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ABSTRACT

Although large language models (LLMs) have significant potential to advance
chemical discovery, current LLMs lack core chemical knowledge, produce unre-
liable reasoning trajectories, and exhibit suboptimal performance across diverse
chemical tasks. To address these challenges, we propose Chem-R, a generaliz-
able Chemical Reasoning model designed to emulate the deliberative processes of
chemists. Chem-R is trained through a three-phase framework that progressively
builds advanced reasoning capabilities, including: 1) Chemical Foundation Train-
ing, which establishes core chemical knowledge. 2) Chemical Reasoning Pro-
tocol Distillation, incorporating structured, expert-like reasoning traces to guide
systematic and reliable problem solving. 3) Multi-task Group Relative Policy
Optimization that optimizes the model for balanced performance across diverse
molecular- and reaction-level tasks. This structured pipeline enables Chem-R to
achieve state-of-the-art performance on comprehensive benchmarks, surpassing
leading large language models, including Gemini-2.5-Pro and DeepSeek-R1, by
up to 32% on molecular tasks and 48% on reaction tasks. Meanwhile, Chem-
R also consistently outperforms the existing chemical foundation models across
both molecular and reaction level tasks. These results highlight Chem-R’s robust
generalization, interpretability, and potential as a foundation for next-generation
Al-driven chemical discovery.

1 INTRODUCTION

Large Language Models (LLMs) have recently emerged as a transformative force in scientific dis-
covery (Bai et all, 2025 [Ma et al.l 2024} [Shojaee et al, 2024} [Hatakeyama-Sato et al, 2023}
2025). Within the field of chemistry, LLMs demonstrate exceptional potential by learning ex-
pressive representations and knowledge of molecular structures and chemical reactions directly from
large-scale datasets. This capability enables them to support a wide array of tasks, including molec-
ular property prediction, reaction outcome estimation, retrosynthetic route planning, and reagent
selection (Zhang et al., [2024b; [Tan et al., 2025} [Zhao et al.} 2024} Jiang et al, 2025)). However, the
lack of chemical structured and reliable reasoning processes in current LLMs leads to suboptimal
performance and limited interpretability on complex chemical problems.

Specifically, current LLMs encounter three fundamental challenges in performing chemical rea-
soning. Challenge 1: Current LLMs often lack the essential “chemical fundamentals”, leading to
frequent mistakes in molecular representations and reaction rules, which underminesreliability at
the initial reasoning stage (Zhong et all, 2024} [Liu et al} 2025). As illustrated in Figure [T] (Chal-
lenge 1), several Chain-of-Thought (CoT) on different tasks generated by DeepSeek-R1
demonstrates that the model may fail to recognize basic SMILES and TU-
PAC [2004), which undermines the reliability of any subsequent reasoning. Challenge
2: The model’s reasoning process is fundamentally flawed because it is unsystematic, failing to ad-
here to the coherent, step-by-step workflow of an expert (Ouyang et al} 2023} [Bran et al| 2023).
This lack of a structured approach makes the reasoning unreliable and prone to factual errors. This
lack of structure results in a confusing and untrustworthy reasoning process, as exemplified in Fig-
ure [I] (Challenge 2) where the model misidentifies fundamental functional groups and generates a
flawed, unstructured line of reasoning. Challenge 3: As shown in Figure [T] (Challenge 3), even
when models are guided by explicit reasoning patterns, their performance across diverse molecular
and reaction level tasks remains highly imbalanced, with strong tasks dominating and weaker tasks
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Figure 1: Challenges and the proposed Chem-R solution. The left panel highlights three key
deficiencies observed in current reasoning models. To overcome these limitations, we introduce a
three-phase training framework, illustrated on the right. This strategy is designed to first build a
solid chemical foundation (Phase 1), then instill correct, step-by-step reasoning pathways (Phase 2),
and finally, optimize for balanced, multi-task proficiency (Phase 3).

underrepresented. Together, these issues highlight that effective chemical reasoning requires domain
knowledge, reliable and structured thought, and balanced generalization across heterogeneous tasks.

To address these challenges, we propose Chem-R, a unified framework comprising three phases that
enables structured reasoning in molecular- and reaction-level tasks. As shown in Fig. [} Chem-
R follows a three-phase training paradigm, where each phase systematically mitigates one of the
aforementioned bottlenecks. Phase 1: Chemical Foundation Training equips the model with robust
chemical fundamentals by fine-tuning on large-scale non-reasoning corpora, covering both molecu-
lar representations (e.g., SMILES, IUPAC) and reaction-level patterns, thereby reducing elementary
errors. Phase 2: Chemical Reasoning Protocol (CRP) Distillation leverages structured protocols to
guide a general-purpose teacher model toward expert-level chemical reasoning, subsequently dis-
tilling these strategies into a student model. In this process, expert-like protocols are converted
into reusable, modular workflows that facilitate coherent and interpretable problem-solving. As il-
lustrated in bottom row of Fig. [T} the reasoning process can be enhanced by extracting structured
Chemical Reasoning Protocols, incorporating correction information, and providing targeted hints
to mitigate common errors. Phase 3: Multi-task Group Relative Policy Optimization (Multi-task
GRPO) further enhances the learned reasoning paradigm across heterogeneous tasks, employing
a curriculum-like weighting scheme to prevent strong-task dominance and improve performance
balance. Together, these three phases form a principled pipeline that not only reduces low-level
mistakes, but also enables the model to generate chemically sound, structured, and explainable rea-
soning across both molecular and reaction domains.

Our main contributions are summarized as follows:

(1) We propose Chem-R, a unified three-phase framework that enables structured and generalizable
chemical reasoning across both molecular and reaction level tasks. Phase 1 (Chemical Foundation
Training) equips the model with robust chemical fundamentals by pre-training on large-scale non-
reasoning corpora. Phase 2 (CRP Distillation) introduces Chemical Reasoning Protocols (CRP)
distilled from a teacher model, providing modular and interpretable workflows that guide problem
solving. Phase 3 (Multi-task GRPO) applies GRPO with a curriculum-like weighting scheme to
enhance and balance performance across heterogeneous tasks.

(2) We comprehensively evaluate the model on four widely used benchmarks, including Chem-
LLMBench [2023), ChEBI-20 (Edwards et al} [2022), TOMG-Bench [20244),
and USPTO (Schneider et all, 2016). Our evaluation spans two major families of tasks, namely
molecular- and reaction-level tasks, covering nine macro-tasks and 25 sub-tasks in total. Across
this diverse suite, Chem-R consistently achieves state-of-the-art performance. For instance, com-
pared with ChemDFM-v1.0-13B (Zhao et al.| [2025¢), Gemini-2.5-Pro (Comanici et al.} 2025)), and
DeepSeek-R1 2025), Chem-R improves by 33%, 32%, and 44% on Name Prediction
(Exact Match), and by 53%, 50%, and 52% on Yield Prediction (Accuracy), respectively. These sub-
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stantial gains highlight Chem-R’s ability to deliver both reliable accuracy and robust generalization
across heterogeneous molecular and reaction tasks.

2 RELATED WORK

2.1 REASONING FOR LLMs

Generating a CoT (Wei et al.,|2022; [Kojima et al.| 2022)) significantly improves the ability of LLMs
to perform complex reasoning. To elicit high-quality reasoning chains, various strategies have
been proposed, including rejection sampling (Liu et al.| |2023a; [Tong et al.l 2024), reward mod-
eling (Ouyang et al.|[2022;|Zhang et al.l [2025b)), and preference learning (Rafailov et al.,[2023};|Pang
et al., [2024)). More recently, DeepSeek-R1 (Guo et al.,2025) has shown that complex reasoning be-
haviors (Gandhi et al.| 2025)) can emerge from simple rule-based reinforcement learning, particularly
when initialized with a cold start phase using CoT data.

However, a common limitation of these approaches is their reliance on outcome-based supervision,
which can produce unstructured, inconsistent and flawed reasoning chains (Arcuschin et al.| 2025
Chen et al., 2023)), a critical risk in scientific applications. To address this, process-level supervision
provides fine-grained feedback on each intermediate step (Lightman et al., 2024; Wang et al., [2024;
Zhang et al. |2024a);|2025a). Another strategy involves multi-model systems where verifier models
scrutinize the reasoning process of a primary generator model (Du et al., 2023} Kirchner et al.,[2024;
Baker et al., [2025).

2.2 LLMS FOR CHEMISTRY

The application of LLMs is driving a paradigm shift in chemistry. Early work demonstrated that
generalist models possess latent chemical knowledge (Hatakeyama-Sato et al., [2023; [Sallam et al.,
2024), paving the way for specialized models fine-tuned for chemistry-specific tasks. These include
models like ChemLLM (Zhang et al.||2024b)), ChemMLLM (Tan et al., 2025), Chem3DLLM (Jiang
et al., [2025), ChemDFM (Zhao et al., [2025c) and others (Liu et al., 2023c} |[Zhang et al. [2025¢; [Li
et al.,[2025¢), which handle tasks ranging from molecular captioning to reaction analysis.

More recent advancements have focused on complex reasoning and cross-domain integration. Rea-
soning models such as ether0 (Narayanan et al.}[2025)) and ChemDFM-R (Zhao et al., 2025b)), trained
via reinforcement learning, exhibit strong performance across diverse chemical tasks and provide
transparent, interpretable outputs. In parallel, scientific foundation models like NatureLM (Xia
et al} [2025) and Intern-S1 (Bai et al.| |2025) have been trained on large-scale data from various
scientific fields. These models can handle a diverse range of inputs spanning biology, chemistry,
and materials science. Despite these advances, the progress of foundation models in chemistry lags
significantly behind that in high-resource domains like mathematics and code, largely due to the
relative scarcity of specialized scientific data for training (Bai et al.| [2025). To overcome this data
bottleneck, we introduce a specialized pipeline designed to synthesize high-quality CoT data on par
with expert-level annotations for model training.

3 METHOD

Overview. We propose Chem-R, a three-phase framework explicitly designed to endow LLMs
with structured and generalizable chemical reasoning capabilities. Phase 1 (Section [3.1) estab-
lishes a chemistry-aware foundation by supervised fine-tuning on large-scale non-reasoning cor-
pora, grounding the model in valid molecular and reaction representations. Phase 2 (Section
introduces Chemical Reasoning Protocol (CRP) Distillation, which transfers structured and reusable
reasoning workflows from a teacher model into a compact student model. Phase 3 (Section[3.3) em-
ploys Multi-task Group Relative Policy Optimization (Multi-task GRPO) to further enhance and
balance performance across diverse molecular- and reaction-level tasks. Together, these phases
form a principled pipeline that transforms ad-hoc CoT traces into chemically sound, interpretable,
and broadly generalizable reasoning.
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Figure 2: The overall pipeline of Chem-R. The model is trained in three phases. 1) Chemical
Foundation Training: Instills basic chemical knowledge using question-answer pairs. 2) Chemical
Reasoning Protocol Distillation: Teaches structured reasoning by fine-tuning on protocol-guided
CoT. 3) Multi-task GRPO: Refines reasoning skills across all tasks using reinforcement learning.

3.1 PHASE 1: CHEMICAL FOUNDATION TRAINING

Establishing a reliable chemical LLM necessitates the integration of domain-specific knowledge in
molecular representations and reaction notation. General-purpose corpora (e.g., Wikipedia, text-
books) are inadequate in this regard, as they rarely capture the syntactic rules of SMILES strings
or the systematic regularities of [UPAC nomenclature, let alone the canonical mapping between
different molecular descriptors (Luo et al, 2022 [Taylor et al.| 2022} Trwin et all, [2022). To this
end, Phase 1 establishes a chemistry-aware foundation by supervised fine-tuning (SFT) on large-
scale non-reasoning corpora De¢pem, thereby grounding the model in chemically valid input—output
behaviors.

Formally, Depen is @ paired chemistry corpus, Depem = { (24, y:)}Y,, where x; represents a struc-

tured chemical input (e.g., a SMILES string, an IUPAC name, or a reaction query), and y; is the
corresponding labels (e.g., a canonical [IUPAC name, a valid SMILES string, or the main product of
a chemical reaction). D¢hem €ncompasses both molecular- and reaction-level supervision.

At the molecule level, the corpus aligns alternative descriptors of the same compound. This enables
the model to master not only the bidirectional translation between SMILES and IUPAC forms, but
also the mapping from a molecular structure to its textual description. Such examples teach the
model chemically consistent string generation and reduce elementary notational errors.

At the reaction level, the corpus encodes prototypical transformations, mapping reactants to their
products or reagents and specifying the functional roles of reagents and conditions. Although such
instances require only static mapping rather than explicit reasoning, they provide essential priors
that prevent chemically implausible outcomes.

In this phase, the model is trained via supervised fine-tuning (SFT) to internalize the syntax and
semantics of Dgpem, as illustrated in Figure|2| (left). This chemistry-aware initialization substantially
reduces representational errors and serves as the basis for structured reasoning in subsequent phases.
Examples of data used in the first phase can be found in Appendix [B]

3.2 PHASE 2: CHEMICAL REASONING PROTOCOL DISTILLATION

While Phase 1 equips the model with foundational chemical knowledge by training on correct
question-answer pairs, it does not yet instill the ability to perform reliable and structured reason-
ing. A conventional approach to bridge this gap is to distill CoT data from a more powerful teacher
model and then train the student model. However, this direct distillation often perpetuates the exact
problems we seek to eliminate; as shown in Figure [T} even advanced models can produce chaotic
and unreliable reasoning trajectories. To address this challenge and ensure the distilled reasoning is
of high quality, we introduce Phase 2 (as shown in middle pannel of Figure [2): CRP Distillation.
This phase consists of two stages: (I) generating an expert-like reasoning protocol, and (II) using
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this protocol to guide the synthesis of high-quality CoT data for finetuning. The overall objective is
to teach Chem-R a systematic and reliable reasoning methodology.

I. Chemical Reasoning Protocol Generation. It creates the expert’s blueprint for chemical rea-
soning. For a given task, we use a simple prompt to have the teacher model generate multiple,
varied responses. From this collection of responses, we then sample k positive examples (reasoning
paths leading to the correct answer, as R; in Figure [2) and k negative examples (those leading to
incorrect answers). The teacher model systematically analyzes these positive examples to conclude
a generalizable, step-by-step reasoning template. Concurrently, the teacher model also examines
failed reasoning attempts to identify common mistakes, summarizing them as cautionary guidance
attached to each step of the protocol. This process results in a strong thinking guide for each task.
Furthermore, we create a more holistic and robust final reasoning guide by merging the cautionary
guidance from analogous steps across different tasks, enriching the protocol for any given step with
insights from as many relevant contexts as possible.

I1. Protocol-Guided Synthesis and Finetuning. With the expert protocol established, the second
stage focuses on data synthesis and student model training. For each question, we guide the teacher
model by providing it with an Instantiated Protocol, a combination of the task’s governing CRP and
the reliable correct information (i.e., functional groups and final answer). This prompts the model to
produce a detailed CoT that strictly adheres to the protocol’s structured steps. To ensure the absolute
quality and logical fidelity of this synthetic data, we implement a Rejected Sampling mechanism.
Specifically, the answer portion of a generated CoT (e.g., tokens included in <answer> tag) is
removed, and the model must regenerate the answer based solely on the preceding reasoning. Only
those CoT paths where the regenerated answer matches the original correct answer are retained,
guaranteeing that the reasoning logically and consistently leads to the correct solution. Finally, this
curated dataset of pristine (Question, CoT + Answer) pairsis used to fine-tune Chem-R via
SFT, effectively teaching it to internalize and replicate a reliable and interpretable reasoning process.

3.3 PHASE 3: MULTI-TASK GRPO

While Phase 2 equips the model with structured reasoning protocols, ensuring their robust execution
across heterogeneous tasks remains non-trivial. In particular, naive multi-task training tends to
favor easier or high-resource tasks, causing weaker tasks to be underrepresented and resulting in
imbalanced performance. To overcome this issue, we introduce a Multi-task GRPO scheme, which
enhances protocol-guided reasoning while explicitly enforcing balance across tasks.

