
Understanding the Training Speedup from Sampling with Approximate Losses

Rudrajit Das 1 Xi Chen 2 Bertram Ieong 2 Parikshit Bansal 1 Sujay Sanghavi 1 2

Abstract

It is well known that selecting samples with large
losses/gradients can significantly reduce the num-
ber of training steps. However, the selection over-
head is often too high to yield any meaningful
gains in terms of overall training time. In this
work, we focus on the greedy approach of select-
ing samples with large approximate losses instead
of exact losses in order to reduce the selection
overhead. For smooth convex losses, we show
that such a greedy strategy can converge to a con-
stant factor of the minimum value of the average
loss in fewer iterations than the standard approach
of random selection. We also theoretically quan-
tify the effect of the approximation level. We then
develop SIFT which uses early exiting to obtain
approximate losses with an intermediate layer’s
representations for sample selection. We evaluate
SIFT on the task of training a 110M parameter
12 layer BERT base model, and show significant
gains (in terms of training hours and number of
backpropagation steps) without any optimized im-
plementation over vanilla training. For e.g., to
reach 64% validation accuracy, SIFT with exit at
the first layer takes ∼ 43 hours compared to ∼ 57
hours of vanilla training.

1. Introduction
Stochastic Gradient Descent (SGD) and its variants are the
algorithms of choice for solving large-scale optimization
problems that arise in training machine learning models.
These are problems of the form minw∈Rd F (w), where
F (.) is the expected population loss and w ∈ Rd is the
vector of model parameters. More specifically, if f(w, .)
is the per-sample loss and D is the data distribution, then
F (w) = Ex∼D[f(w,x)]. The standard SGD update rule

1UT Austin 2Amazon. Correspondence to: Rudrajit Das
<rdas@utexas.edu>, Xi Chen <xichex@amazon.com>, Sujay
Sanghavi <sanghavi@mail.utexas.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

at w with step-size/learning rate η is:

w+ = w − η∇f(w,x), (1)

where the sample/example x is drawn from D. In practice,
the gradient over a single sample is replaced by the average
gradient over a mini-batch of samples; for our theoretical
results, we shall stick to batch-size = 1 (as in Equation (1)).

The choice of the sample x in Equation (1) significantly
impacts the speed of convergence. There is copious work on
selecting “important” samples for speeding up convergence.
In this paradigm, the seminal idea is that of importance
sampling which proposes to sample the examples such that
resulting stochastic gradient is unbiased while having the
minimum possible variance (Zhao & Zhang, 2015; Alain
et al., 2015; Needell et al., 2014). It turns out that the op-
timal solution is to sample the examples with probability
proportional to their per-sample gradient norms. While this
has a clean theoretical solution, it is completely infeasible
from the practical standpoint because of the high cost of
computing the per-sample gradient norms. To address this
shortcoming, several approximations to this exact solution
have been proposed; we discuss these and related ideas in
Section 2. In this space, one high-level idea is to use the
per-sample loss valueas a proxy to the per-sample gradient
norm, favoring samples with high losses for performing the
update (Loshchilov & Hutter, 2015; Shrivastava et al., 2016;
Katharopoulos & Fleuret, 2017; Kawaguchi & Lu, 2019;
Zhang et al., 2019). We discuss the important works based
on this idea in detail in Section 2. Since exact loss compu-
tation is itself expensive especially for large models, some
works rely on approximate loss values for sample selection;
for instance, using an auxiliary model to predict loss values
of the actual model being trained (Katharopoulos & Fleuret,
2017; Zhang et al., 2019). So in summary, several approxi-
mations to the core idea of exact importance sampling have
been proposed to make it practically usable.

Despite the myriad sample selection approaches, there is a
paucity of theoretical results quantifying how much speed-
up we can obtain over random sampling and their limitations
– especially for approaches involving the use of approximate
quantities. In this work, we focus on the approach of choos-
ing the sample with the highest loss for performing the
gradient-based update. More specifically, suppose we are
given R > 1 i.i.d. samples drawn from D and their ap-

1

Understanding the Training Speedup from Sampling with Approximate Losses

proximate loss values with the constraint that we can pick
only one sample by inspecting the approximate losses to
perform the update. We consider the greedy approach of
selecting the sample with the largest approximate loss, and
we call this greedy SGD (GSGD). Also, we will refer to the
default approach of picking a sample uniformly at random
as (vanilla) SGD. In Section 5, we theoretically compare
the convergence rates of GSGD (with approximate losses)
against SGD, characterizing the benefits and limitations of
the former. We would like to clarify that we are not claiming
that GSGD is a novel algorithm; in fact, it is very similar to
OSGD (Kawaguchi & Lu, 2019) in spirit.1 Rather, we are
claiming that our theoretical characterization of its benefits
and limitations – with approximate losses – is the first of its
kind, to the best of our knowledge.

On the applied side, we propose to use early exiting (Teer-
apittayanon et al., 2016; Schwartz et al., 2020) as a light-
weight way to obtain approximate losses for sample selec-
tion in training large ML models. To be clear, our novelty
is in the light-weight filtering process for training via early
exiting. Empirical results on a 110M parameter BERT base
model and a ResNet-50 model show that early exit-based
sample selection yields significant improvements.

We will now elaborate on our main contributions.
(a) In Section 5, we theoretically compare greedy SGD
(GSGD) (i.e., pick the sample with the highest approximate
loss) against vanilla SGD (i.e., pick a sample at random).

• Theorem 5.7 provides a convergence bound for GSGD
on smooth convex losses assuming that the argmax of
the approximate losses is equal to the argmax of the
actual losses (Assumption 5.5). In Section 5.1, we
consider a setting wherein Assumption 5.5 no longer
holds. We quantify the degradation in the performance
of GSGD in this setting; see Theorems 5.14 and 5.15.

• A key insight is that GSGD can converge to a (problem-
dependent) constant factor of F ∗ = minw F (w) in
fewer iterations than SGD; see Remark 5.11. This is of
interest in training large ML models on extremely large
datasets, where converging exactly to F ∗ is infeasible
and instead converging faster to O(F ∗) is desirable.
On the negative side, our result indicates that GSGD
may not converge to F ∗ asymptotically and hence it
can be worse than SGD asymptotically (Remark 5.9).

(b) In Section 6, we propose early exiting as a way to
cheaply obtain approximate losses with an intermediate
layer’s representations for sample selection in training large

1We do not call it OSGD because Kawaguchi & Lu (2019)
use exact loss values whereas we use approximate loss values.
Moreover, Kawaguchi & Lu (2019) consider the finite-sum (ERM)
setting whereas we focus on the stochastic setting.

ML models such as transformers. Specifically, we propose
to do backpropagation on only 50% of the samples in a batch
with the highest approximate losses obtained via early exit-
ing. To our knowledge, early exiting has not been studied for
accelerating training. We call this early-exit based sample
“sifting” process SIFT. This can be seamlessly integrated
with other sample selection schemes; in particular, we also
try large entropy-based sample selection with early exiting.

• In Section 7.1, we show the efficacy of SIFT in training
a 12 layer BERT base model with 110M parameters
from scratch. Specifically, to achieve 64% validation
accuracy, loss-based and entropy-based SIFT with exit
at the first layer take roughly 43 and 40 hours, respec-
tively, compared to roughly 57 hours of vanilla training
involving no sample selection. Further, in Section 7.2,
we show that SIFT is also very effective in speeding
up the training of a modified ResNet-50 model that is
amenable to early exiting.

• In Section 6.1, we quantify the probability of correctly
selecting the sample with the largest actual loss using
early exiting for feedforward linear neural networks.

2. Related Work
There is a large body of work proposing several kinds of
sample-selection schemes for accelerated training. These
include importance sampling methods, sample reordering
based approaches and algorithms focusing on samples with
higher losses. Our approach falls in the last category.

Optimal importance sampling. Importance sampling asks
how should the training examples be sampled so as to obtain
an unbiased stochastic gradient with the minimum possible
variance. Zhao & Zhang (2015); Alain et al. (2015); Needell
et al. (2014) show that the optimal solution to this problem
is to sample the examples with probability proportional
to their per-sample gradient norms. Unfortunately, this is
completely infeasible in practice because of the high cost of
computing the per-sample gradient norms.

Approximate importance sampling. Several papers at-
tempt to approximate the optimal importance sampling pro-
cedure so as to make it feasible. For convex settings, Zhao
& Zhang (2015); Needell et al. (2014) propose sampling
with probability proportional to the smoothness constant
of the per-sample losses, while Borsos et al. (2018); Stich
et al. (2017) propose adaptive sampling strategies. Go-
ing beyond convex settings, Alain et al. (2015) present
a distributed approach for importance sampling, while
Katharopoulos & Fleuret (2017) approximate the impor-
tance weights with loss values which are predicted by a
smaller network. Katharopoulos & Fleuret (2018) derive
an upper bound on the per-sample gradient norms for deep-
learning networks which take essentially the same time to

2

Understanding the Training Speedup from Sampling with Approximate Losses

compute as the per-sample loss values, and propose using
the upper bounds for approximating the importance weights.
Johnson & Guestrin (2018) approximate the true sampling
distribution by solving a robust optimization problem.

Sample reordering. We defer related works in this category
to Appendix A.

Selection of samples with large losses. As mentioned in
Section 1, GSGD is not a novel algorithm and there are prior
approaches with the same underlying principle as GSGD,
i.e., focus on the samples with the largest loss values. The
two algorithms closest to GSGD in spirit are online hard
example mining (OHEM) proposed by Shrivastava et al.
(2016) and ordered SGD (OSGD) proposed by Kawaguchi
& Lu (2019) – except that both algorithms use exact losses
for sample selection. OHEM was proposed for training
object detectors (in computer vision) and it involves back-
propagating using the gradients of only the samples with
the k largest losses in batch of size b with k < b. However,
Shrivastava et al. (2016) do not provide any theoretical guar-
antees. OSGD (Kawaguchi & Lu, 2019) is essentially the
same algorithm as OHEM (Shrivastava et al., 2016), but with
convergence guarantees and generalization bounds. How-
ever, unlike our theoretical results for GSGD, Kawaguchi
& Lu (2019) do not show how/when/to what extent ordered
SGD is better than plain SGD. So even though GSGD is
similar to OSGD in spirit, our theoretical results (for GSGD)
are much more comprehensive. Loshchilov & Hutter (2015)
propose a sampling strategy which favors picking examples
with larger losses. Fan et al. (2017) introduce the average
top-k loss and advocate minimizing this loss rather than the
empirical average over all the samples.

