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Abstract001

Stance detection on social media refers to the002
task of predicting the attitudes (favor, against or003
neutral) of documents toward a specified target.004
Recently, there has been an increasing interest005
in employing Large Language Models (LLMs)006
to detect stance, demonstrating impressive per-007
formance without relying on labeled data. How-008
ever, these models tend to be conservative and009
thus often classify documents as neutral, since010
users typically express their attitudes implic-011
itly through other objects, rather than directly012
mentioning the target. In this paper, we present013
LLMTriStance, a novel LLM-empowered ap-014
proach for stance detection in social media, in-015
tegrating the expanded stance triangle frame-016
work from linguistics. Leveraging pseudo la-017
bels generated by LLMs and nouns extracted018
via syntactic tools, we apply pattern mining019
to actively discover the common objects asso-020
ciated with specific evaluations when express-021
ing attitudes toward a target. These stance ex-022
pression rules are then purified through conflict023
identification and resolving, enabling the gener-024
ation of valuable prompts for LLMs across vari-025
ous cases. This process forms an iterative cycle,026
leading to progressive improvements in accu-027
racy. Experimental results on multiple stance028
detection datasets show that our model outper-029
forms state-of-the-art methods, providing inter-030
pretable object-attitude pairs as rationales for031
its predictions.032

1 Introduction033

With the widespread use of social media, it is sig-034

nificant to understand the public’s perception of035

various social events. Stance detection is the task of036

automatically predicting the attitudes of documents037

toward a specified target (Wen and Hauptmann,038

2023a), classifying them as favor, against and neu-039

tral. Early supervised methods (Mohammad et al.,040

2017; Dey et al., 2018) suffer from the lack of plen-041

tiful training data, as each target requires respective042

annotations. To this end, many zero-shot methods043

(Liang et al., 2021; Zou et al., 2022) were proposed 044

for cross-target stance detection via transfer learn- 045

ing, but the discrepancy among targets severely 046

limits their performances. 047

In the era of Large Language Models (LLMs), 048

researchers have begun to leverage the strong un- 049

derstanding and generative capabilities of prompt- 050

ing LLMs to overcome the labeling issue of stance 051

detection in an unsupervised manner, and achieve 052

superior performance to supervised baselines on 053

specific targets (Zhang et al., 2022; Cruickshank 054

and Ng, 2023). Nevertheless, it exhibits limited ac- 055

curacy on other targets, which can be explained 056

by a fundamental mismatch between the inher- 057

ent mechanism of LLMs and the requirements of 058

stance detection tasks. LLMs are typically trained 059

to maintain neutrality in order to avoid biases (Li 060

and Zhang, 2024), which naturally leads them to 061

classify a document as the incorrect neutral stance, 062

especially on controversial topics such as atheism 063

or feminist movements. Moreover, on social media, 064

the stance is often not expressed with an explicitly 065

mentioned target, but is instead conveyed implic- 066

itly through another object (Liu et al., 2023). This 067

makes it particularly challenging for LLMs to accu- 068

rately infer stance on sensitive topics in the absence 069

of direct contextual cues. 070

Many studies were devoted to enhance the per- 071

formance of LLMs specially for the stance detec- 072

tion task, by expanding the contexts and provid- 073

ing additional information (Cruickshank and Ng, 074

2023; Gatto et al., 2023; Liu et al., 2023; Li et al., 075

2023). However, these approaches neglect the 076

intrinsic complexity of the stance detection task. 077

It is deeply grounded in linguistic and discourse 078

theories (Biber and Finegan, 1988; Du Bois and 079

Kärkkäinen, 2012). In particular, the stance tri- 080

angle framework (Du Bois, 2008) and its exten- 081

sions (Liu et al., 2023) provide a comprehensive 082

understanding of the essential elements involved in 083

stance-taking, such as the stance holder, the explicit 084
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object and the implicit target. These concepts have085