Let 7 denote the task mixture. For each task ¢ € 7, we estimate its validation accuracy s; after
Phase 2, and assign a sampling probability p; that up-weights weaker tasks:

[0
P Gl ) iy 1)
Doper(l—su)

where a > 0 controls the strength of reweighting. This adaptive curriculum ensures that difficult
or underperforming tasks contribute proportionally more updates, thereby mitigating strong-task
dominance and fostering balanced improvement. For each sampled question ¢, we roll out G re-
sponses {0; }$, using the current policy 7g,,. Each token o; ; within a trajectory is optimized under
a clipped-ratio surrogate with KL regularization:
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Here, o0, ; is the t-th token of the i-th response o;, which has length |o;], € is a hyperparameter that
defines the clipping range, A; is the normalized group advantage, and Dxy (7g||mr) is a KL diver-
gence regularizer, weighted by £, that penalizes deviation from a reference policy 7. (initialized
from Phase 2). As for our reward design, we do not use any format-based rewards. The accuracy-
based rewards are task-specific, with detailed calculations provided in Section
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We collect four widely used chemical benchmarks, ChemLLMBench (Guo et al.,
2023), ChEBI-20 (Edwards et al.| [2022), TOMG-Bench (L1 et al., [2024a)), and USPTO (Schneider
et al., [2016), with their official splits to ensure a fair comparison. Based on these, we organize the
evaluation into two families: molecular tasks and reaction tasks, covering 9 macro-tasks with 25
sub-tasks in total. Molecular tasks include (1) name prediction (IUPAC<«+>SMILES); (2) property
prediction on BBBP, HIV, Tox21, ClinTox, and BACE (Wu et al., 2018); (3) molecule design from
text to SMILES; (4) molecule captioning from SMILES to text; (5) text-based open molecule gener-
ation includes molecule editing (with functional group addition, replacement, or removal), molecule
optimization (guided toward target LogP, MR, and QED) and customized molecule generation (by
atom count, bond count, and functional-group count). Reaction tasks include (6) yield prediction
for Buchwald-Hartwig and Suzuki reactions; (7) reagent selection for reactant, solvent, and ligand
in multiple-choice form (8) reaction prediction and (9) retrosynthesis. More detailed descriptions of
the tasks can be found in Appendix

Evaluation Metrics. We adopt task-specific evaluation metrics aligned with prior work. For name
prediction (1), we report exact match between predicted and reference strings. For property predic-
tion (2) and yield prediction (6), which are binary classification tasks, we use average Accuracy
across datasets. For molecule design (3), we measure exact match on the generated SMILES. For
molecule captioning (4), we compute BLEU-4 to evaluate text generation quality. For fext-based
open molecule generation (5), which covers editing, optimization, and customized generation, we
report weighted accuracy over constraints such as functional groups, atom counts, and property tar-
gets. For reagent selection (7), we evaluate by multiple-choice accuracy. For reaction prediction
(8) and retrosynthesis (9), we use exact match on canonical SMILES, with unordered set matching
for multi-product or multi-reactant cases separated by “.”. All SMILES and IUPAC comparisons
are performed after canonicalization to ensure consistency. For a more comprehensive analysis,
supplementary metrics for these tasks are also reported in the Appendix [D}

Baselines. We group baselines into five families, with the first four reported in the main ta-
bles and the fifth provided in Appendix [D| The first group consists of general foundation mod-
els. These include Llama-3.1-8B-Instruct, Llama-3.3-70B (Dubey et al.| 2024}, and GPT-40 (Hurst
et al., 2024). This group establishes the capability of non—chemistry-adapted systems. The sec-
ond group is general reasoning models. Examples are Gemini-2.5-Pro (Comanici et al., [2025),
DeepSeek-R1 (Guo et al., [2025), and QWQ-32B (Yang et al.| [2025). These models test whether
generic reasoning gains transfer to chemistry. The third group contains chemical foundation models.
These are ChemLLM-DPO-20B (Zhang et al.,2024b)), ChemDFM-v1.0-13B, and ChemDFM-v1.5-
8B (Zhao et al., [2025c). This set of models emphasizes chemistry knowledge coverage without
explicit multi-step reasoning optimization. The fourth group includes chemical reasoning models,
such as ether0-24B (Narayanan et al.| [2025) and our Chem-R, which target process-level reasoning
and interpretability. To account for task-specific nuances, we additionally compare against a fifth
group, task-specialized models, in the appendix. We evaluate these under each benchmark’s standard
protocol with unified normalization and scoring scripts for fairness and reproducibility.

Implementation Details. We select Llama-3.1-8B-Instruct as our base model, and Llama-3.3-
70B-Instruct as our teacher model. The detailed data configurations, hyperparameter settings and
specific prompts are provided in Appendix[C]

4.2 MAIN RESULTS

As shown in Table[I] our 8B model sets a new state-of-the-art across a diverse range of chemical
benchmarks. It surpasses not only general-purpose models like Gemini-2.5-Pro and other chemical
foundation models like ether0-24B, but also outperforms task-specific specialist models in Property
Prediction, Molecule Design, and TOMG tasks (see Appendix D). While the non-reasoning chemi-
cal model ChemDFM-v1.5-8B achieves a higher score in the Molecule Design task with direct out-
puts, Chem-R provides interpretable, step-by-step reasoning chains, offering critical explainability
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Figure 3: Comprehensive evaluation of Chem-R. (a) Molecule task performance in different
phases. (b) Reaction task performance in different phases. (c) Effect of sample size (k) on perfor-
mance. (d) Molecule task performance during phase 3. (e) Reaction task performance during phase
3. (f) Model performance comparison across OOD tasks in ChemCoTBench (L1 et al.| [2025a)).

for scientific discovery. The model’s most significant advances are in reaction-related tasks, where
its performance represents a paradigm shift. Chem-R achieves a score of 0.85 in Yield Prediction
(more than doubling the next-best score) and 0.39 in Retrosynthesis, a nearly threefold improvement
over the strongest baseline of 0.15. These results validate that our methodology enables superior
chemical reasoning within an efficient 8B parameter model. Additionally, the model’s performance
at various training phases is shown in Figures [3(a) and (b). For the performance curve during the
multi-task GRPO phase, please refer to Figures%d) and (e).

Table 1: Performance of different models on chemistry-related tasks. The score for each major task
is the average of its subtasks. Column headers use short names: Name = Name Prediction (evaluated
by Exact Match), Prop. = Property Prediction (Accuracy), Design = Molecule Design (Accuracy),
Capt. = Molecule Captioning (BLEU-4), TOMG = Tasks in TOMG-Bench (Weighted Accuracy),
Yield = Yield Prediction (Accuracy), Reag. = Reagents Selection (Accuracy), React. = Reaction
Prediction (Accuracy), Retro = Retrosynthesis (Exact Match). For each column: the best and
second-best models are highlighted.

Molecule Tasks Reaction Tasks
Model Name Prop. Design Capt. TOMG Yield Reag. React. Retro
General Foundation Models
GPT-40 0.01 0.68 0.07 0.01 0.32 0.20 0.26 0.04 0.00
Llama-3.1-8B-Instruct ~ 0.00 0.47 0.00 0.01 0.07 0.26 0.26 0.00 0.00
Llama-3.3-70B 0.01 0.64 0.03 0.02 0.30 0.22 0.38 0.03 0.00
General Reasoning Models
Gemini-2.5-Pro 0.17 0.56 0.29 0.04 - 0.35 0.27 0.04 0.15
DeepSeek-R1 0.05 0.63 0.22 0.04 0.33 0.13 0.34 0.13

QWQ-32B 0.01 0.71 0.03 0.04 0.30 0.29 0.39 0.01 0.00

Chemical Foundation Models

ChemLLM-DPO-20B 0.00 0.49 0.00 0.03 0.10 0.21 0.08 0.02 0.00
ChemDFM-v1.5-8B 0.14 0.74 0.53 0.10 0.12 0.37 0.35 0.50 0.07
ChemDFM-v1.0-13B 0.16 0.78 0.42 0.27 0.27 0.32 0.37 0.31 0.04

Chemical Reasoning Models
ether0-24B 0.15 0.64 0.30 0.03 0.03 0.03 0.21 0.65 0.04
Chem-R-8B (Ours) 0.49 0.87 0.42 0.41 0.42 0.85 0.69 0.82 0.39

4.3 ABLATION STUDY

Phase-wise Contributions. To understand the unique contribution of each training phase, we sys-
tematically removed individual phases while holding all other variables constant. The results, shown
in Table 2] (A), confirm that all three phases are essential and work synergistically. First, Phase 1
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(Foundation Training) establishes the model’s fundamental understanding of chemistry. Removing
this phase severely degrades performance, as seen by the Name Prediction score dropping from 0.49
to 0.14. While critical, this phase does not by itself enable the chain-of-thought reasoning necessary
for explainability. The ability to reason emerges in Phase 2 (CRP Distillation), which introduces
the core reasoning framework. Without it, the model fails at performing complex reasoning; for ex-
ample, performance on Reaction Prediction collapses to zero when both Phase 1 and 2 are removed.
Lastly, Phase 3 (Multi-task GRPO) acts as a crucial refinement stage. Building on the skills from
the previous phases, it delivers consistent improvements, boosting the Reagent Selection score from
0.50 to 0.69.

Components of Instantiated Protocol in Phase 2. We analyze the two core components of our
CRP Distillation in Phase 2: the task’s governing CRP and Correct Information. As detailed in
Table [2| (B) and cases in Appendix [E| the CRP is crucial for improving accuracy by enforcing a
logical structure on the reasoning. Its absence results in a consistent performance decline across
tasks; for example, the Retrosynthesis score decreases from 0.28 to 0.20 (compared with Chem-
R w/o Phase 3). Furthermore, incorporating the ground-truth Correct Information is essential for
generating a high-quality, large-scale dataset of reasoning chains. Removing this component leads
to a severe degradation in performance, with the Reaction Prediction score dropping from 0.69 to
only 0.13. Therefore, the CRP provides the indispensable reasoning architecture, while the Correct
Information ensures that architecture is used to teach truth, not sophisticated error.

Single-task vs. Multi-task Training in Phase 2. ~ As shown in Table[2](C), we compare specialized
Single-task models against a unified Multi-task model in Phase 2. While Single-task models (i.e., 9
models in total) achieve high scores on their respective tasks, such as 0.75 in Reaction Prediction,
confirming the quality of our distilled CoT data, the Multi-task model demonstrates clear positive
transfer. It outperforms Single-task models on related tasks like Reagent Selection (0.50 vs. 0.46)
and Retrosynthesis (0.28 vs. 0.26).

Effect of Sample Size % in Phase 2. We investigate the effect of the sample size, k, used to
generate the CRP in Phase 2. As shown in Figure[3] (c), performance on both Name Prediction and
Molecule Design improves rapidly as k increases, but the gains begin to diminish significantly after
k reaches approximately 10. This indicates that simply collecting more samples for a single task
yields limited returns. Crucially, we find that a small number of samples (e.g., k=5) is sufficient
when we enhance the protocol with our cross-task mixture strategy. This efficient approach allows
us to achieve a high level of performance, as indicated by the dotted lines, without the need for
extensive sampling. This is a critical advantage for complex tasks where successful reasoning paths
are often too scarce to collect in large numbers. More detailed analysis about CRP is shown in

Appendix [C.3]

Uniform vs. Weighted Sampling in Phase 3. A comparison between Uniform and our Weighted
sampling in Phase 3 demonstrates the effectiveness of the latter. The results, presented in Table
(D), indicate that allocating more training focus to tasks the model finds more difficult yields sig-
nificant performance gains within the same number of training steps. Notably, the score for the
challenging Retrosynthesis task improved from 0.33 to 0.39, and the Reagent Selection score rose
from 0.63 to 0.69.

Generalization to Out-of-Distribution Tasks. To assess our model’s generalization capabilities,
we evaluate it on four out-of-distribution (OOD) molecule optimization tasks (Solubility, DRD2,
JNK3, and GSK3) from ChemCoTBench (Li et al.| [2025a)). While standard benchmarks often focus
on familiar properties, we tested performance on three more challenging protein activity-related
properties. We intentionally select these tasks because they are not part of our training data and
differ significantly from our training objectives, providing a robust test of generalization. As shown
in Figure 3| (f), the baseline model (Llama-3.1-8B-Instruct) performs poorly, confirming its inability
to generalize. In contrast, Chem-R achieves a massive leap in performance across all four tasks, for
example, improving the success rate on Solubility from 10% to 83%.
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Table 2: Ablation study across 9 chemistry tasks (25 sub-tasks). Columns follow the same short-
hand as the main table. Gray cells denote Chem-R’s performance.

Molecule Tasks Reaction Tasks

Ablation Variant Name Prop. Design Capt. TOMG Yield Reag. React. Retro
(A) Phase-wise Contributions

Chem-R w/o Phase 1 0.14 087 020 034 038 087 058 054 034
Chem-R w/o Phase 2 053 088 043 041 041 080 059 0.82 0.39
Chem-R w/o Phase 3 039 08 035 033 041 085 050 0.69 0.28
Chem-R w/o Phase 1&2 0.00 067 003 0.17 030 080 051 0.00 0.00
Chem-R w/o Phase 1&3 0.10 085 027 027 037 084 055 048 0.19
Chem-R w/o Phase 2&3 052 088 043 040 042 011 055 0.83 040
Chem-R w/o Phase 1&2&3 0.00 047 000 0.01 0.07 026 026 0.00 0.00

(B) Components of Instantiated Protocol in Phase 2

Phase 2 w/o CRP 031 084 027 033 042 069 043 0.67 0.20
Phase 2 w/o Correct Information 0.04 0.79 0.07 002 027 067 038 0.13 0.05

(C) Single-task vs. Multi-task Training in Phase 2

Single-task 041 087 040 032 041 084 046 0.75 0.26
Multi-task 039 08 035 033 041 085 050 0.69 0.28
(D) Uniform vs. Weighted Sampling in Phase 3

Uniform 043 087 038 039 041 084 063 081 033
Chem-R-8B (Ours) 049 087 042 041 042 085 069 082 0.39

Human Expert Evalution
Human Expert Evaluation. To qualitatively assess
CoTs, we conduct a human expert evaluation. We had R clogieal
chemistry PhDs rate 50 randomly sampled responses
from Chem-R and three strong baselines (Gemini-2.5-
Pro, DeepSeek-R1, ether0) on a 1-to-5 scale across six | .. Chemical
dimensions, with a detailed rubric available in the Ap- ofthe Conclusion Sounduess
pendix [D| The averaged scores are visualized in a radar [
chart for comparison, as shown in Figure Chem-R
receives the highest scores across all six metrics, from
Chemical Soundness and Logical Coherence to Expert-
level Insight, validating the effectiveness of our struc- Clarity and Expert-lovel
tured reasoning protocol. This comprehensive feed- Coneiseness frsient
back confirms that Chem-R not only achieves high ac-
curacy but also generates reasoning chains that are sig-
nificantly more reliable, interpretable, and aligned with Figure 4: Radar chart of the human ex-
expert thinking. This all-around superiority underscores pert evaluation.
its potential as a more trustworthy and dependable tool
for chemical inquiry.

= Chem-R
Gemini-2.5-Pro

DeepSeek-R1
ether0

5 CONCLUSION

Chem-R establishes a new state-of-the-art in chemical reasoning by uniquely emulating the deliber-
ative thought processes of expert chemists. Our novel three-phase training framework systematically
builds foundational knowledge, distills structured reasoning protocols, and optimizes for balanced
performance across a wide array of tasks. This approach enables Chem-R to significantly outper-
form leading models, including ChemDFM-v1.5-8B and Gemini-2.5-Pro, achieving unprecedented
gains, particularly in complex reaction prediction and retrosynthesis tasks. Beyond superior accu-
racy, Chem-R’s primary advantage lies in its ability to generate interpretable, logically coherent,
and chemically sound reasoning chains, a quality validated by human expert evaluation. By produc-
ing reliable and explainable outputs, Chem-R provides a powerful and trustworthy foundation for
accelerating the next generation of Al-driven chemical discovery.
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A OVERVIEW OF THE APPENDIX

Section B] (Task Description) outlines the various tasks used to evaluate the model, which are
divided into two main categories. "Molecular Tasks” focus on individual molecules, including chal-
lenges like predicting chemical names and properties, designing new molecules, and generating
descriptions. “Reaction Tasks” involve chemical transformations, such as predicting reaction yields,
selecting reagents, and determining the products or starting materials of a reaction.

Section [C| (Implementation Details) details the technical methodology of the study. It covers the
specific hyper-parameters for model training, the data statistics showing how datasets were divided,
CRP extraction prompt, and the structured distillation prompts used to guide the model’s reasoning
process. It also presents an analysis of the Chemical Reasoning Protocols. Additionally, it explains
the criteria for the human evaluation performed by chemistry experts to assess the quality of the
model’s logic.

Section D] (Experiment Result) presents the quantitative outcomes of the experiments. It contains
a series of tables with performance metrics that demonstrate the model’s effectiveness on each of the
tasks described in Section [Bfand on OOD tasks, providing a detailed, data-driven assessment of its
capabilities in chemical reasoning. This section further includes supplementary analyses on the ef-
fectiveness of CRP as a prompting strategy, the impact of teacher model quality, and computational
efficiency.

Section |[E| (More Case) provides additional, specific examples of the model’s outputs.

Section [F| (Use of LLM) clarifies the specific role and application of LLMs within this research.

