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Summary17

Self-driving cars increasingly rely on deep neural networks to achieve human-like18

driving [1, 2]. However, the opacity of such black-box motion planners makes19

it challenging for the human behind the wheel to accurately anticipate when20

they will fail [3–5], with potentially catastrophic consequences [6–8]. Here, we21

introduce concept-wrapper network (i.e., CW-Net), a method for explaining the22

behavior of black-box motion planners by grounding their reasoning in human-23

interpretable concepts. We deploy CW-Net on a real self-driving car and show24

that the resulting explanations refine the human driver’s mental model of the25

car, allowing them to better predict its behavior and adjust their own behav-26

ior accordingly. Unlike previous work using toy domains or simulations [9–11],27

our study presents the first real-world demonstration of how to build authentic28

autonomous vehicles (AVs) that give interpretable, causally faithful explanations29

for their decisions, without sacrificing performance. We anticipate our method30

could be applied to other safety-critical systems with a human in the loop, such31
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as autonomous drones and robotic surgeons. Overall, our study suggests a path-32

way to explainability for autonomous agents as a whole, which can help make33

them more transparent, their deployment safer, and their usage more ethical.34

Keywords: Self-driving cars, Mental model alignment, Interpretable ML, AI safety35

1 Introduction36

There are hundreds of companies developing autonomous vehicle (AV) technology37

globally [12], promising to revolutionize transportation for everyone. However, the38

complexity of fully driverless autonomy has prompted an industry shift towards39

advanced driver-assistance systems, which require successful communication between40

the AV and human driver. This is made increasingly difficult by the adoption of deep41

neural networks in AVs for planning and decision making, the core cognitive func-42

tions that determine driving behavior [11]. Deep learning allows motion planners to43

learn the nuances of human driving behavior from data, but the implicit nature of44

the learned driving policies makes it challenging to understand the causes of their45

decisions and to predict their behavior.46

A lack of effective communication between the AV and the human driver has47

contributed to multiple high-profile incidents, some resulting in fatalities [6–8], high-48

lighting the urgent need to make deep motion planners interpretable [11]. Previous49

studies have sought to address this need using surveys and simulated scenarios [13–20],50

a human driver emulating the AV [10, 21], or large language models providing post-51

hoc explanations [2]. However, these studies were theoretical, did not provide faithful52

explanations of the AV’s reasoning process, or were only evaluated in simulation. This53

leaves open the question of how to provide understandable and useful explanations for54

the decisions of deep motion planners deployed in real self-driving cars.55

To answer this question, we scale up our recent work on interpretable-by-design56

deep reinforcement learning with prototype-wrapper networks (PW-Nets) [9], using57

motifs from the literature on concept-bottleneck models [22]. Our key proposal is to58

ground the reasoning of black-box motion planners in human-interpretable concepts,59

such as “Approaching stopped vehicle” or “Close to cyclist”. This method is rooted in60

case-based reasoning, a classical artificial intelligence (AI) approach [23–25] inspired61

by cognitive models of human reasoning and memory [26]. It results in causal explana-62

tions, such as “I chose to stop based on recognizing that we are approaching a stopped63

vehicle.”. In our tests, these explanations help align a safety driver’s mental model64

of the AV with its actual internal decision-making process, increasing transparency65

and predictability. Importantly, this approach can be applied to arbitrary pre-trained66

deep neural networks, does not require retraining from scratch, and does not degrade67

performance of the original black-box planner.68

We apply our proposed method, CW-Net (short for concept-wrapper network), to69

a deep motion planner trained to imitate human driving behavior using inverse rein-70

forcement learning [1]. We replace the final (reward) layer of the pretrained deep neural71

network with a concept classifier, followed by a new reward layer. We then jointly train72
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the classifier and the new reward layer to predict scenario types and driving decisions,73

respectively, without modifying the rest of the network. Evaluation on a large-scale74

benchmark [27] confirms that CW-Net is able to classify concepts without compromis-75

ing driving behavior. To study the utility of the explanations, we then deploy CW-Net76

on a real self-driving car [28]. We demonstrate three situations in which the driver has77

an inaccurate mental model of the motion planner, which is subsequently corrected78

by the explanations. This ultimately changes the behavior of the driver, for example,79

by increasing their vigilance in certain situations. Finally, we confirm the statistical80

significance of these results in an online study (N=120). Overall, our work demon-81

strates how explainable AI can help users of advanced autonomous systems better82

understand their behavior in naturalistic settings [29], while also providing insights83

that can potentially accelerate the development and refinement of such systems.84

2 Black-box motion planner85

We focus on the motion planning module of the AV stack (Figure 1a), which takes86

as input a scene context s and outputs a trajectory τ̂ . s is a symbolic object-oriented87

representation of the scene computed by the perception module, while τ̂ is the tra-88

jectory that the subsequent controller module should follow. We use a deep neural89

network architecture consisting of a scene encoder H(s) → h and a trajectory gen-90

erator G(s) → {τ1 . . . τk}, followed by a scene-trajectory encoder E(h, τi) → zi and91

a final reward layer R(zi) → ri (Figure 1b). H computes a scene embedding h and92