been used to enrich dataset annotations, but have086

not been effectively utilized in the computational087

detection approaches.088

In this paper, we propose a novel approach089

named LLM-empowered Triangle-based Stance090

detection (LLMTriStance), building upon the ex-091

tended stance triangle framework (Liu et al., 2023)092

to enhance both the accuracy and interpretability of093

stance detection. Our method leverages pseudo la-094

bels generated by LLMs and nouns extracted using095

syntactic tools to identify stance-representative ob-096

jects, and mines frequent object-evaluation pairs to097

construct the expression rule of each stance. Then,098

intra-stance and inter-stance conflicts within these099

pairs are detected, enabling the identification of100

stance-indicative objects and contradictory objects.101

This process purifies the rules and further produces102

aligned objects (reflecting same attitudes as the103

specified target) and opposite objects (reflecting104

contrasting attitudes), which are used to generate105

informative prompts, helping the LLM adapt to106

different cases and refine its predictions. Within107

this LLM-empowered paradigm, initially inaccu-108

rate pseudo labels and imprecise stance expression109

rules mutually enhance each other through an itera-110

tive process, progressively improving the model’s111

performance. Experimental results on multiple112

stance detection datasets show that LLMTriStance113

achieves superior performance compared to state-114

of-the-art methods, while also has the ability of115

providing interpretable object-attitude pairs as ra-116

tionales for its predictions.117

In summary, the main contributions include:118

(1) A novel approach of integrating the extended119

stance triangle framework from linguistics120

with prompting LLMs is presented to solve121

the task of stance detection. To the best of122

our knowledge, it is the first successful inter-123

disciplinary work that applies this theoretical124

framework to enhance both the accuracy and125

interpretability of computational stance detec-126

tion in an unsupervised manner.127

(2) Systematic methods are designed to identify128

common objects and their associated attitudes129

as stance expression rules, while also uncov-130

ering noteworthy objects through detecting131

various types of conflicts. This approach fa-132

cilitates more robust and context-aware pre-133

dictions by iteratively refining the LLM’s re-134

sponses through crafted prompts.135

(3) Extensive experiments are conducted to show 136

that our model outperforms state-of-the-art 137

methods in both accuracy and transparency, 138

with interpretable object-attitude pairs for the 139

specified target as prediction rationales. 140

2 Related Work 141

2.1 Computational Stance Detection 142

Early studies on stance detection focused on vari- 143

ous supervised machine learning models, including 144

rule-based methods (Bøhler et al., 2016), feature- 145

based methods (Tutek et al., 2016; Mohammad 146

et al., 2017) and supervised deep learning meth- 147

ods (Wei et al., 2016; Zarrella and Marsh, 2016; 148

Dey et al., 2018). However, since stance labels are 149

target-specific, it is difficult to prepare labeled data 150

in advance for different targets in practice. Addi- 151

tionally, the annotation process is expensive and 152

time-consuming for domain experts. 153

For this reason, weakly supervised approaches 154

(Ebrahimi et al., 2016) were proposed because they 155

only require a small set of seed words and hashtags 156

for each stance. This is much cheaper than labeling 157

documents, but only favor and against stances can 158

be accurately detected (Wei et al., 2019), as it is 159

unlikely to represent the neutral stance with suit- 160

able seeds. Recently, zero-shot stance detection has 161

emerged via transfer learning (Allaway and McK- 162

eown, 2020; Zhao et al., 2023; Liu et al., 2021; 163

Liang et al., 2022a; Wen and Hauptmann, 2023b), 164

building the connections between labeled target 165

data and unseen target data. Nevertheless, the di- 166

verse scenarios of the task severely constrain the 167

transferablity among different targets and datasets, 168

which leads to sub-optimal performances compared 169

to fully supervised methods. 170

2.2 LLMs for Stance Detection 171

As the advent of LLMs for natural language un- 172

derstanding, several work employed LLMs on the 173

stance detection task. Zhang et al. (2022) pro- 174

posed ChatGPT-based direct question-answering 175

(DQA) model without labeled data and achieved 176

better accuracy than supervised models. However, 177

ChatGPT is a closed model with invisible train- 178

ing datasets, so the potential contamination of data 179

makes the evaluation unreliable (Aiyappa et al., 180

2023). To avoid that, Cruickshank and Ng (2023) 181

adopted open-sourced T5-based LLMs to detect 182

stances. They found that using LLMs with ap- 183

propriate instruction prompts can improve perfor- 184
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Figure 1: Expanded stance triangle framework.