B TASK DESCRIPTION

In this section, we describe the tasks used in our experiments, which span both molecu-
lar tasks and reaction tasks. We selected these tasks from four widely recognized chemistry
benchmarks—ChEBI-20, ChemLLMBench, USPTO, and TOMG-Bench—based on their practical
relevance and the diversity they offer in evaluating molecular and reaction-level capabilities. These
tasks cover a range of applications, from molecule generation and property prediction to reaction
prediction and retrosynthesis, providing a comprehensive evaluation of the model’s performance in
chemical reasoning.

B.1 MOLECULAR TASKS

(1) Name Prediction. In this task, the goal is to convert between IUPAC names (International
Union of Pure and Applied Chemistry) and SMILES (Simplified Molecular Input Line Entry Sys-
tem) strings, which are two widely used methods for representing chemical structures. TUPAC
names provide a formal, systematic way to describe molecules based on their structure, while
SMILES is a textual representation that encodes molecular structure through a series of symbols
and characters. Converting between these formats requires reasoning about the chemical structure
itself—understanding the arrangement of atoms, bonds, functional groups, and molecular topology.
The model must interpret the chemical details embedded in IUPAC names or SMILES strings and
produce the corresponding representation, which involves complex reasoning about chemical con-
ventions and rules.

Name Prediction (SMILES—IUPAC)

Question: Provide the [UPAC name for the following molecule. SMILES:
CCOC (=0)C (C(C)=0)=C (C)N.
Answer: ethyl 2-acetyl-3-aminobut-2-enoate

(2) Property Prediction. Property prediction involves classifying molecules into categories based
on their biological activity or toxicity (i.e., BBBP, HIV, Tox21, ClinTox, BACE). For this, the model
needs to reason about the underlying structure-property relationships. A molecule’s structure in-
fluences its biological properties through factors like functional group interactions, molecular size,
and polarity. The model must learn these complex relationships from data and reason about which
aspects of the molecule’s structure contribute to its biological effects. This makes property predic-
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tion a key task for reasoning models, as they must generalize these chemical insights across diverse
molecular structures and predict their effects.

Property Prediction (BACE)

Question: Predict whether the following molecule can inhibit BACE1 (Yes/No). SMILES:
Clclcc(cncl)—-clcc2c (CC(CC23N=C (OC3)N) (C)C)ccl.
Answer: No

(3) Molecule Design. In this task, a model is given a fextual description of a molecule and must
generate its corresponding SMILES representation. The challenge here is that the model needs to
map linguistic descriptions (which are often abstract) to concrete molecular structures. For instance,
the description might mention the presence of a functional group, the molecule’s size, or other
key features, which the model must translate into a valid SMILES string. This task requires the
model to reason about the relationship between the described features and how they translate into
a molecular structure. It tests the model’s ability to use abstract information to generate precise
molecular representations, showcasing its reasoning in both language and chemistry.

Molecule Design

Question: Generate a molecule’s SMILES string that fits the following description. De-
scription: The molecule is a member of the class of cyclopentanols carrying 1,2,4-triazol-
I-ylmethyl and 4-chlorobenzylidene and geminal dimethyl substituents at positions 1, 2 and
5 respectively. It is a member of triazoles, a member of monochlorobenzenes, a member of
cyclopentanols, a tertiary alcohol and an olefinic compound.

Answer: CC1 (C)CC/C (=C\\c2ccc (Cl)cc2)Cl (0)Cnlcnecnl

(4) Molecule Captioning. This task is the inverse problem of molecule design. Given a SMILES
string, the model generates a natural language description of the molecule. Here, the model must
reason about the structure encoded in the SMILES and generate a coherent description that accu-
rately captures key molecular features, such as functional groups, chemical bonding, and overall
molecular properties. The challenge lies in translating the complex, compact SMILES format into a
human-readable description that captures both the structure and function of the molecule. It requires
the model to interpret a structured representation and reason about how to explain it in a way that
makes sense in natural language.

Molecule Captioning

Question: Provide a chemical description for the following molecule. SMILES:
CCl(c)cc/c (=C\\c2ccec (Cl)cc2)Cl (0)Cnlcnenl.

Answer: The molecule is a member of the class of cyclopentanols carrying 1,2,4-triazol-
1-ylmethyl and 4-chlorobenzylidene and geminal dimethyl substituents at positions 1, 2 and
5 respectively. It is a member of triazoles, a member of monochlorobenzenes, a member of
cyclopentanols, a tertiary alcohol and an olefinic compound.

(5) Text-based Open Molecule Generation. The TOMG-Bench benchmark focuses on text-based
open molecule generation, evaluating a model’s ability to generate, modify, and optimize molecu-
lar structures based on textual descriptions or specified criteria. Tasks in this benchmark include
Customized Molecule Generation, Molecule Editing, and Molecule Optimization. In Customized
Molecule Generation, the model is tasked with creating molecules that meet specific constraints,
such as a predefined number of atoms, bonds, or functional groups, while maintaining chemical
validity. Molecule Editing requires the model to modify an existing molecule by adding, replac-
ing, or removing functional groups, with the challenge of reasoning about how these changes affect
the overall structure and properties of the molecule. Molecule Optimization involves optimizing
molecules to improve specific properties like LogP (partition coefficient), QED (drug-likeness), and
MR (molecular refractivity), where the model must navigate trade-offs between conflicting goals,
such as balancing hydrophobicity to improve LogP without compromising QED. Together, these
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tasks test a model’s ability to generate, edit, and optimize molecules, requiring reasoning about
molecular structure, function, and the interdependencies between chemical properties.

Text-based Open Molecule Generation (MolOpt-LogP)

Question: Modify the molecule

N#CCC1 (n2cc (-c3ccncd4 [nH]ccc34) cn2) C[NH+] (C2CCN (C (=0)Nc3ceccee3Cl)
CC2) C1 to have a lower LogP value.

Answer: O0=C (NclccccclCl)NICCC ([NH+]2CC(CO) (n3cc (-cd4ccnch5[nH]ccc4d
5)cn3)C2)CCl

B.2 REACTION TASKS

(6) Yield Prediction. Yield prediction involves determining whether a given chemical reaction
will result in a high or low yield based on the reactants and reaction conditions in the Buchwald-
Hartwig and Suzuki-coupling reactions. Here, reasoning is necessary because predicting the yield
requires the model to understand both the intrinsic properties of the reactants and the external factors
that can influence the efficiency of the reaction. It requires the model to simulate the chemical
behavior of the system, predict potential losses, and estimate the likelihood of a successful reaction
based on prior examples. This is a classic task of predicting outcomes under uncertainty, demanding
robust reasoning capabilities to account for various complex variables.

Yield Prediction (Buchwald-Hartwig reaction)

Question: Predict if the following Buchwald-Hartwig reaction is high-yielding (Yes for
>70% yield, No otherwise). Reaction:
Brclccencl.Cclccce (N)ccl.

0=S (=0) (O[Pd]1lc2cccecc2—c2ccececc2N-1)C (F) (F)

COclccc (OC)c (P ([C@]23C[C@H]4C[CW@H] (C[C@H] ( C2)C3) [C@]23C[CQH]
C[C@H] (C[CW@H] (C4)C2)C3)cl-clc(C(C )C)cc(C( )C)cch(C)C.
CCN=P (N=P (N(C)C) (N(C)C)N(C)C) (N(C)C)N(C)C
CCOC(=O)clcc(OC)nol>>Cclccc(Nc2cccn02)ccl.

Answer: No

(7) Reagent Selection. This task involves selecting the appropriate reagents (reactants, solvents,
and ligands) from a predefined list for a given reaction. Reasoning is critical here, as the model must
understand the chemical context of the reaction and predict which reagents will interact most effec-
tively to drive the desired transformation. Importantly, we choose this task over USPTO-Condition
because, in Reagent Selection, each option comes with an associated yield value, making the reason-
ing more concrete and verifiable. Additionally, this task more closely mimics real-world chemical
practices, where chemists have to select reagents from a limited set of available chemicals, often due
to budget, availability, or experimental constraints. In contrast, USPTO-Condition involves broader,
less constrained reaction conditions that may not align with practical laboratory limitations, and its
accuracy is harder to verify because it lacks specific yield values and focuses on a wider range of
conditions. Thus, Reagent Selection provides a more focused and realistic task, better suited to
evaluating a model’s ability to reason within the practical boundaries of chemical experimentation.
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Reagent Selection

Question: From the provided list, select the optimal reactant to maximize the yield for the
following reaction setup.

Reaction Setup:

reactant: Tclccc2ncccc2cel

catalyst: CC (=0) [0-] .CC(=0) [0-].[Pd+2]

ligand: none

reagent: O=P ([O—1) ([O—1]1) [O—-]. [K+]. [K+]. [K+]

solvent: C1CCOC1

list of reactants for selection: [ B (O) O’ ,

"Cclccc2c (cnn2C2CCCCO02) clB1OC (C) (C)C(C) (Cc)yolr,
"Cclccc2c (cnn2C2CCCCO2) cl [B-] (F) (F)F. [K+]"]

Answer: Cclccc2c (cnn2C2CCCCO2) c1B10OC (C) (C)C(C) (C)01l

(8) Reaction Prediction. This task requires predicting the products of a chemical reaction based
on the given reactants and reaction conditions. Reasoning is essential here because the model needs
to understand the underlying chemistry, such as functional group reactivity, reaction mechanisms,
and stereochemistry, in order to predict the correct products. Unlike simpler tasks that only involve
pattern recognition, this task demands an ability to apply chemical principles (like how certain bonds
break and form) and anticipate the reaction’s outcome, which requires sophisticated reasoning be-
yond just memorization.

Reaction Prediction

Question: Predict the main product(s) for the following reaction. Reactants:
CN(C)C=0.COclcccc(N)cl.Cclnc(CCl)csl.Cl.0=C([O-]) [O—=]1.[K+].[K+]
Answer: COclcccc (NCc2csc (C)n2)cl

(9) Retrosynthesis. Retrosynthesis involves predicting the starting materials (reactants) required
to synthesize a given target molecule. To perform reasoning, the model needs to deconstruct the
target molecule into simpler components and reverse-engineer the chemical process. This requires
understanding reaction pathways, identifying suitable reactions to break bonds, and selecting the
appropriate reagents. It’s a form of reverse reasoning, where the model must consider multiple
potential pathways and choose the one that is most likely to lead to the desired product, based on its
chemical structure and reactivity.

Retrosynthesis

Question: Predict the necessary reactant(s) for the following product. Product:

CNC (=0) clc (-c2ccc (F)cc2)oc2cc (N(C)S(C) (=0)=0)c (—c3cccec ([N+]
(=0) [0-])c3)ccl?2

Answer: CNC (=0) clc (-c2ccc (F) cc2) oc2cc (N(C) S (C) (=0)=0)c (Br)ccl2.
O=[N+] ([O=]1)clcccc (B(O)O)cl
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C IMPLEMENTATION DETAILS

C.1 HYPER-PARAMETERS

In this section, we list the hyper-parameters used in different phases of training and inference. We
used Llama-Factory to conduct SFT training (Phase 1 and Phase 2), and EasyR1 for GRPO training
(Phase 3). Table 3| provides the values for the hyper-parameters in Phase 1, Phase 2, and Phase 3, as
well as for inference. The table includes settings such as the number of GPUs, learning rates, batch
sizes, and the number of epochs for each phase.

Item | Value

Phase I Item | Value
gpu_number (H100) 2 Phase 3

per_device_train_batch_size 1 gpu_number (H100) 8
gradient_accumulation_steps | 4 learning_rate 1.0e-6
learning_rate 1.0e-5 weight_decay 1.0e-2
num_train_epochs 5 kl_coef 1.0e-2
Ir_scheduler_type cosine n 5
warmup_ratio 0.1 rollout.temperature 1.0
epoch 3 global batch _size 128
Phase 2 ro}lout,batch,§ize . 512
gpu_number (H100) 2 micro_batch_size_per_device_for_update | 4
per_device_train_batch_size 1 epoch 3
gradient_accumulation_steps | 4 step 683
learning_rate 1.0e-5 Inference

num_train_epochs 5 temperature 0.6
Ir_scheduler_type cosine top_p 0.9
warmup_ratio 0.1 max_tokens 4096
epoch 5

Table 3: Hyper-parameters for Different Phases of Training and Inference
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C.2 DATA STATISTICS

In this section, we outline the data splits used across different phases of training. The data parti-
tioning follows the benchmark division strategies, ensuring that the test set is consistent with the
evaluation criteria and standards. The amount of training data is strategically varied across the
phases to match their distinct objectives:

Phase 1 (Chemical Foundation Training): The goal is to build a comprehensive foundation of
chemical knowledge. Therefore, this phase utilizes a large volume of question-answer pairs (e.g.,
920k for Name Prediction) to ensure broad exposure to facts and patterns.

Phase 2 (CRP Distillation): This phase focuses on teaching a structured reasoning method us-
ing high-quality synthetic CoT data. The strategy here is to provide a substantial and relatively
balanced number of examples across different task categories, generally targeting around 100k
samples per major task. For tasks identified as particularly difficult, such as Name Prediction, we
ensure a higher volume of data to help the model master their complex reasoning protocols.
Phase 3 (Multi-task GRPQO): The objective is to refine the model’s reasoning skills. For this
targeted alignment, the amount of training data for each task is not fixed but is calculated based
on the model’s performance after Phase 2. This strategy, detailed in Section [3.3] allows us to
concentrate the training effort on tasks the model finds more difficult, optimizing the refinement
process.

Importantly, we ensure that no molecules appearing in the test set are included in the training sets.
For a detailed overview of the data splits and their distribution, please refer to Table[d] It is particu-
larly noteworthy that the TOMG tasks were intentionally excluded from the GRPO phase (Phase 3)
due to their long evaluation times and better performance.
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Tasks | Phase1 | Phase2 | Phase3 | Train | Valid | Test
Name Prediction

SMILES2IUPAC 920,734 | 100,000 6,978 828,661 500 100

IUPAC2SMILES 920,734 | 100,000 7,821 828,661 500 100

Property Prediction

BACE 1,413 20,000 3,489 1,413 50 100

BBBP 1,950 20,000 2,286 1,950 50 100

ClinTox 1,384 20,000 241 1,384 50 100

HIV 41,027 20,000 0 41,027 50 100

Tox21 7914 20,000 2,166 7,914 50 100

Molecule Design

ChEBI-20 \ 26,407 \ 100,000 \ 7,821 \ 26,407 \ 3,300 \ 3,300
Molecule Captioning

ChEBI-20 \ 26,407 \ 100,000 \ 7,008 \ 26,407 \ 3,300 \ 3,300
Text-based Open Molecule Generation

MolCustom-AtomNum 133,334 | 33,333 - 133,334 - 5,000
MolCustom-BondNum 133,334 | 33,333 - 133,334 - 5,000
MolCustom-FunctionalGroup | 133,334 | 33,333 — 133,334 — 5,000
MolEdit-AddComponent 133,333 | 33,333 - 133,333 - 5,000
MolEdit-DelComponent 133,333 | 33,333 - 133,333 - 5,000
MolEdit-SubComponent 133,333 | 33,333 - 133,333 - 5,000
MolOpt-LogP 133,333 | 33,333 - 133,333 - 5,000
MolOpt-MR 133,333 | 33,333 - 133,333 - 5,000
MolOpt-QED 133,333 | 33,333 - 133,333 - 5,000
Yield Prediction

Buchwald-Hartwig 3,855 40,515 1,925 3,855 50 100

Suzuki-Miyaura 5,660 58,485 1,685 5,660 50 100

Reagent Selection

Reactant Selection 1,436 44,763 5,174 1,436 100 100

Solvent Selection 1,340 41,770 6,497 1,340 100 100

Ligand Selection 380 13,467 6,517 380 100 100

Reaction Prediction

USPTO-Mixed \ 409,035 \ 100,000 \ 3,730 \ 409,035 \ 30,000 \ 100

Retrosynthesis

USPTO-50k \ 40,029 \ 100,000 \ 8,663 \ 40,029 \ 5,004 \ 100

Table 4: Tasks and data splits across different phases. Note that the quantities listed for Phases 1, 2,
and 3 refer to the total data volume, inclusive of any repeated samples.
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C.3 CRP EXTRACTION PROMPT

Prior to generating the protocol, we establish a reference dataset by sampling the teacher model
with a simple, generic task prompt. We evaluate the generated responses against ground truth to cat-
egorize them into two groups: positive examples, consisting of the input question and the correct
reasoning trace, and negative examples, which comprise the question, the flawed reasoning, and the
ground truth for correction. We then feed these curated examples into the CRP Extraction Prompt
(presented below), enabling the teacher model to synthesize a structured Chemical Reasoning Pro-
tocol defined by reasonable logical steps and hints for common mistakes.