G computes a set of k candidate trajectories {τ1 . . . τk}. Those are combined in E to93

compute an embedding zi for each trajectory τi. Finally, R computes an estimated94

reward ri for each trajectory τi, quantifying how human-like it is. In other words, ri95

is higher when τi is more similar to how a human would drive in this situation.96

During inference, the trajectory with highest reward is selected on each iteration:97

τ̂ = τî such that î = argmax
i∈1,...,k

ri, ri = R(E(h, τi))

We train the planner on 80 hours of human expert driving using inverse98

reinforcement learning [1].99

3 Planning over human-friendly concepts100

To make the planner more interpretable, we replace R with a concept classifier101

C(zi) → ci, followed by a new reward layer R′(ci) → r′i (Figure 1c). The concept clas-102

sifier C computes a logit vector ci which is passed through a softmax and/or sigmoid103

layer which assigns probabilities to different human-interpretable concepts. Since R′
104

computes trajectory rewards from ci, the final decisions are based solely on these con-105

cept assignments and hence they constitute a causally faithful explanation. The rest106

of the network remains the same.107

Similarly to the black-box planner, trajectories are selected according to:108

τ̂ = τî such that î = argmax
i∈1,...,k

r′i, r′i = R′(C(E(h, τi)))
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Fig. 1 Planner architecture. a. Autonomous vehicle stack. Sensory input is processed by the
perception module to generate scene context s. The planning module processes s to compute trajec-
tory τ̂ , which is followed by the control module. b. Black-box motion planner. s is fed to trajectory
generator G, which produces candidate trajectories {τ1 . . . τk}, and scene encoder H, which produces
a scene embedding h. These are fed into encoder E, which produces scene-trajectory embeddings zi
for each τi, which are in turn fed into the reward layer R. R computes a reward ri for each trajectory.
The model is trained to output higher rewards for trajectories closer to the the ground-truth human
trajectories. c. CW-Net. Identical to b., except zi is fed to a concept classifier C, which produces
concept assignments ci. These are fed to a new reward layer R′ to produce rewards r′i. In parallel, ci
is processed to generate the explanations. The reward layer is trained to prefer the same trajectories
as the black-box planner, while the concept layer is supervised with ground-truth scenario labels. The
weights of the faded components are frozen during training. CLOSE, “Close to another vehicle”. ASV,
“Approaching stopped vehicle”. BIKE, “Close to cyclist”.

We train CW-Net to jointly predict concept labels and mimic the driving deci-109

sions of the black-box planner. Specifically, ci is supervised with multinomial labels110

corresponding to types of scenarios, such as “Approaching stopped vehicle” or “Close111

to cyclist”. This ensures that CW-Net assigns a unique interpretable concept to each112

unit in ci. At the same time, r′i is supervised with trajectories selected by the black-113

box planner using a cross-entropy loss. During training, the rest of the deep neural114

network (H, G, and E) is kept frozen (see Section 8.2 for more details).115
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4 Evaluation in simulation116

As a baseline, we first evaluated the black-box planner (without CW-Net) using closed-117

loop simulations on the nuPlan dataset [27] (Table S1). Overall, the results were118

competitive with the top submissions to the nuPlan challenge, although performance119

was slightly lacking when starting from a stop (see Section 8.5). This suggests that120

there is room for improvement and, importantly, opportunities to study explanations121

of undesirable behavior.122

We then evaluated the driving performance of CW-Net wrapped around the black-123

box planner (Table S1). The results were equivalent, with less than 1% difference across124

all metrics, confirming our method did not degrade driving performance. We also125

evaluated concept classification on held-out datasets (Table S2/S3). Mean accuracy126

was 54%, with 23% precision, 77% recall, and an F1 score of 0.31 (see Section 8.3).127

Overall, these results indicate that CW-Net can be used to ground the decision making128

of high-performance deep motion planners in human-interpretable concepts without129

sacrificing driving performance.130

5 Explanations in real-world deployment131

To evaluate the usefulness of the explanations in naturalistic settings [29], we deployed132

CW-Net on a real AV using the Lab2Car wrapper [28]. All tests were performed on133

a closed course or private lot with an experienced safety driver. Figure 2 shows the134

experimental setup inside the AV. We next detail three notable situations in which135

the explanations proved beneficial.136

5.1 Unexpected stopping for nearby vehicles137

We observed that the AV repeatedly came to a stop shortly before a pedestrian138

pickup/drop-off zone (Figure 3a). The driver’s intuition was that the car stopped139

because of the pickup/drop-off zone, but the explanations indicated that the planner140

Safety Driver EngineerGUI ExplanationsPlanned Trajectory (in green)

