain existing knowledge or skills of a model by 198

keeping the same representations of selected key- 199

vectors before and after editing, while memorizing 200

a new fact ke, whose representation are forced to 201

be ve, where ve is by definition the output repre- 202

sentation for ke that generates the target answer at 203

final layer. 204

The solution for ROME can then be written as: 205

Ŵ = W0 +∆ where (2) 206

∆ = (ve −W0ke)
kTe C

−1
0

kTe C
−1
0 ke

(3) 207

Here, C0 = K0K
T
0 is assumed to be an invert- 208

ible matrix and the denominator kTe C
−1
0 ke is a 209

scalar. 210

MEMIT on the other hand optimizes a relaxed 211

version of the same objective: 212

3

argmin
Ŵ

λ
∥∥∥ŴK0 −W0K0

∥∥∥2
F︸ ︷︷ ︸

preservation

+
∥∥∥ŴKE − VE

∥∥∥2
F︸ ︷︷ ︸

memorization
(4)213

where KE = [ke1 |ke2 | . . . | keE] is a matrix con-214

taining a row of vectors representing the edits we215

are making in a batch and VE = [ve1 |ve2 | . . . | veE]216

represents their target representations.217

The above optimization objective aims to mod-218

ify the output representations of vectors in KE to219

VE by minimizing the least square error between220

them instead of requiring them to be equal with221

an equality constraint. This is the major differ-222

ence between the objectives of ROME and MEMIT,223

where ROME poses the memorization part of the224

objective as an equality constraint whereas MEMIT225

relaxes the equality constraint to a least-square ob-226

jective. This allows Meng et al. (2022b) to find227

a closed-form solution for making E edits to the228

model in a single update, represented by the matrix229

KE . The solution for the MEMIT objective is:230

Ŵ = W0 +∆ where

∆ =
(
VE −W0KE

)
KT

E

(
λC0 +KEK

T
E

)−1

(5)231

We deliberately write the first term in both solu-232

tions in a similar form. The first term in ∆ repre-233

sents the residual error (represented by R) of the234

new associations (KE , VE) when evaluated on the235

old weights W0. R ≜ ve−W0ke is a vector in case236

of ROME since we are only able to make singular237

edits, whereas R ≜ VE − W0KE is a matrix for238

MEMIT consisting of a row of vectors correspond-239

ing to each edit in the batch.240

To summarize, in this section we show that241

ROME and MEMIT can be seen as two realiza-242

tions of the preservation-memorization (PM) ob-243

jective of model editing, where ROME enforces244

memorization using an equality constraint whereas245

MEMIT enforces memorization as a least square246

objective. The least-square constraint in MEMIT247

allows to reach a closed form solution for batch248

updates.249

4 Edit-Distribution Algorithms250

The difference in objectives is not the only differ-251

ence between ROME and MEMIT. MEMIT (Meng252

et al., 2022b) also additionally distributes its ed-253

its into multiple layers, which has been one of the254

reasons for success of MEMIT at large batch sizes. 255

This distribution is done by using the formula: 256

∆l =

(
V L
E −W l

0K
l
E

)
L− l + 1

K lT
E

(
C l
0 +K l

EK
lT
E

)−1

(6) 257

where ∆l represents the change in weights at 258

layer l, where l ∈ {L−(n−1), L−(n−2), . . . L} 259

represents one of the n layers being edited. V L
E = 260

VE are the representations of the fact being edited 261

at the final edit layer, which is represented by L. 262

All other representations of KE and C0 are calcu- 263

lated at the layer l being edited. For n = 1, the 264

formula reduces to equation 5. We call this algo- 265

rithm a type of edit-distribution algorithm, which 266

is applied post-hoc after finding the closed-form 267

solutions to the PM-objective. 268

The edit-distribution algorithm is separate from 269

the solutions of the ROME and MEMIT objectives, 270

therefore, we can apply the edit-distribution algo- 271

rithm when using ROME, as well as use MEMIT 272

without distributing the edits into multiple layers. 273

The formula for using the MEMIT edit-distribution 274

algorithm on ROME is as follows: 275

∆l = (vLe −W l
0k

l
e)