CRP Extraction Prompt

You are an expert Chemical Methodology Analyst and Pedagogue. Your mission is to ana-
lyze raw reasoning traces from specific chemical tasks and synthesize a robust, standardized
Chemical Reasoning Protocol (CRP). A CRP is a structured, algorithmic thinking blueprint
designed to emulate the deliberate decision-making process of a professional chemist. It
serves as a generalizable scaffold that breaks down complex chemical problems into a de-
fined sequence of logical steps (derived from successful reasoning), while simultaneously
integrating specific ”Cautionary Guidance” (derived from failed reasoning) to preemptively
block common hallucinations, syntactic errors, and logical fallacies.

1. Task Context
Task Name: {{TASK_NAME}}
Description: {{TASK_.DESCRIPTION}}

2. Input Data
I will provide two sets of reasoning trajectories: (1) Positive Examples: 5 reasoning paths
that logically lead to the correct answer. (2) Negative Examples: 5 reasoning paths that lead
to incorrect answers or contain hallucinations.

Positive Examples: {{POSITIVE_EXAMPLES}}

Negative Examples: {{NEGATIVE_EXAMPLES}}

3. Analytical Objectives

Analyze these examples to construct a Generalizable Chemical Reasoning Protocol.

* Synthesize Logical Steps: Examine the Positive Examples. Abstract the common,
underlying logical structure into 3-5 distinct steps (e.g., ”Analyze Reactants”, “Deduce
Mechanism”).

* Extract Cautionary Hints: Examine the Negative Examples. Identify the root causes of
failure (e.g., ignoring stereochemistry, misidentifying functional groups). Convert these
errors into Cautionary Guidance for the corresponding steps.

* Generalization: The protocol must be universal for this task type, avoiding references to
specific molecules in the examples.

4. Output Format

Please output the protocol strictly following the Markdown structure below. Do not include
any other introductory text.

1. [Step 1 Title]: [Detailed Description of what to do]

* [Cautionary hint derived from negative examples]

* [Strategic hint derived from positive examples |

2. [Step 2 Title]: [Detailed Description of what to do]

* [Cautionary hint...]

(Continue for all necessary steps)
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C.4 DISTILLATION PROMPTS

Name Prediction (SMILES—IUPAC)

You are an expert chemist demonstrating how to determine the IUPAC name for a given
molecule.

You are given:

1. A SMILES string representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

Your task is to generate a step-by-step reasoning process that logically deduces the system-
atic IUPAC name from the SMILES string. You MUST NOT mention ground-truth, given
reactants, provided answer, or any similar phrases in your <think> block. You must write
the reasoning as if you are deducing the answer from scratch, even though you already know
the destination.

Please structure your reasoning as follows:

1. Deconstruct & Analyze: Thoroughly parse the SMILES string to visualize the molecu-
lar graph, identifying all functional groups, cyclic systems, points of unsaturation, and any
specified stereocenters.

* Translate the linear SMILES notation into a clear mental or physical representation of the
molecular structure.

* Systematically identify every functional group and ring, paying close attention to IUPAC
priority.

* Note all stereochemical indicators (@, @ @, /, \\) for inclusion in the final name.

2. Determine the Principal Chain or Parent Ring: Apply IUPAC priority rules to identify
the principal functional group, which in turn determines the parent structure (the longest
chain or main ring system) and the suffix of the name.

* The parent structure must contain the highest-priority functional group.

* If a choice exists, the parent is the structure with the most multiple bonds, then the longest
carbon chain.

3. Number & Name the Parts: Systematically number the atoms of the parent structure to
assign the lowest possible locant to the principal functional group, then identify and name
all substituent groups attached to the parent.

* The numbering must grant the lowest locant to the principal functional group above all
other considerations.

* If a choice remains, assign lowest locants to multiple bonds, then to the first point of dif-
ference in substituent locants.

* Correctly name each substituent (e.g., "methyl”, ”chloro”) and note its locant.

4. Assemble & Order: Construct the complete [IUPAC name by arranging the named sub-
stituents alphabetically, prefixing them to the parent name, and incorporating all locants and
stereochemical descriptors in their correct positions.

* Alphabetize substituents by name, ignoring multiplying prefixes (di, tri) but not iso or neo.
* Assemble the final name in the standard order: Stereochemistry-Substituents-Parent-Suffix.

Input:

SMILES: {instruction}

FunctionalGroups: {functional_groups._str}
Ground-truth [UPAC Name: {target}

QOutput:

<think>

1. Deconstruct & Analyze: ...

2. Determine the Principal Chain or Parent Ring: ...
3. Number & Name the Parts: ...

4. Assemble & Order: ...

</think>

<answer>{target}</answer>
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Name Prediction (IUPAC—SMILES)

You are an expert chemist demonstrating how to determine the [IUPAC name for a given
molecule.

You are given:

1. An IUPAC name representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

Your task is to generate a step-by-step reasoning process that logically deduces the SMILES
string from the [UPAC name. You MUST NOT mention ground-truth, given reactants, pro-
vided answer, or any similar phrases in your <think> block. You must write the reasoning
as if you are deducing the answer from scratch, even though you already know the destina-
tion.

Please structure your reasoning as follows:

1. Deconstruct IUPAC Name & Identify Components: Break down the [UPAC name
into its fundamental components, identifying the parent structure (chain or ring), principal
functional group, all substituents, and their corresponding locants.

* The parent name (e.g., "hexane”, ”cyclohexane”) forms the SMILES backbone.

* Pay close attention to suffixes (-ol, -one, -oic acid) as they define the principal group.

* Isolate all stereochemical prefixes (R/S, E/Z, cis/trans) for later use.

2. Formulate Conceptual Structure: Translate the deconstructed components into a clear,
verbal description of the molecule’s connectivity, specifying how each substituent attaches
to the parent structure at its designated locant.

* This step acts as a "blueprint” before writing any SMILES code.

* Mentally or explicitly number the parent chain to map out attachment points.

* Clarify the precise atom-to-atom connections for all parts.

3. Attempt SMILES Translation: Individually convert each identified component—the
parent structure, substituents, and functional groups—into its correct SMILES representa-
tion, treating them as separate fragments.

* Use parentheses () for branches off the main chain.

* Represent double and triple bonds with ’=" and ’#’, respectively.

* Keep track of numeric labels for defining ring closures.

4. Construct Final SMILES String: Systematically assemble the individual SMILES frag-
ments into a single, valid string, ensuring correct connectivity, branching, ring closures, and
the inclusion of stereochemical markers.

* Start with the fragment for the principal functional group or a logical endpoint of the main
chain.

* Insert substituent fragments inside parentheses at the correct atom of the main chain.

* Apply stereochemical symbols (@, @ @, /, \\) last to ensure correct placement relative to
the final structure.

Input:

IUPAC: {instruction}

FunctionalGroups: {functional_groups_str}

Ground-truth SMILES Name: {target}

Qutput:

<think>

1. Deconstruct Name & Identify Components: ...
2. Formulate Conceptual Structure: ...

3. Translate Components to SMILES: ...

4. Assemble & Finalize String: ...

</think>

<answer>{target}</answer>
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Property Prediction (BACE1)

You are an expert chemist demonstrating how to predict the BACE1 inhibition potential of a
molecule from its chemical structure.

You are given:

1. A SMILES string representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

Your task is to generate a step-by-step reasoning process that logically deduces whether the
molecule can inhibit (Yes) or cannot inhibit (No) the Beta-site Amyloid Precursor Protein
Cleaving Enzyme 1 (BACE1). You MUST NOT mention ”ground-truth”, ’given reactants”,
“provided answer”, or any similar phrases in your <think> block. You must write the
reasoning as if you are deducing the answer from scratch, even though you already know the
destination.

Please structure your reasoning as follows:

1. Structural/Property Identification: Analyze the SMILES to identify key pharma-
cophores, functional groups, and physicochemical properties relevant for BACEI inhibition.
* Identify key pharmacophoric features (H-bond donors/acceptors, aromatic rings).

* Assess general drug-like properties such as MW, flexibility, and logP.

* Check for structural motifs common to known inhibitors of this target class.

2. Property-Activity Correlation: Correlate the identified features with general Structure-
Activity Relationships (SAR) for BACEI inhibition.

* Assess how functional groups might form hydrogen bonds or electrostatic interactions in
an active site.

* Evaluate if hydrophobic regions are suitably sized for binding within lipophilic pockets.

* Align the molecule’s properties with general drug-likeness principles (e.g., Lipinski’s
Rules).

3. Holistic Assessment & Consideration: Synthesize all positive and negative factors to
form a holistic judgment of the molecule’s inhibitory potential.

* Weigh the combined evidence for and against binding, not just a simple count of features.
* Consider potential liabilities that could prevent binding, such as steric hindrance or unfa-
vorable charges.

4. Final Prediction Verdict: Conclude with a definitive ”Yes” or ”No” prediction based on
the integrated assessment.

* The final verdict must be a direct logical consequence of the previous assessment.

* State the primary molecular features that drive the final ”Yes” or "No” decision.

Wrap your entire reasoning process in <think> tags and output only the final answer (Yes
or No) in <answer> tags.

Input:

SMILES: {instruction}

FunctionalGroups: {functional groups_str}
Ground-truth Answer: {target}

Output:

<think>

1. Structural/Property Identification: ...

2. Property-Activity Correlation: ...

3. Holistic Assessment & Consideration: ...
4. Final Prediction Verdict: ...

</think>
<answer>{target}</answer>
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Property Prediction (BBBP)

You are an expert chemist demonstrating how to predict the Blood-Brain Barrier (BBB)
penetration potential of a molecule from its chemical structure.

You are given:

1. A SMILES string representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

Your task is to generate a step-by-step reasoning process to predict the binary label (Yes for
penetration, No for non-penetration) for the given molecule’s ability to cross the Blood-Brain
Barrier. You MUST NOT mention ~’ground-truth”, ”given reactants”, provided answer”, or
any similar phrases in your <think> block. You must write the reasoning as if you are
deducing the answer from scratch, even though you already know the destination.

Please structure your reasoning as follows:

1. Structural/Property Identification: Identify key physicochemical properties from the
SMILES that govern membrane permeability.

* Estimate properties like molecular weight (MW), lipophilicity (logP), and polar surface
area (TPSA).

* Count hydrogen bond donors/acceptors and identify any permanent charges.

2. Property-Activity Correlation: Correlate the identified properties with principles favor-
ing or hindering BBB penetration.

* Assess if size, polarity, and lipophilicity fall within a favorable range for passive diffusion.
* Recognize that high polarity or a permanent charge strongly hinders penetration.

3. Holistic Assessment & Consideration: Synthesize all factors to form a balanced judg-
ment on the molecule’s overall profile for BBB penetration.

* Weigh the combined impact of all properties, a single critical flaw can prevent penetration.
* Consider the possibility of active efflux mechanisms (e.g., P-gp substrate).

4. Final Prediction Verdict: Conclude with a definitive ”’Yes” or ”"No” prediction based on
the holistic assessment.

* The final verdict must be a logical conclusion of the prior analysis.

* State the most influential properties driving the decision.

Wrap your entire reasoning process in <think> tags and output only the final answer (Yes
or No) in <answer> tags.

Input:

SMILES: {instruction}

FunctionalGroups: {functional_groups_str}
Ground-truth Answer: {target}

Output:

<think>

1. Structural/Property Identification: ...

2. Property-Activity Correlation: ...

3. Holistic Assessment & Consideration: ...
4. Final Prediction Verdict: ...

</think>
<answer>{target}</answer>
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Property Prediction (ClinTox)

You are an expert chemist demonstrating how to predict the clinical trial toxicity of a
molecule from its chemical structure.

You are given:

1. A SMILES string representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

3. The FDA approval status for clinical trials.

Your task is to generate a a step-by-step reasoning process to predict whether a molecule
is Clinically-trial-Toxic (Yes) or Not Clinically-trial-toxic (No). The FDA-approved status
is provided as an additional piece of evidence. You MUST NOT mention ~’ground-truth”,
“given reactants”, ’provided answer”, or any similar phrases in your <think> block. You
must write the reasoning as if you are deducing the answer from scratch, even though you
already know the destination.

Please structure your reasoning as follows:

1. Structural/Property Identification: Identify structural alerts, reactive functional groups,
and other properties linked to toxicity from the SMILES.

* Identify known toxicophores and chemically reactive motifs.

* Assess if extreme physicochemical properties (e.g., high MW or logP) increase risk.

2. Property-Activity Correlation: Correlate the identified structural risks with general
toxicological principles.

* Assess how reactive groups could potentially cause organ damage.

* Note that a structural alert suggests risk but is not definitive proof of toxicity.

3. Holistic Assessment & Consideration: Synthesize the structural risk analysis with the
provided FDA approval status to form a comprehensive judgment.

* Use the FDA approval status as powerful evidence to adjust the initial structural risk
assessment.

* An "Approved” status implies any identified structural risks were clinically acceptable.

4. Final Prediction Verdict: Conclude with a definitive ’Yes” or ”"No” prediction based on
the integrated evidence.

* The verdict must balance the structural analysis against the FDA approval status.

* State the primary factors that drive the final "Yes” or "No” decision.

Wrap your entire reasoning process in <think> tags and output only the final answer (Yes
or No) in <answer> tags.

Input:

SMILES: {instruction}

FunctionalGroups: {functional_groups_str}
FDA_APPROVED: {FDA_APPROVED}
Ground-truth Answer: {target}

Output:

<think>

1. Structural/Property Identification: ...

2. Property-Activity Correlation: ...

3. Holistic Assessment & Consideration: ...
4. Final Prediction Verdict: ...

</think>
<answer>{target}</answer>
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Property Prediction (HIV)

You are an expert chemist demonstrating how to predict the HIV replication inhibition po-
tential of a molecule from its chemical structure.

You are given:

1. A SMILES string representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

3. The result from an activity test, classified as CA (confirmed active), CM (confirmed
moderately active), or CI (confirmed inactive).

Your task is to generate a step-by-step reasoning process to predict the binary label for the
molecule’s ability to inhibit HIV replication (Yes or No), considering its structure and the
provided activity test result. You MUST NOT mention “ground-truth”, ’given reactants”,
“provided answer”, or any similar phrases in your <think> block. You must write the
reasoning as if you are deducing the answer from scratch, even though you already know the
destination.

Please structure your reasoning as follows:

1. Structural/Property Identification: Analyze the SMILES for structural motifs and prop-
erties linked to antiretroviral activity.

* Identify scaffolds similar to known HIV inhibitor classes (e.g., protease inhibitors).

* Assess functional groups for key interactions (e.g., H-bonding) with viral targets.

* Evaluate general properties like size and polarity relevant for cellular uptake.

2. Property-Activity Correlation: Correlate the identified features with general mecha-
nisms of HIV inhibition.

* Assess the molecule’s potential to mimic the natural substrates of viral enzymes.

* Consider if the molecule’s geometry is suitable for binding to key viral targets.

3. Holistic Assessment & Consideration: Synthesize the structural analysis with the pro-
vided activity data to form a comprehensive judgment.

* Use the activity result (CA/CM/CI) as key evidence to confirm or override the structural
analysis.

*A "CA” or "CM” result strongly supports a ”Yes” prediction, even with subtle structural
cues.

* A ”CI” result strongly supports a "No” prediction, regardless of favorable features.

4. Final Prediction Verdict: Conclude with a definitive ’Yes” or ”"No” prediction based on
the integrated evidence.

* The verdict must clearly integrate the structural analysis with the activity data.

* State the primary factors (e.g., ”Structurally promising and confirmed by CA’ result”)
driving the decision.

* The final verdict must explicitly state how the structural analysis and the activity data were
combined.

* Summarize the key factors (e.g., ”Structurally promising and confirmed active by 'CA’
result”) driving the decision.

Wrap your entire reasoning process in <think> tags and output only the final answer (Yes
or No) in <answer> tags.

Input:

SMILES: {instruction}
FunctionalGroups: {functional groups_str}
activity: {activity}

Ground-truth Answer: {target}

Output:

<think>

1. Structural/Property Identification: ...

2. Property-Activity Correlation: ...

3. Holistic Assessment & Consideration: ...
4. Final Prediction Verdict: ...

</think>
<answer>{target}</answer>
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Property Prediction (Tox21)

You are an expert chemist demonstrating how to predict the toxicity of a molecule from its
chemical structure.

You are given:

1. A SMILES string representing the molecule.

2. A list of functional groups present in the molecule (with representative SMILES patterns)
to serve as hints.

Your task is to generate a step-by-step reasoning process to predict whether a molecule is
toxic (Yes) or not toxic (No). You MUST NOT mention “ground-truth”, ”given reactants”,
”provided answer”, or any similar phrases in your <think> block. You must write the
reasoning as if you are deducing the answer from scratch, even though you already know the
destination.

Please structure your reasoning as follows:

1. Structural/Property Identification: Analyze the SMILES string for known toxi-
cophores, structural alerts, and chemically reactive functional groups.

* Identify highly reactive motifs (e.g., Michael acceptors, epoxides) or strained rings.