Fig. 2 Deployment setup. A safety driver, a support engineer, and a researcher were present.
The safety driver drove the AV manually between road tests, engaged self-driving mode at the start
of each test, monitored AV performance during the test, and took over in case of unsafe driving. The
support engineer deployed CW-Net and set scenario destinations. The researcher directed testing.
The dashboard included a map with overlaid object detections (s) from the perception module and
the output trajectory (τ̂). Explanations cî from CW-Net were shown as percentages for easier inter-
pretation [30].
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Fig. 3 Results: a. The CLOSE concept activated when the car got stuck next to parked vehicles.
The driver initially thought the pick-up/drop-off area was the cause, but the explanation suggested
that it was the nearby vehicles. When the driver engaged self-driving away from the park vehicles,
activation of the CLOSE concept decreased and the AV started moving again, counter to driver’s initial
mental model and consistent with the explanations. Across tests, CLOSE correlated with speed and the
intercept accurately predicted this event. b. The ASV concept activated when the car stopped next
to a traffic cone. The driver initially thought the cone was the cause, but the explanation suggested
that the AV was hallucinating a stopped vehicle. When we removed the cone in a counterfactual
test, the same phantom braking and concept activation occurred. Across tests, ASV correlated with
reductions in speed when spiking above 0.5 probability. c. The BIKE concept failed to activate in
our first round of tests with a cyclist, but the car always stopped safely for the cyclist. Responding
to the explanation, the driver engaged self-driving from slower speeds in a second round of tests.
Follow-up analyses revealed that the AV stopped for the cyclist due to backup safety mechanisms
unrelated to CW-Net, which indicates that the driver’s increased level of caution was appropriate.
These three scenarios validate the driver’s updated mental models in response to the explanations. a-
c. Findings were confirmed in an online study which replicated the events from the road. After seeing
the explanations, subjects showed less agreement with the driver’s initial mental model, compared to
a control group. Standard error of the mean and 3-second rolling averages is shown in relevant plots.

stopped because it detected that it was “Close to another vehicle” (the CLOSE concept).141

To test this hypothesis, the driver manually moved the car farther from the parked142

cars. At this point, the probability of CLOSE decreased and the AV began moving143

again, thus confirming the alternative hypothesis. A full timeline of events is detailed144

in Figure 3a. We fitted the intercept of the CLOSE probability against the speed of the145

AV globally and found it accurately predicts stopping and starting for this event.1146

1This situation used a variant of our architecture detailed in Figure S1.
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5.2 Hallucinating a stopped vehicle ahead147

At another location, the AV would reliably come to a stop next to a traffic cone148

(Figure 3b). The driver’s initial mental model was that the cone was responsible for149

the phantom brake. However, the “Approaching stopped vehicle” (ASV) concept peaked150

shortly before the car stopped. This suggested an alternative hypothesis, that the151

planner matched the current situation with training scenarios labeled ASV, which in152

turn promotes stopping behavior associated with such scenarios. As a counterfactual153

test, the cone was removed. The AV exhibited the same stopping behavior at the154

same location, along with similar ASV probability and speed profiles (L2 similarities155

of 1.12 and 1.6 between the respective time-warped profiles, compared to an average156

L2 > 200 for random events), thus confirming the alternative hypothesis. Note that157

although there was no vehicle in front of the AV, the explanation is causally faithful158

to the underlying motion planner and explains why it stopped (namely, because it159

incorrectly detected a stopped vehicle). Figure 3b illustrates a global analysis of ASV,160

showing it to be a powerful predictor of braking.161

5.3 Reacting safely to cyclist162

Finally, we tested the ability of the AV to stop safely for cyclists (Figure 3c). For each163

test, the driver engaged self-driving mode while approaching a cyclist. The driver was164

instructed to engage self-driving from a speed at which they felt safe, since this deter-165

mines the subsequent speed of the AV. During the initial tests, the AV reliably stopped166

for the cyclist. However, the BIKE concept maintained a low probability throughout167

each test (< 1%), indicating that CW-Net was failing to detect the cyclist. Over time,168

the driver became aware of the concept reading and gradually increased their cau-169

tion by initiating self-driving from slower speeds. A post-hoc analysis revealed that,170

although the perception system detected the cyclist, the motion planner failed to take171

it into account due to a lack of appropriate input features for cyclists. As a result, it172

chose unsafe trajectories which would have collided with the cyclist. In reality, it was173

the built-in rule-based systems of the AV that overruled the motion planner and forced174

the AV to stop. This indicates that the increased caution dictated by the driver’s175

updated mental model was warranted.176

6 Confirmation study177

We conducted an online study (N=120) to confirm the statistical significance of our178

results. Following standard procedures in deployment-based research [21, 31], we sim-179

ulated the sequence of key events from the three situations described previously. We180

designed a between-subjects study to assess the effect of explanations on the mental181

model of subjects in the driver’s position. For each situation, subjects in the exper-182

imental group received the CW-Net explanation, while subjects in the control group183

received a generic explanation to balance cognitive load (see Figure S4 and Section 8.5184

for details). Subjects then rated to what extent they agreed with the driver’s incorrect185

initial mental model. Across all situations, the experimental group gave significantly186

lower ratings than the control group (Figure 3, right column; mean result: 3.37±1.63 v.187
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5.46±0.89; t-test p < 0.001; Cohen’s d=1.58), indicating that the explanations support188

mental model alignment across the population.189

7 Conclusion190

Our work shows, for the first time, how explainable deep learning can provide useful191

explanations for the decisions of self-driving cars in the real world. CW-Net achieves192