mance effectively, but the results remain unsatis-185

factory when handling implicit stance expressions,186

especially for the frequent misidentification of neu-187

tral stances due to the conservative nature of LLMs.188

Following the CoT prompting models which189

gained remarkable performances on complex task190

reasoning (Fei et al., 2023), many studies explore191

to utilize CoT techniques and multiple LLM-based192

agents to realize zero-shot stance detection on so-193

cial media (Zhang et al., 2023; Gatto et al., 2023;194

Taranukhin et al., 2024; Lan et al., 2024). However,195

these methods employ the same prompt for differ-196

ent contexts, which results in unstable performance197

and undermines the generalization of the model198

facing various kinds of targets.199

2.3 Linguistic Theoretical Frameworks for200

Stance Detection201

As a natural language processing task, stance detec-202

tion has been deeply affected by several theoretical203

foundations and frameworks. From a linguistic per-204

spective, prior researches (Biber and Finegan, 1988;205

Du Bois and Kärkkäinen, 2012) have analyzed the206

stance expression through lexical patterns, syntac-207

tic constructions, and affective expressions. One in-208

fluential framework is the Stance Triangle (Du Bois,209

2008), which models stance-taking as a dynamic in-210

teraction between the stance holder, the object and211

other participants, providing a foundation for an-212

alyzing stances in both face-to-face conversations213

and online texts. Building on this, the Expanded214

Stance Triangle Framework (Liu et al., 2023) fur-215

ther characterizes the relationship between explicit216

and implicit objects, enabling more robust analy-217

sis of indirect references and implicit targets for218

social media texts. Although utilized to enrich the219

annotations of the training dataset, which enhances220

the out-of-domain cross-target performance, the221

essential ideas have not been integrated into the222

computational detection model itself. As a result,223

the accuracy improvement is limited at the cost of224

manual data preparation.225

3 Expanded Stance Triangle Framework 226

The Stance Triangle (Du Bois, 2008) is a founda- 227

tional framework for understanding stance-taking 228

in communicative interactions. It consists of three 229

key components: the current stance holder (Sub- 230

ject 1), the object of the stance (Object), and other 231

stance holders in context (Subject 2). The frame- 232

work also captures the dialogic nature of stance- 233

taking through three expression acts between these 234

components: evaluation, positioning, and align- 235

ment. What is more, an important challenge of 236

stance detection on social media is stated in the 237

triangle: the author may express his attitude to- 238

ward a specified target through an indirect ref- 239

erence in another document written by someone 240

else (Path B). For instance, if a sentence from one 241

chapter of the Bible is quoted, it can be deduced 242

that the author is against the target “Atheism”. 243

On this basis, Liu et al. (2023) proposed the 244

Expanded Stance Triangle Framework, introduc- 245

ing two frequently occurring but previsously over- 246

looked concepts: explicit objects and specified ob- 247

jects (implicit targets). That leads to the second 248

challenge: the author may express his attitude 249

toward a specified target by implicitly mention- 250

ing another explicit object (latter part of Paths 251

A&B). For example, when someone says “Are we 252

so desperate in this country to seriously consider 253

a 60+ woman as president?”, the explicit object 254

is “woman”, while the implicit object could be 255

“Hillary Clinton” as the actual target of the expres- 256

sion, assuming the context suggests a connection 257

between woman and Hillary Clinton. 258

Moreover, this expanded framework also defines 259

the relationships between explicit and implicit ob- 260

jects to assist stance reasoning through object rela- 261

tion and label alignment. The former determines 262

whether the stance label of an implicit object (tar- 263

get) can be inferred from the extractive explicit 264

object, while the latter further clarifies whether 265

the attitudes on explicit and implicit objects are 266

aligned, opposite or unrelated. These two rela- 267

tions together serve as crucial clues for detecting 268

the hidden stance toward the specified target. For 269

the example above, the disapproving attitude on 270

“woman” implies against toward Hillary Clinton. 271

Therefore, to accommodate the complexity of 272

social media texts and reduce reliance on extensive 273

human annotations, a stance detection approach 274

requires to go beyond focusing solely on the direct 275

target. Instead, it should actively identify and con- 276
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cretize the two implicit paths related to a specific277