* Search for groups that can be metabolically activated into toxic species (e.g., nitroaromat-
ics).

* Assess if extreme physicochemical properties (e.g., high logP) suggest non-specific toxic-
ity.

2. Property-Activity Correlation: Correlate the identified structural features with common
mechanisms of chemical toxicity.

* Evaluate the potential for reactive groups to cause cellular damage via covalent modifica-
tion of proteins or DNA.

* Consider the possibility of off-target pharmacology based on the molecule’s overall pro-
file.

* Recognize that a structural alert increases toxicity risk but is not definitive proof.

3. Holistic Assessment & Consideration: Synthesize all structural risk factors to form a
comprehensive judgment on the molecule’s likely toxicity.

* Weigh the combined impact of all identified risks; the presence of multiple alerts is a strong
indicator of toxicity.

* Consider if the overall molecular context might mitigate the reactivity of a potential toxi-
cophore (e.g., via steric hindrance).

4. Final Prediction Verdict: Conclude with a definitive ’Yes” (toxic) or ”No” (not toxic)
prediction based on the overall risk assessment.

* The verdict must be a logical conclusion derived from the balance of identified structural
risks.

* State the primary structural reasons that drive the final "Yes” or "No” decision.

Wrap your entire reasoning process in <think> tags and output only the final answer (Yes
or No) in <answer> tags.

Input:

SMILES: {instruction}

FunctionalGroups: {functional _groups_str}
Ground-truth Answer: {target}

Output:

<think>

1. Structural/Property Identification: ...

2. Property-Activity Correlation: ...

3. Holistic Assessment & Consideration: ...
4. Final Prediction Verdict: ...

</think>
<answer>{target}</answer>
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Molecule Design (Text—SMILES)

You are an expert chemist demonstrating how to solve a molecule design problem.

You are given:

1. A molecular description.

2. A list of functional groups present in the molecule (with representative SMILES patterns).
Your task is to generate a step-by-step reasoning process that logically deduces the SMILES
from the description and the functional groups. You MUST NOT mention ~’ground-truth”,
“given reactants”, ’provided answer”, or any similar phrases in your <think> block. You
must write the reasoning as if you are deducing the answer from scratch, even though you

already know the destination.

Please structure your reasoning as follows:

1. Identify the core structure: Determine the central molecular scaffold or backbone by
interpreting the root name in the chemical description.

* Focus on identifying the parent compound, such as a main chain ("hexane’) or a ring sys-
tem (’benzene’).

* This core structure will serve as the primary chain for the SMILES string.

2. Summarize key elements: Systematically list all substituents and functional groups from
the description and identify their attachment points (locants) on the core.

* Create a clear connectivity map, linking each group to its specific locant on the parent
structure.

* Use the provided functional group list to confirm the identity of complex groups.

3. Address stereochemistry: Scan the description for any stereochemical descriptors and
determine the specific configuration at each chiral center or double bond.

* Identify specific prefixes such as (R)/(S) for chiral centers and (E)/(Z) for double bonds.

* If no stereochemistry is mentioned, explicitly note this fact.

4. Construct SMILES: Build the final SMILES string by translating the conceptual
blueprint into the correct syntax, combining the core, substituents, and stereochemistry.

* Use parentheses () for branches and numeric labels for ring closures.

* Apply stereochemical markers (@, @@, /, \\ ) at their correct positions after establishing
atom connectivity.

Wrap your reasoning in <think> tags and output the final SMILES in <answer> tags.
Input:

Description: {instruction}

FunctionalGroups: {functional _groups_str}
Ground-truth SMILES: {target}

Output:

<think>

1. Identify the core structure: ...

2. Summarize key elements: ...

3. Address stereochemistry: ...

4. Construct SMILES: ...
</think>
<answer>{target}</answer>
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Molecule Captioning (SMILES— Text)

You are an expert chemist demonstrating how to describe a molecule based on its structure.

You are given:

1. A SMILES string.

2. A list of functional groups present in the molecule (with representative SMILES patterns).
Your task is to generate a step-by-step reasoning process that logically deduces a detailed
chemical description from the SMILES. You MUST NOT mention ~’ground-truth”, ”given
reactants”, “provided answer”, or any similar phrases in your <think> block. You must
write the reasoning as if you are deducing the answer from scratch, even though you already
know the destination.

Please structure your reasoning as follows:

1. Analyze Molecular Structure: Deconstruct the SMILES string by identifying the pri-
mary carbon backbone with its branching points, systematically locating all heteroatoms and
specified functional groups, and characterizing any cyclic systems found via ring-closure nu-
merals.

* Account for all specified functional groups without omission.

* Note aromaticity from lowercase letters to define the core scaffold.

2. Summarize Key Elements: Integrate the individual components into a cohesive overview
to characterize the core scaffold, such as an aliphatic chain or aromatic system, and deter-
mine the principal chemical class or classes to which the molecule belongs based on the
combination of functional groups.

* Synthesize findings into a chemical class (e.g., ”a substituted ester”), not a simple list of
parts.

* Infer the molecule’s dominant chemical character from its functional groups.

* Consider the relative positions of substituents on the core structure.

3. Address Stereochemistry: Scrutinize the SMILES string for stereochemical indicators,
specifically @’ and*@ @ for tetrahedral chirality and /> and *\” for geometric isomerism,
to explicitly determine the R/S or E/Z configuration for each identified stereocenter or dou-
ble bond.

* Explicitly state if stereochemistry is absent or unspecified.

* Link each R/S or E/Z descriptor to its precise atom or bond.

4. Predict Molecular Description: Construct a final, detailed chemical description by sys-
tematically assembling the preceding findings, starting with the core structure before adding
the names and locations of all functional groups and incorporating stereochemical descrip-
tors to form a complete narrative.

* The final description must be a cohesive, flowing narrative.

* Ensure all identified structural and stereochemical features are included.

* Avoid a simple list of facts, the summary should be a comprehensive chemical story.
Wrap your complete reasoning process in <think> tags and output the final description in
<answer> tags.

Input:

SMILES: {instruction}

FunctionalGroups: {functional_groups_str}
Ground-truth description: {target}

Output:

<think>

1. Analyze Molecular Structure: ...
2. Summarize Key Elements: ...

3. Address Stereochemistry: ...

4. Predict Molecular Description: ...
</think>
<answer>{target}</answer>
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TOMG (MolCustom)

You are an expert chemist demonstrating how to solve a molecule generation problem based
on given constraints (Mol Custom).

You are given:

1. An instruction that specifies the constraints for the molecule to be generated.

Your task is to generate a step-by-step reasoning process that logically constructs a valid
molecule that satisfies all the given constraints. You MUST NOT mention ~’ground-truth”,
“given reactants”, ’provided answer”, or any similar phrases in your <think> block. You
must write the reasoning as if you are deducing the answer from scratch, even though you

already know the destination.

Please structure your reasoning as follows:

1. Analyze Constraints: Deconstruct the instruction to create a comprehensive checklist of
all specified molecular requirements.

* List all explicit constraints, such as required functional groups, atom counts, or ring sys-
tems.

* Identify any implicit chemical rules, like ensuring correct valency for all atoms.

* This checklist will serve as the guide and final validation tool.

2. Construct Core Backbone: Begin molecular construction by creating the primary scaf-
fold that satisfies the most significant structural constraint.

* Start with the largest specified fragment, such as a named ring system or a carbon chain
of a specific length.

* If no core is defined, choose a simple starting point that facilitates adding other required
features.

3. Assemble and Refine Structure: Iteratively add the remaining functional groups and
substituents to the core backbone to satisfy all remaining constraints.

* Attach the required groups at chemically plausible positions on the backbone.

* Adjust the structure as needed, ensuring all atoms adhere to standard valency rules during
assembly.

4. Comprehensively Validate: Perform a final, rigorous check of the generated molecule
against the initial constraint checklist for accuracy and chemical validity.

* Systematically verify that every single constraint from the initial list has been met.

* Confirm the final SMILES string is syntactically correct and represents a chemically stable
molecule.

The final predicted molecule must be expressed as a SMILES string. Wrap your entire rea-
soning process in <t hink> tags and output only the final answer in <answer> tags.

Input:
Instruction: {instruction}
Ground-truth Molecule: {target}

Qutput:

<think>

1. Analyze Constraints: ...

2. Construct Core Backbone: ...

3. Assemble and Refine Structure: ...
4. Comprehensively Validate: ...
</think>
<answer>{target}</answer>

33



Under review as a conference paper at ICLR 2026

TOMG (MolEdit)

You are an expert chemist demonstrating how to solve a molecule editing problem.

You are given:

1. A molecule editing problem.

2. A list of key functional groups present in the SMILES, which can serve as hints.

Your task is to generate a step-by-step reasoning process that logically deduces the final
edited molecule’s SMILES from the given starting molecule and editing instruction. You
MUST NOT mention “ground-truth”, ”given reactants”, ’provided answer”, or any similar
phrases in your <think> block. You must write the reasoning as if you are deducing the

answer from scratch, even though you already know the destination.

Please structure your reasoning as follows:

1. Task Parsing: Deconstruct the problem statement to identify the starting molecule, the
specific editing operation, and the target substructure.

* Clearly state the input molecule’s SMILES and the intended action (e.g., 'add’, "remove’,
‘replace’).

* Identify the precise chemical group or site targeted for modification as described in the
instruction.

2. Functional Group Analysis & Site Localization: Analyze the starting molecule’s
SMILES to pinpoint the exact location for the edit.

* Identify all functional groups within the starting molecule to create a structural map.

* Use this map to locate the exact atom(s) corresponding to the target site from the instruc-
tion.

3. Edit Molecule: Execute the specified modification on the SMILES string by performing
the necessary bond-breaking and bond-forming operations.

* Describe the transformation in terms of SMILES manipulation (e.g., "inserting a 'C’ atom
into the chain”).

* Generate the new SMILES string that represents the post-edit molecular structure.

4. Structure Validation: Verify that the resulting molecule accurately reflects the requested
edit and is chemically plausible.

* Confirm that the modification has been correctly applied to the intended site.

* Check the final SMILES for correct syntax and ensure all atoms have proper valency.

The final predicted molecule must be expressed as a SMILES string. You must
output your reasoning within <think>..</think> and the final answer within
<answer>..</answer>.

Input:

Problem: {problem}

FunctionalGroups: {functional_groups_str}

Ground-truth Edited Molecule: {target}

Output:

<think>

1. Task Parsing: ...

2. Functional Group Analysis & Site Localization: ...
3. Edit Molecule: ...

4. Structure Validation: ...

</think>

<answer>{target}</answer>
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TOMG (MolOptimization)

You are an expert chemist demonstrating how to solve a molecule optimization problem.

You are given:

1. A molecule optimization problem, which includes the starting molecule (SMILES) and
the optimization goal.

2. A list of key functional groups present in the starting molecule, which can serve as hints.
Your task is to generate a step-by-step reasoning process that logically deduces the final
optimized molecule’s SMILES. You MUST NOT mention ”ground-truth”, ”given reactants”,
“provided answer”, or any similar phrases in your <think> block. You must write the
reasoning as if you are deducing the answer from scratch, even though you already know the
destination.

Please structure your reasoning as follows:

1. Clarify Optimization Goal: Interpret the optimization instruction to define the target
property and the underlying chemical principle for its improvement.

* Clearly state the property to be optimized (e.g., solubility, binding affinity, metabolic sta-
bility).

* Connect the goal to a specific chemical strategy (e.g., "increase solubility by adding polar
groups”).

2. Molecular Analysis & Strategy Customization: Analyze the starting molecule to iden-
tify a suitable site for modification that aligns with the optimization strategy.

* Identify regions of the molecule where modification is chemically feasible and unlikely to
disrupt core activity.

* Select a specific substituent or functional group to add/remove/replace based on the de-
fined strategy.

3. Modify Molecule: Execute the planned structural modification on the starting molecule’s
SMILES to generate the new, optimized structure.

* Describe the specific edit performed on the SMILES string to implement the chemical
change.

* Generate the new SMILES string representing the final, optimized molecule.

4. Validate Modification: Confirm that the edit was performed correctly and that the result-
ing molecule plausibly achieves the optimization goal.

* Verify that the final structure incorporates the intended change at the correct location.

* Briefly rationalize how the modification is expected to improve the target property (e.g.,
“the added hydroxyl group increases polarity”).

The final predicted molecule must be expressed as a SMILES string. You must
output your reasoning within <think>..</think> and the final answer within
<answer>..</answer>.

Input:

Problem: {problem}

FunctionalGroups: {functional_groups_str}

Ground-truth Optimized Molecule: {target}

Output:

<think>

1. Clarify Optimization Goal: ...

2. Molecular Analysis & Strategy Customization: ...
3. Modify Molecule: ...

4. Validate Modification: ...

</think>

<answer>{target}</answer>
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Reaction Prediction

You are an expert chemist demonstrating how to solve a reaction prediction problem.

You are given:

1. A set of chemical reactants represented by SMILES string.

2. A list of key functional groups present in the reactants, which serve as hints for discon-
nection.

Your task is to generate a step-by-step reasoning process that logically predicts the product
SMILES from the given reactant SMILES and its functional groups. You MUST NOT men-
tion “ground-truth”, given reactants”, “provided answer”, or any similar phrases in your
<think> block. You must write the reasoning as if you are deducing the answer from
scratch, even though you already know the destination.

Please structure your reasoning as follows:

1. Reactant Analysis: Examine the reactants’ structures to identify key features relevant to
reactivity.

* Assess the overall structure, including the carbon skeleton and stereochemistry.

* Identify any notable structural motifs that could influence the reaction.

2. Functional Group Identification: Locate and classify all functional groups to determine
potential reaction sites.

* Identify all key functional groups and classify them by reactivity (e.g., nucleophilic, elec-
trophilic, acidic, basic).

* Consider potential interactions between these groups or with external reagents.

3. Reaction Type Analysis: Determine the most probable reaction pathway based on the
reactants’ structural and functional group properties.

* Deduce the most plausible chemical transformation by correlating the functional groups
present.

* Propose a likely reaction type, such as a known named reaction or a fundamental class
like substitution or addition.

4. Product Prediction: Construct the final product by applying the proposed reaction mech-
anism and generating the resultant SMILES string.

* Detail the bond formations and breakages, considering regioselectivity and stereoselectiv-
ity to determine the precise product structure.

* Generate the new SMILES string that represents the final predicted molecule(s).

The final predicted product must be expressed as a SMILES string. If multiple prod-
ucts are predicted, they MUST be separated by a period °.‘ instead of commas. You
must output your reasoning within <think>...</think> and the final answer within
<answer>..</answer>.

Input:

Reactants SMILES: {reactants}

FunctionalGroups: {functional_groups._str}

Ground-truth Product: {target}

QOutput:

<think>

1. Reactant Analysis: ...

2. Functional Group Identification: ...
3. Reaction Type Analysis: ...

4. Product Prediction: ...

</think>
<answer>{target}</answer>
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Retrosynthesis

You are an expert chemist demonstrating how to solve a retrosynthesis problem.

You are given:

1. A chemical product represented by a SMILES string.

2. A list of key functional groups present in the product, which serve as hints for disconnec-
tion.

Your task is to generate a step-by-step reasoning process that logically deduces the reactant
SMILES from the given product SMILES and its functional groups. You MUST NOT men-
tion “ground-truth”, ”given reactants”, ’provided answer”, or any similar phrases in your
<think> block. You must write the reasoning as if you are deducing the answer from
scratch, even though you already know the destination.

Please structure your reasoning as follows:

1. Product Analysis: Examine the product’s structure to identify strategic bonds for discon-
nection.

* Assess the product’s carbon skeleton, stereochemistry, and any notable structural motifs.
* Identify key bonds whose formation is synthetically plausible, often adjacent to functional
groups.

2. Functional Group Identification: Analyze the functional groups to infer the last syn-
thetic step.

* Locate all key functional groups, recognizing them as the results of specific chemical re-
actions.

* Use these groups to guide the selection of a primary disconnection strategy.

3. Reaction Type Analysis: Propose a plausible forward reaction that could have formed a
key bond in the product.

* Based on the target bond and adjacent functionalities, suggest a reliable forward synthesis
reaction (e.g., Wittig, Grignard, Diels-Alder).

* This proposed reaction dictates the nature of the precursor fragments (synthons).

4. Reactant Prediction: Perform the disconnection to derive the structures of the starting
materials.

* Break the target bond in the product to generate the corresponding synthons.

* Convert these synthons into stable, charge-neutral reactant molecules and generate their
SMILES strings.

The final predicted reactants must be expressed as SMILES strings. If multiple reac-
tants are predicted, they MUST be separated by a period °.‘ instead of commas. You
must output your reasoning within <think>...</think> and the final answer within
<answer>..</answer>.