this by grounding the reasoning of a pretrained black-box motion planner in human-193

interpretable concepts corresponding to types of scenario. By revealing otherwise194

inaccessible information about the decision-making process of the motion planner in195

real time, CW-Net helps align the mental model of the human driver with the machine196

driver. This allows the human driver to better anticipate and account for mistakes of197

the AV, ultimately resulting in safer driving. Mental model alignment could addition-198

ally build trust and understanding with passengers of driverless AVs by helping them199

anticipate the AV’s decisions. This could be particularly beneficial when AV behavior200

deviates from typical human behavior, such as when driving conservatively or getting201

stuck. Additionally, the explanations provided by CW-Net can help test engineers pro-202

vide more precise feedback to the research scientists and engineers working on model203

improvement. This would be especially relevant for experimental motion planners that204

are still under development, such as the one used in our study.205

CW-Net extends the original PW-Net [9], which reasons over specific scenario206

prototypes, to general scenario types. In addition to increasing robustness, reasoning207

over types has the added benefit of highlighting which parts of the training distribution208

influence behavior at each point in time. This information can be used by researchers209

for model improvement. For example, the inability of CW-Net to detect the BIKE210

concept suggests there may not be enough training scenarios with cyclists, or that the211

focal loss used was ineffective [32], leading to poor performance around cyclists. At212

the same time, relying on types forgoes some of the benefits of using prototypes. For213

example, CW-Net can explain that it is stopping because the current scene is similar214

to ASV scenarios in the training data, but it cannot explain why it believes so [33, 34].215

This suggests a promising avenue of future research: much like humans, who rely on216

both exemplar-based and rule-based reasoning [35, 36], machines that reason over217

both prototypes and types could combine the strengths of both approaches, enhancing218

interpretability while maintaining flexibility in decision making.219

Many safety-critical systems involving human-robot interaction require real-time220

explanations, including AI wingmen, drone navigation systems, and robotic surgeons.221

Similarly to AVs, many of these applications increasingly rely on deep learning and222

have a long tail of failure cases, with potentially catastrophic outcomes. This creates223

an ethical imperative to better understand how they work, so the humans in the224

loop can intervene when necessary. The success of CW-Net suggests that explainable225

deep learning may prove essential for meeting the safety and regulatory standards for226

deploying sophisticated safety-critical agents in the real world.227
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Matthieu Cord. Octet: Object-aware counterfactual explanations. In Proceed-292

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,293

pages 15062–15071, 2023.294

[21] Tobias Schneider, Joana Hois, Alischa Rosenstein, Sandra Metzl, Ansgar RS Ger-295

licher, Sabiha Ghellal, and Steve Love. Don’t fail me! the level 5 autonomous296

driving information dilemma regarding transparency and user experience. In297

Proceedings of the 28th International Conference on Intelligent User Interfaces,298

pages 540–552, 2023.299

10



[22] Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck300

models. In The Eleventh International Conference on Learning Representations,301

2023.302

[23] David B Leake. Case-based reasoning: Experiences, lessons and future directions.303

MIT press, 1996.304

[24] Mark T Keane and Eoin M Kenny. How case-based reasoning explains neural net-305

works: A theoretical analysis of xai using post-hoc explanation-by-example from306

a survey of ann-cbr twin-systems. In Case-Based Reasoning Research and Devel-307

opment: 27th International Conference, ICCBR 2019, Otzenhausen, Germany,308

September 8–12, 2019, Proceedings 27, pages 155–171. Springer, 2019.309

[25] Frode Sørmo, Jörg Cassens, and Agnar Aamodt. Explanation in case-based310

reasoning–perspectives and goals. Artificial Intelligence Review, 24:109–143, 2005.311

[26] Roger C Schank. Dynamic memory: A theory of reminding and learning in312

computers and people. Cambridge University Press, 1983.313

[27] Napat Karnchanachari, Dimitris Geromichalos, Kok Seang Tan, Nanxiang314

Li, Christopher Eriksen, Shakiba Yaghoubi, Noushin Mehdipour, Gianmarco315

Bernasconi, Whye Kit Fong, Yiluan Guo, and Holger Caesar. Towards learning-316

based planning: The nuplan benchmark for real-world autonomous driving. In317

2024 IEEE International Conference on Robotics and Automation (ICRA), pages318

629–636, 2024.319

[28] Marc Heim, Francisco Suarez-Ruiz, Ishraq Bhuiyan, Bruno Brito, and Momchil S320

