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Abstract

Detecting anomalies such as an incorrect combination of objects or deviations in their posi-
tions is a challenging problem in unsupervised anomaly detection (AD). Since conventional
AD methods mainly focus on local patterns of normal images, they struggle with detecting
logical anomalies that appear in the global patterns. To effectively detect these challeng-
ing logical anomalies, we introduce LADMIM (Logical Anomaly Detection with Masked
Image Modeling), a novel unsupervised AD framework that harnesses the power of masked
image modeling and discrete representation learning. Our core insight is that predicting
the missing region forces the model to learn the long-range dependencies between patches.
Specifically, we formulate AD as a mask completion task, which predicts the distribution
of discrete latents in the masked region. As a distribution of discrete latents is invariant
to the low-level variance in the pixel space, the model can desirably focus on the logical
dependencies in the image, which improves accuracy in the logical AD. We evaluate the
AD performance on five benchmarks and show that our approach achieves compatible per-
formance without any pre-trained segmentation models. We also conduct comprehensive
experiments to reveal the key factors that influence logical AD performance.

1 Introduction

Automated visual inspection plays a key role in industrial applications, ensuring quality and reliability while
reducing human errors and improving efficiency. Anomaly detection (AD) has recently attracted considerable
attention as a promising approach to building high-performance visual inspection systems (Bergmann et al.
2019; [Bao et al., [2024)). At the heart of AD lies the philosophy that anomalies can be detected by capturing
the concept of normality. Since anomalies are characterized by their rare occurrence and diversity, an
unsupervised AD that relies solely on normal samples without requiring any anomalies has become a central
paradigm in the field of AD (Liu et al., 2024)).

In industrial images, defects can be classified into structural and logical anomalies. Structural anomalies refer
to deviations from normal in the local features of the image, such as scratches or stains on manufactured
products. On the other hand, logical anomalies are deviations from normal in the global features of the
image, such as misalignment of objects or incorrect combinations of objects. Logical anomalies differ from
those in normal data regarding the relationships between local features. They are more likely to occur in
problem settings where multiple objects are presented in the image. Traditional benchmarks for industrial
A, such as MVTec AD (Bergmann et al.,[2019) and VisA (Zou et al.|[2022), have mainly addressed structural
anomalies in images containing a single object. In contrast, the newly released benchmark MVTec LOCO
(Bergmann et all |2022) focuses on problems where multiple objects are presented in the image, allowing
the evaluation of detection performance for both structural and logical anomalies. In practical applications,
detecting logical anomalies is often required; therefore, methods must be developed to detect both logical
and structural anomalies.

Current mainstream approaches use deep convolutional neural networks to extract useful features to detect
anomalies. Such features are robust against noise, object rotation, and translation and provide rich repre-
sentations of normal data (Cohen & Hoshen, [2020; [Roth et al., [2021; Batzner et al., |2023). In particular,
representations acquired through supervised pre-training on large, curated datasets like ImageNet have high
discriminative power against anomalies without any fine-tuning (Cohen & Hoshen, [2020; [Roth et al., 2021)).



Under review as submission to TMLR

With the use of such pre-trained models, there has been a significant improvement in detection performance
for structural anomalies (Roth et al., 2021} [Yu et al.| [2021; |Lu et al.|2023)). On the other hand, these meth-
ods may have lower detection performance for logical anomalies (Bergmann et al., [2022). Logical anomalies
may not appear in the local features themselves but in the relationships between local features, and current
mainstream approaches consider only local features (Bergmann et al., 2022).

In this study, we introduce self-supervised learning on normal images using Masked Image Modeling (MIM)
to learn the relationships among local features of normal images. In MIM, part of the input image is masked,
and the model is trained to restore the features in the masked region. To restore the masked region, it is
necessary to understand the relationships among features in normal images. Therefore, MIM can effectively
learn dependencies among local features. However, when simply predicting the pixel-level image features
of the masked region, there is a problem of blurred reconstruction. This issue fundamentally arises from
the uncertainty of feature positions in the masked region. To mitigate this problem, we propose to predict
the probability distribution of discrete latent variables in the masked region. The probability distribution
of discrete latent variables represents the composition of visual features within the masked region and is
invariant to the positions of the features.