Early Exiting. Early exiting (Teerapittayanon et al., 2016;
Schwartz et al., 2020) is a promising approach to decreasing
the computational cost of multilayered neural architectures
by approximating the output of a model through its inter-
mediate feature representations. This saves computational
costs by dynamically deciding the number of layers/modules
(attention-blocks in transformers) to use during inference
by exiting based on some metric computed on the interme-
diate representations themselves. Initially used for ResNets
(Teerapittayanon et al., 2016), early exiting is now widely
popular even for transformer models, especially language
models (Schwartz et al., 2020; Xin et al., 2020; Schuster
et al., 2022; Rotem et al., 2023; Xin et al., 2021; Zhu, 2021).
Recent work around early exiting for large language models
also explores accelerated decoding (Schuster et al., 2022)
and improving factuality (Chuang et al., 2023). In this work,
we solely use early exiting as a light-weight way to obtain
approximate losses with the intermediate layer representa-
tions for sample selection. To our knowledge, early exiting
has not been used in prior work for speeding up training.

3. Notation
Vectors and matrices are in bold font. For a natural number
n, we sometimes denote the set {1, . . . , n} by [n]. The
(Gauss) error function and complementary error function
are defined as:

erf(t) :=
2√
π

∫ t

0

e−z2

dz and erfc(t) := 1− erf(t). (2)

Note that limt→∞ erf(t) = 1. For any z ∈ R, we define the
sigmoid function as sig(z) = 1

1+ez .

4. Problem Setting
We briefly recap the optimization problem introduced in
Section 1. Given access to a first-order optimization ora-
cle, we would like to minimize F (w) := Ex∼D[f(w,x)],
where w ∈ Rd and D is the data distribution.

Standard First-Order Stochastic Optimization Oracle.
A query at w returns ∇wf(w,x), where x ∼ D.

We consider a more generous oracle. However, it can also
perform one gradient evaluation per query (same as the
standard oracle).
Definition 4.1 (Proposed First-Order Stochastic Op-
timization Oracle). A query at w first returns a set
of R > 1 samples {x(1), . . . ,x(R)} = S(R) drawn
i.i.d. from D and their approximate function2 values
{f̃(w,x(1)), . . . , f̃(w,x(R))}. The user can then pick one
x̂ from S(R), and the oracle will return ∇wf(w, x̂).

Later, we shall make an assumption on the relation between
the approximate function value f̃(w,x) and the actual func-
tion value f(w,x). Now that we have introduced the oracle
that we consider in this work, we state the x̂ chosen by
vanilla SGD and greedy SGD (GSGD).

SGD choice: Pick x̂ uniformly at random from S(R).

GSGD choice: Pick x̂ = arg maxx∈S(R) f̃(w,x).

We state the GSGD update rule in more detail next.

4.1. Greedy SGD (GSGD) Algorithm

In the kth iteration, we observe a set of R i.i.d. samples
drawn from D, say S(R)

k = {x(1)
k , . . . ,x

(R)
k }. We pick:

x̂k = arg max
x∈S(R)

k

f̃(wk,x). (3)

The update of Greedy SGD (GSGD) with step-size ηk is:

wk+1 = wk − ηk∇f(wk, x̂k). (4)

2Throughout this work, we interchange “loss” value and “func-
tion” value freely. In most cases, we use “function” value in the
context of optimization-based discussions and “loss” value in the
context of ML-based discussions.

3

Understanding the Training Speedup from Sampling with Approximate Losses

The update of vanilla SGD is the same as Equation (4),
except with x̂k being a random sample from S(R)

k .

5. GSGD vs. SGD for Smooth Convex
Objectives

We begin by stating some assumptions and definitions.
Assumption 5.1 (Continuity). For any x ∼ D, f(w,x) is
continuous w.r.t. w.
Assumption 5.2 (Convexity). For any x ∼ D, f(w,x) is
convex w.r.t. w.
Assumption 5.3 (Smoothness). For any x ∼ D, f(w,x)
is L-smooth w.r.t. w.
Assumption 5.4. For any x ∼ D, minw∈Rd f(w,x) = 0.

Let ΦF := arg minw∈RdF (w) and F ∗ := minw∈Rd F (w).
We restrict our attention to the case of ΦF being closed and
compact.

Let us first consider the case where the argmax of the ap-
proximate function values is the same as the argmax of the
exact function values; we will relax this assumption later in
Section 5.1.
Assumption 5.5 (Approximate function values preserve
argmax). In the setting of Definition 4.1, f̃ satisfies:

arg maxx∈S(R) f̃(w,x) = arg maxx∈S(R)f(w,x).

Under Assumption 5.5, x̂k in Equation (3) becomes the
same as arg max

x∈S(R)
k

f(wk,x).

Definition 5.6. For R > 1, let

F̂R(w) := E{x(j)}R
j=1 ∼

iid
D

[
max

x∈{x(j)}R
j=1

f(w,x)
]
.

Define

ρR(w) :=
F̂R(w)

F (w)
and ρ∗R := inf

w/∈ΦF

ρR(w).

Also, suppose

sup
w∗∈ΦF

F̂R(w
∗) ≤ ∆R.

Except for the trivial case of f(w,x1) = f(w,x2) ∀
x1,x2 which we disregard, ρ∗R is strictly bigger than 1.

Further, consider a point ŵ∗ /∈ ΦF that is ϵ-close to some
w∗ ∈ ΦF (i.e., ∥ŵ∗ − w∗∥2 ≤ ϵ) and let ϵ → 0. In that
case, under Assumption 5.1 (and because the max opera-
tion preserves continuity) and Definition 5.6, F̂R(ŵ

∗) →
F̂R(w

∗) ≤ ∆R. Also, F (ŵ∗) ≥ F ∗. Thus, by definition,
ρ∗R ≤ F̂R(ŵ

∗)/F (ŵ∗) ≤ (∆R/F
∗). Hence, we have that:

1 < ρ∗R ≤ ∆R

F ∗ , ∀ R > 1. (5)

In Section 5.2, we quantify ρR(w) and ρ∗R for fitting a
model with the squared loss.

For our convergence results, we assume that our initializa-
tion is w0 and let

D0 := min
w∗∈ΦF

∥w0 −w∗∥.

We are now ready to state our convergence results.

Theorem 5.7 (GSGD). Suppose Assumptions 5.1, 5.2, 5.3,
5.4 and 5.5 hold. Set ηk = η < 1

L for all k. Then, GSGD
has the following convergence guarantee after K iterations:

E

[
F

(
1

K

K−1∑
k=0

wk

)]
≤ D2

0

2ρ∗Rη
(
1− ηL

)
K

+
∆R

ρ∗R
(
1− ηL

) .
The proof of Theorem 5.7 can be found in Appendix C.

We now state a corresponding folklore result for SGD.

Theorem 5.8 (SGD). Suppose Assumptions 5.2, 5.3 and
5.4 hold. Set ηk = η < 1

L for all k. Then, SGD has the
following convergence guarantee after K iterations:

E

[
F

(
1

K

K−1∑
k=0

wk

)]
≤ D2

0

2η
(
1− ηL

)
K

+
ηLF ∗

1− ηL
+ F ∗.

From Theorem 5.7, observe that in general, GSGD may
not converge to the minimum value F ∗ asymptotically (i.e.,
with K → ∞). At best, we can show that GSGD converges
to ∆R

ρ∗
R

which is ≥ F ∗ (this follows from Equation (5)). But
SGD can indeed converge to F ∗ asymptotically by setting
η = 1

ηL
√
K

for example in Theorem 5.8. Based on this, we
make the following remark.
Remark 5.9. GSGD may be worse than SGD asymptotically.

However, GSGD is better than SGD early on as ρ∗R > 1
and assuming ∆R = O(F ∗) (and F ∗ ̸= 0), GSGD can
converge to a constant factor of F ∗ in fewer iterations
than SGD. We formalize this next.

Corollary 5.10 (Up to what point is GSGD better than
SGD?). Suppose we run GSGD and SGD with constant
step-size η < 1

L . In that case, until K =
D2

0(ρ
∗
R−1)

2η(∆R−ρ∗
RF∗)

iterations, the convergence bound of GSGD in Theorem 5.7
is better than that of SGD in Theorem 5.8.

Thus, GSGD can converge to ∆R−F∗

(1−ηL)(ρ∗
R−1) function value

in fewer iterations than SGD.
Remark 5.11. Based on Corollary 5.10, when ∆R =
O(F ∗), GSGD can converge to O(F ∗) function value in
fewer iterations than SGD. This is of particular interest in
training large ML models such as transformers on extremely
large datasets, where minimizing the training loss exactly is
infeasible and converging faster to a constant factor of the
minimum loss value is desirable.

4

Understanding the Training Speedup from Sampling with Approximate Losses

5.1. Beyond Argmax-Preserving Approximate Function
Values

Our previous results were under Assumption 5.5, i.e., the
argmax of the approximate function values (f̃) is always
equal to the argmax of the actual function values (f). Here
we relax this assumption by instead modeling f̃ as a noisy
version of f , and provide a convergence result for GSGD
in such a setting. Modeling f̃ as a noisy version of f is
analogous to modeling the stochastic gradients as a noisy
version of the actual gradient in vanilla stochastic optimiza-
tion. Specifically, we make the following assumption.