kl
T

e C l−1

0

klTe C l−1

0 kle
(7) 276

Prior works on model editing do not differen- 277

tiate between the MEMIT-objective and the edit- 278

distribution algorithm, and as a consequence we 279

never see edits using ROME being distributed to 280

multiple layers or MEMIT being used on only 281

a single layer. The additional wrapping of edit- 282

distribution also makes MEMIT seem distant from 283

ROME. In the next section, we remove the wrap- 284

ping of edit-distribution from MEMIT and allow 285

for a fair comparison between the two algorithms. 286

4.1 Impact of edit-distribution Algorithms 287

The key advantage of the edit-distribution algo- 288

rithm is apparent when making batched edits. In 289

this section, we perform two experiments to ana- 290

lyze this. First, we compare single edits in ROME 291

and MEMIT with and without edit distribution 292

on 1k randomly selected facts from the Counter- 293

Fact datase (Meng et al., 2022a). Following that, 294

we compare batched editing in MEMIT with and 295

without edit distribution. Both experiments are 296

performed on three different models - GPT2-XL 297

(1.5B) (Radford et al., 2019), GPT-J (6B) (Wang 298

4

ALGORITHM MODEL
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

ROME GPT2-XL (1.5B) 100.0 99.8 97.9 71.74 75.31 10.48 618.6 89.57

GPT-J (6B) 100.0 99.8 97.25 73.65 81.94 13.92 617.1 92.34

LLAMA-2 (7B) 100.0 99.9 96.7 68.65 80.79 20.62 585.96 91.69

MEMIT GPT2-XL (1.5B) 100.0 99.7 97.85 71.74 75.21 10.49 618.54 89.51

GPT-J (6B) 100.0 99.8 97.05 72.25 82.06 13.94 616.6 92.34

LLAMA-2 (7B) 99.6 97.4 91.7 57.8 82.83 21.68 593.04 90.86

Table 1: Comparison between ROME and MEMIT when editing only a single layer for CounterFact dataset.

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

Figure 3: Performance comparison of model editing using MEMIT when editing just one layer against multiple
layers using the MEMIT edit-distribution algorithm on the CounterFact dataset.

and Komatsuzaki, 2021) and Llama2-7B (Touvron299

et al., 2023).300

The results are shown in Table 1 for edits with-301

out distribution and Table 3 (appendix) for edits302

with distribution. We use the more stable version303

of ROME called r-ROME as presented in (Gupta304

and Anumanchipalli, 2024) that does not lead to305

model collapse and improves generalization. We306

see that solutions to both ROME and MEMIT ob-307

jectives perform equally well at making singular308

edits across different metrics, without needing to309

distribute the edits to multiple layers. To highlight310

the usefulness of edit-distribution algorithms, we311

make batched edits with MEMIT comparing per-312

formance with and without edit distribution. The313

results are shown in Figure 3. When only editing a314

single layer, we see that MEMIT is able to success-315

fully make batched edits up to a batch size of 1024316

for GPT2-XL, 256 for Llama-2-7b and a batch-size317

as large as 4096 for GPT-J3. After this point, the318

performance of model editing increases when mak-319

ing edits on multiple layers, except for Llama-2-7b.320

All hyperparameters for all models were chosen as321

is from prior work (Meng et al., 2022a,b; Yao et al.,322

2023; Zhang et al., 2024) (appendix A.2).323

With these experiments, we want to highlight324

two key points - firstly, when comparing the effec-325

3In our experiments we find GPT-J to be an easier model
to edit compared to other models. This is both intriguing but
also not the best model to evaluate model editing success.

tiveness of two optimization objectives, the evalu- 326

ation should not be conflated with the edit distri- 327

bution algorithms. After removing the wrapping 328

of edit-distribution from MEMIT, we see that the 329

performance numbers for ROME and MEMIT have 330

an uncanny similarity. Secondly, the MEMIT edit- 331

distribution algorithm is not perfect and currently is 332

the only way to distribute edits into multiple layers, 333

where the residual in the update is distributed with 334

specific ratios through different layers. We hope 335

these experiments will bring more focus to edit dis- 336

tribution algorithms and boost further research in 337

these methods. 338

5 Introducing EMMET 339

In section 3, we show that ROME and MEMIT 340

are both algorithms optimizing the preservation- 341

memorization objective of model editing, where 342

ROME does memorization using an equality con- 343

straint wherease MEMIT uses a least-square objec- 344

tive for memorization. Thus, we ask the question - 345

can we perform batched-editing under an equality 346

constraint for memorization? 347

In this section, we provide a closed-form 348

solution for batched-editing where memoriza- 349

tion is done with equality constraints under 350

the presevation-memorization objective, and thus 351

present a batched-version of ROME, a method we 352

call EMMET - Equality-constrained Mass Model 353

Editing in a Transformer. 354

5

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

(d) Generation Entropy (GE) (e) Score (S)

Figure 4: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the CounterFact dataset.

Let K0 = [k01 |k02 | . . . | k0N] represent N key-355

vectors whose representations we want to pre-356

serve. Additionally, let ke1, k
e
2 . . . k

e
E represent357

key-vectors for E facts we want to edit in the358

model at the same time. Then according to the359

preservation-memorization objective, we want to360

find new weights Ŵ for a weight matrix W0 such361

that:362

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥2
F︸ ︷︷ ︸

preservation

s.t.