This study aims to improve detection performance for both logical and structural anomalies with masked
image modeling. The contributions of this study are as follows:

e We propose a novel framework, LADMIM, which has a ViT-based architecture and leverages MIM
and Hierarchical Vector Quantized Transformer (HVQ-Trans) (Lu et all|2023) for detecting logical
and structural anomalies, respectively. LADMIM mitigates the issue of positional uncertainty in
AD by predicting the probability distribution of discrete latent variables for the target.

o We verify our framework on MVTecLOCO (Bergmann et all 2022) and MVTecAD (Bergmann
et al.l 2019)), achieving state-of-the-art detection accuracy compared with conventional MIM-based
methods.

e Since MIM-based AD essentially avoids the need for tuning information bottlenecks, we demonstrate
that our proposed LADMIM is amore robust approach compared with conventional non-MIM-based
AD (Fig. , thereby LADMIM can be easily adapted to more complex logical AD problems.

Our proposed framework represents a departure from existing paradigms, paving the way for a new line of
research that has the potential to establish a more robust and unified framework through future developments.

2 Related works

2.1 Unsupervised Logical Anomaly Detection

Logical anomalies are deviations in logical relationships of objects in normal images, which are different
from traditional structural anomalies such as cracks and bends (Bergmann et al., [2022)). Detecting such
logical anomalies requires both object-centric representation and global-context modeling, which makes it
challenging. Previous unsupervised AD literatures attempt to improve detection accuracy by enhancing
either of these two aspects or both. Current predominant approaches to detecting logical anomalies are
categorized into (a) reconstruction-based, (b) memorybank-based. In Fig. |1} we provide a visualization of
key concepts of these approaches.

Reconstruction-based AD [Batzner et al.| (2023)); [Yao et al.| (2023; 2024)); |Sugawara & Imamura) (2024); |[Lu
et al.| (2023)) learns to reconstruct only normal images using autoencoders (Fig. ) Because of the poor
generalizability of the model for reconstructing anomalous features that did not appear during training, these
anomalous features are ideally reconstructed to corresponding normal features, enabling reconstruction error
as a reasonable anomaly scoring metric. Although these reconstruction-based AD methods can detect certain
logical anomalies by using a spatial bottleneck structure, they inevitably increase the reconstruction error
for normal images [Batzner et al|(2023); [Lu et al. (2023)). Additionally, in the absence of a low-dimensional
information bottleneck, the model tends to learn an identity mapping, which conveys little to no information
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Figure 1: Conceptual comparison of different approaches in AD.

about anomalies while being globally optimal with respect to the reconstruction objective. This shortcoming
of reconstruction-based methods is known as the Identity-shortcut (ID-shortcut) [Batzner et al| (2023);

rat] (2023).

Memorybank-based methods|Liu et al.| (2023bl); Kim et al.| (2024]); Roth et al.| (2021]) store features of normal
images in a storage called a memorybank. During inference, these methods detect anomalies by measuring
the distance between the input image’s features and those stored in the memorybank. Some methods attempt
to detect logical anomalies with memorybank and achieve competitive accuracy on public benchmarks
let al.| (2023b)); Kim et al.| (2024). However, these lines of work require pre-trained segmentation networks to
extract object-centric representations, thereby constraining their applicability and generalization capability.

2.2 Anomaly Detection with Masked Image Modeling

Masked Image Modeling (MIM) is a self-supervised learning framework that involves masking a portion
of the input image and learning to predict the features of the masked region from the visible regions.
MIM-based AD (Fig. )is a promising approach for learning the logical relationships between objects and
features in normal images. However, conventional methods (Huang et al. [2023a; |Li et al. [2020} |Yan et al.
[2021}; [Schwartz et al., |2024; [Yao et al., 2022; [Yang et all [2023) struggle with low detection performance
compared to other reconstruction-based and memorybank-based methods. A critical challenge of MIM is
the uncertainty in masked regions, which leads to undesirable prediction errors in normal regions. To mitigate
this issue, we propose predicting the probability distribution of discrete latents in the masked regions, which is
invariant to the order of the latents. Additionally, we employ different models to detect logical and structural
anomalies, respectively. In summary, our proposed AD framework can ideally capture the challenging logical
relationship of normal images, which in turn contributes to more accurate detection for both logical and
structural anomalies.