target as prior knowledge, enabling more accurate278

and robust stance classification.279

4 Proposed Approach280

In this section, we first formulate the problem of281

stance detection and provide an overview of our282

proposed approach, LLMTriStance. We then elab-283

orate the three core modules.284

4.1 Problem Formulation285

Given a corpus of unlabeled documents D and a286

target t, the stance detection task aims to assign287

a stance label yd ∈ Y to each document d ∈ D,288

where the stance label set Y consists of three cate-289

gories: favor (F), against (A) and neutral (N).290

4.2 Approach Overview291

To better leverage the expanded stance triangle292

framework and effectively reason about implicit293

stance expressions, we at first design a triangle294

component identification module to recognize the295

key concepts within the stance triangle by the LLM296

for each document. Next, a triangle-based min-297

ing module is devised to discover object-evaluation298

pairs as stance expression rules, followed by detect-299

ing intra-stance and cross-stance conflicts to screen300

the rules and obtain different types of discrimi-301

native objects as clues. Finally, a triangle-based302

reflection module is developed to handle various303

scenarios. It constructs reflection prompts based on304

the object matching, and then inputs these prompts305

along with the original document into the LLM to306

guide stance re-assessment. These three modules307

collectively assist the LLM to refine its predictions308

in an iterative manner. The pseudo-code of the309

whole model and the prompt design are provided310

in Appendices A and B respectively.311

4.3 Triangle Component Identification312

Module313

Although directly attaining satisfactory accuracy314

is challenging, the LLM can generate an initial315

pseudo label ŷ(0)d ∈ Y for each document d as the316

starting point for the detection model:317

ŷ
(0)
d = LLM(Label-prompt(d)) (1)318

The set of documents currently assigned to the319

stance y can be denoted as Dy = { d | ŷd = y }.320

Besides, as illustrated in the expanded stance trian-321

gle framework, there may exist other stance holders322

in the text. The LLM also has the ability to generate 323

the description of them, denoted as hd: 324

hd = LLM(Holder-prompt(d)) (2) 325

Here, the stance holders encompass two types: the 326

current stance holder (Subject 1) and the stance 327

holders in context (Subject 2). In the case of Sub- 328

ject 1, the LLM explains and outputs the origin of 329

the statement based on its content, e.g. The state- 330

ment appears to come from a social media post 331

expressing faith or belief in God. While for Sub- 332

ject 2, the LLM identifies and specifies the actual 333

source of the statement, e.g., The statement comes 334

from the Bible, Matthew 23:12. By uncovering in- 335

direct references to address the first challenge, this 336

text extension lays the foundation for tackling the 337

second challenge: locating implicit mentions. 338

Specifically, we extract nouns based on Part-of- 339

Speech (POS) tagging from both the document d 340

and the stance holder description hd, and combine 341

them to form the set Õd of candidate objects for 342

document d. However, some of these objects may 343

appear incidentally and are not always relevant to 344

the specified target, so should not be regarded as 345

stable objects used to help stance detection. To 346

select category-related objects that are more likely 347

to reflect stance, we mine frequent items from the 348

noun sets of documents labeled with either favor or 349

against stances, denoted as a set of object words W , 350

and the final set of objects Od for each document d 351

is then filtered based on W as follows: 352

W = { w | sup(w,DF ∪DA) ≥ ϵ1}
Od = { o | o ∈ Õd ∩W}

(3) 353

where ϵ1 is the minimum support threshold for this 354

first-step mining among individual objects. 355

Next, the evaluation ed,i representing the attitude 356

on each object od,i ∈ Od (i = 1..|Od|) in the 357

document is generated by the LLM as follows: 358

ed,i = LLM(Evaluation-prompt(d, od,i)) (4) 359

Here, same as the overall attitude toward the 360

specified target, each ed,i can take one of three 361

categorical values: favor (F), against (A) or neutral 362

(N). We treat each document as a transaction and 363

each objet-evaluation pair within it as an item of 364

the transaction. To construct a transaction database 365

T y for each stance y ∈ Y , we aggregate the object- 366

evaluation pairs based on the pseudo labels: 367

T y = { Td | d ∈ Dy }, where

Td = {(od,i, ed,i) | i = 1..|Od|}
(5) 368
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Figure 2: Overview of our approach LLMTriStance.

This stance transaction database serves as the foun-369

dation for the second-step mining of representative370

rules at the pair level, realized in the next module.371

4.4 Triangle-Based Rule Mining Module372

In order to discover the representative rules to ex-373

press favor/against stances respectively, we mine374

frequent pairs of the form p = (o, e) appearing in375

T y for each stance y ∈ {F, A}. These pairs com-376

pose the candidate rule for each stance as follows.377

R̃y = { p | sup(p, T y) ≥ ϵ2} (6)378

where ϵ2 is the minimum support threshold for379

pairs in the stance expression rules.380

However, due to the inaccuracy in pseudo labels381

and the divergence of LLMs, the mined rules may382

contain conflicting pairs. We identify and resolve383

two main types of conflicts with strategies below:384

• Intra-stance conflicts: Within the same385

stance, an object o may be associated with386

both favor and against evaluations. For ex-387

ample, in the rule of favor stance R̃F, pairs388

p1 = (o, F) and p2 = (o, A) might appear389

simultaneously. This conflict suggests the ob-390

ject o itself is able to indicate the stance, i.e.,391

no matter how the object is evaluated, a spe-392

cific stance (favor here) is always conveyed393

toward the target. In such cases, we record394

these stance-indicative objects in Sy for each395

stance y ∈ {F, A} as supplementary rules:396

Sy = {o | ∃p1 = (o, F) ∈ R̃y

∧ ∃p2 = (o, A) ∈ R̃y}
(7)397

Additionally, the associated pairs are removed 398

from the rule of the corresponding stance 399

since the evaluation is considered inactive. 400

• Cross-stance conflicts: Certain pairs may oc- 401

cur frequently in both favor texts and against 402

texts. For instance, a pair p = (o, F) might 403

belong to both RF and RA. This conflict in- 404

dicates that this evaluation is ambiguous and 405

may reflect different attitudes depending on 406

the context, making it difficult for the LLM 407

to distinguish between stances. Therefore, we 408

eliminate such non-discriminative pairs de- 409

noted as Pc = RF ∩RA from both rules. 410

Through the conflict resolution above, the puri- 411

fied ruleRy with only valuable pairs for the stance 412

y ∈ {F, A} is obtained and denoted as: 413

Ry = { p = (o, e) | p ∈ R̃y − P c ∧ o /∈ SF ∪ SA }
(8) 414

Based on the purified rule, we further extract 415

aligned objects Oali and opposite objects Oopp 416

as follows, which correspond to the explicit ob- 417

jects with label alignment described in the second 418

challenge: 419

Oali = {o | (o, F) ∈ RF ∨ (o, A) ∈ RA}
Oopp = {o | (o, A) ∈ RF ∨ (o, F) ∈ RA}

(9) 420

In this way, by fully leveraging the mined stance 421

expression rules, common expressions when talk- 422

ing about a specified target are uncovered, at both 423

the object-evaluation pair level and the object level. 424

These important knowledge summarized from all 425

texts on the target facilitates meaningful reflections 426

by the LLM on each of its decisions. 427
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4.5 Rule-Based Reflection Module428