Ŵkei = vei ∀i ∈ [1, 2 . . . E]︸ ︷︷ ︸
memorization

(8)363

As can be seen in the above equation, the preser-364

vation of representations happens in the first term365

whereas memorization of all the new facts are366

forced using an equality constraint in the second367

term. The above equation is solved using lagrange-368

multipliers. The derivation of the above equation369

for the generalized case of batched editing can be370

found in Appendix A.4.371

The closed form solution for batched editing372

with equality-constraint or EMMET is shown be-373

low:374

Ŵ = W0 +∆ where

∆ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
KT

EC
−1
0

(9)375

Here, C0 = K0K
T
0 has the usual meaning as 376

in the derivation of ROME and MEMIT, where 377

K0 contains the list of representations we want pre- 378

served during editing. We write the update equation 379

for EMMET in a familiar form, where the resid- 380

ual R = VE −W0KE is modified by some matrix 381

operations to update the models with new edits. 382

Additionally, when we put E = 1, the KE matrix 383

reduces to a single vector ke and equation 9 reduces 384

to the ROME update equation (equation 2). With 385

EMMET, we complete the unification of ROME 386

and MEMIT under the preservation-memorization 387

objective and achieve a symmetry with the usage 388

of these algorithms. EMMET allows for making 389

batched-edits as well as singular when using equal- 390

ity constraints for memorization, much similar to 391

MEMIT with least-square based memorization. 392

5.1 Stabilizing EMMET 393

There are two important matrices that are being 394

inverted in EMMET and MEMIT. The first one is 395

C0 = K0K
T
0 , which is defined identically in both 396

algorithms, whereas D = KT
EC

−1
0 KE is only in- 397

verted in EMMET. While the invertibility of both 398

matrices are assumed, they are not always guaran- 399

teed. Each of the matrices K0 or KE can be written 400

as a row of column vectors as explained in section 401

3, and thus C0 can be written as a sum of outer 402

products: 403

6

(a) Efficacy Score (ES) (b) Paraphrase Score (PS) (c) Neighborhood Score (NS)

(d) Generation Entropy (GE) (e) Score (S)

Figure 5: Performance comparison of EMMET and MEMIT when distributing the edit over multiple layers using
the MEMIT edit-distribution algorithm on the CounterFact dataset.

C0 = K0K
T
0 =

∑
i

k0i k
0T

i (10)404

where k0i represents a key-vector we want to405

preserve. For an LLM of dimension d, the dimen-406

sionality of a key-vector is usually 4d (Figure 2),407

which is the dimensionality of the square matrix408

C0. If C0 is a 4d-dimensional square matrix which409

is a summation of rank-1 matrices, it is invertible410

as long as there are atleast 4d-independent vectors411

in the summation, or 4d-independent vectors in412

K0. For example, for GPT2-XL with hidden di-413

mension of 1600, the dimensionality of key vectors414

are 6400. So as long as representations of atleast415

6400 independent key-vectors are being preserved416

while editing, C0 will be an invertible matrix. In417

practice, we preserve representations of a much418

larger number of vectors, and hence this condition419

is always satisfied.420

The matrix D = KT
EC

−1
0 KE is a square matrix421

of dimensionality equal to the number of edits. If422

given that C0 is invertible, D is invertible as long423

as KE is full-rank, which means all key-vectors424

corresponding to facts being memorized are inde-425

pendent of each other. While this is not guaranteed,426

it can be verified before editing and facts corre-427

sponding to non-independent keys can be removed428

from a batch. In practice, we do not find invert-429

ibility of D being an issue. However, we find that430

D is often ill-conditioned, which means that the431

ratio of the largest and smallest eigenvalues of D432

explodes. This doesn’t necessarily mean that the 433

matrix is singular (non-invertible), but it does mean 434

that numerical computations involving the matrix 435

inverse are unstable and can lead to large numer- 436

ical errors. To counter this, we set D = D + αI , 437

where α is set to 0.1 after an ablation over multiple 438

batch sizes. This allows for stable batched edits 439

using EMMET and also ensures that the D matrix 440

is always invertible. 441

5.2 Batch Editing with EMMET 442

We begin by experimenting with EMMET for 443

model editing with varied batch sizes on GPT2- 444

XL, GPT-J and Llama-2-7b on the CounterFact 445

and zsRE (Levy et al., 2017) datasets. The ex- 446

act implementation details can be found in section 447

A.2. We compare the performance of EMMET and 448

MEMIT on batch sizes up to 10,000 while edit- 449

ing both single (to directly compare the optimiza- 450

tion objectives) and multiple layers. The single 451

layer editing comparison between EMMET and 452

MEMIT can be found in Figure 4. We see that 453

both methods have almost identical performance in 454

practice across different metrics. MEMIT performs 455

slightly better than EMMET for Llama-2-7b, as in- 456

dicated by ES, PS and S metrics. We then apply the 457

MEMIT edit-distribution on EMMET and compare 458

it with MEMIT. The results are shown in Figure 5. 459

We see that in this case, EMMET performs slightly 460

better than MEMIT for Llama-2-7b. The results 461

on the zsRE dataset tell a similar story and can be 462

7

(a) EMMET (b) MEMIT

Figure 6: Downstream performance of post-edit Llama2-
7b model for EMMET and MEMIT on four GLUE tasks.
Batch index 0 refers to downstream performance before
editing, with the performance of 5 independent edits of
batch size 256.

