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Abstract001

Prompt engineering has made significant con-002
tributions to the era of large language mod-003
els, yet its effectiveness depends on the skills004
of a prompt author. This paper introduces005
iPrOp, a novel interactive prompt optimization006
approach, to bridge manual prompt engineer-007
ing and automatic prompt optimization while008
offering users the flexibility to assess evolv-009
ing prompts. We aim to provide users with010
task-specific guidance to enhance human en-011
gagement in the optimization process, which is012
structured through prompt variations, informa-013
tive instances, predictions generated by large014
language models along with their correspond-015
ing explanations, and relevant performance016
metrics. This approach empowers users to017
choose and further refine the prompts based018
on their individual preferences and needs. It019
can not only assist non-technical domain ex-020
perts in generating optimal prompts tailored to021
their specific tasks or domains, but also enable022
to study the intrinsic parameters that influence023
the performance of prompt optimization. The024
evaluation shows that our approach has the ca-025
pability to generate improved prompts, leading026
to enhanced task performance.027

1 Introduction028

With the advancement of large language models029

(LLMs), prompt engineering emerged for instruct-030

ing these models to generate responses that align031

with users’ requirements. Prompting allows LLMs032

to perform user-specified tasks, including tasks in033

previously unseen scenarios or particular domains034

(Devlin et al., 2019; Raffel et al., 2020; Mishra035

et al., 2022).036

However, prompt-based natural language pro-037

cessing (NLP) has demonstrated limited robust-038

ness across domains, instances, or label schemes039

(Plaza-del Arco et al., 2022; Yin et al., 2019; Zhou040

et al., 2022). It is also challenging to develop reli-041

able methods for evaluation of LLMs that factor in042

prompt brittleness (Ceron et al., 2024). The ques- 043

tion of how to design a well-crafted prompt has re- 044

ceived an increasing amount of attention. Although 045

there exists research on analyzing which prompts 046

are more effective for tasks like classification and 047

question answering (Liu et al., 2022; Lu et al., 048

2022; Xu et al., 2022), the need to efficiently iden- 049

tify high-quality prompts has sparked increased 050

attention into automatic prompt optimization (Shin 051

et al., 2020; Pryzant et al., 2023). However, they 052

tend to overlook the inherent contextuality and the 053

domain-dependent nature of prompt engineering 054

(Pei et al., 2025; Anthropic, 2024). There is a lack 055

of studies that combines user-guided prompt op- 056

timization with data-driven prompt optimization. 057

Given that the user constitutes the ultimate author- 058

ity to develop prompts that satisfy the varying trade- 059

offs across different aspects of a specific task, we 060

consider this an important research gap. 061

Combining prompt optimization with a user 062

in the loop comes with the potential for a more 063

guided engineering process, from which any user 064

may benefit. Two examples are particularly promi- 065

nent: (1)Technical laypeople may require help with 066

prompt development for dedicated tasks. (2) Man- 067

ual prompt engineering may lead to biased config- 068

urations, as generic prompts often fail to capture 069

the complexities and nuances specific to particular 070

domains, such as medical knowledge (Lu et al., 071

2023). Prior research has demonstrated the role of 072

human-in-the-loop methodologies in building ro- 073

bust systems across a variety of tasks, including de- 074

bugging text classifiers (Lertvittayakumjorn et al., 075

2020), hate speech classification (Kotarcic et al., 076

2022), and question answering chatbots (Afzal 077

et al., 2024). 078

To achieve the goal of supporting users in their 079

prompt development process, we hypothesize that 080

a set of prompt properties is important to decide if a 081

prompt p is considered better than another prompt 082

p′. These are (a) the performance of a prompt 083
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on some annotated data, for instance measured by084