Input:

Product SMILES: {products}

FunctionalGroups: {functional_groups_str}

Ground-truth Reactants: {target}

Output:

<think>

1. Product Analysis: ...

2. Functional Group Identification: ...
3. Reaction Type Analysis: ...

4. Reactant Prediction: ...

</think>
<answer>{target}</answer>
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C.5 ANALYSIS OF CRPs

We provide a detailed analysis regarding the quantification, generalization, and robustness of the
Chemical Reasoning Protocols (CRP) distilled in Phase 2.

Protocol Count and Generalization. Our cross-task merging process resulted in 9 core protocols
built around fundamental “reasonable steps” such as “Analyze Molecular Structure” or “Identify
Functional Groups.” These steps are abstract and universal enough to cover virtually all chemical
problem-solving workflows. The protocols generalize effectively for two reasons. First, the steps
themselves remain consistent across tasks; what changes is the task-specific focus within each step.
For example, “Analyze Molecular Structure”” might focus on stereocenters for a property prediction
task but on potential disconnection sites for a retrosynthesis task. Second, the “hints for common
mistakes” derived from one task (e.g., misinterpreting a SMILES string for a reactant) are often
relevant to others, creating a rich, shared knowledge base that enhances generalization.

Robustness to Teacher Errors. Our protocol design is inherently robust to partially incorrect
teacher traces. The goal of this phase is not to perfectly replicate every detail of a teacher’s trace,
but to extract a high-level, structured workflow. We address teacher errors through two mechanisms:
(1) If the final result is wrong, we analyze the reasoning chain to identify the failure mode, and this
analysis directly informs the “hints for common mistakes™ attached to the relevant protocol step.
(2) If the final result is correct but the reasoning is partially flawed, our process remains effective
because we only summarize the broad, high-level steps (e.g., “the model first identified reactants,
then proposed a reaction type...”). Minor logical flaws within a step do not corrupt the extraction of
this high-level structure. Therefore, the protocol remains sound, and the risk of propagating subtle
errors is minimal.
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C.6 HUMAN EVALUATION

To provide a nuanced assessment of reasoning quality, we conducted a human evaluation with the
help of chemistry experts. The experts were tasked with evaluating the generated CoT from Chem-R
and several leading baseline models. We designed a comprehensive rubric consisting of six distinct,
orthogonal metrics to capture different facets of a high-quality explanation: Chemical Soundness
(the factual correctness of the chemistry), Logical Coherence (the step-by-step logical flow), Step-
by-Step Completeness (whether crucial steps are missing), Justification of the Conclusion (the faith-
fulness of the reasoning to the final answer), Clarity and Conciseness (the quality of the language),
and Expert-level Insight (the depth and nuance of the reasoning). Each metric was scored on a 0-5
scale, allowing for a detailed comparison of the models’ ability to produce human-like, expert-level
thought processes.

Evaluation Limitations. A potential limitation is that CoT from Chem-Rcan be stylistically dis-
tinct, often more structured, due to its protocol-based training. To mitigate any resulting bias, the
evaluation was conducted under strictly blind conditions. Experts assessed fully anonymized re-
sponses without any knowledge of the generating model, ensuring their ratings were based exclu-

sively on the intrinsic quality of the reasoning rather than on stylistic patterns.

Chemical

Score
Soundness
Excellent:
Flawless

5 chemistry, all

principles
correctly applied.

Good: Minor,
inconsequential
chemical
inaccuracy.

Acceptable:
Noticeable

3 chemical error(s),
but mostly
correct.

Poor: Significant
2 misunderstanding
of core concepts.

Very Poor: Built
on fundamentally
flawed chemical
principles.

No Value:
Completely
incorrect
chemistry.

Logical
Coherence

Excellent:
Perfectly logical
and sequential
flow.

Good: Sound
logic with a
minor unclear
transition.

Acceptable:
Generally
follows, but has
some logical
gaps.

Poor:
Disjointed and
hard to follow.

Very Poor:
Largely illogical
and chaotic.

No Value: No
logical
structure.

Step-by-Step
Completeness

Excellent: All
critical steps are
explicit and
thorough.

Good: Omits a
minor, obvious
step.

Acceptable:
Skips one or two
important steps.

Poor: Skips
multiple crucial
steps, making
logical leaps.

Very Poor: A
brief sketch
missing almost
all necessary
logic.

No Value:
Provides only
the final answer.

Justification of the
Conclusion

Excellent: Correct conclusion
is fully justified by the
reasoning.

Good: Correct conclusion, but
the link to reasoning is
slightly weak.

Acceptable: Reasoning is
sound but leads to a minor
error, OR the conclusion is
not fully supported.

Poor: Incorrect conclusion
that is not supported by the
reasoning.

Very Poor: Conclusion seems
unrelated to the reasoning
provided.

No Value: No connection
between reasoning and
answer.

Clarity and
Conciseness

Excellent:
Exceptionally clear,
concise, and precise.

Good: Clear and easy
to understand, but
could be more
polished.

Acceptable:
Generally
understandable, but
somewhat verbose or
awkward.

Poor: Vague,

confusing, and
difficult to parse.

Very Poor: Nearly
unintelligible.

No Value: Gibberish.

Expert-level
Insight

Excellent: Deep,
nuanced
understanding that
mimics expert
thinking.

Good: Strong
competence,
correctly identifies
key factors.

Acceptable:
Correct but
superficial or
"textbook"
reasoning.

Poor: Misses key
nuances and only
addresses the
obvious.

Very Poor:
Demonstrates a
naive or simplistic
understanding.

No Value: Shows a
complete lack of
understanding.

Figure 5: Human evaluation rubric for Chain-of-Thought quality. Experts are to score the generated
reasoning on a 0-5 scale (O=worst, 5=best) across the six metrics provided: Chemical Soundness,
Logical Coherence, Completeness, Justification, Clarity, and Expert-level Insight.

Table 5: Human evaluation of model-generated reasoning. For each column the best and
second-best models are highlighted.

Metric Chem-R  Gemini-2.5 Pro DeepSeek-R1 ether(
Chemical Soundness 4.75 3.95 345 2.15
Logical Coherence 4.85 4.25 3.80 2.35
Step-by-Step Completeness 4.20 3.85 3.90 1.95
Justification of the Conclusion 4.28 4.10 3.55 2.05
Clarity and Conciseness 4.65 4.55 3.70 2.55
Expert-level Insight 4.55 3.75 3.20 1.85
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D EXPERIEMENT RESULT

In this section, we will present the specific results of each subtask in the experiment to provide a
better demonstration of the model’s performance.

D.1 NAME PREDICTION

In our name prediction task, we evaluated the model’s performance on two sub-tasks: SMILES
to TUPAC name translation (SMILES2IUPAC) and IUPAC name to SMILES translation (IU-
PAC2SMILES). For both sub-tasks, we use the exact match accuracy as the evaluation metric.
All SMILES comparisons are performed after canonicalization to ensure consistency.

Model | SMILES2IUPAC? | IUPAC2SMILES? | Average?
Task-specific specialist models

STOUT (Rajan et al., 2021) | 0.55 \ 0.70 | 0.63
LLM-based generalist models

GPT-40 0.00 0.02 0.01
Gemini-2.5-Pro 0.01 0.33 0.17
DeepSeek-R1 0.01 0.09 0.05
ChemDFM-v1.5-8B 0.06 0.22 0.14
ether0-24B 0.00 0.29 0.15
Chem-R-8B 0.51 0.47 0.49

Table 6: Accuracy scores in name prediction tasks. The task-specific specialist models are sourced
from (Guo et al., [2023)).
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D.2 PROPERTY PREDICTION

In the molecule property prediction task, we evaluated the model’s performance across a suite of
benchmark datasets: BACE, BBBP, ClinTox, HIV, and Tox21. Each task is formulated as a binary
classification problem. For evaluation, we uniformly use classification accuracy as the sole metric
across all datasets. To further verify the competitiveness of our approach against specialized geo-
metric deep learning models, we additionally evaluate a canonical Graph Neural Network (GNN)

baseline, Chemprop (D-MPNN) (Heid et al| [2023]), using classification accuracy.

Table 7: AUC-ROC scores of different models in molecular property prediction tasks. Avg.: average.
The task-specific specialist models are sourced from (Zhao et all,[2025¢).

Model | BACET | BBBP{ | ClinToxT | HIVY | Tox217 | Avg.t
Task-specific specialist models

Uni-Mol (Zhou et al., 2023 0.86 0.73 0.92 0.81 0.80 0.82
MolXPT (Liu et al.| |2 0.88 0.80 0.95 0.78 0.77 0.84
InstructMol (Cao et al., |2023|) 0.86 0.64 - 0.74 - -
LLM-based generalist models

ChemDFM-v1.5-8B 0.78 0.75 0.69 0.88 0.74 0.77
ether0-24B 0.58 0.64 0.62 0.67 0.51 0.60
Chem-R-8B 0.78 0.81 0.95 1.00 0.71 0.85

Table 8: Accuracy scores of different models in molecular property prediction tasks. We include
Chemprop (Heid et al] 2023) as a specialized GNN baseline for comparison.

Model \ BACE?T \ BBBPt \ ClinTox 1 \ HIV?T \ Tox211 \ Avg.!
Specialized GNN Baseline

Chemprop (D-MPNN) \ 0.66 \ 0.72 \ 0.84 \ 0.85 \ 0.83 \ 0.78
General Foundation Models

GPT-40 0.34 0.61 0.98 1.00 0.49 0.68
Gemini-2.5-Pro 0.36 0.78 0.30 1.00 0.36 0.56
DeepSeek-R1 0.38 0.63 0.8 1.00 0.34 0.63
Chemical LLMs

ChemDFM-v1.5-8B 0.77 0.57 0.69 0.85 0.81 0.74
ether0-24B 0.43 0.48 0.74 0.82 0.72 0.64
Chem-R-8B 0.74 0.82 0.98 1.00 0.80 0.87

As shown in Table 8] Chem-R not only remains competitive but outperforms the strong Chemprop
baseline on average accuracy (0.87 vs. 0.78). This demonstrates the power of our reasoning-based
approach, which matches or exceeds specialized geometric deep learning models while offering
superior interpretability.

D.3 MOLECULE DESIGN

In the text-based molecule design task, we evaluate the model’s ability to generate a correct SMILES
string from a given textual description of a molecule, using the ChEBI-20 dataset. The evaluation
is multi-faceted. First, we measure the fundamental Validity of the outputs, which is the percentage
of generated SMILES that represent chemically valid molecules as verified by RDKit. To assess
textual fidelity against the ground-truth SMILES, we employ several string-based metrics: Exact
Match (EM) for identical strings, Levenshtein Distance (Lev.) to measure edit distance (lower is
better), and the BLEU score, which quantifies n-gram overlap via the formula:

N
BLEU = BP - exp <Z wy, log pn> (3)

n=1
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where BP is the Brevity Penalty and p,, is the modified n-gram precision. Finally, to evaluate
structural correctness, we calculate the Tanimoto coefficient between the molecular fingerprints
(MACCS, RDKit, and Morgan) of the generated and ground-truth molecules, where a higher sim-
ilarity score indicates a greater structural resemblance. We choose MolT5-large (Edwards et al.,
2022), MolReGPT (L1 et al.l[2024b)), Mol-Instruction (Fang et al., [2023]), MolReasoner (Zhao et al.},
2025a) and Mol-R1 (Li et al., 2025b)) as the task-specific specialist models.

Model | BLEUT | EM? | Lev.] | MACCST | RDK?T | Morgant | Validityt
Task-specific specialist models

MolT5-large 0.85 0.31 16.07 0.83 0.74 0.68 0.91
MolReGPT 0.86 028 | 17.14 0.90 0.80 0.74 0.90
Mol-Instruction 0.30 0.04 | 39.42 0.44 0.29 0.25 1.00
MolReasoner 0.78 0.08 | 26.93 0.68 0.44 0.36 0.97
Mol-R1 0.64 0.23 | 32.94 0.82 0.68 0.61 0.85
LLM-based generalist models

GPT-40 0.45 0.07 | 48.38 0.79 0.58 0.50 0.77
Gemini-2.5-Pro 0.69 0.29 | 130.26 0.95 0.88 0.82 0.91
DeepSeek-R1 0.51 0.22 | 169.36 0.92 0.82 0.75 0.78
ChemDFM-v1.5-8B 0.90 0.55 7.12 0.94 0.88 0.84 0.98
ether0-24B 0.39 0.27 | 860.99 0.82 0.70 0.64 0.73
Chem-R-8B 0.84 0.41 17.42 0.92 0.83 0.78 0.94

Table 9: Performance of different models on the text-based molecule generation task on the ChEBI-
20 dataset. BLEU: Bilingual Evaluation Understudy, EM: Exact Match, Lev.: Levenshtein distance,
MACCS: MACCS fingerprint similarity, RDK: RDK fingerprint similarity, Morgan: Morgan fin-
gerprint similarity, Validity: Percentage of valid molecules.

D.4 MOLECULE CAPTIONING

In the molecule captioning task, we evaluate the model’s ability to generate an accurate and fluent
natural language description from a given molecular structure (SMILES string), using the ChEBI-20
dataset. To comprehensively assess the quality of the generated text, we employ a suite of standard
metrics. We use the BLEU score to measure n-gram precision, specifically reporting BLEU-2
(N = 2,w; = wy = 0.5) and BLEU-4 (N = 4, w,, = 0.25), based on the general formula:

N
BLEU = BP - exp <Z w, log pn> “

n=1
where BP is the Brevity Penalty and p,, is the modified n-gram precision. For a recall-oriented
evaluation, we utilize the ROUGE family of metrics. We report the F1-scores for ROUGE-1 (R-1)
and ROUGE-2 (R-2), which measure unigram and bigram overlap, and ROUGE-L (R-L), which
is based on the longest common subsequence (LCS). The ROUGE-L F-score is computed as:
(1 + ﬂQ)Rlcs]chs
Rlcs + 5 2-Plcs

where Rj.s and P, are the LCS-based recall and precision, and £ is set to 1 to weigh recall and
precision equally for the Fl-score. Lastly, we incorporate the METEOR score, which enhances
evaluation by considering synonymy and stemming. It is based on the harmonic mean of unigram
precision (P) and recall (R), F}ycqn, Which weights recall more than precision:

10PR
Frcan =
R+9P
The final score is calculated by applying a fragmentation penalty (Pen) to this value:
METEOR = F,cqn - (1 — Pen) @)

where Pen is a penalty for fragmentation based on the alignment of chunks between the generated
and reference texts.

ROUGE-Ly.score = ®)

(6)
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Model | BLEU-21 | BLEU-41 | R-11 | R-21 | R-Lt | METEOR?
Task-specific specialist models

MolT5-large 0.59 0.51 0.65 | 0.51 | 0.59 0.61
MolReGPT 0.61 0.53 0.63 | 048 | 0.56 0.61
MolReFlect 0.68 0.61 0.70 | 0.57 | 0.64 0.68
Mol-Instruction 0.10 0.07 0.28 | 0.18 | 0.26 0.19
MolReasoner 0.44 0.32 0.55 | 0.37 | 048 0.48
LLM-based generalist models

GPT-40 0.04 0.01 0.13 | 0.02 | 0.10 0.11
Gemini-2.5-Pro 0.09 0.04 0.20 | 0.06 | 0.13 0.31
DeepSeek-R1 0.10 0.04 0.14 | 0.03 | 0.11 0.15
ChemDFM-v1.5-8B 0.33 0.28 046 | 036 | 043 0.40
ether0-24B 0.01 0.00 0.05 | 0.01 | 0.04 0.05
Chem-R-8B 0.48 0.41 0.61 | 044 | 0.53 0.58

Table 10: Performance of different models on the molecule description task on the ChEBI-20
dataset. R-1: ROUGE-1 (Recall-Oriented Understudy for Gisting Evaluation-1), R-2: ROUGE-2,
R-L: ROUGE-L (ROUGE-L stands for longest common subsequence), MTEOR: METEOR (Metric
for Evaluation of Translation with Explicit ORdering).

D.5 TEXT-BASED OPEN MOLECULE GENERATION

In the text-based open molecule generation task, we evaluate the model’s ability to perform complex
chemical reasoning and creative design, using the TOMG-Bench benchmark (Li et al., 2024a). The
evaluation is structured around three distinct tasks designed to probe different capabilities: Molecule
Editing (MolEdit), Molecule Optimization (MolOpt), and Customized Molecule Generation
(MolCustom). And we choose MolT5 (Edwards et al., 2022), BioT5 (Pei et al., 2023)) and Open-
Mollns (Li et al., 2024a) (which is trained on the full set of training data of TOMG-Bench) for the
task-specific specialist models.

For the MolEdit and MolOpt tasks, which involve modifying an existing molecule, the assessment
is threefold. First, we measure the Success Rate (SR) to verify if the model’s output correctly
fulfills the textual instruction. Second, to ensure the modification is a rational and localized edit
rather than a completely new structure, we calculate the Tanimoto Similarity (Sim.) between the
Morgan fingerprints of the original and generated molecules.