Assumption 5.12 (Approximate function values). There
exists µ(w) ∈ R and σ ≥ 0 such that:

f̃(w,x) = f(w,x) exp
(
µ(w) + σζ(w,x)

)
,

where ζ(w,x) is i.i.d. random noise with mean 0 and vari-
ance 1.

Thus, the approximate function value is the actual
function values times the exponential of random noise
(i.e., exp

(
σζ(w,x)

)
) times some other scaling (i.e.,

exp(µ(w))). Assumption 5.12 is pretty mild as it does not
involve any particular distributional assumptions on ζ(w,x)
(such as Gaussian, etc.).

The important thing to note is that under Assump-
tion 5.12, x̂k in Equation (3) is not always equal to
arg max

x∈S(R)
k

f(wk,x) – unlike Assumption 5.5.

Definition 5.13. Let

F̂R,approx(w) :=

E{x(j)}Rj=1 ∼
iid

D,ζ

[
f
(
w,x(j∗))∣∣∣j∗ = arg maxj∈[R]f̃(w,x(j))

]
.

Define

ρR,approx(w) :=
F̂R,approx(w)

F (w)
and

ρ∗R,approx := inf
w/∈ΦF

ρR,approx(w).

Clearly, F̂R,approx(w) ≤ F̂R(w) (as defined in Defini-
tion 5.6). So we also have:

sup
w∗∈ΦF

F̂R,approx(w
∗) ≤ sup

w∗∈ΦF

F̂R(w
∗) ≤ ∆R.

It is easy to extend the proof of Theorem 5.7 to obtain the
following result for GSGD under Assumption 5.12.

Theorem 5.14 (GSGD). Suppose Assumptions 5.1, 5.2, 5.3,
5.4 and 5.12 hold. Set ηk = η < 1

L for all k. Then, GSGD

has the following convergence guarantee after K iterations:

E

[
F

(
1

K

K−1∑
k=0

wk

)]
≤

D2
0

2ρ∗R,approxη
(
1− ηL

)
K

+
∆R

ρ∗R,approx

(
1− ηL

) .
The expectation in Theorem 5.14 also includes the random-
ness due to ζ(.) (i.e., the noise in the approximate function
values). The proof of Theorem 5.14 is almost identical to the
proof of Theorem 5.7 (see Appendix C) and is obtained by
replacing F̂R(w) with F̂R,approx(w) and ρ∗R with ρ∗R,approx.

For the subsequent results in this subsection, we shall
consider R = 2. Specifically, we will provide a lower
bound for F̂2,approx(w), ρ2,approx(w) and ρ∗2,approx in terms
of F̂2(w), ρ2(w) and ρ∗2, respectively, as a function of the
noise level σ.
Theorem 5.15. Suppose Assumption 5.12 holds with σ ≤
1

2
√
2

. Define p(σ) :=
(
1− 0.72

(
1− e−

√
2σ
))

. Then:

F̂2,approx(w) ≥ p(σ)F̂2(w),

ρ2,approx(w) ≥ p(σ)ρ2(w) and ρ∗2,approx ≥ p(σ)ρ∗2.

The proof of Theorem 5.15 is in Appendix D. It is worth
pointing out that our result is independent of µ(w); intu-
itively, this is because a constant scaling (w.r.t. the samples)
does not change the argmax. Regarding the dependence
w.r.t. σ, notice that p(σ) is a decreasing function of σ. So
as the noise level σ increases, the lower bound becomes
worse; this happens because the quality of the approximate
function value worsens as σ increases. Also, as a quick
sanity check, observe that p(0) = 1. This makes sense be-
cause σ = 0 means no effective noise, i.e., the approximate
function values match the actual function values modulo the
constant scaling exp(µ(w)).

In the following corollary, we specify a bound for the noise
level σ below which ρ∗2,approx > 1 and thus, we can obtain a
speed-up over SGD.

Corollary 5.16. As long as σ < σmax := 1√
2
log
(18ρ∗

2

25−7ρ∗
2

)
,

p(σ)ρ∗2 > 1 and therefore, ρ∗2,approx > 1. Hence, for σ <
σmax, GSGD with R = 2 using approximate function values
for sample selection can be faster than SGD.

5.2. Quantifying ρR(w)

Here we shall quantify ρR(w) for a particular case. Let
us consider the problem of learning a parameterized model
M(w∗, .) with the squared loss. In this case, our per-sample
objective function f is:

f(w,x) =
(
M(w,x)−M(w∗,x)

)2
. (6)

5

Understanding the Training Speedup from Sampling with Approximate Losses

We make the following assumption.

Assumption 5.17. For w ̸= w∗, M(w,x)−M(w∗,x) ∼
iid

N
(
ε(w), δ2(w)

)
, i.e., the per-sample prediction error is a

Gaussian random variable.

Modeling the per-sample prediction error as a Gaussian ran-
dom variable is fairly reasonable and a similar assumption
has been made in (Pennington & Bahri, 2017). We provide
a lower bound for ρ(w) in this setting.

Theorem 5.18. Suppose Assumption 5.17 holds. Let
ν(R) :=

√
π
2 log R

4 logR . Then:

ρR(w) ≥(
ε2(w) + ν2(R)δ2(w) + 2ν(R)ε(w)δ(w)

)(
1− 1

R

)
ε2(w) + δ2(w)

.

The proof of Theorem 5.18 is in Appendix E.

Corollary 5.19. In the setting of Theorem 5.18, if ε(w) ≤
O(δ(w)) for all w in our region of optimization, then:

ρ∗R ≥

(
1 + Ω

(
log

R

logR
+

√
log

R

logR

))(
1− 1

R

)
.

6. Approximate Losses via Early Exiting in
Neural Networks

For sample selection in GSGD-like algorithms, we propose
to use an approximation of the actual loss which is com-
puted on the “early” predictions obtained by applying the
linear head after the final layer to an intermediate layer’s
representation (instead of the final layer’s representation).
Specifically, suppose θ is the linear head and for a sample x
with label y, R(x) and R̃(x) are the final layer’s and some
intermediate layer’s representation with the same dimen-
sion as θ, respectively. Then the approximate and actual
losses with the cross-entropy loss function denoted by ℓ
are ℓ(y, softmax(θ⊤R̃(x)))3 and ℓ(y, softmax(θ⊤R(x))),
respectively; we use the former to select samples for per-
forming the gradient-based update.

We shall now consider a feedforward linear neural network
(Kawaguchi, 2016) and quantify the probability of correctly
picking the sample with the largest actual loss when using
early exiting.

6.1. Probability of Correctly Selecting the Sample with
the Largest Actual Loss

We consider a binary classification problem, where each
sample x ∼ N (⃗0d, Id) has a binary label y ∈ {0, 1}. Our

3For a vector v = [v1, . . . , vd], softmax(v) = [v̂1, . . . , v̂d]

with v̂i = exp(vi)/
∑d

j=1 exp(vj).

model is a k-layer linear feed-forward network parameter-
ized by {Wi}di=1 ∈ Rd×d and θ ∈ Rd, where the soft
prediction ŷ for x is:

ŷ = sig
(
θ⊤(Wk ×Wk−1 × . . .×W1

)
x
)
. (7)

In Equation (7), sig(.) is the sigmoid function4 as defined
in Section 3. For any j ∈ [k], let us define:

Aj := Wj× . . .×W1 and Bj := Wk× . . .×Wj+1. (8)

Then,
ŷj = sig

(
θ⊤Ajx

)
(9)

is the “early prediction” for x at the jth layer. Note that
ŷ = ŷk, where:

ŷk = sig
(
θ⊤BjAjx

)
. (10)

In the context of GSGD, we once again focus on the case of
R = 2. For any two i.i.d. samples x(1) and x(2), let y(1) and
y(2) ∈ {0, 1} be the corresponding ground truth labels and
let ŷ(1)j and ŷ

(2)
j be the corresponding early predictions at

the jth layer. Further, let ℓ(1)j and ℓ
(2)
j be the corresponding

cross-entropy losses of the early predictions at the jth layer,
i.e.,

ℓ
(i)
j = −y(i) log

(
ŷ
(i)
j

)
− (1− y(i)) log

(
1− ŷ

(i)
j

)
, (11)

for i ∈ {1, 2}. In the context of GSGD, ℓ(1)j and ℓ
(2)
j are

the approximate function values, whereas ℓ(1)k and ℓ
(2)
k are

the actual function values. In this section, we are inter-
ested in quantifying the probability (over the randomness of
data) that early exiting at the jth layer preserves the argmax;
specifically, we wish to quantify

pj := Px(1),x(2)

(
arg maxi∈[1,2]ℓ

(i)
j = arg maxi∈[1,2]ℓ

(i)
k

)
.

(12)
Note that pk = 1. We have the following result on this.
Theorem 6.1. Define

βj :=
⟨A⊤

j θ,A
⊤
j B

⊤
j θ⟩

∥A⊤
j θ∥2∥A⊤

j B
⊤
j θ∥2

.

We restrict our attention to the case of βj ≥ 0. Then:

pj = 1− 1

2
√
π

∫ ∞

0

exp
(
− y2

4

)
erfc

(
βjy

2
√

1− β2
j

)
dy,

(13)
where erfc(.) is as defined in Equation (2). We also have
the following lower bound for pj:

pj ≥ 1−

√
2− 2β2

j

2− β2
j

. (14)

4For binary classification problems, the sigmoid function es-
sentially plays the role of the softmax function mentioned earlier.

6

Understanding the Training Speedup from Sampling with Approximate Losses

The proof of Theorem 6.1 can be found in Appendix F. Note
that βj is the (normalized) correlation between A⊤

j θ and
A⊤

j B
⊤
j θ. As per Theorem 6.1, pj = 1 when βj = 1; this

makes sense because βj = 1 implies A⊤
j θ and A⊤

j B
⊤
j θ

are parallel and so the argmax operation is unaffected if we
use ŷj instead of ŷk. It is worth mentioning that the lower
bound for pj in Equation (14) is loose for small βj , but
we believe it is tight up to constant factors for βj ≈ 1; in
particular, it is exact in the case of βj = 1. Specifically, we
have the following simple corollary for βj ≈ 1.