3 Methodology

3.1 Overview of the Proposed Framework

An overview of the proposed framework is shown in Fig. [2 The proposed framework detects structural and
logical anomalies using different mechanisms. We call this framework for both logical and structural AD
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Figure 2: Overview of our framework. Our framework consists of two main components: HVQ-Trans
and ViT trained with the MIM objective.

Logical Anomaly Detection with Masked Image Modeling (LADMIM). Structural anomalies are detected
using the reconstruction error of features by HVQ-Trans , which also serves as the tokenizer.
Logical anomalies are detected through the prediction error of the probability distribution predicted by
the ViT-based model, which is self-supervised via MIM using the probability distribution of discrete latent
variables from HVQ-Trans as the prediction target. The anomaly scores calculated by each mechanism are
then integrated to compute the final anomaly score of the input image. The normality or anomalousity of
an image is determined by applying an appropriate threshold to the anomaly score.

Compared to reconstruction-based methods Batzner et al.| (2023)); [Yao et al. (2023; [2024), the proposed
framework does not suffer from the ID-shortcut of the input because identity mapping results in large
reconstruction errors in the masked region. As discussed in Section [£:4] since the ID-shortcut does not occur
in our framework, LADMIM can be scaled to a larger model.

Anomalies are detected through the interaction of more abstract visual features by running predictions in
the discrete latent space. Moreover, when no masking is applied to the input image, the proposed framework
can be considered a distillation-based method, where HVQ-Trans acts as the teacher and ViT as the student.
Masking the input image in the proposed framework promotes learning of long-range dependencies among
features in normal images, compared to distillation-based methods Batzner et al.| (2023); |Guo et al.| (2023);
|Zhang et al|(2023). Compared to memory bank-based methods Liu et al| (2023b); Kim et al| (2024), the
proposed framework shares similarities with PSAD and ComAD [Liu et al.| (2023b) in using
the area distribution of objects to represent normal features. While these methods Kim et al.| (2024);
require the separate preparation of a segmentation model, the proposed framework utilizes
the discrete latent variables of HVQ-Trans, acquired through fully unsupervised learning via the image
reconstruction task.

The novelty of the proposed framework lies in (i) the use of prediction errors by MIM for detecting logical
anomalies and (ii) targeting the probability distribution of discrete latent variables as the prediction target
of MIM. These strategies boost AD performance and outperform most conventional logical AD methods.
Although there is still a performance gap with the SOTA methods, we shed light on the future potential of
AD using MIM.

3.2 HVQ-Trans

Hierarchical Vector Quantized Transformer (HVQ-Trans) [Lu et al| (2023) is a reconstruction-based AD
method incorporating a hierarchical vector quantization mechanism. HVQ-Trans learns a reconstruction
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model in the feature space of pre-trained models such as EfficientNet . The reconstruction
model consists of a 4-layer encoder-decoder Vision Transformer (ViT), where the output of each encoder
layer is quantized, and the decoder reconstructs the features using the quantized latent variables from the
encoder. The quantization of latent variables alleviates the ID shortcut problem specific to reconstruction
models, achieving SoTA performance among reconstruction-based methods on MVTecAD [Bergmann et al.|
as of 2023. Additionally, hierarchical quantization in the HVQ-Trans increases codebook usage, which
is important for subsequent MIM ViT training (2023)). This is a reason why we choose HVQ-Trans
as a source of discrete latents among various VQ methods [van den Oord et al.| (2017); [Peng et al (2022));
[Liu et al] (20234); [Huang et al] (2023b)).

In this study, HVQ-Trans is used to detect structural anomalies and simultaneously serves as a tokenizer
for detecting logical anomalies. In other words, the discrete latent variables—internal representations of
HVQ-Trans—are used as a teacher signal for models that detect logical anomalies.