For the MolCustom task, which requires generating a molecule from scratch (de novo), the metrics
are adapted. The Success Rate (SR) evaluates if the generated molecule adheres to a set of specified
structural constraints (e.g., atom counts, bond types). Instead of similarity, we measure Novelty
(Nov.) to quantify the uniqueness of the generated molecule. The novelty n for a generated molecule

mY is calculated as:
k
ka €Zinc 5(mg, m )

9y =1 —
n(m?) |Zinc|

®)

where §(m9, m*) is the Tanimoto similarity to a known molecule m* in the Zinc database.

To provide a single, comprehensive ranking of model performance, the benchmark introduces a
Weighted Success Rate (WSR). This metric combines the core success rate with a quality metric
relevant to each task—Similarity for MolEdit/MolOpt and Novelty for MolCustom. The WSR for a
given subtask ¢ is defined as:

ny X SRy, t € {MolCustom}

0 x SRy, t € {MolEdit, MolOpt} ©)

WSRt = {

where n; is the novelty score and d; is the similarity score for that subtask. The final performance is
then the average WSR across all nine subtasks:

1
WSE= zt: WSR, (10)
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Finally, for all tasks, we measure the fundamental Validity (Val.) to ensure every generated SMILES
string represents a chemically sound molecule.

MolEdit | AddComponent | DelComponent | SubComponent
| SRt Sim.t Valt | SRt Sim.t Valt | SRt Sim.} Valt

Task-specific specialist models

MolT5 0.28  0.11 093 | 022 0.12 092 | 0.17 0.09 094
BioT5 0.35 0.16 1.00 | 0.17 0.16 1.00 | 0.07 0.16 1.00
OpenMollns | 0.78 0.68 095 | 0.86 0.62 091 | 0.61 0.74 0.96

LLM-based generalist models

GPT-4o0 0.62 0.68 0.74 | 0.70  0.60 0.85 | 0.80 0.72 0.94
ChemDFM 0.29 0.65 091 | 0.21 0.69 093 | 022 0.64 0.87
Chem-R 0.89  0.69 098 | 0.89 0.62 093 | 0.62 0.75 0.99
MolOpt \ LogP \ MR \ QED

| SRt Sim.f Valt | SRT Sim.f Valf | SRt Sim.f Valt

Task-specific specialist models

MolT5 042 0.10 082 | 045 0.11 087 | 047 012 092
BioT5 052 0.15 1.00 | 051 016 1.00 | 0.51 0.16 1.00
OpenMollns | 0.88 0.67 093 | 0.70 067 094 | 0.86 0.67 093

LLM-based generalist models

GPT-4o0 0.72  0.66 0.88 | 0.69 0.64 0.84 | 040 0.62 0.86
ChemDFM 030 0.66 0.76 | 0.25 0.68 0.82 | 0.31 0.66 0.81
Chem-R 090 0.66 097 | 092 0.68 0.97 | 0.74 0.68 0.98
MolCustom | AtomNum \ BondNum | FunctionalGroup

| SRt Nov.t Valt | SRt Nov.t ValLt | SRt Nov.t Valt

Task-specific specialist models

MolT5 0.02 071 084 | 001 056 089 | 0.04 0.61 0.94
BioT5 0.01 0.84 1.00 | 0.01 0.67 1.00 | 0.05 0.68 1.00
OpenMollns | 0.12 068 085 | 0.12 067 090 | 035 064 095

LLM-based generalist models

GPT-40 020 067 059 | 007 063 086 | 023 065 0.86
ChemDFM | 0.01 068 0.67 | 0.02 061 090 | 0.03 060 0.1
Chem-R 022 069 085 |0.10 070 070 | 031 0.64 0093

Table 11: Detailed results on TOMG-Bench for different models. The indicators are: SR = Success
Rate, Sim. = Similarity, Nov. = Novelty, Val. = Validity. MolT5 refers to MolT5-large, BioT5
refers to BioT5-base, OpenMollns refers to the performance of the Llama-3.1-8B model trained
on the largest instruction fine-tuning dataset OpenMolIns-xlarge proposed by TOMG-Bench, and
ChemDFM refers to ChemDFM-v1.5-8B. The task-specific specialist models are sourced from

et al 2024a).

Due to the extensive size of the TOMG-Bench (45,000 test instances across 9 tasks), evaluating the
full set with closed-source, API-based models like Gemini and DeepSeek incurs prohibitive costs.
To provide a direct comparison, we performed an evaluation on a 5% stratified random sample of
the TOMG test set. On this subset, Chem-R achieves the highest overall weighted accuracy (wAcc),
demonstrating superior performance against leading API-based models, particularly in complex edit-
ing and optimization tasks. The detailed results are presented in Table[T2}

Table 12: Performance comparison on a 5% stratified random sample of the TOMG-Bench test set.
The metric here is accuracy.

Models | MolCustom (Atom / Bond / Func) | MolEdit (Add / Del / Sub) | MolOpt (LogP/ QED/MR) | wAcc
Gemini-2.5 0.420/0.250/0.550 0.780/0.820/ 0.680 0.850/0.680/0.880 0.4089
DeepSeek-R1 0.360/0.210/0.480 0.820/0.790/ 0.650 0.820/0.650/0.840 0.3921
Chem-R 0.260/0.260/ 0.472 0.912/0.916/ 0.652 0.912/0.728 / 0.932 0.4523
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D.6 YIELD PREDICTION

In the reaction yield prediction task, we evaluate the model’s performance on two reaction datasets:
Buchwald-Hartwig and Suzuki-Miyaura. The task is framed as a binary classification problem to
predict whether a reaction yield is high or low. We use classification accuracy as the sole evaluation
metric, with the average accuracy across both datasets also reported (as shown in Table [I3).

Model | Buchwald-Hartwig! | Suzuki-coupling? | Average?
Task-specific specialist models

UAGNN (Kwon et al.,[2022) | 0.97 \ 0.96 | 096
LLM-based generalist models

GPT-40 0.20 0.20 0.20
Gemini-2.5-Pro 0.23 0.47 0.35
DeepSeek-R1 0.20 0.45 0.33
ChemDFM-v1.5-8B 0.35 0.38 0.37
ether0-24B 0.02 0.03 0.03
Chem-R-8B 0.87 0.85 0.86

Table 13: Accuracy scores of different models in yield prediction tasks. The task-specific specialist
models is sourced from (Zhao et al.,|[2025c).

D.7 REAGENT SELECTION

In the reagent selection task, we utilize the Suzuki High-Throughput Experimentation (HTE) dataset.
This task is divided into three sub-tasks: predicting the correct reactant, solvent, and ligand for a
given reaction. The evaluation metrics vary by sub-task. For reactant and solvent prediction, we
report the top-1 accuracy. For ligand prediction, we report the top-5 accuracy, which considers a
prediction correct if the ground-truth ligand is among the top five candidates proposed by the model.
The *Avg.’ column in the table represents the average of these three accuracy scores.

Model \ Reagent Selection | Reaction | Retrosyn-

| Reactant Solvent Ligand Avg. | Prediction | thesis

Task-specific specialist models

Chemformer - - - - 0.94 0.54
Mol-Instruction - - - - 0.05 -
InstructMol - - - - 0.54 -
ochem_predict_nn - - - - 0.72 -
AiZynthFinder - - - - - 0.47
LLM-based generalist models

GPT-40 0.48 0.11 0.19 0.26 0.04 0.00
Gemini-2.5-Pro 0.17 0.07 0.56 0.27 0.35 0.15
DeepSeek-R1 0.15 0.17 0.08 0.13 0.34 0.13
ChemDFM-v1.5-8B 0.47 0.10 0.49 0.35 0.50 0.07
ether0-24B 0.11 0.35 0.18 0.21 0.65 0.04
Chem-R-8B 0.62 0.57 0.87 0.69 0.82 0.39

Table 14: Performance of task-specific specialist models and LLM-based generalist models on
reagent selection, reaction prediction, and retrosynthesis tasks. The task-specific specialist mod-
els are sourced from (Zhao et al., [2025c). “~” means that the model was not designed for the task.
We also include template-based (non-LLM based) baselines ochem_predict_nn (Coley et al.| [2017)
and AiZynthFinder (Genheden et al.| [2020) for comparison.

D.8 REACTION PREDICTION

In the reaction prediction task, we evaluate the model’s ability to predict the major product of a
chemical reaction, using the USPTO_Mixed dataset. Performance is measured using exact match
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accuracy. All SMILES comparisons are performed after canonicalization to ensure consistency.
We additionally benchmark against the specialized template-based model ochem _predict_nn (Coley

2017). And we choose Chemformer (Irwin et al.| [2022), Mol-Instruction (Fang et al., 2023
and InstructMol 2023) for the task-specific specialist models. As shown in Table [I4]
Chem-R outperforms this baseline (0.82 vs. 0.72), demonstrating that our reasoning-based approach

yields superior predictive accuracy compared to traditional template matching methods.

D.9 RETROSYNTHESIS

In the retrosynthesis task, the goal is to predict the reactants that form a given product molecule.
This is evaluated on the widely-used USPTO-50k dataset. Similar to reaction prediction, we em-
ploy exact match accuracy as the evaluation metric. All SMILES comparisons are performed
after canonicalization to ensure consistency. We further compare Chem-R with the search-based
tool AiZynthFinder (Genheden et al} [2020). And we choose Chemformer for
the task-specific specialist models. As shown in Table [T4] while the specialized search algorithm
achieves higher accuracy (0.47 vs. 0.39), it operates as a black-box predictor. In contrast, Chem-R
provides step-by-step reasoning traces, delivering a competitive level of accuracy while ensuring the
interpretability and verifiability essential for scientific discovery.

D.10 OuTt OF DOMAIN

To evaluate the out-of-domain (OOD) generalization of our model, Chem-R, we benchmarked its
performance on the challenging Molecular Property Optimization task from ChemCoTBench
2025a). We selected four representative targets: Solubility, DRD2, INK3, and GSK-3(. The
evaluation, presented in Table@], compares Chem-R against its base model, Llama-3.1-8B-Instruct,
and other powerful LLMs.

The results clearly demonstrate the effectiveness of our training. The base Llama-3.1-8B-Instruct
model performs poorly, whereas Chem-R shows a dramatic improvement in both success rate (SR%)
and mean property improvement (A) across all tasks. This signifies that Chem-R has acquired robust
chemical reasoning skills that generalize effectively. Furthermore, Chem-R proves to be highly com-
petitive, significantly outperforming the much larger Llama-3.3-70B-Instruct model, which confirms
the strong OOD capabilities of our approach.

Solubility DRD2 JNK3 GSK3-3
Models A SR% A SR% A SR% A SR%
Qwen3-235B-A22B-think  0.27 42 0.03 31 -0.01 23 0.01 31
Qwen3-32B-think 0.11 23 0.00 6 -0.02 6 -0.02 5
Llama-3.1-8B-Instruct 0.01 10 -0.07 2 -0.10 4 -0.08 3
Chem-R 0.34 83 0.01 36 -0.02 24 -0.01 29

Table 15: Performance of various models on different molecular optimization tasks. Evaluation was
conducted on one physicochemical property (Solubility) and three more challenging protein activity
targets (DRD2, JNK3, and GSK3-3). The mean improvement in a property is denoted by A; a
negative A indicates degradation of the property. The success rate (SR%) represents the percentage
of optimizations that led to an increase in the target property.
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D.11 EFFECTIVENESS OF CRP AS A PROMPTING STRATEGY

To further decouple the contribution of our reasoning protocols from the model training, we eval-
vated GPT-40 and Gemini-2.5-Pro by providing our task-specific Chemical Reasoning Protocols
(CRPs) directly as part of their system prompt (denoted as “Prompted”). As shown in Table[T6] the
results yield two important findings. First, our CRPs are highly effective as a standalone prompting
strategy, significantly improving the performance of generalist models (e.g., Prompted GPT-40 im-
proves Name Prediction from 0.01 to 0.10), which validates the quality of our reasoning framework.
Second, despite these gains, our much smaller Chem-R-8B still vastly outperforms these prompted
state-of-the-art models. This proves that our superior performance stems from deeply internaliz-
ing chemical reasoning through the three-phase training, a capability that in-context learning alone
cannot replicate.

Table 16: Performance of Chem-R against baselines with and without protocol-guided (in-domain)
prompting. “Prompted” indicates the model was given the CRP in the input context.

Molecule Tasks Reaction Tasks
Model Name Prop. Design Capt. TOMG Yield Reag. React. Retro
GPT-40 0.01 0.68 0.07 0.01 0.32 0.20  0.26 0.04 0.00
GPT-40 (Prompted) 0.10 0.72 0.07 0.15 0.34 0.25 0.32 0.06 0.01
Gemini-2.5-Pro 0.17 0.56 0.29 0.04 - 0.35 0.27 0.35 0.15
Gemini-2.5-Pro (Prompted)  0.21 0.60 0.33 0.23 0.39 0.39 0.38 0.20

Chem-R-8B (Ours) 0.49 0.87 0.42 0.41 0.42 085  0.69 0.82 0:39

D.12 IMPACT OF TEACHER MODEL QUALITY

To validate our framework’s robustness, we conducted the suggested experiment by distilling from
a smaller Llama-3.1-8B teacher. The results lead to two insightful conclusions:

(1) Our framework instills a reasoning structure, rather than just imitating. The most compelling evi-
dence is that the Chem-R student model learns to solve complex problems that its own Llama-3.1-8B
teacher could not. On tasks where the teacher scored 0 (e.g., Name Prediction, Reaction Prediction,
and Retrosynthesis), the student achieved impressive scores of 0.39, 0.70, and 0.29, respectively.
This demonstrates our framework unlocks latent capabilities by building a robust reasoning founda-
tion.

(2) The framework’s effectiveness scales with teacher quality. The results also show a strong correla-
tion between teacher capability and the student’s performance ceiling. The Chem-R model distilled
from the larger Llama-3.3-70B teacher consistently outperforms the student distilled from the 8B
teacher. This confirms that while our framework is universally effective, a better teacher produces a
better student. The detailed results are shown in Table[IT7]

Table 17: Performance of Chem-R-8B distilled from different teacher models (Llama-3.1-8B vs.
Llama-3.3-70B) against various baselines. The results highlight that the Chem-R framework enables
a student model to significantly outperform its teacher, especially on complex reasoning tasks where
the teacher scores zero.

Molecule Tasks Reaction Tasks
Model Name Prop. Design Capt. TOMG Yield Reag. React. Retro
Llama-3.1-8B-Instruct 0.00 0.47 0.00 0.01 0.07 026  0.26 0.00 0.00
Llama-3.3-70B 0.01 0.64 0.03 0.02 0.30 022 0.38 0.03 0.00
DeepSeek-R1 0.05 0.63 0.22 0.04 - 033  0.13 0.34 0.13
ether0-24B 0.15 0.64 0.30 0.03 0.03 0.03 021 0.65 0.04
Chem-R-8B (Distilled from Llama-3.1-8B) 0.39 0.75 0.31 0.36 0.34 0.78  0.50 0.70 0.29

Chem-R-8B (Ours, Distilled from Llama-3.3-70B)  0.49 0.87 0.42 0.41 0.42 085  0.69 0.82 0.39
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D.13 COMPUTATIONAL EFFICIENCY ANALYSIS

In this section, we provide a full computational cost analysis. However, we must first clarify that
a direct comparison between a versatile LLM and traditional, specialized ML models is often mis-
leading due to two key factors:

* Multi-Task Amortization: Our single model is trained once to handle 25 distinct tasks. This
amortizes the cost compared to the cumulative effort of developing and maintaining numerous
separate, specialized models.

e The Cost of Interpretability: Our model generates detailed reasoning chains, which are in-
herently more computationally intensive than the single, black-box predictions from specialized
models. This is a deliberate trade-off for the crucial scientific value of explainability and trust.

Training Cost. The total training time for all three phases of Chem-R was approximately 158
hours on eight H200 GPUs (Phase 1: ~36h, Phase 2: ~81h, Phase 3: ~41h).

Inference Cost. A more meaningful comparison is against other LLMs. To provide a standard-
ized measure of inference cost, we report the average number of generated tokens per response for
each model across all tasks in Table[T8] As the table shows, Chem-R generates responses with a
token count that is comparable to other high-performing models and is significantly more concise
than verbose reasoners like Gemini-2.5-Pro and DeepSeek-R1. This demonstrates that our frame-
work achieves state-of-the-art accuracy without resorting to excessively long or inefficient reasoning
chains, balancing performance with practical efficiency.

Table 18: Inference cost comparison (average generated tokens per response). Chem-R maintains a
reasonable token count, demonstrating efficient reasoning compared to other high-performing rea-
soning models.