Corollary 6.2. In the setting of Theorem 6.1, suppose βj =
1− τj where τj → 0. Then, pj ≥ 1−O(

√
τj).

In simple words, if A⊤
j θ is strongly correlated with

A⊤
j B

⊤
j θ, then early exiting at the jth layer preserves the

argmax with high probability.

In the next section, we empirically demonstrate the efficacy
of early exiting in training a transformer model as well as a
ResNet model.

7. Empirical Evaluation
We demonstrate the efficacy of early exiting in accelerating
the training of a BERT base model and a slightly modified
version of ResNet-50 from scratch. Specifically, we apply
early exiting for selecting samples in a mini-batch version
of greedy AdamW which is a simple extension of the greedy
SGD idea to AdamW. We refer to this practical early exit-
based sample selection or “sifting” strategy as SIFT. We
describe SIFT in more detail later but at a high level, we
propose to backpropagate on only 50% of the examples in
a batch with the highest approximate losses obtained via
early exiting. We would like to emphasize that our novelty
is in the light-weight sifting process for training via early
exiting and not the idea of backpropagating on the samples
with large losses.5

7.1. BERT Base Model

Here we consider the task of pretraining a BERT base model
from scratch with the masked language modeling (MLM)
loss. The BERT base model used in our experiments con-
sists of 12 layers with a hidden dimension of 768; the total
number of parameters is 110M. We train on BookCorpus
(Zhu et al., 2015) and English Wikipedia which are two
diverse and extensive standard corpora. The validation set
for assessing the model’s performance is derived from the
development partition of the training corpus. This partition
ensures that the validation set represents a diverse and unbi-
ased subset of the overall data. In our training, we use 512
as the maximum sequence length. To process the input data,

5This is the same idea as OSGD (Kawaguchi, 2016) and OHEM
(Shrivastava et al., 2016).

we use the “bert-base-uncased” tokenizer from the Hug-
ging Face model repository. The masking is applied after
tokenization with a uniform masking rate of 15%. Our ex-
periments were conducted on AWS p4d.24xlarge instances
(8 NVIDIA A100 Tensor core GPUs).

Our baseline algorithm is the vanilla approach with no kind
of sample filtering. The micro-batch per GPU is set to 32
sequences (so there are 32 sequences per GPU * 8 GPUs
* 512 tokens = 131072 tokens per batch). We will now
elaborate on SIFT which does greedy selection based on
early exit loss.

Loss-based SIFT: We select 50% sequences per batch (for
training) with the largest MLM losses computed on the
early predictions obtained from an intermediate layer in the
way described in the beginning of Section 6. Specifically,
we show results for the first, second, third, sixth and last
(i.e., twelfth) layer. The micro-batch per GPU is set to 64
sequences. Since we select half of the sequences for training,
the effective batch size per GPU is 32 which is the same as
that of baseline.

The early-exit based filtering idea is pretty general in the
sense that it can be seamlessly integrated with other sam-
ple selection schemes. In particular, we also tried greedy
selection based on early exit entropy (instead of loss). We
describe it below.

Entropy-based SIFT: Everything is the same as loss-based
SIFT except that we select 50% sequences per batch whose
early predictions obtained from an intermediate layer have
the largest entropies instead of MLM losses. Prediction
entropy has been used a measure of model uncertainty for
active learning; see for e.g., Ren et al. (2021); Gal et al.
(2017). So our proposal of entropy-based SIFT may also be
of interest in active learning with large-scale models.

It is worth mentioning that in our implementation, the for-
ward propagation for selecting samples in SIFT is imple-
mented naively before full forward and backward propaga-
tion for the update step; one could potentially make this
more efficient. However, even without any optimization
of the initial forward propagation for sample selection, we
obtain significant gains as we discuss later. For the exper-
iments with SIFT, we do not perform any sample filtering
for the first 20K steps; this is to provide an initial warm-up
period and is aligned with the suggestion of Kawaguchi
& Lu (2019) for GSGD. The total number of update steps
for each algorithm is 800K. We use the hyper-parameters
suggested in the pretraining part of the original BERT paper
(Devlin et al., 2018); we defer these details to Appendix G.

We would like to point out that the goal of our experiments
is to only show the efficacy of early exiting for approxi-
mately selecting samples with large losses/entropies and not
propose a SOTA sample selection scheme.

7

Understanding the Training Speedup from Sampling with Approximate Losses

0 25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000 175,000,000 200,000,000
Num Samples Used in Backpropagation

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

Ac
cu

ra
cy

Baseline [batch_size/gpu 32]
Entropy-based Sift, exit at 1st layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Entropy-based Sift, exit at 6th layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Entropy-based Sift, exit at last layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Loss-based Sift, exit at 1st layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Loss-based Sift, exit at 6th layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Loss-based Sift, exit at last layer [gross batch_size/gpu 64, backward batch_size/gpu 32]

110M Model

Figure 1. Validation accuracy vs. backpropagation sample com-
plexity. In terms of performance, entropy-based SIFT > loss-based
SIFT > baseline. All the accuracies are listed in Table 1 but for
quick reference, loss-based and entropy-based SIFT with exit at
the first layer are better than the baseline by 1.33% and 1.75%,
respectively. For loss-based SIFT, exit at the last layer has the best
performance while for entropy-based SIFT, exit at the sixth layer
has the best performance.

Results. Figures 1 and 2 show the performance of SIFT
with exits at the first, sixth and last layers6 and baseline w.r.t.
the number of samples used for backpropagation (i.e., back-
propagation sample complexity) and the number of training
hours, respectively. We report the validation accuracy at the
last step with early exit at all the layers we considered in
Table 1. Please see the figure and table captions for detailed
discussion but the key takeaways are as follows:

• SIFT is better than the baseline in terms of backpropa-
gation sample complexity as well as wall-clock time.

• Entropy-based SIFT does better than loss-based SIFT.

• For entropy-based SIFT, exit at the sixth layer has the
best performance while for loss-based SIFT, exit at the
last layer has the best performance.

In Table 6 (Appendix G), we report the total time spent in
the forward pass for selecting samples in SIFT as a function
of the layer number.

Overall our results here show that SIFT can yield significant
gains for BERT pretraining.

6We do not show the plots for exits at the second and third
layers here to avoid congestion; we report the validation accuracies
of all these layers in Table 1.

0 10 20 30 40 50 60 70 80
Training Hours

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

Ac
cu

ra
cy

Baseline [batch_size/gpu 32]
Entropy-based Sift, exit at 1st layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Entropy-based Sift, exit at 6th layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Entropy-based Sift, exit at last layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Loss-based Sift, exit at 1st layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Loss-based Sift, exit at 6th layer [gross batch_size/gpu 64, backward batch_size/gpu 32]
Loss-based Sift, exit at last layer [gross batch_size/gpu 64, backward batch_size/gpu 32]

110M Model

Figure 2. Validation accuracy vs. wall-clock time. The observa-
tions and trends are the same as Figure 1; please see the discussion
therein.

Table 1. Validation accuracy at the last step. For loss-based
SIFT, exit at the last layer has the best performance while the per-
formance of other layers is nearly the same. However for entropy-
based SIFT, exit at the sixth layer has the best performance.

Algorithm SIFT Layer # Val. Accuracy
Baseline N/A 0.6466

Loss-based SIFT 1 0.6599
Loss-based SIFT 2 0.6597
Loss-based SIFT 3 0.6604
Loss-based SIFT 6 0.6607
Loss-based SIFT 12 0.6640

Entropy-based SIFT 1 0.6641
Entropy-based SIFT 2 0.6672
Entropy-based SIFT 3 0.6678
Entropy-based SIFT 6 0.6680
Entropy-based SIFT 12 0.6664

7.2. ResNet-50

Here we consider training a slightly modified version
of ResNet-50 on CIFAR-100 and Food-101 (Bossard
et al., 2014) which is a harder dataset than CIFAR-100
consisting of 101 classes. The modification has been made
to make early exiting feasible in ResNet-50; we describe
the modification and early exit details in Appendix H.
Importantly, here we will tune the learning rates for both
SIFT and the baseline (i.e., the vanilla approach with
no sample filtering). We use the one-cycle learning rate
schedule proposed for fast training in (Smith & Topin,
2019) and available in PyTorch (https://pytorch.
org/docs/stable/generated/torch.optim.
lr_scheduler.OneCycleLR.html). Specifically,
we tune the maximum learning rate (“max lr”) for the
schedule and thus show results with different learning

8

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html

Understanding the Training Speedup from Sampling with Approximate Losses

rates. We use default values for all other hyper-parameters
of the schedule. We consider a scenario with limited
training budget where we can train each algorithm for 100
epochs. Training is done with the standard cross-entropy
loss function. Other empirical details are mentioned in
Appendix H.

Tables 2 and 4 show the comparisons of SIFT and baseline
with the same training time (analogous to Figure 2), whereas
Tables 3 and 5 show comparisons with the same backprop-
agation sample complexity or number of gradient updates
(analogous to Figure 1) for CIFAR-100 and Food-101, re-
spectively. In these experiments, we saw that loss-based
sampling worked better than entropy-based sampling; so we
only report the results for loss-based sampling here.

Please refer to the table captions for detailed discussion but
in summary, these results show that SIFT is better even if
we tune the learning rate. Overall our results here show
that SIFT can yield significant gains in training a ResNet-50
(appropriately modified to make early exiting feasible) from
scratch.