From here, we describe the detection of structural anomalies using HVQ-Trans. First, the entire set of
normal images is expressed as follows:

M
Dy = {x0} ", x e ROXHXW, (1)
i=1
Here, C, H, and W represent the number of channels, height, and width of the images, respectively. M
represents the number of training samples (i.e., the number of normal images). Assuming the backbone
network is f4, the feature extraction of a normal image x( € Dy is expressed as follows:

h° = fqb(x(i)), h° c Réoxhxw (2)

Here, dy, h, and w represent the dimensions, height, and width of the feature map, respectively. HVQ-Trans
reconstructs this feature map h® using an encoder-decoder ViT. The feature map, flattened along the spatial
dimensions, is denoted as h? ¢ RAoxN , where N = hw. The ViT encoder is constructed by stacking L
layers of standard Transformer Blocks [Vaswani et al| (2017)), and the features transformed by the I-th layer
block gfj) are expressed as h! = g(lﬁ(hl_l) € R™N_ Here, d is the embedding dimension of the ViT. The ViT
decoder is similarly constructed by stacking L layers of Transformer Blocks. The input to the Transformer
Blocks of the decoder is the quantized output of each encoder layer. Assuming that the I-th layer’s learnable
discrete latent variable set (codebook) is B! = {b} }X | the quantization of the final layer features of the
encoder is expressed as follows:

L L
z" =by,

where i = argmin|[¢* (h*) — b]L||§, bl € R%. (3)
J
The output of each encoder layer [ < L is quantized using the output of the encoder’s final layer obtained
from Eq. [3] as follows:

- bé,
where i = argmin||¢' ([h'~',2]) — bé||§, le{l,...,L—1}. (4)
J

Here, [] denotes the concatenation of two vectors, and ¥ (-) is an embedding map to the space of the same
dimension as the discrete latent variables for each layer. In each layer’s decoder block, the corresponding
layer’s discrete latent variable is used as input, and the Multi-head Self-Attention (MSA) and Multi-head
Cross-Attention (MCA) mechanisms [Vaswani et al| (2017) are sequentially applied. Given the quantized
latent variable z' of the I-th encoder layer, the output d’ of the I-th decoder layer is computed using the
output d'~! of the previous decoder layer as follows:

q' =MSA (=W, d" ' k=W,d" ' v=W,d ) +d,
d' = MCA (q:W;ql,k:W%zl,V:WLZZ)+ql7 ()
d' = FFN (d') +d".
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MSA(-) and MCA(-) represent multi-head self-attention and multi-head cross-attention mechanisms, respec-
tively, which take query, key, and value as inputs. FEN(-) represents a feed-forward network consisting of
two fully connected layers and an activation function. In the multi-head cross-attention mechanism of the
decoder, the output of the previous decoder layer is transformed by the weighted sum of the discrete latent
variables z!. This process replaces the anomalous features in q' with discrete latent variables, which are
prototypes of normal features acquired during training, thereby increasing the reconstruction error in the
anomalous areas.

During training, the input h® of the encoder is reconstructed using the output d” of the L-th layer of the
decoder. That is:

fl() -7 (dL) , fIO € Rdoxhxw’ (6)

where I'(+) represents a mapping to the same embedding space as h®. The loss function used for training
HVQ-Trans is defined as follows:

Luvaq & [h® — h°|3
L
£ [l () — bR+ ' — s (B3] 7)
=1

Here, sg(-) represents a stop-gradient operation that prevents gradients from being backpropagated. Since
the quantization of latent variables involves non-differentiable operations, following |Adiban et al. (2022);
Bengio et al|(2013); van den Oord et al.| (2017)), this study estimates the gradient using the straight-through
estimator (i.e., the gradient with respect to the encoder output is replaced by the gradient with respect to
the quantized encoder features).

At inference time, the anomaly score is calculated using the Mean Squared Error (MSE) between h® and
h°. Since vector quantization replaces continuous abnormal latents with discrete normal codes, abnormal
patches in h° are ideally reconstructed to corresponding normal patches. Thus, MSE is a reasonable scoring
metric to detect abnormal patches. On the other hand, HVQ-Trans is a method for detecting structural
anomalies and employs a patch-wise bottleneck structure. Therefore, it is difficult for HVQ-Trans to detect
logical anomalies that require long-range feature dependencies. Next, we describe our proposed method,
which focuses on detecting logical anomalies.