seen in Figure 7 and 8. The experiments for differ-463

ent hyperparameter values are shown in Appendix464

A.5. These results present EMMET as a viable new465

batched-editing algorithm.466

Previous work (Gu et al., 2024; Gupta et al.,467

2024) has shown that model editing is often accom-468

panied by model degradation. This was shown469

by evaluating the edited model on downstream470

tasks from the popular GLUE benchmark (Wang471

et al., 2018). Once we identified that memoriza-472

tion in MEMIT is happening using an approximate473

least-square constraint rather than an equality con-474

straint, we hypothesised that a possible reason for475

model degradation could be the use of the least-476

square constraint. Thus, using an equality con-477

straint, which by definition requires the edit to be478

exact, may not degrade other knowledge or skills479

of the model. This was also the motivation behind480

generalizing ROME to batched edits in the form of481

EMMET. To test this hypothesis, we adopt the eval-482

uation setting of Gupta et al. (2024) and evaluate483

both EMMET and MEMIT on four downstream484

tasks - sentiment analysis (SST2) (Socher et al.,485

2013), paraphrase detection (MRPC) (Dolan and486

Brockett, 2005), natural language inference (NLI)487

(Dagan et al., 2005; Haim et al., 2006; Giampiccolo488

et al., 2007; Bentivogli et al., 2009) and linguistic489

acceptability classification (Warstadt et al., 2019)490

for doing downstream evaluation. The results are491

shown in Figure 6 for a batch size of 256. The re-492

sults for other batch sizes can be found in Appendix493

A.2. We find that both EMMET and MEMIT also494

degrade the model similarly.495

The fact that both EMMET and MEMIT perform496

editing and degrade the model with an uncanny sim-497

ilarity shows that a "stronger" equality constraint498

does not enable more accurate model editing. We499

believe reason behind this is the construction of the500

key-vector, which is created by taking the average 501

of representations of multiple phrasings of a fact 502

(appendix A.3). This is done to make edits that 503

generalize beyond a single phrasing of a fact. As 504

the key-vector is an averaged representation over 505

randomly selected phrasings, it is an approxima- 506

tion of the ideal vector representation of a fact. We 507

believe that such an approximate representation 508

does not require the additional accuracy of mem- 509

orization enforced due to the equality constraint. 510

Our findings also indicate that we may be reaching 511

the limit of model editing capabilities under the 512

preservation-memorization objective. 513

6 Conclusion 514

In this paper we unite two popular model 515

editing techniques, ROME and MEMIT, under 516

the preservation-memorization objective, with 517

ROME performing equality-constrained edits and 518

MEMIT operating under a least-square constraint. 519

We disentangle the edit-distribution algorithm pro- 520

posed in MEMIT from the optimization objec- 521

tive, presenting them as separate entities. We also 522

present EMMET, a new batched-editing algorithm 523

based on the preservation-memorization objective, 524

where memorization happens under an equality 525

constraint. Our experiments show that EMMET 526

has similar performance to MEMIT across multi- 527

ple dimensions and metrics. 528

Enabling batched editing with equality- 529

constraint in the form of EMMET allows us to 530

truly unify ROME and MEMIT and shows that 531

both these algorithms are essentially equivalent in 532

terms of their (i) optimization objective, (ii) their 533

abilities (singular and batched editing, a symmetry 534

enabled by EMMET), (iii) their model editing 535

performance and (iv) their limitations (similar 536

model degradation). EMMET is a cornerstone 537

in completing this larger picture. These results 538

suggest that EMMET (or ROME) and MEMIT 539

not only have very similar theoretical roots but 540

also perform similarly in practice. The unified 541

framework presented in our work along with the 542

disentanglement of edit distribution algorithm has 543

also enabled a fair comparison between the two 544

algorithms, which was not possible before our 545

work. We hope that this framework facilitates ease 546

of comparison, consistency of implementation, 547

and a much deeper understanding of these model 548

editing methods. 549

8

7 Limitations550

While our technique may streamline error correc-551

tion processes, it does not address deeper struc-552

tural limitations within models, such as edited553

models inadvertently amplifying existing errors or554

introducing new inaccuracies. Furthermore, the555

effectiveness of our method varies depending on556

the complexity of the model architecture and the557

nature of the edited knowledge as evidenced by558

our experiments. Despite having a theoretically559

‘stronger’ memorization objective, EMMET is not560

able to outperform MEMIT, which also indicates561

that we might have reached a saturation point for562