Tomov. Lab2car: A versatile wrapper for deploying experimental planners in321

complex real-world environments. arXiv preprint arXiv:2409.09523, 2024.322

[29] Mica R Endsley. Autonomous driving systems: A preliminary naturalistic study323

of the tesla model s. Journal of Cognitive Engineering and Decision Making,324

11(3):225–238, 2017.325

[30] Gerd Gigerenzer and Ulrich Hoffrage. How to improve bayesian reasoning without326

instruction: frequency formats. Psychological review, 102(4):684, 1995.327

[31] Federal Aviation Administration. Flight test guide for certification of part 23328

airplanes. Advisory Circular AC No. 23-8C, U.S. Department of Transportation,329

11 2011. Initiated By: ACE-100.330

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.331

Focal loss for dense object detection. In Proceedings of the IEEE international332

conference on computer vision, pages 2980–2988, 2017.333

[33] Cynthia Rudin. Stop explaining black box machine learning models for high stakes334

decisions and use interpretable models instead. Nature machine intelligence,335

11



1(5):206–215, 2019.336

[34] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and337

Jonathan K Su. This looks like that: deep learning for interpretable image338

recognition. Advances in neural information processing systems, 32, 2019.339

[35] Edward E Smith and Steven A Sloman. Similarity-versus rule-based categoriza-340

tion. Memory & cognition, 22(4):377–386, 1994.341

[36] Tyler Davis, Bradley C Love, and Alison R Preston. Learning the exception to the342

rule: Model-based fmri reveals specialized representations for surprising category343

members. Cerebral Cortex, 22(2):260–273, 2012.344

12



8 Methods345

8.1 Architecture346

The black-box planner uses a modified version of the DriveIRL architecture347

(Figure 1b) [1]. For the trajectory generator G, we use a heuristic generator that348

produces 143 jerk-optimal trajectories to anchor waypoints along the route. For the349

scene encoder H, we use the hierarchical vector transformer (HiVT) [2] pretrained for350

multi-agent motion prediction. In addition to the scene embedding h, this produces351

an additional 3 trajectories for the AV, for a total of k = 146 candidate trajectories. In352

the scene-trajectory encoder E, trajectories are encoded using a recurrent neural net-353

work (RNN) and then fed jointly with the scene embedding into a transformer layer354

which produces the scene-trajectory embeddings zi. The reward model R is a multi-355

layer perceptron (MLP). In CW-Net (Figure 1c), the classifier C and the new reward356

model R′ are MLPs.357

8.2 Training358

In all tests, we use one of two datasets, either with 500,000 (and 8 concept labels),359

or 3 million data (with 10 concept labels), for a full list of the concept labels and360

their meaning see Section 8.5. Each datum was associated with an additional 141361

trajectories, thus giving between 70.5-423 million training data, each with multiple362

concept labels.363

Our algorithm assumes access to the original dataset used to train the black-box364

planner, along with annotated human-understandable concept labels for each of these365

data points. The annotations can be multi-label, meaning that one datum can be366

associated with as many concepts as desired or useful.367

During training, the parameters of the trajectory generator G, the scene encoder368

H, and the scene-trajectory encoder E are frozen, and only the concept classifier C and369

the new reward model R′ are trainable. Two separate losses are trained simultaneously.370

First, a loss is used to train C to predict the correct concept label(s). In our setting, this371

loss combines cross-entropy with binary cross-entropy for different concepts, depending372

on the semantics of the corresponding scenario types. For example, in Dataset 1, we use373

cross-entropy to model the steering concepts of the car (LEFT, RIGHT, and STRAIGHT),374

and the speed concepts (STOPPED, SLOW), while also using binary cross-entropy to375

predict the presence of other concepts such as ASV, INTERSECTION, and CLOSE. These376

losses are then averaged into one:377

Lconcept =
1

2k

k∑
i=1

(
1

MCCE

MCCE∑
j=1

LCCE(ci,j , ĉi,j) +
1

MBCE

MBCE∑
l=1

LBCE(ci,l, ĉi,l)

)

where MCCE is the number of concepts modeled using categorical cross-entropy (e.g.,378

steering and speed), and MBCE is the number of concepts modeled using binary cross-379

entropy (e.g., presence of features like ASV, INTERSECTION, and CLOSE). ci,j and ĉi,j380

represent the true and predicted labels for the j-th concept under CCE for the i-381

th data point, while ci,l and ĉi,l represent the true and predicted labels for the l-th382
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concept under BCE for the i-th data point. On Dataset 2, we take a different approach383

and model everything, including the speed concepts (STOPPED, SLOW, and FAST), with384

binary cross-entropy. These parameters can be tuned to fit the task at hand.385

Secondly, a cross-entropy loss is also used to train the network to predict the correct386

trajectory, which we define as the original trajectory chosen by the black-box planner.387

Both losses are averaged:388

Ltotal =
1

2
(Lconcept + Ltrajectory)

A focal loss [3] is applied to counteract data imbalances, just as in the original DriveIRL389

planner [1]. Computationally, our networks were trained on a large distributed setup390

using PyTorch Lightning.391

8.3 Concept separation392

When adding interpretability modules post hoc as we have, there is the possibility393

that the network will not have learned to separate the concepts of interest, and thus394

fail to be able to predict them accurately [4]. In fact, we observed this in Motional’s395

experimental prototype which we tested (see Table S3), when certain concepts such as396

CLOSE and PEDESTRIAN had poor precision and high recall, relatively speaking. There397

are two important points to note here. First, the better trained and more sophisticated398

an architecture is, the more it naturally learns to separate an impressive number of399

concepts in an unsupervised manner [5, 6] (often in the millions), so this is unlikely to400

be an issue for most companies with the flagship models in the future. Secondly, even401

if the car has not learned to separate the concepts of e.g. red traffic lights compared to402

green ones, this would likely highlight the reason why the car would fail to stop (or go)403

in such a situation, so from an explainability point of view, it would never be an issue,404

in fact it is potentially very useful information, which we showed in the main paper.405