With the mined results above, we propose a rule-429

based reflection mechanism to adaptively assessing430

the reasonability of the current stance assignment431

for each document. If deemed unreasonable, the432

model provides the LLM with related common ex-433

pressions as inference clues to correct the result.434

This is fulfilled depending on the matching of doc-435

ument contexts and derived rules.436

For each document d, we examine each object437

o ∈ Od extracted from d to determine whether438

it belongs to the set of align objects Oali, op-439

posite objects Oopp, or stance-indicative objects440

Sy (y ∈ {F, A}). If any such object exists, and the441

stance inferred from it by the rule is same as the442

pseudo label, we consider the LLM’s decision is443

well-grounded and no reflection is needed. Oth-444

erwise, we find all matched objects but yielding445

the inference result inconsistent with the pseudo la-446

bel, and generate corresponding reflection prompts447

according to the rule, which compose a complete448

instruction. In cases when none of the extracted449

objects belong to the three defined object sets, we450

identify the most similar object in the document451

to any of the aligned objects and the opposite ob-452

jects respectively based on word embeddings, and453

combine the generated prompts accordingly. The454

pseudo-code of this process containing the prompt455

design, is detailed in Algorithm 2 and put into Ap-456

pendix A due to the page limit.457

Finally, the constructed reflection prompts, to-458

gether with the original document, are fed into the459

LLM to guide the re-determination of the docu-460

ment’s stance as follows:461

ŷ′d = LLM(Reflect-prompt(d)) (10)462

The entire process is conducted iteratively. After463

the new stances of documents are predicted, the464

representative rules can be recalculated, and the465

process is repeated. During each cycle, the rules466

gradually incorporate new stance-aware insights467

based on the stance re-determination, leading to468

refined classification results with each iteration.469

5 Experiments470

5.1 Datasets471

We evaluate our approach on two commonly used472

Twitter datasets: SemEval-2016 Task 6 (Moham-473

mad et al., 2016) and P-Stance (Li et al., 2021).474

Each tweet in these datasets is associated with a tar-475

get and assigned a manually annotated stance label476

toward the target. To pursue a fair comparison with 477

other models, we only use the test data from those 478

datasets designed for supervised stance detection. 479

The dataset statistics are shown in Table 1. 480

Dataset Target Favor Against Neutral

SEM16

DT 148 299 260
HC 163 565 256
FM 268 511 170
LA 167 544 222
A 124 464 145

CC 335 26 203

P-Stance
Biden 3217 4079 -

Sanders 3551 2774 -
Trump 3663 4290 -

Table 1: Statistics of datasets in our experiment.

SemEval-2016 (Mohammad et al., 2016)1 con- 481

sists of six targets, such as Atheism (AT), Climate 482

Change is a real Concern (CC), Feminist Move- 483

ment (FM), Hillary Clinton (HC), Legalization of 484

Abortion (LA) and contains Donald Trump (DT). 485

P-Stance (Li et al., 2021)2 focuses on the po- 486

litical domain and is composed of three targets: 487

Donald Trump (Trump), Joe Biden (Biden) and 488

Bernie Sanders (Sanders). As noted in (Li et al., 489

2021), documents labeled as "None" exhibit low 490

annotation consistency, so following prior work, 491

we exclude these documents from our analysis. 492

5.2 Baselines 493

We compare our model with state-of-the-art meth- 494

ods in stance detection, including Bert-based 495

method: BERT (Devlin et al., 2019) ; Graph- 496

based methods: ASGCN (Zhang et al., 2019) 497

and TPDG (Liang et al., 2021); adversarial learn- 498

ing method: TOAD (Allaway et al., 2021); con- 499

trastive learning methods: JointCL (Liang et al., 500

2022b); LLM-based methods: GPT-3.5 (Zhang 501

et al., 2022), GPT-3.5+COT (Zhang et al., 2023), 502

KASD-ChatGPT (Li et al., 2023) and COLA (Lan 503

et al., 2024). Among them, BERT, ASGCN and 504

TPDG are fully-supervised methods, relying on 505

labeled training data for each target; TOAD and 506

JointCL are zero-shot methods, trained on data 507

from other targets and transferred to the current 508

task without additional training; The LLM-based 509

methods (GPT-3.5, GPT-3.5+COT and COLA) do 510

1https://alt.qcri.org/semeval2016/task6
2https://github.com/chuchun8/PStance
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Method SemEval-2016(%) P-Stance(%)
DT HC FM LA AT CC Avg Trump Biden Sanders Avg