model editing using naive implementations of the563

preservation-memorization objective, underscoring564

the fact that significant progress is yet to be made in565

understanding edit distribution and its implications.566

8 Ethical Considerations567

While our model editing method allows users to568

effectively correct for errors or update facts in mod-569

els, caution is warranted. Our technique also intro-570

duces concerns for potential misuse such as mali-571

cious actors inserting harmful or false knowledge572

in LLMs that is absent from the original training573

data. As such, we warn readers that LLMs should574

not be considered reliable knowledge bases.575

References576

James A Anderson. 1972. A simple neural network577
generating an interactive memory. Mathematical578
biosciences, 14(3-4):197–220.579

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo580
Giampiccolo. 2009. The fifth pascal recognizing581
textual entailment challenge. TAC, 7:8.582

Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, So-583
heila Molaei, and David A Clifton. 2023. A brief584
review of hypernetworks in deep learning. arXiv585
preprint arXiv:2306.06955.586

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,587
and Mor Geva. 2023. Evaluating the ripple effects588
of knowledge editing in language models. arXiv589
preprint arXiv:2307.12976.590

Ido Dagan, Oren Glickman, and Bernardo Magnini.591
2005. The pascal recognising textual entailment chal-592
lenge. In Machine learning challenges workshop,593
pages 177–190. Springer.594

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao595
Chang, and Furu Wei. 2021. Knowledge neu-596
rons in pretrained transformers. arXiv preprint597
arXiv:2104.08696.598

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit- 599
ing factual knowledge in language models. arXiv 600
preprint arXiv:2104.08164. 601

Bill Dolan and Chris Brockett. 2005. Automati- 602
cally constructing a corpus of sentential paraphrases. 603
In Third International Workshop on Paraphrasing 604
(IWP2005). 605

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 606
Levy. 2020. Transformer feed-forward layers are key- 607
value memories. arXiv preprint arXiv:2012.14913. 608

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and 609
William B Dolan. 2007. The third pascal recognizing 610
textual entailment challenge. In Proceedings of the 611
ACL-PASCAL workshop on textual entailment and 612
paraphrasing, pages 1–9. 613

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen- 614
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024. 615
Model editing can hurt general abilities of large lan- 616
guage models. arXiv preprint arXiv:2401.04700. 617

Akshat Gupta and Gopala Anumanchipalli. 2024. Re- 618
building rome: Resolving model collapse dur- 619
ing sequential model editing. arXiv preprint 620
arXiv:2403.07175. 621

Akshat Gupta, Anurag Rao, and Gopala Anu- 622
manchipalli. 2024. Model editing at scale leads to 623
gradual and catastrophic forgetting. arXiv preprint 624
arXiv:2401.07453. 625

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo 626
Giampiccolo, Bernardo Magnini, and Idan Szpektor. 627
2006. The second pascal recognising textual entail- 628
ment challenge. In Proceedings of the Second PAS- 629
CAL Challenges Workshop on Recognising Textual 630
Entailment, volume 7, pages 785–794. 631

Teuvo Kohonen. 1972. Correlation matrix memories. 632
IEEE transactions on computers, 100(4):353–359. 633

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke 634
Zettlemoyer. 2017. Zero-shot relation extrac- 635
tion via reading comprehension. arXiv preprint 636
arXiv:1706.04115. 637

Kevin Meng, David Bau, Alex Andonian, and Yonatan 638
Belinkov. 2022a. Locating and editing factual as- 639
sociations in gpt. Advances in Neural Information 640
Processing Systems, 35:17359–17372. 641

Kevin Meng, Arnab Sen Sharma, Alex Andonian, 642
Yonatan Belinkov, and David Bau. 2022b. Mass- 643
editing memory in a transformer. arXiv preprint 644
arXiv:2210.07229. 645

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 646
Finn, and Christopher D Manning. 2021. Fast model 647
editing at scale. arXiv preprint arXiv:2110.11309. 648

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo- 649
pher D Manning, and Chelsea Finn. 2022. Memory- 650
based model editing at scale. In International Con- 651
ference on Machine Learning, pages 15817–15831. 652
PMLR. 653

9

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,654
Dario Amodei, Ilya Sutskever, et al. 2019. Language655
models are unsupervised multitask learners. OpenAI656
blog, 1(8):9.657

Richard Socher, Alex Perelygin, Jean Wu, Jason658
Chuang, Christopher D Manning, Andrew Y Ng, and659
Christopher Potts. 2013. Recursive deep models for660
semantic compositionality over a sentiment treebank.661
In Proceedings of the 2013 conference on empiri-662
cal methods in natural language processing, pages663
1631–1642.664

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.665
Axiomatic attribution for deep networks. In Interna-666
tional conference on machine learning, pages 3319–667
3328. PMLR.668