Table 2. CIFAR-100 with same training time. We run the base-
line for 100 epochs and SIFT with early exit and SIFT with last
layer exit till the time it takes to run 100 epochs of the baseline
(analogous to Figure 2) with different learning rates. The corre-
sponding test accuracies are reported. The best test accuracy of
each method is in bold font. So with the same training time, the
best test accuracy of SIFT with early exit > best test accuracy
of SIFT with last layer exit > best test accuracy of baseline.

max lr Baseline
SIFT w/
early exit

SIFT w/ last
layer exit

5e− 2 67.68 66.64 63.92
1e− 2 69.04 73.45 70.13
5e− 3 69.02 73.26 72.91
1e− 3 58.54 66.85 71.09

Table 3. CIFAR-100 with same backpropagation sample com-
plexity. We run all algorithms for 100 epochs so that the backprop-
agation sample complexity (i.e., # of gradient updates) is the same
for all algorithms (analogous to Figure 1) with different learning
rates. The corresponding test accuracies are reported. The best
test accuracy of each method is in bold font. So with the same
gradient complexity, the best test accuracy of SIFT with last
layer exit > best test accuracy of SIFT with early exit > best
test accuracy of baseline.

max lr Baseline
SIFT w/
early exit

SIFT w/ last
layer exit

5e− 2 67.68 68.16 68.12
1e− 2 69.04 75.41 74.48
5e− 3 69.02 75.06 76.93
1e− 3 58.54 68.35 75.14

Table 4. Food-101 with same training time. All the details are
the same as in Table 2 above. ‘–’ indicates non-convergence. Here,
with the same training time, the best test accuracy of SIFT with
last layer exit > best test accuracy of SIFT with early exit >
best test accuracy of baseline.

max lr Baseline
SIFT w/
early exit

SIFT w/ last
layer exit

5e− 2 57.50 – –
1e− 2 59.52 64.03 64.01
5e− 3 58.88 63.23 66.47
1e− 3 44.04 59.29 63.52

Table 5. Food-101 with same backpropagation sample complex-
ity. All the details are the same as in Table 3 above. ‘–’ indicates
non-convergence. In this case, with the same gradient complex-
ity, the best test accuracy of SIFT with last layer exit > best
test accuracy of SIFT with early exit > best test accuracy of
baseline.

max lr Baseline
SIFT w/
early exit

SIFT w/ last
layer exit

5e− 2 57.50 – –
1e− 2 59.52 64.04 64.19
5e− 3 58.88 63.22 66.64
1e− 3 44.04 59.27 63.68

8. Conclusion and Limitations
In this work, we theoretically characterized the benefits (as
well as limitations) of the greedy approach of selecting sam-
ples with large approximate losses instead of exact losses.
We also showed the promise of early exiting in speeding up
the training of a transformer model.

We will mention some limitations in our current work which
we hope to explore and address in future work. As we
mentioned, we did not pipeline the early exit forward propa-
gation step for sample selection with the full forward and
backward propagation steps for model update in our current
implementation; doing so can yield bigger gains. In our
current work, we have only shown the efficacy of SIFT on
BERT and a modified version of ResNet. In the future, we
hope to test SIFT on much larger transformer models. On
the theory side, our current convergence result is for con-
vex functions; we would like to derive a similar result for
non-convex functions too.

Acknowledgements
The authors are grateful to anonymous reviewers for their
feedback which helped in improving this manuscript.

9

Understanding the Training Speedup from Sampling with Approximate Losses

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alain, G., Lamb, A., Sankar, C., Courville, A., and Bengio,

Y. Variance reduction in sgd by distributed importance
sampling. arXiv preprint arXiv:1511.06481, 2015.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48.
ACM, 2009.

Bertsekas, D. P. et al. Incremental gradient, subgradient,
and proximal methods for convex optimization: A survey.
Optimization for Machine Learning, 2010(1-38):3, 2011.

Borsos, Z., Krause, A., and Levy, K. Y. Online variance
reduction for stochastic optimization. arXiv preprint
arXiv:1802.04715, 2018.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101–
mining discriminative components with random forests.
In Computer Vision–ECCV 2014: 13th European Con-
ference, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part VI 13, pp. 446–461. Springer, 2014.

Bulatov, Y. Mathematics stack exchange: Proving
1 − exp(−4x2/π) ≥ erf(x)2, https://math.
stackexchange.com/questions/6908/
proving-1-exp-4x2-pi-ge-texterfx2.

Chuang, Y.-S., Xie, Y., Luo, H., Kim, Y., Glass, J., and
He, P. Dola: Decoding by contrasting layers improves
factuality in large language models. arXiv preprint arXiv:
2309.03883, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Fan, Y., Lyu, S., Ying, Y., and Hu, B. Learning with average
top-k loss. In Advances in neural information processing
systems, pp. 497–505, 2017.

Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian active
learning with image data. In International conference on
machine learning, pp. 1183–1192. PMLR, 2017.

Gurbuzbalaban, M., Ozdaglar, A., and Parrilo, P. A. Con-
vergence rate of incremental gradient and incremental
newton methods. SIAM Journal on Optimization, 29(4):
2542–2565, 2019.

Gurbuzbalaban, M., Ozdaglar, A., and Parrilo, P. A. Why
random reshuffling beats stochastic gradient descent.
arXiv preprint arXiv:1510.08560, 2022.

Haochen, J. and Sra, S. Random shuffling beats sgd after
finite epochs. In International Conference on Machine
Learning, pp. 2624–2633. PMLR, 2019.

Jiang, A. H., Wong, D. L.-K., Zhou, G., Andersen, D. G.,
Dean, J., Ganger, G. R., Joshi, G., Kaminksy, M.,
Kozuch, M., Lipton, Z. C., et al. Accelerating deep
learning by focusing on the biggest losers. arXiv preprint
arXiv:1910.00762, 2019.

Jiang, L., Zhou, Z., Leung, T., Li, L.-J., and Fei-Fei, L.
Mentornet: Learning data-driven curriculum for very
deep neural networks on corrupted labels. arXiv preprint
arXiv:1712.05055, 2017.

Johnson, T. B. and Guestrin, C. Training deep models
faster with robust, approximate importance sampling. In
Advances in Neural Information Processing Systems, pp.
7265–7275, 2018.

Kamath, G. Bounds on the expectation of
the maximum of samples from a gaussian.
http://www.gautamkamath.com/writings/
gaussian_max.pdf.

Katharopoulos, A. and Fleuret, F. Biased importance sam-
pling for deep neural network training. arXiv preprint
arXiv:1706.00043, 2017.

Katharopoulos, A. and Fleuret, F. Not all samples are cre-
ated equal: Deep learning with importance sampling.
arXiv preprint arXiv:1803.00942, 2018.

Kawaguchi, K. Deep learning without poor local minima.
Advances in neural information processing systems, 29,
2016.

Kawaguchi, K. and Lu, H. Ordered sgd: A new stochastic
optimization framework for empirical risk minimization.
arXiv preprint arXiv:1907.04371, 2019.

Kim, T.-H. and Choi, J. Screenernet: Learning self-paced
curriculum for deep neural networks. arXiv preprint
arXiv:1801.00904, 2018.

Kumar, M. P., Packer, B., and Koller, D. Self-paced learn-
ing for latent variable models. In Advances in Neural
Information Processing Systems, pp. 1189–1197, 2010.

Loshchilov, I. and Hutter, F. Online batch selection
for faster training of neural networks. arXiv preprint
arXiv:1511.06343, 2015.

10

https://math.stackexchange.com/questions/6908/proving-1-exp-4x2-pi-ge-texterfx2
https://math.stackexchange.com/questions/6908/proving-1-exp-4x2-pi-ge-texterfx2
https://math.stackexchange.com/questions/6908/proving-1-exp-4x2-pi-ge-texterfx2
http://www.gautamkamath.com/writings/gaussian_max.pdf
http://www.gautamkamath.com/writings/gaussian_max.pdf

Understanding the Training Speedup from Sampling with Approximate Losses

Lu, Y., Meng, S. Y., and De Sa, C. A general analysis
of example-selection for stochastic gradient descent. In
International Conference on Learning Representations
(ICLR), volume 10, 2022.

Mishchenko, K., Khaled, A., and Richtárik, P. Random
reshuffling: Simple analysis with vast improvements. Ad-
vances in Neural Information Processing Systems, 33:
17309–17320, 2020.

Mohtashami, A., Stich, S., and Jaggi, M. Character-
izing & finding good data orderings for fast conver-
gence of sequential gradient methods. arXiv preprint
arXiv:2202.01838, 2022.

Needell, D., Ward, R., and Srebro, N. Stochastic gradient de-
scent, weighted sampling, and the randomized kaczmarz
algorithm. In Advances in neural information processing
systems, pp. 1017–1025, 2014.

Nesterov, Y. et al. Lectures on convex optimization, volume
137. Springer, 2018.

Pennington, J. and Bahri, Y. Geometry of neural network
loss surfaces via random matrix theory. In International
conference on machine learning, pp. 2798–2806. PMLR,
2017.

Recht, B. and Ré, C. Toward a noncommutative arithmetic-
geometric mean inequality: Conjectures, case-studies,
and consequences. In Conference on Learning Theory,
pp. 11–1. JMLR Workshop and Conference Proceedings,
2012.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A survey of deep active
learning. ACM computing surveys (CSUR), 54(9):1–40,
2021.

Rotem, D., Hassid, M., Mamou, J., and Schwartz, R. Find-
ing the sweet spot: Analysis and improvement of adaptive
inference in low resource settings. Annual Meeting of
the Association for Computational Linguistics, 2023. doi:
10.48550/arXiv.2306.02307.

Safran, I. and Shamir, O. How good is sgd with random
shuffling? In Conference on Learning Theory, pp. 3250–
3284. PMLR, 2020.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456–17472, 2022.

Schwartz, R., Stanovsky, G., Swayamdipta, S., Dodge, J.,
and Smith, N. A. The right tool for the job: Match-
ing model and instance complexities. In Jurafsky, D.,

Chai, J., Schluter, N., and Tetreault, J. (eds.), Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 6640–6651, Online,
July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.593. URL https:
//aclanthology.org/2020.acl-main.593.