F1 (we focus in this paper on text classification085

tasks); (b) The readability and interpretability of086

the prompt; (c) The quality of an explanation of087

the predictions of the prompt; and (d), the align-088

ment of the annotations with the users expectations.089

We therefore propose an interactive prompt opti-090

mization approach with a human-in-the-loop that091

considers all these aspects. The proposed approach092

enables studies on the interaction between these093

various parameters in the spirit of an iterative opti-094

mization in which the automatic evaluation of an095

objective function is supported by a human. We096

further envision that some decisions may be made097

automatically, while others require the human to098

decide on the prompt quality. Such collaborative099

decision process helps to maintain the high quality100

of the prompts, while limiting the required user101

interactions to those of particularly high value.102

The repository of a prototypical web interface103

for the iPrOp approach and an explanation video is104

available at https://blinded.for/review. See105

Appendix A for a screenshot of the user interface106

prototype.107

2 Related Work108

2.1 Prompt Engineering for LLMs109

Prompt engineering is the process of designing110

and optimizing prompts to guide a language model111

for effective results on a downstream task. Liu112

et al.’s (2023) survey categorizes previous works113

in prompt shapes and human-designed prompt tem-114

plates. While the former category includes tech-115

niques such as cloze prompts (Cui et al., 2021) and116

prefix prompts (Li and Liang, 2021), the latter fo-117

cuses on manually crafted prompts (Brown et al.,118

2020) and automated prompt templating processes119

(Shin et al., 2020). Our work is derived from the lat-120

ter case with the addition of human interventions.121

The output of an LLM is influenced by the qual-122

ity of prompts (Lu et al., 2022). Prompts need to123

be adapted to particular domains (Karmaker Santu124

and Feng, 2023; Wei et al., 2021), and for different125

LLMs (Chen et al., 2023). Previous work therefore126

attempted to search through paraphrases of prompts127

(Jiang et al., 2020), by compiling prompts based on128

templates and class-triggering tokens (Shin et al.,129

2020), or by learning soft prompts (Qin and Eisner,130

2021). Another approach is to combine gradient de-131

scent method with hard prompts (Wen et al., 2023;132

Pryzant et al., 2023). In contrast, our framework133

focuses on multiple factors such as task selection, 134

choice of LLM, and user-provided feedback as ex- 135

ternal parameters. Further, we exploit the capabil- 136

ities of LLMs as prompt engineers (Zhou et al., 137

2023; Ye et al., 2024; Fernando et al., 2024; Men- 138

chaca Resendiz and Klinger, 2025). 139

2.2 Cooperative Artificial Intelligence 140

This work is related to the field of cooperative ar- 141

tificial intelligence, which touches upon topics of 142

human-machine interaction and efficient protocols 143

of information exchange, enabling humans to solve 144

tasks collaboratively with machines. Such methods 145

also influenced NLP tasks, such as question answer- 146

ing (Benamara and Saint Dizier, 2003), information 147

retrieval (Manning et al., 2008), and chatbot inter- 148

actions (Hancock et al., 2019). More recent papers 149

draw their attention on collaborative annotation pro- 150

cesses and model direct manipulation (Baur et al., 151

2020; Wang et al., 2021). However, we introduce a 152

human-in-the-loop via replacing the automatic eval- 153

uation of an objective function by a human. Prior 154

research has explored incorporated human feed- 155

back by presenting users with responses generated 156

from paired prompts and asking for their prefer- 157

ences (Lin et al., 2024). In contrast, our framework 158

offers a more comprehensive structure, encompass- 159

ing a broader range of factors that should be con- 160

sidered during human evaluation. 161

2.3 Explainable Artificial Intelligence 162

Users which manually change properties of a sys- 163

tem benefit from a good understanding of the 164

model’s decisions. This task is approached by ex- 165

plainable artificial intelligence (XAI) techniques 166

(Roscher et al., 2020). One prominent work that 167

introduced the interaction between model interven- 168

tion and XAI is Teso and Kersting (2019). Another 169

study combines explanatory interactive machine- 170

learning methods with fair machine learning for 171

the bias-mitigation problem (Heidrich et al., 2023). 172

They both integrate interpretability methods for ma- 173

chine learning models, such as SHAP (Lundberg 174

and Lee, 2017), LIME (Ribeiro et al., 2016), and 175

Anchors (Ribeiro et al., 2018). 176

Although these tools offer intuitive explanations 177

for classifiers, their reliance on perturbations makes 178

them computationally expensive to apply to LLMs 179

because of the high-dimensional nature and com- 180

plexity of LLMs. An alternative is to leverage the 181

inherent explainability of LLMs (Mavrepis et al., 182

2024). Wu et al.’s (2024) analysis of strategies 183
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Figure 1: The conceptual workflow of our iPrOp approach. The general workflow is shown in the middle. The
left part shows potential human interaction in the various modules. To limit the amount of user interactions, each
module can be supported by a simulated interaction.