BERT 57.9 61.3 59.0 63.1 60.7 38.8 56.8 67.7 73.1 68.2 69.7
ASGCN 58.7 61.0 58.7 63.2 59.5 40.6 56.9 77.0 78.4 70.8 75.4
TPDG 63.0 73.4 67.3 74.7 64.7 42.3 64.2 76.8 78.1 71.0 75.3
JointCL 50.5 54.8 53.8 49.5 54.5 39.7 50.5 62.0 59.0 73.0 64.7
GPT-3.5 62.5 68.7 44.7 51.5 9.1 31.1 44.6 62.9 80.0 71.5 71.5
GPT-3.5+COT 63.3 70.9 47.7 53.4 13.3 34.0 47.1 63.9 81.2 73.2 72.8
KASD-ChatGPT 64.2 80.9 70.4 63.2 30.5 43.4 58.7 85.1 84.6 80.0 83.2
COLA 68.5 81.7 63.4 71.0 70.8 65.5 70.2 86.6 84.0 79.7 83.4
Qwen2.5-14B 69.7 84.3 73.8 62.4 53.0 67.5 69.6 80.1 86.2 79.0 81.8
LLMTriStance (Qwen2.5-14B) 71.3 84.2 75.9 67.1 66.4 69.2 72.3 81.9 85.9 79.9 82.6
Qwen2.5-32B 66.6 81.4 76.6 68.4 64.0 66.9 70.7 81.2 81.2 77.6 80.0
LLMTriStance (Qwen2.5-32B) 66.8 82.2 77.4 70.4 69.7 68.7 72.5 82.3 82.1 78.3 80.9
DeepSeek-V3 69.3 85.8 72.5 66.5 47.9 81.5 70.6 86.3 86.3 82.6 85.1
LLMTriStance (DeepSeek-V3) 69.4 84.9 77.6 71.9 66.0 84.7 75.8 87.2 87.2 82.6 85.7

Table 2: Overall results on SemEval-2016 and P-Stance datasets. The best scores are marked in bold.

not require any labeled data and leverage the rea-511

soning capabilities of LLMs for direct inference.512

5.3 Experiment Settings513

We use the DeepSeek-V3 model as our LLM back-514

bone and set the temperature to zero for ensuring515

replicable. Additionally, to validate the adaptability516

and effectiveness of our approach, we also employ517

two smaller open-source LLMs, Qwen2.5-14B and518

Qwen2.5- 32B, since relying on APIs of large mod-519

els is not always feasible in real-world scenarios,520

especially when data privacy, latency, or cost con-521

straints are critical concerns. Following previous522

work (Allaway et al., 2021; Lan et al., 2024), we523

calculate the average F1 score of the favor and524

against stances (Favg) as the metric. We report525

both the initial results generated by prompting the526

three LLMs for the first time and the final results527

achieved after applying our proposed method.528

For other baselines, we directly adopt the results529

from previous papers (Lan et al., 2024; Li et al.,530

2023). Since the results of KASD-ChatGPT on DT,531

AT and CC are not included, we reproduced this532

model using the codes provided by the authors3.533

We use spaCy4 to implement POS tagging. For534

the embedding-based object similarity calculation,535

we choose SentenceTransformer5 as the sentence536

encoder. As to the support thresholds in the two-537

step pattern mining, we set ϵ1 = ϵ2 = 0.02,538

while also requiring the occurrence number of each539

mined pair to be greater than 1 to avoid issues with540

too small datasets. Besides, we set the iterative541

number for the main model as 2. The experiments542

3https://github.com/HITSZ-HLT/KA-Stance-Detection
4https://spacy.io/
5https://www.sbert.net/