8.4 Alternative architecture406

Alongside our primary causal architecture illustrated in Figure 1, we also developed407

an alternative which gave post-hoc justifications for the car’s actions (Figure S1).408

Specifically, we simply left the black-box planner to drive the car as normal. However,409

we trained a concept classifier to work in parallel it to the black-box planner, which410

classified the scene-trajectory embeddings zi, and displayed these predictions while411

the car drove, similarly to the causal architecture. This approach is beneficial because412

of its relative simplicity and accessibility, although the drawback is that it may be less413

faithful to the model’s reasoning process, as the concept classifications are not directly414

used by the model to rank state-trajectory pairs. However, there is ample evidence415

that such explanations are often faithful and capable [7, 8], so we include both as an416

option and demonstrate the utility of both.417

8.5 Concept details418

Dataset 1 concepts were as follows:419
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• Steering : A classification of either left/right/straight concepts, trained with cross420

entropy loss. The concept of e.g. left represents training data where the car was421

turning left.422

• Speed : A classification of either slow/stopped concepts, trained with cross entropy423

loss. The concept of e.g. stopped represents training data where the car was stopped.424

• ASV (Approaching stopped vehicle): Trained with binary cross entropy. The concept425

represents data in which the car was approaching stopped vehicles.426

• Intersection: Trained with binary cross entropy. The concept represents data in427

which the car was at an intersection.428

• Close: Trained with binary cross entropy. The concept represents data in which the429

car was within 3 Meters of another vehicle.430

Dataset 2 had the following concepts:431

• Slow : Trained with binary cross entropy. The concept represents data in which the432

car was driving 1-2 meters per second.433

• Stopped : Trained with binary cross entropy. The concept represents data in which434

the car was stationary.435

• Fast : Trained with binary cross entropy. The concept represents data in which the436

car was driving faster than 2 meters per second.437

• Stop Sign: Trained with binary cross entropy. The concept represents data in which438

the car was close to a stop sign.439

• Traffic Light : Trained with binary cross entropy. The concept represents data in440

which the car was close to a traffic light.441

• Intersection: Trained with binary cross entropy. The concept represents data in442

which the car was at an intersection.443

• Pedestrian: Trained with binary cross entropy. The concept represents data in which444

the car was close to a pedestrian.445

• Following : Trained with binary cross entropy. The concept represents data in which446

the car was following another vehicle.447

• Bike: Trained with binary cross entropy. The concept represents data in which the448

car was close to a cyclist.449

• PUDO (Pedestrian Pickup-Drop-off): Trained with binary cross entropy. The450

concept represents data in which the car was in a pedestrian pickup drop-off zone.451

Evaluation452

In this section we give much greater detail about various aspects related to the eval-453

uation in the main paper. In our tests we deployed a highly experimental AV from454

Motional, partly because these datasets had the necessary annotations, but also to455

maximize the number of potentially surprising events which would require explanation456

during the deployment. Our evaluation encompassed (1) a simulation phase with con-457

cept accuracy verification, (2) deployment of the AV itself, and (3) a final confirmation458

study. All experiments involving users obtained IRB approval.459
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Simulation Results460

We tested our CW-Net model across the entire nuPlan validation dataset to see how461

its performance compared to the original black-box algorithm it was trained from. The462

dataset represents the world’s first large-scale planning benchmark for autonomous463

driving, and measures how close a trained AV is to a human expert in L2 distance.464

In the black-box model, when following the lane or decelerating from high speed,465

the planner was able to make progress along the route (> 93% of human driving466

distance), while avoiding collisions (> 90% collision-free) and staying close to the467

ground-truth human expert trajectory (< 1 m displacement at 5 s). Performance was468

worse when starting from a stop, with less progress (74% of human driving distance),469

more collisions (81% collision-free), and greater deviation from the human expert (1.2470

m displacement at 5 s). Overall, the results showed our variation of the AV architecture471

had less than 0.01 L2 difference to the original black-box agent on average across all472

measurements, and not meaningfully different, showing that it is possible to train our473

more interpretable model in Figure 1 without sacrificing performance. The full results474

are in Table S1. For the concept accuracy verification, we used 5% holdout data from475

our training datasets, the results are given in Table S2 and Table S3. Across both476

datasets, the mean accuracy was 0.54, precision 0.23, recall 0.77, and F1 Score 0.31.477