Chenmien Tan, Ge Zhang, and Jie Fu. 2023. Massive669
editing for large language models via meta learning.670
arXiv preprint arXiv:2311.04661.671

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-672
bert, Amjad Almahairi, Yasmine Babaei, Nikolay673
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti674
Bhosale, et al. 2023. Llama 2: Open foundation675
and fine-tuned chat models, 2023. URL https://arxiv.676
org/abs/2307.09288.677

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob678
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz679
Kaiser, and Illia Polosukhin. 2017. Attention is all680
you need. Advances in neural information processing681
systems, 30.682

Alex Wang, Amanpreet Singh, Julian Michael, Felix683
Hill, Omer Levy, and Samuel R Bowman. 2018.684
Glue: A multi-task benchmark and analysis platform685
for natural language understanding. arXiv preprint686
arXiv:1804.07461.687

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-688
6B: A 6 Billion Parameter Autoregressive Lan-689
guage Model. https://github.com/kingoflolz/690
mesh-transformer-jax.691

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-692
man. 2019. Neural network acceptability judgments.693
Transactions of the Association for Computational694
Linguistics, 7:625–641.695

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,696
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu697
Zhang. 2023. Editing large language models: Prob-698
lems, methods, and opportunities. arXiv preprint699
arXiv:2305.13172.700

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,701
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu702
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A703
comprehensive study of knowledge editing for large704
language models. arXiv preprint arXiv:2401.01286.705

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-706
ning, Christopher Potts, and Danqi Chen. 2023.707
Mquake: Assessing knowledge editing in language708
models via multi-hop questions. arXiv preprint709
arXiv:2305.14795.710

A Appendix 711

Batch Size Num Batches Total Edits
4 25 100
16 10 160
64 5 320
256 5 1280
1024 3 3072
4096 2 8192

10,000 1 10,000

Table 2: Statistics for batch size and number of batches
used to create the numbers for this paper.

A.1 Related Work 712

Model editing methods can be broadly classified 713

into two types - methods that add information in- 714

context (Mitchell et al., 2022; Zhong et al., 2023; 715

Cohen et al., 2023), and methods that modify the 716

parameters of underlying model (De Cao et al., 717

2021; Mitchell et al., 2021; Meng et al., 2022a,b; 718

Tan et al., 2023). Various model editing techniques 719

have been proposed in the past that tackle this prob- 720

lem in different ways. (Dai et al., 2021) first iden- 721

tify knowledge containing neurons in a model us- 722

ing integrated gradients (Sundararajan et al., 2017) 723

and then modify the selected neurons to edit facts 724

in a model. This method is not scalable with in- 725

creasing model sizes as it requires us to find ac- 726

tivations for each neuron in the model. (De Cao 727

et al., 2021) and (Mitchell et al., 2021) train a hy- 728

pernetwork (Chauhan et al., 2023) that generates 729

the new weights of the model being edited. While 730

these methods have been optimized to scale with 731

a square-root dependence on the size of the edited 732

model, it still requires training of additional edit- 733

ing models dependent on each source model being 734

edited. Other methods add the most relevant up- 735

dated knowledge in context (Mitchell et al., 2022; 736

Cohen et al., 2023; Zhong et al., 2023). While such 737

methods provide a viable alternative to model edit- 738

ing, in this paper, we focus on parameter-modifying 739

model editing methods, namely ROME (Meng 740

et al., 2022a) and (Meng et al., 2022b). 741

A.2 Implementation Details for ROME, 742

MEMIT and EMMET 743

We use the standard implementation of ROME and 744

MEMIT based on (Meng et al., 2022a) and (Meng 745

et al., 2022b). The range of layers edited for GPT2- 746

XL is [13, 17] (Meng et al., 2022b), for GPT-J is 747

10

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

(a) Efficacy Accuracy (EM) (b) Paraphrase Accuracy (PM) (c) Neighborhood Accuracy (NM)

Figure 7: Single layer editing performance of EMMET as a function of batch size when compared to MEMIT on
the zsRE dataset.

ALGORITHM MODEL
Efficacy Generalization Locality Fluency Score

ES ↑ EM ↑ PS ↑ PM ↑ NS ↑ NM ↑ GE ↑ S ↑

ROME GPT2-XL (1.5B) 100.0 99.79 97.78 71.75 76.16 10.93 617.56 89.93

GPT-J (6B) 100.0 99.8 97.95 72.07 81.46 13.42 615.9 92.35

LLAMA-2 (7B) 99.68 92.29 98.1 73.34 77.59 19.07 589.44 90.6

MEMIT GPT2-XL (1.5B) 100.0 99.79 97.57 71.75 76.14 10.96 617.9 89.87

GPT-J (6B) 100.0 99.79 97.1 72.86 81.96 14.24 615.97 92.31

LLAMA-2 (7B) 99.58 91.34 97.99 72.18 77.8 19.27 589.39 90.63

Table 3: Comparison between ROME and MEMIT when editing multiple layers for the CounterFact dataset.