Shrivastava, A., Gupta, A., and Girshick, R. Training region-
based object detectors with online hard example mining.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 761–769, 2016.

Smith, L. N. and Topin, N. Super-convergence: Very fast
training of neural networks using large learning rates.
In Artificial intelligence and machine learning for multi-
domain operations applications, volume 11006, pp. 369–
386. SPIE, 2019.

Stich, S. U., Raj, A., and Jaggi, M. Safe adaptive importance
sampling. In Advances in Neural Information Processing
Systems, pp. 4381–4391, 2017.

Teerapittayanon, S., McDanel, B., and Kung, H. Branchynet:
Fast inference via early exiting from deep neural net-
works. In 2016 23rd International Conference on Pat-
tern Recognition (ICPR), pp. 2464–2469, 2016. doi:
10.1109/ICPR.2016.7900006.

Tsvetkov, Y., Faruqui, M., Ling, W., MacWhinney, B., and
Dyer, C. Learning the curriculum with bayesian optimiza-
tion for task-specific word representation learning. arXiv
preprint arXiv:1605.03852, 2016.

Xin, J., Tang, R., Lee, J., Yu, Y., and Lin, J. DeeBERT: Dy-
namic early exiting for accelerating BERT inference. In
Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J. (eds.),
Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 2246–2251, On-
line, July 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.acl-main.204. URL https:
//aclanthology.org/2020.acl-main.204.

Xin, J., Tang, R., Yu, Y., and Lin, J. BERxiT: Early ex-
iting for BERT with better fine-tuning and extension
to regression. In Merlo, P., Tiedemann, J., and Tsar-
faty, R. (eds.), Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pp. 91–104, On-
line, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.8. URL https:
//aclanthology.org/2021.eacl-main.8.

Zhang, J., Yu, H.-f., and Dhillon, I. S. Autoassist: A frame-
work to accelerate training of deep neural networks. arXiv
preprint arXiv:1905.03381, 2019.

11

https://aclanthology.org/2020.acl-main.593
https://aclanthology.org/2020.acl-main.593
https://aclanthology.org/2020.acl-main.204
https://aclanthology.org/2020.acl-main.204
https://aclanthology.org/2021.eacl-main.8
https://aclanthology.org/2021.eacl-main.8

Understanding the Training Speedup from Sampling with Approximate Losses

Zhao, P. and Zhang, T. Stochastic optimization with im-
portance sampling for regularized loss minimization. In
international conference on machine learning, pp. 1–9,
2015.

Zhu, W. LeeBERT: Learned early exit for BERT with
cross-level optimization. In Zong, C., Xia, F., Li, W.,
and Navigli, R. (eds.), Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
2968–2980, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
231. URL https://aclanthology.org/2021.
acl-long.231.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In Proceedings of the
IEEE international conference on computer vision, pp.
19–27, 2015.

12

https://aclanthology.org/2021.acl-long.231
https://aclanthology.org/2021.acl-long.231

Understanding the Training Speedup from Sampling with Approximate Losses

Appendix

A. Other Related Work
Sample reordering. Another related line of work attempts to improve the way/order in which samples are presented
while training. Bengio et al. (2009) propose curriculum learning wherein the key idea is to present easier examples before
harder ones but this requires prior information about the training set. Several improved modifications of this idea are out
there (Tsvetkov et al., 2016; Kumar et al., 2010; Jiang et al., 2017; Kim & Choi, 2018; Zhang et al., 2019; Jiang et al.,
2019). There is also a long line of papers that theoretically analyze conventional sample ordering schemes (such as shuffle
once, random reshuffling, etc.) as well as improved sample ordering schemes (Bertsekas et al., 2011; Recht & Ré, 2012;
Gurbuzbalaban et al., 2019; 2022; Haochen & Sra, 2019; Safran & Shamir, 2020; Mishchenko et al., 2020; Lu et al., 2022;
Mohtashami et al., 2022).

B. Some Preliminaries for the Proofs
Fact B.1 (Nesterov et al. (2018)). For an L-smooth function g : Rp −→ R, ∥∇g(y)∥22 ≤ 2L(g(y) − minz∈Rp g(z)) ∀
y ∈ Rp.
Fact B.2 (Cantelli’s inequality). For any random variable Y and any t > 0:

P
(
Y − E[Y] ≥ t

)
≤ Var(Y)

Var(Y) + t2
.

Fact B.3 (Bulatov). We have:

erf(t) ≤
√

1− exp
(
− 4t2

π

)
.

The above bound has been also used by Kamath.
Fact B.4. It holds that:

erfc(t) ≤ 2 exp
(
− t2

2

)
.

Proof. Let Z ∼ N (0, 1). It can be checked that erf(t) = 2P(Z ∈ (0, t)). Thus,

erfc(t) = 1− erf(t) = 2
(1
2
− P

(
Z ∈ (0, t)

))
= 2P(Z ≥ t). (15)

But using the Gaussian tail bound, we have P(Z ≥ t) ≤ e−t2/2. Using this in Equation (15) gives us the desired result.

Fact B.5. For any t > 0: ∫ ∞

0

exp
(
− y2

2t2

)
dy =

√
π

2
t.

Proof. Let Z ∼ N (0, t2). We have:

∫ ∞

0

exp
(
− y2

2t2

)
dy =

√
2πt2

(
1√
2πt2

∫ ∞

0

exp
(
− y2

2t2

)
dy

)
︸ ︷︷ ︸

=P(Z>0)= 1
2

=

√
π

2
t. (16)

13

Understanding the Training Speedup from Sampling with Approximate Losses

C. Proof of Theorem 5.7
Proof. Consider some w∗ ∈ ΦF . With a constant step-size, say η, we have for any iteration k:

ES(R)
k

[
∥wk+1 −w∗∥2

]
= ∥wk −w∗∥2 − 2η

〈
ES(R)

k

[
∇f(wk, x̂k)

]
,wk −w∗〉+ η2ES(R)

k

[
∥∇f(wk, x̂k)∥2

]
. (17)

Using Definition 5.6 in Equation (17), we get:

ES(R)
k

[
∥wk+1 −w∗∥2

]
= ∥wk −w∗∥2 − 2η⟨∇F̂R(wk),wk −w∗⟩+ η2ES(R)

k

[
∥∇f(wk, x̂k)∥2

]
. (18)

Using the convexity of f(w,x) w.r.t. w (Assumption 5.2) and the fact that pointwise maximum of convex functions is also
convex, we conclude that F̂R(w) is convex. Thus:

⟨∇F̂R(wk),wk −w∗⟩ ≥ F̂R(wk)− F̂R(w
∗) ≥ F̂R(wk)−∆R, (19)

where the last step follows from the fact that supw∗∈ΦF
F̂R(w

∗) ≤ ∆R.

Further, using Assumption 5.3, Fact B.1 and Assumption 5.4, we get:

ES(R)
k

[
∥∇f(wk, x̂k)∥2

]
≤ 2LES(R)

k

[
f(wk, x̂k)

]
≤ 2LF̂R(wk). (20)

Plugging Equation (19) and Equation (20) into Equation (17), we get:

ES(R)
k

[
∥wk+1 −w∗∥2

]
= ∥wk −w∗∥2 − 2η

(
1− ηL

)
F̂R(wk) + 2η∆R. (21)

Let us impose η < 1
L so that 1− ηL > 0. From Definition 5.6, we have F̂R(wk) ≥ ρ∗RF (wk). Using this above, we get:

ES(R)
k

[
∥wk+1 −w∗∥2

]
= ∥wk −w∗∥2 − 2ρ∗Rη

(
1− ηL

)
F (wk) + 2η∆R. (22)

After some rearrangement, we get:

F (wk) ≤
∥wk −w∗∥2 − ES(R)

k

[
∥wk+1 −w∗∥2

]
2ρ∗Rη

(
1− ηL

) +
∆R

ρ∗R
(
1− ηL

) . (23)

Next, we sum the above for all k ∈ {0, . . . ,K − 1} while taking expectation throughout. After dividing both sides of the
resultant inequality by 1

K , we get:

1

K

K−1∑
k=0

E[F (wk)] ≤
∥w0 −w∗∥2

2ρ∗Rη
(
1− ηL

)
K

+
∆R

ρ∗R
(
1− ηL

) . (24)

Let wK = 1
K

∑K−1
k=0 wk. Applying Jensen’s inequality, we get E[F (wK)] ≤ 1

K

∑K−1
k=0 E[F (wk)]. Using this in

Equation (24) gives us:

E
[
F
(
wK

)]
≤ ∥w0 −w∗∥2

2ρ∗Rη
(
1− ηL

)
K

+
∆R

ρ∗R
(
1− ηL

) . (25)

Observe that this analysis holds for any w∗ ∈ ΦF , including the one that is closest to w0. Using this in the above bound
gives us:

E
[
F
(
wK

)]
≤ D2

0

2ρ∗Rη
(
1− ηL

)
K

+
∆R

ρ∗R
(
1− ηL

) , (26)

where D0 := minw∗∈ΦF
∥w0 −w∗∥.

14

Understanding the Training Speedup from Sampling with Approximate Losses

D. Proof of Theorem 5.15
Proof. We have for j ∈ {1, 2}, f̃(w,x(j)) = f(w,x(j)) exp

(
µ(w) + σζ(w,x(j))

)
, where ζ(w,x(j)) is i.i.d. random

noise with mean 0 and variance 1. For brevity of notation, let:

µ = µ(w) and f̃ (j) = f̃(w,x(j)), f (j) = f(w,x(j)) and ζ(j) = ζ(w,x(j)) for j ∈ {1, 2}.

Without loss of generality, let f (1) ≥ f (2).