Overall, the results suggested that the prototype AV did not separate all concepts478

equally well, which suits our purposes as the explanations will highlight when and479

how this happens, and how it relates to driving performance, thus helping with mental480

model refinement (see Section 8.3). Notable results include an F1 score of 0.82 for481

detecting the SLOW concept, and < 0.00 for detecting the BIKE concept, showing the482

latter is perhaps not well encoded or understood by the car.483

Distribution Comparison484

In this section we demonstrate how the distribution of concept activations differs based485

on the deployment environment. The data here focuses on two deployments of the486

same model in (1) a large carpark with many tight lanes and obstacles, and (2) a large487

open court test track with the opportunity to drive long, straight distances at a higher488

speed. This serves somewhat as validation for the concept accuracy in a deployment489

setting. The data shown in Figure S2 is the full concept activation explanations across490

the entire deployments when the AV was in self-driving mode only (i.e., all data when491

the safety driver was in control in manual mode was deleted for this analysis). The492

difference between deployments is perhaps best highlighted with how the concepts for493

RIGHT and LEFT have generally higher activations in the parking lot compared to the494

large track, which involved less turning in general. Other notable differences can be495

seen in SLOW and the AV’s speed, in which the parking lot had generally lower values496

in both. Moreover, the STRAIGHT concept has a higher mass on the large track, again497

reflecting the actual environment around it. Lastly, ASV was also higher on the large498

track, which was caused by issues with the trajectory generator (see Section 8.5).499

Overall, relative to each other, the classification of concepts reasonably represent the500

environment around them and give evidence our system performs fittingly in various501

environments.502
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An important note is how the AV had a large bias towards predicting the CLOSE503

and STOP concepts, which indicates it often conflates the environment around it with504

training data in which it was close to other vehicles and had to stop. Having said505

this, the AV also had a poor ability to predict SLOW correctly, but recall there is no506

“fast” concept here, so this concept simply refers to the AV moving. We believe this507

demonstrates the debugging (i.e., model improvement) power of our network as it508

likely accounts for the AV’s general tendency to drive slowly in our tests, but this509

would require a long validation process to authenticate and is separate to the scope510

of this paper which is concerned with mental model alignment.511

User Study512

This section serves to give much greater detail about our user study in the main paper.513

We crowd sourced responses (N=120) simulating the events in the car to see if they514

correlated with the driver’s mental model during the events, which would allow us to515

further extrapolate the results. Note, this is the same principle used in the U.S. Air516

Force called “spot checking”, and similar research in academia [9, 10]. The point is517

to acquire additional evidence that results would generalize to a larger population,518

without the expense of repeating our tests in an expensive deployment environment519

(which was infeasible). Hence, we designed a between subjects study (N=120) to test520

for the effect of concept-based explanations on the accuracy of a human’s mental521

model of the car. Both groups were shown the real videos of the three events, and522

asked to rate on a Likert Scale (1-7) how much they agreed with the driver’s initial523

mental model of the event. Ideally, after viewing the explanation, they should begin524

to disagree with the initial mental model (which was proven wrong in our deployment525

study) and move towards the more correct one based on our causal architecture. We526

avoided asking how much they agreed with the driver’s new mental model, because527

(1) it is best practice to minimize the number of metrics in a user study to avoid p-528

hacking, and (2) the explanations which essentially state this new mental model may529

lead users to simply agree with such a metric (e.g., one question states that the AV530

detects a stopped vehicle ahead, so asking people how much they agreed that the AV531

stopped due it detecting a stopped vehicle ahead was judged to be too leading).532

Initially, subjects were given a disclaimer, introduction to the task, and a simple533

practice question before the main study. As an attention check we presented a video of534

the car driving straight, and asked the question “I think the car drove straight because535

the detected the LEFT concept”. As a second attention check we also measured how536

long users spent on each question, if they took less than 10 seconds, they would be537

excluded. A final survey was also given to subjects which used questions extrapolated538

from our post-hoc interviews with 4 safety-drivers and 1 engineer, but they are not539

relevant to this paper and not reported.540

Materials541

In total there were five videos shown to users in the main materials, three situations542

of the car acting in unusual ways (see Figure S4), and one attention check (a final543

question was removed post hoc, see discussion later). One group was given the car’s544

parsed explanation as outlined in the main paper, and the control group a replacement545
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explanation stating “the car learned to drive from human expert demonstrations”. This546

was the only modification in the user study between groups, thus serving to isolate547

the concept-based explanation as the confounding factor of interest. After seeing the548

explanation, subjects were presented with a statement of the driver’s initial (wrong)549

mental model, and asked how much they agreed with it on a 7-point Likert scale.550

Subjects551

The users were recruited via Prolific.com, and purposefully selected to be 18+, resi-552

dents of the U.S., native English speakers, and a 50/50 splits of men and women. U.S.553

citizens were purposefully chosen due to the car commonly being shown to drive on554

the right side of the road. All subjects were paid a rate of 12 USD per hour. The study555

obtained IRB approval from MIT.556

Metrics557

The measure of interest is Mann–Whitney U test between groups on all three questions.558

As another metric, we also averaged each respondent’s scores across all questions and559

performed a t-test between groups as other work has done [11]. Both were two-sided560

tests. These two approaches allow us to analyze these data on a per-question basis,561

but also from a global perspective.562

Results563

Only one user failed the attention checks and was excluded. Figure S3 (right) dis-564

plays the results of individual questions, and Figure S3 (left) the results with each565

user’s questions averaged. Overall, the experimental group’s mean was significantly566

lower than the control (3.37±1.63 v. 5.46±0.89; t-test p < 0.001; t(df)=-8.5; Cohen’s567

d=1.58), lending strong evidence our results in deployment would generalize at scale.568