[3 − 8] (Meng et al., 2022b) and for Llama-2-7b748

is [4 − 8] (Yao et al., 2023; Zhang et al., 2024).749

In single layer editing experiments, layer 17 was750

edited for GPT2-XL (Meng et al., 2022a), layer751

5 was edited for GPT-J (Meng et al., 2022a), and752

layer 5 was edited for Llama-2-7b (Yao et al., 2023;753

Zhang et al., 2024). These choices are directly754

taken from (Meng et al., 2022a) and (Meng et al.,755

2022b) for GPT2-XL and GPT-J. We follow the756

work of (Yao et al., 2023) for choices of layers and757

hyperparameters for llama-2-7b.758

We use the multi-counterfact dataset proposed759

in Meng et al. (2022b) which is created by remov-760

ing conflicting facts from the counterfact dataset761

(Meng et al., 2022a). We then select a random sam-762

ple of 10,000 facts so that the edits are influenced763

by the order in which the examples are presented764

in the dataset. To create the batched editing plots,765

we create multiple samples for each batch size and766

average over all the edits made in that set. We767

use batch sizes of 4, 16, 64, 256, 1024, 4096 and768

10k. For each batch size, we use multiple batches769

and average the evaluation over the total number of770

batches. The statistics are shown in Table 2. For771

example, for a batch size of 1024, we first create 3772

batches without replacement of size 1024, and per-773

form batched edits on the 3 batches. The numbers774

are then reported by averaging the performance775

over 3*1024 facts which were edited in the model.776

We sample over a few batches so the results are 777

not biased towards a single edited batched. We 778

decrease the number of batches used in the sam- 779

ple due to computational reasons, as the amount of 780

time for each experiment increases with the batch 781

size. The same steps are followed for the zsRE 782

dataset. 783

A.3 Key-Value creation in ROME/MEMIT 784

We create key and value vectors for editing using 785

the subject, relation, object framework presented 786

in ROME (Meng et al., 2022a). 787

Sample queries under this formulation include: 788

Subject Prompt Object
France "The capital of {S} is {O}" Paris

789

790

Model editing involves manipulating the model 791

such that we’re able to alter the object that is asso- 792

ciated with a given input subject and prompt. In 793

the table provided, the transformation from "Paris" 794

to "London" exemplifies a potential application of 795

model editing under the (s, r, o) formalization. 796

The subject and prompt together represent the 797

key vector, which is found by averaging over a set 798

of texts that end with the subject s in the prompt p: 799

11

(a) Efficacy Accuracy (EM) (b) Paraphrase Accuracy (PM) (c) Neighborhood Accuracy (NM)

Figure 8: Multi layer editing performance of EMMET as a function of batch size when compared to MEMIT on the
zsRE dataset.

ke =
1

N

N∑
j=1

k(xj + p)

where k(x) = NL(Wfca(x) + bfc)

and a(x) = LN(Att(hl−1(x)) + hl−1(x))

(11)800

p is the prompt containing the subject and rela-801

tion, and xj are 50 generated random sequences802

with lengths varying from 2 to 10 tokens to make803

the representation of the key vector more robust to804

paraphrasing. This also ensures that key vectors for805

different prompts are distinct enough as two base806

key vectors (with no random prefix) that have very807

similar representations move further apart when808

their representations with a prefix are averaged.809

LN represents layer normalization and NL is the810

non-linearity applied to the stream.811

Next, we choose a ve vector such that the new812

object o∗ is output for our ke vector. We set ve to813

minimize the loss as shown:814

argmin
ve

1

N

N∑
j=1

− logPG(hl=ve)[o
∗ | xj + p]

+DKL

(
PG(hl=ve)[x | p′] || PG(hl)=ve [x | p′]

)
(12)815

The first term tries to maximize the probability816

of the target objective o∗ for a prompt of the form817

xj + p where p is once again our desired prompt818

that was also used to generate the key vector. G(v)819

represents the output of generation s.t. the hidden820

layer hl = v. The second term tries to minimize821

the KL divergence when an unrelated prompt p′ is822

input to the model since we want our edit to keep823

unrelated knowledge unchanged.824

We refer readers to the original ROME paper825

for more details on how key and value vector pairs 826

(ke, ve) for editing are generated. 827

A.4 EMMET Derivation 828

Let K0 = [k01 |k02 | . . . | k0N] represent N key- 829

vectors whose representations we want to pre- 830

serve. Additionally, let ke1, k
e
2 . . . k

e
E represent 831

key-vectors for E facts we want to edit in the 832

model at the same time. Then according to the 833

preservation-memorization objective, we want to 834

find new weights Ŵ for a weight matrix W0 such 835

that: 836

argmin
Ŵ

∥∥∥ŴK0 −W0K0

∥∥∥︸ ︷︷ ︸
preservation

s.t.