Let j∗ = arg maxj∈[2]f̃
(j). Let us consider the case of j∗ = 1. This happens when f (2) exp(µ + σζ(2)) ≤ f (1) exp(µ +

σζ(1)); this is equivalent to:

σ(ζ(2) − ζ(1)) ≤ log
f (1)

f (2)
. (27)

Let Z = ζ(2) − ζ(1). Note that Z is random variable with mean 0 and variance 2. As per the above discussion, we have:

P
(
j∗ = 1

)
= P

(
Z ≤ 1

σ
log

f (1)

f (2)

)
= 1− P

(
Z >

1

σ
log

f (1)

f (2)

)
. (28)

Thus,

P
(
j∗ = 2

)
= P

(
Z >

1

σ
log

f (1)

f (2)

)
. (29)

Then, we have:

E{ζ(1),ζ(2)}

[
f (j∗)

]
= f (1)P

(
j∗ = 1

)
+ f (2)P

(
j∗ = 2

)
(30)

= f (1)

(
1− P

(
Z >

1

σ
log

f (1)

f (2)

))
+ f (2)P

(
Z >

1

σ
log

f (1)

f (2)

)
(31)

= f (1) −
(
f (1) − f (2)

)
P

(
Z >

1

σ
log

f (1)

f (2)

)
. (32)

Since E[Z] = 0 and Var(Z) = 2, using Cantelli’s inequality (Fact B.2), we have:

P

(
Z >

1

σ
log

f (1)

f (2)

)
≤ 2

2 + 1
σ2 log

2 f(1)

f(2)

. (33)

Using this in Equation (32), we get:

E{ζ(1),ζ(2)}

[
f (j∗)

]
≥ f (1) −

(
f (1) − f (2)

)(2

2 + 1
σ2 log

2 f(1)

f(2)

)
. (34)

Let us define the function h(t;σ) := 2(1−e−t)

2+ t2

σ2

for t ≥ 0. Then, note that:

(
f (1) − f (2)

)(2

2 + 1
σ2 log

2 f(1)

f(2)

)
= f (1) × h

(
log

f (1)

f (2)
;σ

)
.

From Lemma D.1, we have h(t;σ) ≤ 0.72
(
1− e−

√
2σ
)

for all t ≥ 0, when σ ≤ 1
2
√
2

. Using this above gives us:

(
f (1) − f (2)

)(2

2 + 1
σ2 log

2 f(1)

f(2)

)
≤ 0.72

(
1− e−

√
2σ
)
f (1), (35)

15

Understanding the Training Speedup from Sampling with Approximate Losses

when σ ≤ 1
2
√
2

. Plugging this into Equation (34) gives us:

E{ζ(1),ζ(2)}

[
f (j∗)

]
≥
(
1− 0.72

(
1− e−

√
2σ
))

f (1). (36)

Rewriting the above in terms of the full notation, we obtain:

E{ζ(w,x(j))}2
j=1

[
f
(
w,x(j∗)

)∣∣∣j∗ = arg maxj∈[2]f̃(w,x(j))
]
≥
(
1− 0.72

(
1− e−

√
2σ
))

max
j∈[2]

f(w,x(j)). (37)

Thus:

F̂2,approx(w) ≥
(
1− 0.72

(
1− e−

√
2σ
))

E{x(j)}2
j=1

[
max
j∈[2]

f(w,x(j))
]
=
(
1− 0.72

(
1− e−

√
2σ
))

F̂2(w). (38)

Hence, we also have:

ρ2,approx(w) =
F̂2,approx(w)

F (w)
≥
(
1− 0.72

(
1− e−

√
2σ
)) F̂2(w)

F (w)
=
(
1− 0.72

(
1− e−

√
2σ
))

ρ2(w), (39)

and:

ρ∗2,approx = inf
w/∈ΦF

ρ2,approx(w) ≥
(
1− 0.72

(
1− e−

√
2σ
))

inf
w/∈ΦF

ρ2(w) =
(
1− 0.72

(
1− e−

√
2σ
))

ρ∗2. (40)

Lemma D.1. Consider the function h(t;σ) := 2(1−e−t)(
2+ t2

σ2

) for t ≥ 0 and σ ≤ 1
2
√
2

. Then, we have:

max
t≥0

h(t;σ) ≤ 0.72
(
1− e−

√
2σ
)
.

Proof. Let t∗ = arg maxt≥0h(t;σ). Setting dh
dt

∣∣
t=t∗

= 0, we obtain the following equation:

et
∗
= 1 +

σ2

t∗
+

t∗

2
. (41)

Using the series expansion of the exponential function above, we get:

1 +

∞∑
j=1

(t∗)j

j!
= 1 +

σ2

t∗
+

t∗

2
=⇒ (t∗)2

(
1 + 2

∞∑
j=1

(t∗)j

(j + 1)!

)
︸ ︷︷ ︸

:=ν(t∗)

= 2σ2. (42)

Since ν(t∗) ≥ 1, we conclude that:
t∗ ≤

√
2σ. (43)

Further, since σ ≤ 1
2
√
2

, we also have t∗ ≤ 1
2 . Note that ν(t∗) is an increasing function of t∗. So ν(t∗) ≤ ν

(
1
2

)
. Also, by

using the series expansion of the exponential function, it can be verified that ν(t∗) = 2(et
∗
−1)

t∗ − 1. Thus, we have:

ν(t∗) ≤ ν
(1
2

)
≤ 4e1/2 − 5. (44)

Using this in Equation (42), we get:

t∗ ≥
√
2σ√

4e1/2 − 5
≥ 0.62

(√
2σ
)
. (45)

Combining the bounds of Equation (43) and Equation (45), we deduce that t∗ = c
(√

2σ
)
, where c ∈ [0.62, 1]. Thus,

(1− e−t∗) ≤ 1− e−
√
2σ and 2

2+ t2

σ2

≤ 2
2(1+0.622) ≤ 0.72. Using all of this, we obtain:

max
t≥0

h(t;σ) = h(t∗;σ) ≤ 0.72
(
1− e−

√
2σ
)
. (46)

16

Understanding the Training Speedup from Sampling with Approximate Losses

E. Proof of Theorem 5.18
We restate Theorem 5.18 before proving it.

Theorem E.1. Suppose Assumption 5.17 holds. Then:

ρR(w) ≥

(
ε2(w) +

(
π
2 log R

4 logR

)
δ2(w) +

√
2π log R

4 logRε(w)δ(w)
)(

1− 1
R

)
ε2(w) + δ2(w)

.

Proof. Per Assumption 5.17, M(w,x)−M(w∗,x) ∼
iid

N
(
ε(w), δ2(w)

)
for w ̸= w∗. Clearly,

F (w) = Ex

[
f(w,x)

]
= ε2(w) + δ2(w), (47)

and

F̂R(w) = E{x(1),...,x(R)}

[
max

x∈{x(1),...,x(R)}
f(w,x)

]
. (48)

For conciseness, we shall denote ε(w) and δ(w) by just ε and δ, respectively. Also, let Zi = M(w,x(i))−M(w∗,x(i))
for i ∈ [R]. As per our concise notation, note that each Zi ∼

iid
N (ε, δ2). Hence:

F̂R(w) = E
[
max
i∈[R]

Z2
i

]
. (49)

We shall obtain a lower bound for E
[
maxi∈[R] Z

2
i

]
. Let Y ∼ N (0, 1). For t > 0, we have:

P
(
max
i∈[R]

(Zi − ε) ≤ t
)
= P

(
∩i∈[R] (Zi − ε) ≤ t

)
=
(
P
(
Y ≤ t/δ

))R
(50)

=
(1
2
+

1

2
erf
(t√

2δ

))R
(51)

≤

(
1

2
+

1

2

√
1− exp

(
− 2t2

πδ2

))R

(52)

≤

(
1

2
+

1

2

(
1− 1

2
exp

(
− 2t2

πδ2

)))R

(53)

=

(
1− 1

4
exp

(
− 2t2

πδ2

))R

(54)

≤ exp
(
− R

4
exp

(
− 2t2

πδ2

))
. (55)

In Equation (51), the error function is as defined in Equation (2). Equation (52) follows from Fact B.3. Equation (53) is
obtained by using the fact that

√
1− a ≤ 1− a

2 for all a ∈ [0, 1]. Equation (55) follows from the fact that 1−a ≤ e−a for all

a ∈ R. So, maxi∈[R](Zi−ε) ≤ t with a probability of at most exp
(
−R

4 exp
(
− 2t2

πδ2

))
. Let us choose t = δ

√
π
2 log R

4 logR .
With this choice, we get:

max
i∈[R]

Zi ≥ ε+ δ

√
π

2
log

R

4 logR
w.p. ≥ 1− 1

R
.

Thus,

E
[
max
i∈[R]

Z2
i

]
≥

(
ε+ δ

√
π

2
log

R

4 logR

)2(
1− 1

R

)
=

(
ε2 +

π

2
log

R

4 logR
δ2 +

√
2π log

R

4 logR
εδ

)(
1− 1

R

)
. (56)

17

Understanding the Training Speedup from Sampling with Approximate Losses

Plugging this into Equation (49) and replacing ε and δ with their complete notations, i.e., ε(w) and δ(w), we get:

F̂R(w) ≥

(
ε2(w) +

(π
2
log

R

4 logR

)
δ2(w) +

√
2π log

R

4 logR
ε(w)δ(w)

)(
1− 1

R

)
. (57)

Hence:

ρR(w) =
F̂R(w)

F (w)
≥

(
ε2(w) +

(
π
2 log R

4 logR

)
δ2(w) +

√
2π log R

4 logRε(w)δ(w)
)(

1− 1
R

)
ε2(w) + δ2(w)

. (58)

F. Proof of Theorem 6.1
Proof. For i ∈ {1, 2}, we have:

ŷ
(i)
j = sig

(
θ⊤Ajx

(i)
)

and ŷ(i) = ŷ
(i)
k = sig

(
θ⊤BjAjx

(i)
)
. (59)

For the i.i.d. samples x(1) and x(2) with ground truth labels y(1) and y(2), recall that ℓ(1)j and ℓ
(2)
j are the corresponding

cross-entropy losses of the early predictions at the jth layer, i.e.,

ℓ
(i)
j = −y(i) log

(
ŷ
(i)
j

)
− (1− y(i)) log

(
1− ŷ

(i)
j

)
for i ∈ {1, 2}. (60)

We are interested in:
pj := Px(1),x(2)

(
arg maxi∈[1,2]ℓ

(i)
j = arg maxi∈[1,2]ℓ

(i)
k

)
.