When considering each individual question, a large effect of explanation is observed for569

the scenario with ASV and the traffic cone (Mann-Whitney U test: p < 0.001; Cohen’s570

d: 1.04), the CLOSE concept (Mann-Whitney U test: p < 0.001; Cohen’s d: 0.83), and571

the BIKE (Mann-Whitney U test: p < 0.001; Cohen’s d: 1.39).572

Lastly, note that there was also an additional 4th situation involving phantom573

braking and the ASV concept, the data from this was not reported as further analy-574

sis showed the car broke not because of the ASV concept being activated, but rather575

because of a failure in the trajectory generator itself. It could be argued that the576

explanation pointed us towards this discovery (which it ultimately did), but we nev-577

ertheless opted to omit it. As with the other three questions in the study, this showed578

statistical significance in favor of the explanation group.579

8.6 Data Availability580

The data used for plotting in the paper’s figures is available at https://drive.google.581

com/drive/folders/1Lz6OGGi2gFeBOnC3ddyzFJMztqUTC Am?usp=sharing. The582

user study data are also available at the same address. The concept classification583

and ranker classification data is not available, along with the model weights, videos,584

and nuPlan results, due to data privacy and intellectual property issues. However,585
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any person may reproduce similar results by training their own model on the nuPlan586

dataset available online, and following the instructions in the paper, although they587

will need to label the data with concepts of interest. Motional and MIT are happy to588

assist any research effort to do this.589

8.7 Code Availability590

CW-Net code for the models used is available at https://drive.google.com/drive/591

folders/1Lz6OGGi2gFeBOnC3ddyzFJMztqUTC Am?usp=sharing. Due to Motional592

intellectual property issues, the code for training the AV used in the paper cannot be593

made available. However, code to implement and train CW-Net architectures will be594

available at https://github.com/EoinKenny/CW Net, which can be used to train an595

interpretable agent in any domain as long as concept labels are present, this will help596

reproduce similar results in any domain. The full user survey will also be available to597

reproduce the user study in the same repo, but without the videos.598
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Fig. S1 Parallel architecture: This is identical to the black-box planner (Figure 1b), except the
scene-trajectory embeddings are fed to the concept classifier C in parallel to the (original) reward
model R. These concept classifications are then converted to probabilities (x100 to convert to per-
centages) and presented to the user.

Scenario Metric Our Model Original

nominal lane
follow (968)

Average L2 error 4.202058 4.200189
Average L2 error 3s 0.401251 0.400440
Average L2 error 5s 0.780286 0.778495
Average L2 error 10s 2.141165 2.136004
Progress along expert route 0.939595 0.939382
No at fault collisions 0.909091 0.909091

decelerating from
high speed
scenarios (1099)

Average L2 error 3.139028 3.144618
Average L2 error 3s 0.533925 0.533905
Average L2 error 5s 0.930384 0.929786
Average L2 error 10s 2.056039 2.053457
Progress along expert route 0.990187 0.990213
No at fault collisions 0.945405 0.942675
Deceleration time difference 0.443201 0.439381

start accelerating
from stationary
scenarios (919)

Average L2 error 8.919248 9.019697
Average L2 error 3s 0.426693 0.425365
Average L2 error 5s 1.244357 1.249598
Average L2 error 10s 4.611888 4.673006
Progress along expert route 0.740881 0.736437
No at fault collisions 0.807399 0.803047
Start from stationary max speed difference 0.239367 0.241552
Start from stationary time delay 3.477263 3.494675

Table S1 Full nuPlan results which compares the performance of our main model used in
testing against the original black-box IRL agent.
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Accuracy Precision Recall F1 Score

Steering 0.62 (cross entropy)
Speed 0.83 (cross entropy)
Approaching stopped vechicle 0.55 0.2 0.89 0.33
Intersection 0.51 0.42 0.61 0.49
CLOSE to another vechicle 0.45 0.1 0.81 0.17

Ranker Accuracy 0.94

Table S2 Concept performance for Dataset 1 for CW-Net

Accuracy Precision Recall F1 Score

Slow 0.83 0.73 0.93 0.82
Stopped 0.48 0.16 0.81 0.27
Fast 0.68 0.49 0.86 0.63
Stop sign 0.43 0.03 0.84 0.05
Traffic light 0.39 0.16 0.62 0.25
Intersection 0.42 0.20 0.65 0.31
Pedestrian 0.44 0.03 0.84 0.07
Following 0.43 0.02 0.84 0.04
BIKE 0.21 0.00 0.42 0.00
PUDO 0.58 0.30 0.86 0.44

Ranker Accuracy 0.95

Table S3 Concept performance for dataset 1 with CW-Net.
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Fig. S2 A comparison of the concept predictions for the same model deployed in a large test track
with wide open, long straight roads, and a smaller parking lot with many turns.

Fig. S3 Statistical results for user study: (left) Each individual question.(right). Averaged across
all questions
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Fig. S4 Survey questions for the experimental and control group.
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