Model | Name Prop. Design Capt. TOMG Yield Reag. React. Retro
GPT-40 572 339 499 489 413 522 562 465 518
Llama-3.1-8B-Instruct 1637 431 3031 984 1062 655 574 428 431
Llama-3.3-70B-Instruct | 631 374 572 465 592 492 620 510 412
Gemini-2.5-Pro 1600 1348 1475 1926 1605 1658 1679 1422 1479
DeepSeek-R1 12265 5183 10568 10188 5581 4415 8915 8964 10096
QwQ-32B 8041 2390 7128 5392 5516 2986 3146 7669 7039
ChemLLM-20B-Chat 279 339 171 452 397 335 370 352 563
ChemDFM-v1.5-8B 38 1 58 58 94 1 15 29 42
ChemDFM-v1.0-13B 38 1 52 60 70 1 17 32 41
ether( 898 501 1295 782 700 607 850 811 982
Chem-R | 659 478 560 675 526 573 619 505 552
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E MORE CASES

To provide a deeper qualitative analysis of Chem-R’s performance, we present additional case stud-
ies comparing its reasoning against ablation variants, accompanied by expert chemist comments. In
the following examples, green text highlights correct, chemically sound reasoning, while red text
indicates factual errors, hallucinations, or flawed logic.

Reaction Prediction (Chem-R generated response)

You should put your reasoning in <think> </think> tags. The final answer MUST BE
putin <answer> </answer> tags. Please strictly follow the format.

Note: If multiple products are predicted, they MUST be separated by a period *.‘ instead of
commas.

Now predict the product for the following reaction:

Reactants: C1CCOC1.CC (C) (C) [0-].0=C(Cl)clcccc ([N+] (=0) [O-])cl. [K+]

Ground Truth: CC (C) (C)OC (=0) clcccc ([N+] (=0) [0-])cl

LLM Answer:

<think>

1. Reactant analysis: The reactant molecules are represented by their SMILES strings,
indicating a complex mixture. One of the reactants is an ether (C1CCOCI), suggest-
ing the presence of an oxygen atom connected to two alkyl groups. Another reactant
is a tertiary alkoxide (CC(C)(C)[O-]), which is a strong nucleophile. The presence of
O=C(Cl)clcccc([N+](=0)[O-])cl indicates an aromatic ring with a nitro group and an acyl
chloride, which is highly reactive due to the chlorine atom attached to the carbonyl group.
The potassium ion [K+] suggests that there might be an ionic interaction or a potential for a
nucleophilic substitution reaction.

2. Functional group identification: Key functional groups identified include the ether
(COC), chlorine (Cl), and nitro (N(=O)[O-]) groups. These groups can serve as reaction
sites for various chemical transformations. The ether group might not be directly involved
in the primary reaction due to its relatively stable nature, but it could influence the reaction
conditions or the solubility of the reactants. The chlorine atom attached to the carbonyl group
is highly reactive and susceptible to nucleophilic attack, which could lead to the formation
of a new bond.

3. Reaction type analysis: Given the presence of a strong nucleophile (the alkoxide ion)
and a highly reactive acyl chloride, a nucleophilic acyl substitution reaction is likely. This
type of reaction involves the nucleophile attacking the carbonyl carbon of the acyl chloride,
leading to the replacement of the chlorine atom with the nucleophile. The nitro group on
the aromatic ring might influence the electron density on the ring, potentially affecting the
reaction rate or the stability of the product, but it is not directly involved in the primary
reaction site.

4. Product prediction: Based on the identified reaction type, the most likely product formed
is the result of the nucleophilic substitution of the chlorine atom in the acyl chloride by the
alkoxide ion. This would lead to the formation of an ester. The predicted product SMILES
string, considering the substitution of the chlorine with an alkoxide group (which would then
be part of an ester linkage), is CC(C)(C)OC(=0)clccec([N+](=0)[O-])cl.

</think>

<answer>CC(C)(C)OC(=0)clccec([N+](=0)[O-])cl</answer>

Comments by chemists: Spor on. If I were analyzing this, I would also immediately dismiss
THF as the solvent and focus on the nucleophilic acyl substitution. The model correctly pairs
the tert-butoxide with the acid chloride, leading straight to the correct ester product.
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Reaction Prediction (w/o CRP)

Problem: You are an expert chemist. Your task is to solve the given problem step by step.
You should put your reasoning in <think> </think> tags. The final answer MUST BE
putin <answer> </answer> tags. Please strictly follow the format.

Note: If multiple products are predicted, they MUST be separated by a period ‘. instead of
commas.

Now predict the product for the following reaction:

Reactants: CLCCOC1.CC (C) (C) [0-].0=C(Cl)clcccc ([N+] (=0) [O-]1)cl. [K+]

Ground Truth: CC (C) (C)OC (=0) clccce ([N+] (=0) [0-]1) cl

LLM Answer:

<think>

To solve this problem, we first need to identify the reactants and their possible roles in the
reaction. The given reactants are C1CCOCI] (tetrahydrofuran, the solvent), CC(C)(C)[O-
] with [K+] (potassium tert-butoxide), and O=C(Cl)clcccc(N+[O-])cl (a chloroformylated
pyridine with a nitro group).

The key reactant is the potassium tert-butoxide. It is known as a strong, non-nucleophilic,
bulky base. Its primary role in organic chemistry is to promote elimination reactions over
substitution reactions. Given its strong basicity, the most likely first step is an E2 elimination.
The tert-butoxide will abstract a proton from the aromatic ring, likely ortho to the carbonyl
group, which is the most acidic position. This process will lead to the expulsion of the
chloride ion and the formation of a highly reactive benzyne intermediate. This benzyne
intermediate is then rapidly attacked by a molecule of tert-butoxide. This addition step,
followed by protonation from trace amounts of water or other proton sources during workup,
results in the final product. This mechanism ensures that the bulky base does not need to
directly attack the sterically hindered carbonyl carbon. The final product forms by replacing
the chloride with the tert-butoxy group.

</think>

<answer>CC(C)(C)OC(=0)clcccc([N+](=0)[O-])cl</answer>

Comments by chemists: The final answer is correct, but the reasoning is wild. If I were
solving this, I would simply see a standard nucleophilic acyl substitution. The model hallu-
cinates a benzyne mechanism that is chemically impossible here. It’s a classic case of "right
answer, wrong reason.”
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Reaction Prediction (w/o correct information)

Problem: You are an expert chemist. Your task is to solve the given problem step by step.
You should put your reasoning in <think> </think> tags. The final answer MUST BE
putin <answer> </answer> tags. Please strictly follow the format.

Note: If multiple products are predicted, they MUST be separated by a period ‘. instead of
commas.

Now predict the product for the following reaction:

Reactants: CLCCOC1.CC (C) (C) [0-].0=C(Cl)clcccc ([N+] (=0) [O-]1)cl. [K+]

Ground Truth: CC (C) (C)OC (=0) clccce ([N+] (=0) [0-]1) cl

LLM Answer:

<think>

1. Reactant analysis: The reactants are represented by their SMILES strings. ‘C1CCOCI1 ¢
is tetrahydrofuran (THF), a common aprotic polar solvent. ‘CC(C)(C)[O-] and ‘[K+]° to-
gether form potassium tert-butoxide, a strong base and a sterically hindered nucleophile.
‘O=C(Cl)clccec([N+](=0)[O-])cl is an aromatic compound with a nitro group and an acyl
chloride group, acting as the electrophile.

2. Functional group identification: The key functional groups include the acyl chloride
(-COCl) and the nitro group (-NO2). Typically, the carbonyl carbon of an acyl chloride is
a very strong electrophilic site. However, due to a misinterpretation of the SMILES string
O=C(Cl)clcccc([N+](=0)[O-])c1, the connectivity is incorrectly perceived. It is mistakenly
assumed that the chlorine atom (Cl) is directly attached to the aromatic ring (c1) and the
carbonyl group (C=O0) is a separate ketone substituent. Aryl chlorides are significantly less
reactive towards nucleophilic substitution than acyl chlorides.

3. Reaction type analysis: Based on the incorrect structural interpretation above, a nucle-
ophilic acyl substitution will not occur. Since the molecule is now incorrectly viewed as an
aryl chloride and a ketone, the most likely role for the strong base potassium tert-butoxide is
as a base rather than a nucleophile. It will attempt to abstract a proton from the most acidic
position on the aromatic ring (ortho to the nitro group) to initiate an elimination-addition
(benzyne) mechanism.

4. Product prediction: Following this incorrect mechanism, the potassium tert-butoxide
acts as a strong base to deprotonate the carbon between the nitro and chloro groups, followed
by the departure of the chloride ion to form a benzyne intermediate. The tert-butoxide anion
then adds to this benzyne. This ultimately results in the replacement of the chlorine atom on
the ring by the tert-butoxy group.

</think>

<answer>CC(C)(C)Oclccee([N+](=0)[O-])cl</answer>

Comments by chemists: This fails right at the start. The model completely misinterprets
the SMILES, mistaking an acyl chloride for an aryl chloride. If I were reading this, the
reactive -COCI group is obvious. This structural error forces the reasoning into a bizarre
benzyne pathway, resulting in the wrong product entirely.
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Molecule Design (Chem-R generated response)

Problem: You are an expert chemist. Your task is to solve the given problem step by step.
You should put your reasoning in <think> </think> tags. The final answer MUST BE
putin <answer> </answer> tags. Please strictly follow the format.

Now predict the SMILES representation for the following molecular design requirement:
Description: The molecule is an N-carbamoylamino acid that is aspartic acid with one of its
amino hydrogens replaced by a carbamoyl group. It has a role as a Saccharomyces cerevisiae
metabolite, an Escherichia coli metabolite and a human metabolite. It is a N-carbamoyl-
amino acid, an aspartic acid derivative and a C4-dicarboxylic acid. It is a conjugate acid of
a N-carbamoylaspartate(2-).

Ground Truth: C (C (C (=0) 0)NC (=0)N) C (=0) O

LLM Answer:

<think>

1. Identify the core structure: The molecule is described as an aspartic acid derivative,
which is a type of amino acid. Aspartic acid has a core structure that includes a central
carbon atom bonded to an amino group, a carboxylic acid group, and a side chain that also
contains a carboxylic acid group. Given that it’s a derivative, we start with this basic amino
acid structure.

2. Summarize key elements: The molecule is an N-carbamoylaspartic acid, meaning one
of the hydrogens on the amino group of aspartic acid is replaced by a carbamoyl group
(NC(=O)N). The key elements include: - A central carbon (C) that is part of the amino acid
backbone. - An amino group (N) attached to this central carbon, which is then modified. -
A carbamoyl group (NC(=O)N) replacing one of the hydrogens on the amino group. - Two
carboxylic acid groups, one attached to the central carbon and the other as part of the side
chain. - The side chain contains a carboxylic acid group (CC(=0)O).

3. Address stereochemistry: The description does not specify any particular stereochem-
istry for the molecule, suggesting that either the stereochemistry is not relevant for the iden-
tification of the molecule or it is assumed to be in a specific form by default (e.g., L-form
for amino acids). However, since the task focuses on generating a SMILES string based on
the functional groups and molecular description without specific stereochemical details, we
will not include explicit stereochemical indicators in our SMILES string.

4. Construct SMILES: To construct the SMILES, we start with the central carbon (C) of
the amino acid, which is bonded to the amino group modified with the carbamoyl group
(NC(=0O)N), and two carboxylic acid groups (C(=0)O) - one directly attached to the central
carbon and the other as part of the side chain. Combining these elements, we get the SMILES
string. The carbamoyl group replaces one of the amino hydrogens, and the side chain con-
tains a carboxylic acid group, leading to the structure: C(C(C(=0)O)NC(=0)N)C(=0)0O.
</think>

<answer>C(C(C(=0)O)NC(=0)N)C(=0)O</answer>

Comments by chemists: A fextbook approach. If I were solving this, I would start with the
aspartic acid backbone and directly modify the amine. The model follows this exact logic,
smartly filtering out biological distractions to build the correct SMILES.
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Molecule Design (w/o CRP)

Problem: You are an expert chemist. Your task is to solve the given problem step by step.
You should put your reasoning in <think> </think> tags. The final answer MUST BE
putin <answer> </answer> tags. Please strictly follow the format.

Now predict the SMILES representation for the following molecular design requirement:
Description: The molecule is an N-carbamoylamino acid that is aspartic acid with one of its
amino hydrogens replaced by a carbamoyl group. It has a role as a Saccharomyces cerevisiae
metabolite, an Escherichia coli metabolite and a human metabolite. It is a N-carbamoyl-
amino acid, an aspartic acid derivative and a C4-dicarboxylic acid. It is a conjugate acid of
a N-carbamoylaspartate(2-).

Ground Truth: C (C (C (=0)0) NC (=0)N) C (=0) 0

LLM Answer:

<think>

To predict the SMILES representation of the molecule described, we first identify the base
structure, which is aspartic acid. The SMILES for aspartic acid can be written by identifying
its main chain and substituents. We can represent the backbone as ‘C(C(C(=0)0))C(=0)O°,
with the amino group being a substituent on the alpha-carbon, which we would write as
‘(N)*".

The description states that a carbamoyl group (-CONH2) replaces one of the amino hydro-
gens. In SMILES notation, when a new group is added, it is often treated as a new, separate
substituent on the same parent atom. Therefore, we will add the carbamoyl group, which can
be written as (C(=O)N), as a second substituent on the alpha-carbon. This would initially
give us the structure C(C(C(=0)O)(N)(C(=O)N))C(=0)0.

However, this representation is not the most stable or conventional. There is a widely used
rule in SMILES generation for simplifying structures where two nitrogen-containing groups
are attached to the same carbon atom. This rule involves an intramolecular rearrangement
where the smaller nitrogen group (in this case, the amino group N) attacks the larger group
(the carbamoyl group C(=O)N) to form a more stable, single linear substituent. This ”N-
to-N bond fusion rule” merges the two parenthesized groups (N)(C(=O)N) into a single,
more compact representation, NC(=O)N. By applying this simplification, we replace the
two separate substituents with the newly formed single group, leading to the final, correct
SMILES string.

</think>

<answer>C(C(C(=0)O)NC(=O)N)C(=0)O</answer>

Comments by chemists: The answer is correct, but the reasoning is pure fantasy. If I
were solving this, I would start with the aspartic acid backbone and directly modify the
amine. Instead, the model oddly attaches substituents to the central carbon and invents a
non-existent “fusion rule” to fix the structure.
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Molecule Design (w/o correct information)

Problem: You are an expert chemist. Your task is to solve the given problem step by step.
You should put your reasoning in <think> </think> tags. The final answer MUST BE
putin <answer> </answer> tags. Please strictly follow the format.

Now predict the SMILES representation for the following molecular design requirement:
Description: The molecule is an N-carbamoylamino acid that is aspartic acid with one of its
amino hydrogens replaced by a carbamoyl group. It has a role as a Saccharomyces cerevisiae
metabolite, an Escherichia coli metabolite and a human metabolite. It is a N-carbamoyl-
amino acid, an aspartic acid derivative and a C4-dicarboxylic acid. It is a conjugate acid of
a N-carbamoylaspartate(2-).

Ground Truth: C (C (C (=0)0) NC (=0)N) C (=0) 0

LLM Answer:

<think>

1. Identify the core structure: The molecule is a derivative of aspartic acid. The SMILES
for the basic aspartic acid backbone can be represented as ‘C(C(C(=0)O)N)C(=0)O*, show-
ing the alpha-carbon connected to a side-chain carbon, a carboxyl group, and an amino
group.

2. Summarize key elements: The carbamoyl group itself has the chemical structure -
C(=O)N-. This group replaces one of the hydrogens on the aspartic acid’s original amino
group (‘-NH2°).

3. Address stereochemistry: We need to integrate this modification into the aspartic acid
SMILES. The amino group ‘N°‘ in the original SMILES ‘C(C(C(=0)O)N)C(=0)O* will be
modified. The hydrogen is replaced by the carbamoyl group. This means the ‘N* becomes
part of a larger group, which we can write by attaching the SMILES for the carbamoyl group
directly to it.

4. Construct SMILES: Starting with the nitrogen ‘N° of the amino acid, we attach the
carbamoyl group ‘-C(=O)N° to it, resulting in the combined fragment ‘NC(=O)N‘. We then
substitute this entire fragment back into the parenthesis where the original ‘N* was located.
This yields the final, complete SMILES string.

</think>

<answer>C(C(C(=0)O)NC(=0)N)C(=0)O</answer>

Comments by chemists: The answer is correct, but the terminology is sloppy. If I were
solving this,  would start with the aspartic acid backbone and directly modify the amine. The
model incorrectly defines the isolated carbamoyl group as -C(=0O)N- instead of -C(=O)NH2.
It arrives at the correct final structure, but lacks chemical rigor in its definitions.

F USE oF LLMS

During the preparation of this work, the author(s) used LLMs to improve the language and readabil-
ity. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the content of the publication.
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