Using symmetry, we get:
pj := Px(1),x(2)

(
ℓ
(1)
j ≥ ℓ

(2)
j

∣∣∣ℓ(1)k ≥ ℓ
(2)
k

)
. (61)

Note that pk = 1. Henceforth, we shall drop the subscript x(1),x(2) for conciseness.

Let ȳ(1) = 2y(1)−1 and ȳ(2) = 2y(2)−1 be the centered ground truth labels (i.e., ∈ {−1, 1}) of x(1) and x(2), respectively.
It can be verified that:

ℓ
(1)
j ≥ ℓ

(2)
j ⇐⇒ θ⊤Aj

(
ȳ(1)x(1) − ȳ(2)x(2)

)
≥ 0 and ℓ

(1)
k ≥ ℓ

(2)
k ⇐⇒ θ⊤BjAj

(
ȳ(1)x(1) − ȳ(2)x(2)

)
≥ 0. (62)

Let z := ȳ(1)x(1) − ȳ(2)x(2). Since x(1),x(2) ∼
iid

N (⃗0d, Id), we have that z ∼ N (⃗0d, 2Id).

Using Equation (62) and the definition of z followed by the application of Bayes’ theorem in Equation (61), we obtain:

pj = P
(
θ⊤Ajz ≥ 0

∣∣∣θ⊤BjAjz ≥ 0
)
=

P
(
θ⊤Ajz ≥ 0,θ⊤BjAjz ≥ 0

)
P
(
θ⊤BjAjz ≥ 0

) . (63)

Since z ∼ N (⃗0d, 2Id), P
(
θ⊤BjAjz ≥ 0

)
= 1

2 . Using this above, we get:

pj = 2P
(
θ⊤Ajz ≥ 0,θ⊤BjAjz ≥ 0

)
. (64)

For ease of notation, let u1 = θ⊤Ajz and u2 = θ⊤BjAjz and u =

[
u1

u2

]
. Note u is a multivariate Gaussian random

variable with E[u] =
[
0
0

]
and

E[uu⊤] := Σ = 2

[
∥A⊤

j θ∥22
〈
A⊤

j θ,A
⊤
j B

⊤
j θ
〉〈

A⊤
j θ,A

⊤
j B

⊤
j θ
〉

∥A⊤
j B

⊤
j θ∥22

]
. (65)

Let α1 = ∥A⊤
j θ∥2, α2 = ∥A⊤

j B
⊤
j θ∥2 and

β =
⟨A⊤

j θ,A
⊤
j B

⊤
j θ⟩

∥A⊤
j θ∥2∥A⊤

j B
⊤
j θ∥2

.

18

Understanding the Training Speedup from Sampling with Approximate Losses

In the theorem statement, we shall denote β by βj to indicate the dependence on the layer number j; we drop the subscript j
here for conciseness. With this notation, we have:

Σ = 2

[
α2
1 βα1α2

βα1α2 α2
2

]
. (66)

The pdf of u is therefore:

ϕ(u) =
1

2π
√

det(Σ)
exp

(
− 1

2
u⊤Σ−1u

)
(67)

=
1

4πα1α2

√
1− β2

exp

(
− 1

4(1− β2)

(u2
1

α2
1

− 2βu1u2

α1α2
+

u2
2

α2
2

))
. (68)

Using this in Equation (64), we get:

pj = 2

∫ ∞

0

∫ ∞

0

ϕ(u)du1du2 (69)

=
1

2πα1α2

√
1− β2

∫ ∞

0

∫ ∞

0

exp

(
− 1

4(1− β2)

(u2
1

α2
1

− 2βu1u2

α1α2
+

u2
2

α2
2

))
du1du2 (70)

=
1

2πα1α2

√
1− β2

∫ ∞

0

exp
(
− u2

1

4α2
1

)(∫ ∞

0

exp

(
−
(
u2 −

(
βα2

α1

)
u1

)2
4α2

2(1− β2)

)
du2

)
du1. (71)

With some simple change of variables and some simplification, the above equation becomes:

pj =
1

πα1

∫ ∞

0

exp
(
− u2

1

4α2
1

)(∫ ∞

− βu1

2
√

1−β2α1

exp(−t2)dt

)
du1 (72)

=
1

2
√
πα1

∫ ∞

0

exp
(
− u2

1

4α2
1

)(2√
π

∫ βu1

2
√

1−β2α1

0

exp(−t2)dt+
2√
π

∫ ∞

0

exp(−t2)dt

)
du1 (73)

=
1

2
√
πα1

∫ ∞

0

exp
(
− u2

1

4α2
1

)(
erf
(βu1

2
√

1− β2α1

)
+ lim

y→∞
erf(y)︸ ︷︷ ︸

=1

)
du1 (74)

=
1

2
√
πα1

∫ ∞

0

exp
(
− u2

1

4α2
1

)
erf
(βu1

2
√

1− β2α1

)
du1 +

1

2
√
πα1

∫ ∞

0

exp
(
− u2

1

4α2
1

)
du1︸ ︷︷ ︸

= 1
2 using Fact B.5

(75)

=
1

2
√
πα1

∫ ∞

0

exp
(
− u2

1

4α2
1

)
erf
(βu1

2
√

1− β2α1

)
du1 +

1

2
. (76)

Replacing (u1/α1) by y above gives us:

pj =
1

2
√
π

∫ ∞

0

exp
(
− y2

4

)
erf
(βy

2
√

1− β2

)
dy +

1

2
(77)

=
1

2
√
π

∫ ∞

0

exp
(
− y2

4

)
dy︸ ︷︷ ︸

= 1
2 using Fact B.5

− 1

2
√
π

∫ ∞

0

exp
(
− y2

4

)
erfc

(
βy

2
√

1− β2

)
dy +

1

2
(78)

= 1− 1

2
√
π

∫ ∞

0

exp
(
− y2

4

)
erfc

(
βy

2
√
1− β2

)
dy. (79)

This is the exact final expression for pj .

19

Understanding the Training Speedup from Sampling with Approximate Losses

Using Fact B.4 fact above yields:

pj ≥ 1− 1√
π

∫ ∞

0

exp
(
− y2

4

)
exp

(
− β2y2

8(1− β2)

)
dy (80)

= 1− 1√
π

∫ ∞

0

exp

(
− y2

8

(2− β2

1− β2

))
dy (81)

= 1−

√
2− 2β2

2− β2
. (82)

Equation (82) follows from Fact B.5.

Finally, the theorem statement follows by adding the subscript j to β in Equation (79) and Equation (82) (recall that we
omitted the subscript j earlier for conciseness).

F.1. Proof of Corollary 6.2

Proof. Plugging in βj = 1− τj into the lower bound for pj in Theorem 6.1, we get:

pj ≥ 1−

√
2− 2(1− τj)2

2− (1− τj)2
= 1−

√
2τj(2− τj)

1 + τj(2− τj)
= 1−O(

√
τj),

for τj → 0.

G. Remaining Experimental Details for Section 7.1
For AdamW, we used the following hyper-parameter values: learning rate = 1e-4, ℓ2 weight decay = 0.01, β1 = 0.9 and
β2 = 0.999. The learning rate warmup was over the first 0.2% of total steps followed by linear decay. We used the GELU
activation and a dropout probability of 0.1 on all the layers. The training loss is the sum of the mean masked LM likelihood
and the mean next sentence prediction likelihood.

Table 6. Sampling time of SIFT as a function of early exit layer. For comparison, the full forward and backward propagation times (for
the update) in all the cases is ∼ 3.8 hours and ∼ 7.9 hours, respectively.

SIFT Criterion SIFT Layer # Sampling Time (hrs)
Loss-based 1 0.8452
Loss-based 2 1.1662
Loss-based 3 1.4764
Loss-based 6 2.5901
Loss-based 12 4.5086

Entropy-based 1 0.9121
Entropy-based 2 1.2181
Entropy-based 3 1.5398
Entropy-based 6 2.6195
Entropy-based 12 4.5148

H. Remaining Details for Section 7.2
Modified ResNet architecture: The vanilla ResNet architecture is not really amenable to the early exit idea we used for
BERT. This is because, unlike BERT, the intermediate layer representations of vanilla ResNet are not of the same size as the
final layer representations due to which we cannot use the linear classifier at the head for computing “early loss/entropy” like
we did for BERT. So we slightly modify the vanilla ResNet architecture as follows: the output of our modified architecture
= linear classifier at head (Lf) × final layer’s representation (Rf) + another linear classifier of appropriate size (Li) ×
some intermediate layer’s representation (Ri) instead of just Lf ×Rf which is the output of vanilla ResNet; note that Li

20

Understanding the Training Speedup from Sampling with Approximate Losses

is also trained. To compute the early loss/entropy, we use Li × Ri. For our experiments in Section 7.2, we modify the
vanilla ResNet-50 architecture as described above and the intermediate layer we use is the final output of the second block
consisting of 128 filters. The modification described here for ResNets does indeed use an additional linear classifier (Li)
increasing the number of parameters (compared to the vanilla architecture), but we think it is worthwhile given the amount
of improvement we get with SIFT. Moreover, the number of extra parameters is not too much for datasets like CIFAR-100,
Food-101, etc., wherein the number of classes is of the order of 100.

Other empirical details: Here, the baseline batch size is 125. The gross batch size of SIFT is 250, while the for-
ward/backward batch size of SIFT is 125 (i.e., we perform the SIFT update on top 50% of the samples in a batch just like
Section 7.1). We use the default values of β1 and β2 for AdamW and set the weight decay = 5e− 4.

21