to enhance the transparency of LLMs. Bills et al.184

(2023) demonstrate that LLMs are able to explain185

individual neurons in LLMs. This work motivates186

our attempt to prompt LLMs for the explanations187

of their predictions.188

3 Methods189

Figure 1 visualizes the conceptual workflow of our190

iPrOp approach. The workflow begins with an ini-191

tial seed prompt and proceeds through iterations of192

prompt updates and evaluations, led by informative193

samples, explanations, and data evaluation with194

performance metrics. To reduce human workload,195

each step can, in principle, be performed either by196

the user or automatically.197

We formalize the process of the workflow as198

follows. The user is presented prompts in iterations199

and selects the preferred prompt p∗ based on their200

assessment H:201

p∗ = argmax
p∈P∪M(P )

H(I(pi)),202

Here, M(P ) is a prompt paraphrasing model that203

varies the prompts P selected from the previous it-204

eration. I(pi) is a presentation of prompt properties205

to the user, which consists of206

I(pi) = (pi, T
pi
α , E(Tα, pi), F1(T

pi
β ))) .207

The user provides a (potentially small) training208

set T for their task, from which we sample two209

subsets Tα ⊆ T and Tβ ⊆ T according to strate-210

gies α, β. T pi
α consists of instances to be shown to211

the user together with model based explanations212

E(Tα, pi). Tβ serves to calculate an evaluation 213

score F1(T
pi
β ) (we focus on text classification tasks 214

for simplicity). 215

This procedure is also visualized in Figure 1. 216

The initialization of seed prompts ((1) in Figure 1) 217

requires users to describe the task. In simulation 218

scenarios, this process can be substituted with an 219

ontological task description or prompts generated 220

automatically by LLMs. Subsequently, the initial 221

prompts are passed to the optimization modules. 222

In the prompt update module (2a), prompts are 223

paraphrased. As an example, this paraphrasing of 224

‘Classification task with labels: joy and sadness.’ 225

with a meta-prompt of an LLM ’Rephrase the fol- 226

lowing prompt’ may lead to ‘Classify the emotion 227

of text into joy and sadness.’. In the prompt eval- 228

uation stage (2b), the human in the loop assesses 229

the prompt quality, as described above. Figure 2 230

further provides a prototypical display of the rel- 231

evant information for two prompts to be chosen 232

from. The optimization process is terminated once 233

the user is satisfied (3). 234

4 Evaluation 235

We envision our iPrOp approach to enable future 236

research on the interaction of the various aspects to 237

consider when humans make preference decisions 238

on particular prompts under the available infor- 239

mation. To validate the principled feasibility of 240

our approach, we run experiments on three emo- 241

tion classification datasets using the llama3.1:8b- 242

instruct-fp16 model1 (Dubey et al., 2024). In this 243

1https://ollama.com/library/llama3.1:
8b-instruct-fp16
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Figure 2: User interface prototype for an emotion analy-
sis example during the interactive prompt optimization
process. "Exp." refers to explanations for why a specific
label is predicted by the model.