were conducted using Python 3.10.15 in a CentOS- 543

7 server with 6 NVIDIA A40 GPUs. 544

5.4 Overall Results 545

The overall results are shown in Table 2. We 546

can see that LLMTriStance (DeepSeek-V3) sig- 547

nificantly outperforms the best baseline on both 548

datasets, improving 5.6% and 2.3% over COLA 549

respectively. For individual targets, the advantage 550

is consistent across 8 out of 9 targets except AT, as 551

for this target stances are expressed with scattered 552

objects lacking strong commonality and similarity. 553

Notably, our model is entirely unsupervised 554

yet still surpasses supervised and zero-shot meth- 555

ods, especially in handling the diversity and ambi- 556

guity of stance expressions, which can give the 557

credit to the intrinsic knowledge embedded in 558

LLMs. Furthermore, compared to the poor per- 559

formance of GPT-3.5, GPT-3.5+COT and KASD- 560

ChatGPT on controversial topics such as AT and 561

CC, our approach demonstrates prominent enhance- 562

ment, enabling more accurate differentiation of fa- 563

vor/against stances from the neutral stance. This 564

certifies that while LLMs have the potential to re- 565

duce reliance on labeled data, for challenging and 566

nuanced scenarios, the common stance expressions 567

related to each document need to be actively pro- 568

vided as additional knowledge via prompt design 569

to optimize LLMs’ predictions. 570

Additionally, comparing initial results with those 571

after our model’s refinement, the average accuracy 572

of Qwen2.5-14B, Qwen2.5-32B and DeepSeek- 573

V3 increases on both datasets. This underscores 574

the adaptability and robustness of our rule-based 575

iterative approach, regardless of the choice of 576

LLM backbones, which ranges from the latest 577

DeepSeek-V3 to smaller open-source LLMs. How- 578
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Figure 3: Varied threshold ϵ1. Figure 4: Varied threshold ϵ2. Figure 5: Varied iteration number.

Method FM LA AT
LLMTriStance-opp 76.2 71.3 49.7
LLMTriStance-ind 75.4 69.1 65.1
LLMTriStance-sim 73.9 67.0 45.6
LLMTriStance (DeepSeek-V3) 78.1 71.5 66.0

Table 3: Results of ablation study.

ever, LLMTriStance (DeepSeek-V3) experiences a579

slight performance drop on the HC target. Through580

observations, besides a few labeling errors, this can581

be attributed to the context-dependent correlation582

between popular opposite objects and the target.583

5.5 Ablation Study584

In order to analyze the role of key components in585

our approach, we design three variants in terms586

of the model structure. The first two aim at the587

mined core sets of objects for matching, neglecting588

opposite objects (LLMTriStance-opp) and stance-589

indicative objects (LLMTriStance-ind) respectively.590

The third variant removes the process of identifying591

similar objects when precise matching does not ex-592

ist (LLMTriStance-sim). The ablation experiments593

were conducted on three targets with relatively poor594

performance to highlight the impact of these com-595

ponents, with the results shown in Table 3.596

At first, the performance decline of the first two597

variants confirms the importance of the two ob-598

ject sets in understanding implicit expressions of599

stances. Many objects exhibit a contrasting nature600

with respect to the target , such as god is contrastive601

to atheism and life is contrastive to legalization of602

abortion, while some others like freethinker, inher-603

ently imply a deterministic attitude toward atheism.604

Moreover, eliminating the soft matching of ob-605

jects through similarity computation severely de-606

grades accuracy, particularly for the AT target. This607

suggests that the irregularity of social media texts608

makes perfect word matching challenging, under-609

lining the necessity of leveraging semantic match-610

ing with the help of word embeddings.611

5.6 Hyper-parameter Analysis 612

Support threshold ϵ1 and ϵ2 These two hyper- 613

parameters in Equations 3 and 6 determine how 614

many objects and object-evaluation pairs are re- 615

tained during the two-step mining respectively. We 616

vary the values in the range of [0.01,0.05], and the 617

results are shown in Figures 3 and 4. We observe 618

that the model is not sensitive to these parameters, 619

and nearly optimal accuracy can be achieved when 620

both are set to 0.02. striking a balance between the 621

representativeness and coverage of the mined rules. 622

Iteration number We change this critical num- 623

ber from 0 to 3, and the results shown in Figure 5 624

exhibit a trend of first rising and then stabilizing 625

after about two iterations. This leads to a consis- 626

tent choice, which not only embodies the effect of 627

mutual enhancement of LLMs and mined rules, but 628

also maintains low costs to get good performance. 629

6 Conclusion 630

Stance detection is a difficult NLP task, as expres- 631

sions toward a specific target on social media is 632

highly diverse. Inspired by the expanded stance tri- 633

angle framework from linguistics, which features 634

the concepts of indirect references and implicit 635

mentions through explicit objects, this paper inves- 636

tigates the conservativeness of LLMs in tackling 637

the stance detection task, and explores a novel unsu- 638

pervised paradigm to achieve mutual enhancement 639

of LLMs’ predictions and actively revealed rea- 640

soning rationales. By mining objective-evaluation 641

pairs as target-specifc stance expression rules and 642

identifying conflicts to obtain three types of rep- 643

resentative objects, document-specific guidance is 644

adaptively generated and provided to LLMs for 645

building necessary correlations and facilitating re- 646

flection. The proposed approach LLMTriStance 647

demonstrates superior accuracy over SOTA meth- 648

ods of various types and offers strong interpretabil- 649

ity for understanding targets. For future work, we 650

aim to extend this paradigm to other intricate clas- 651

sification tasks in NLP, such as rumor detection. 652
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7 Limitation653