Ŵkei = vei ∀i ∈ [1, 2 . . . E]︸ ︷︷ ︸
memorization

(13) 837

As can be seen in the above equation, the preser- 838

vation of representations happens in the first term 839

whereas memorization of all the new facts are 840

forced using an equality constraint in the second 841

term. The above equation is solved using lagrange- 842

multipliers. The Lagrangian for the above equation 843

for multiple equality constraints requires a summa- 844

tion of lagrange multipliers and equals: 845

L(Ŵ , λi) =
1

2
ŴK0K

T
0 Ŵ

T − ŴK0K
T
0 W

T
0

+
1

2
W0K0K

T
0 W

T
0 −

E∑
i=1

λT
i (Ŵkei − vei)

(14) 846

To solve the system of equations, we put δL
δŴ

= 0 847

to get: 848

ŴK0K
T
0 = W0K0K

T
0 +

E∑
i=1

λik
eT

i (15) 849

12

which is same as:850

(Ŵ −W0)K0K
T
0 =

E∑
i=1

λik
eT

i = ΛKT
E (16)851

where Λ = [λ1 |λ2 | . . . | λE] and KE =852

[ke1 |ke2 | . . . | keE]. Here, Λ and KE are matrices853

created using a row of vectors. We set K0K
T
0 =854

C0 (assuming that C0 is invertible4) to get the up-855

date equation of EMMET:856

Ŵ = W0 + ΛKT
EC

−1
0 (17)857

where Λ = [λ1 |λ2 | . . . | λE], KE =858

[ke1 |ke2 | . . . | keE] and C0 = K0K
T
0 .859

The unknown matrix of lagrange multipliers (Λ)860

can be found using the constraint ŴKE = VE in861

the previous equation. It comes out to be:862

Λ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
(18)863

Replacing the above equation in equation 17864

gives us the update equation for EMMET:865

Ŵ = W0 +∆ where

∆ = (VE −W0KE)
(
KT

EC
−1
0 KE

)−1
KT

EC
−1
0
(19)866

A.5 EMMET - MEMIT Hyperparameter867

Comparison868

Figures 9 - 16 present the comparison between869

EMMET and MEMIT for different hyperparam-870

eter values. The hyperparameter corresponds to871

the preservation term in the preservation memo-872

rization objective (equation 4). The figures show873

that both algorithm reach the same peak perfor-874

mance (Figure 9) across all models, but at different875

hyperparameter values. MEMIT reaches peak per-876

formance at lower hyperparameter values, whereas877

EMMET needs a larger weight for preservation to878

reach similar performance. This makes sense as879

EMMET works with a much stronger memoriza-880

tion constraint and thus requires larger weight to881

preserve the model by the same amount.882

4In practice, we find that C0 is always invertible as long
as the number of key-vectors in K0 are large enough

A.6 EMMET and MEMIT Downstream 883

Performance Comparison 884

13

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 9: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of Score.
Hyperparameter controls the weight of preservation term over memorization term.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 10: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of Efficacy
Score.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 11: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of Efficacy
Magnitude.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 12: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Paraphrase Score.

14

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 13: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Paraphrase Magnitude.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 14: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Neighborhood Score.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 15: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Neighborhood Magnitude.

(a) GPT2-XL (b) GPT-J (c) Llama-2-7b

Figure 16: Comparison between EMMET and MEMIT for different hyperparameter values for the metric of
Generation Entropy.

15

(a) EMMET (b) MEMIT

Figure 17: Model - Llama2-7b. Batch size 4.

(a) EMMET (b) MEMIT

Figure 18: Model - Llama2-7b. Batch size 16.

(a) EMMET (b) MEMIT

Figure 19: Model - Llama2-7b. Batch size 64.

(a) EMMET (b) MEMIT

Figure 20: Model - Llama2-7b. Batch size 1024.

(a) EMMET (b) MEMIT

Figure 21: Model - Llama2-7b. Batch size 4096.

(a) EMMET (b) MEMIT

Figure 22: Model - Llama2-7b. Batch size 10k.

16

	Introduction
	Background
	Preservation-Memorization : A Unifying Framework for ROME and MEMIT
	Edit-Distribution Algorithms
	Impact of edit-distribution Algorithms

	Introducing EMMET
	Stabilizing EMMET
	Batch Editing with EMMET

	Conclusion
	Limitations
	Ethical Considerations
	Appendix
	Related Work
	Implementation Details for ROME, MEMIT and EMMET
	Key-Value creation in ROME/MEMIT
	EMMET Derivation
	EMMET - MEMIT Hyperparameter Comparison
	EMMET and MEMIT Downstream Performance Comparison