experiment, we only consider automated classifi-244

cation performance scores and leave an automated245

evaluation of the other measures or a user study for246

future work. In this simulation, the prompt is se-247

lected corresponding to the weighted F1 score over248

a fixed subset of the training data. We expect to249

demonstrate a rising trend during the optimization250

process to verify the effectiveness of our approach.251

Datasets. We select three datasets for single la-252

beled emotion classification task from Bostan and253

Klinger (2018), namely TEC, which covers general254

topics on tweets (Mohammad, 2012); GROUNDED-255

EMOTIONS, which focuses on event-related topics256

on tweets; and TALES-EMOTION, which is built257

upon fairytales (Alm and Sproat, 2005).258

Result. Figure 3 illustrates the F1 scores over 15259

iterations. We observe an overall increasing trend260

in both training and validation data.261

5 Conclusions and Future Work262

We proposed interactive prompt optimization as263

a novel approach to configure instruction-tuned264

language models. The user is guided by informa-265

tion that is distilled from the prompt and its perfor-266

mance on user-provided data. With this approach,267

we suggested to aggregate information that may be268

relevant for users to decide on prompt preferences.269

The proposed approach has revealed several chal-270

lenges that deserve further investigation. There is271

a need to explore more effective methodologies272

for enhancing the diversity of rephrased prompts.273

It is important to limit the numbers of instances274

shown to the user, and that selection requires meth-275

ods to do so. It is essential to optimize the various276

0 5 10 15
0.4

0.42

0.44

0.46

0.48

Iterations

F1 for GE & TEC

TE TEC GE

validation train

0 5 10 15
0.58

0.6

0.62

0.64

0.66

F1 for TE

Figure 3: F1 scores for three datasets, shown sepa-
rately on training and validation data. The abbrevia-
tions GE, TEC, and TE correspond to the GROUNDED-
EMOTIONS (blue), TEC (red), and TALES-EMOTION
(green) datasets, respectively. The left violet y-axis
corresponds to GROUNDED-EMOTIONS and TEC. The
right green y-axis corresponds to TALES-EMOTION.

meta-prompts in the approach. Additionally, the 277

optimization algorithm is essential to improving the 278

efficiency and user-friendliness of our approach. 279

We envision that our iPrOp approach lays the 280

groundwork for future research by addressing sev- 281

eral open questions: (Q1) Which parameters do 282

influence the performance of the workflow con- 283

figuration in this approach? We presume that the 284

example selection to better understand how the 285

prompt performs affects a user’s ability to estimate 286

which prompt is preferable. Further, the methods 287

to explain the prompt prediction are crucial. Fi- 288

nally, underlying aspects such as the model and its 289

robustness are relevant factors for the approach to 290

succeed. (Q2) How do prompts evolve throughout 291

the optimization iterations? An aspect of this ques- 292

tion is what is the difference between automatic 293

prompt optimization and the human optimization 294

is, and in which cases the human intervention is 295

indeed helpful. (Q3) To what extent can human 296

involvement be reduced while maintaining a bal- 297

anced trade-off across competing evaluation crite- 298

ria? Can the interactive prompt optimization ap- 299

proach be a collaborative learning procedure, in 300

which the machine only requests information if 301

needed? We propose to study these research ques- 302

tions based on the paradigm of interactive prompt 303

optimization introduced in this paper. 304
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Limitations305

Although the iPrOp approach offers a convenient306

interface for non-technical users to attain suitable307

prompts, it has several limitations that warrant con-308

sideration in the future enhancement. First, in an309

effort to provide comprehensive explanations of310

LLM predictions, the challenge of computation311

time remains significant, and as a result, the stream-312

ing output is not effectively communicated to users.313

Second, developing an effective strategy to address314

problems related to train-validation-test splitting315

for user-provided datasets of varying sizes remains316

an ongoing challenge. Third, the development of317

prompt optimization iterations partially depends318

on the quality and variability of prompt rephrasing.319

This implies that rephrased prompts may occasion-320

ally retain low quality across multiple iterations.321

Furthermore, we observe that certain datasets ex-322

hibit limited sensitivity to divergent prompts, allow-323

ing a simple or even naive initial prompt to achieve324

superior performance.325
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A Appendix 707

1. Star t /Tr ack  a Conver sat i on

2. Select  a LLM

3. Upload Your  Dataset 4. Input  Tex t

User  Input

System  Answer

5. Pr om pt  Opt im izat i on

Figure 4: Screenshot of the iPrOp Web application, where key components are annotated.
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