Our model relies on extracting object-evaluation654

pairs under each stance of a specific target, which655

necessitates a sufficient amount of target-specific656

data for each target with diverse expressions of657

stances. However, this requirement poses a limi-658

tation: when the data for a target lacks diversity659

in terms of indirect references and implicit men-660

tions, it becomes challenging to extract meaningful661

pairs as reasoning rules, potentially leading to sub-662

optimal model performance.663

In addition, our model currently focuses on iden-664

tifying individual object-evaluation pairs but has665

not explored higher-order patterns such as the com-666

binations of different pairs co-occurring in the same667

document. This extension is worth studying for en-668

hancing the model’s ability to capture more compli-669

cated stance expressions toward targets involving670

multiple factors.671
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A Pseudo-code of LLMTriStance871

The pseudo-code of the whole model is shown in872

Algorithm 1, and the sub-procedure of reflection873

prompt generation is presented in Algorithm 2.874

Algorithm 1 LLMTriStance
Require: An unlabeled document corpus D; a

specified target t;
Ensure: The stance label ŷd of each document

d ∈ D.
1: for all document d ∈ D do
2: Obtain initial pseudo label ŷ(0)d and stance

holder description hd with Equations 1 and 2;
3: end for
4: for i = 1 to Iter do
5: for all document d ∈ D do
6: Extract objects and mine frequent ones

Od with Equation 3;
7: Obtain evaluation ed,i for each object

od,i ∈ Od with Equation 4;
8: end for
9: Construct stance transaction database

T y (y ∈ {F, A}) with Equation 5;
10: Mine candidate stance expression rule of

frequent object-evaluation pairs R̃y (y ∈
{F, A}) with Equation 6;

11: Identify intra-stance conflicts and obtain
stance-indicative objects Sy with Equation 7;

12: Identify cross-stance conflicts and obtain
purified ruleRy (y ∈ {F, A}) with Equation 8;

13: Obtain align objects Oali and opposite ob-
jects Oopp with Equation 9;

14: for all document d ∈ D do
15: Obtain the reflection prompt Pd by in-

voking Algorithm 2;
16: if Pd ̸= ∅ then
17: Obtain new pseudo label ŷd (ŷ′d)

with Equation 10;
18: end if
19: end for
20: end for
21: return ŷd;

Algorithm 2 Reflection Prompt Generation

Require: The object-evaluation set of a document
Td (containing the object set Od); the pseudo
label of the document ŷd; the sets of align ob-
jects Oali, opposite objects Oopp, and stance-
indicative objects Sy (y ∈ {F, A}).

Ensure: The reflection prompt Pd.
1: Pd ← ∅;
2: for all object o ∈ Od ∩Oali do
3: ▷ Aligned Object Mismatch
4: if ∃e such that (o, e) ∈ Td and ŷd = e then
5: return ∅;
6: end if
7: Pd ← Pd ◦ “If the document supports o,

the stance is F; If the statement opposes o, the
stance is A”;

8: end for
9: for all object o ∈ Od ∩Oopp do

10: ▷ Opposite Object Mismatch
11: if ∃e such that (o, e) ∈ Td and ŷd ̸= e then
12: return ∅;
13: end if
14: Pd ← Pd ◦ “If the document supports o,

the stance is A; If the statement opposes o, the
stance is F”;

15: end for
16: for all object o ∈ Od ∩ Sy (y ∈ {F, A}) do
17: ▷ Stance-indicative Object Mismatch
18: if ŷd = y then
19: return ∅;
20: end if
21: Pd ← Pd ◦ “If the document talks about o,

the stance tends to be y”;
22: end for
23: if Pd = ∅ then
24: o1 ← argmaxo1∈Od

sim(o1, o2) (o2 ∈
Oali);

25: Pd ← Pd ◦ “If the document supports o1,
the stance is F; If the statement opposes o1, the
stance is A”;

26: o1 ← argmaxo1∈Od
sim(o1, o2) (o2 ∈

Oopp);
27: Pd ← Pd ◦ “If the document supports o1,

the stance is A; If the statement opposes o1, the
stance is F”;

28: end if
29: return Pd;
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B Design of Prompt Texts for LLMs875

Prompt Name Prompt Text
Label-prompt Given the document : {document}.

What is the author’s stance towards "{target}"?
Select answer from "favor, against, or none".
Output Format:
Label: [Your chosen label]

Holder-prompt What is the document comes from?
Only return the answer with one sentence.
Output Format:
Source: [one sentence]

Evaluation-prompt Given the document : {document}.
What is the author’s stance towards "{object}"?
Select answer from "favor, against, or none".
Output Format:
Label: [Your chosen label]

Reflect-prompt Given the document: {document}
What is the author’s stance towards "{target}"?
Instructions: {rule_desc}
Select answer from "favor, against, or none".
Output Format:
Label: [Your chosen label]

876
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