3.3 ViT for Detecting Logical Anomalies

We use a ViT-based architecture to detect logical anomalies with MIM, which contrasts with previous CNN-
based MIM approaches Huang et al.| (2023a)); |Li et al.| (2020); |Yan et al|(2021). A standard ViT
is trained on normal images using MIM, and during inference, it detects anomalies based on the
prediction error of features in the masked regions. It uses the probability distribution of the discrete latent
variables of HVQ-Trans for prediction. This approach mitigates the positional uncertainty of objects in the
masked areas and prevents the model’s predictions from being dominated by low-level features.

First, for a normal image x, the feature map obtained from the common Backbone Network f; with HVQ-
Trans is flattened to obtain h € R%>*Y_ When masking a proportion r (0 < r < 1) of the N feature
tokens, the positions of the masked tokens are M C [N], |M| = rN. At this time, the input to ViT is
{vi,va,...,vN,p} and:

h;, ifi¢ M )
vl_{e £ie M forie{l,...,N}. (8)
Here, e and p are learnable vectors initialized as zero vectors. ViT is composed of L’ layers of ordinary
Transformer blocks. p aggregates information from visible patch tokens via self-attention and is then used
to predict the distribution of discrete latents in the masked region. The output p’ of the final layer of ViT
corresponding to the prediction token is linearly mapped to predict the probability distribution of the I-th
layer discrete latent variable of HVQ-Trans:
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P! = MIMHead (p’) = Softmax (Linear (p')), (9)

where P! € R represents the probability distribution over the discrete latent variables to be predicted,
which is calculated from the internal representation of HVQ-Trans. By quantizing the output of the I-th
layer of the encoder in HVQ-Trans, the set of the indices of discrete latent variables o' € RV ,ol( iy € (K]
is obtained. We call these obtained indices of discrete latent variables a code prediction map. The code

prediction map from the [-th layer of the HVQ-Trans is calculated as follows:

ofy = argmin 19! (0", 2']) — b3 (10)

The probability distribution of the discrete latent variables to be predicted is derived from ol = {ol(i) |ie
M}, which is restricted to the masked region:

Q= Histogram(ol(i)), Q' e RE. (11)

For each layer | € {1,2, ..., L}, with the equations |§| and the loss of ViT is defined as follows:

L K
Ly défzz P~ QL. (12)

{=1n=1

ViT is optimized with equation [L2| as the objective function. By predicting features in masked regions, ViT
learns the relationships among features in normal images. To mitigate the position uncertainty problem
in masked regions, we employ a histogram matching loss, which is invariant to the permutation of discrete
latent variables. During inference, if an area containing anomalous features not encountered during training
is masked, the prediction error for that area increases.

3.4 Training and Inference Procedure

The proposed method is trained in two stages: (i) training HVQ-Trans, and (ii) training ViT with MIM.
HVQ-Trans is trained to minimize the loss Lxvq through a reconstruction task in the feature space. After
training HVQ-Trans, ViT is trained to minimize the loss Ly During ViT training, the weights of HVQ-
Trans are frozen and are not updated.

During inference, the reconstruction error of HVQ-Trans is evaluated using the MSE, and the average MSE
across the entire image is taken as the HVQ-Trans anomaly score Svq for that image. Additionally, multiple
random block-wise masks are generated, and the prediction error of the probability distribution for each mask
is evaluated using the L1 distance, with the average being taken as the ViT anomaly score Syn. The overall
anomaly score of the proposed method is obtained by summing the standardized Suvq and Smrm, denoted
as Syvq and Sy, respectively.

4 Experiments

4.1 Dataset and Evaluation Metrics

MVTecLOCO Bergmann et al.| (2022)) is a dataset focusing on five types of industrial products, containing
more than 300 normal images for each type and more than 3600 images in total. This dataset contains
five different AD tasks: BreakfastBox (Box), JuiceBottle (Bottle), Pushpins (Pins), ScrewBag (Bag), and
SplicingConnectors (Cable). It primarily addresses the problem setting where multiple objects are included
in an image and allows for the evaluation of detection performance for both structural and logical anomalies.
Annotations (ground truth) of anomalous regions at the pixel level are provided for both logical and structural
anomalies. The details of the dataset statistics are presented in Table [I] We use the training set for model
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training, the validation set for optimizing hyperparameters such as the number of epochs, and the test
set for evaluation. We also evaluate detection performance on MVTecAD Bergmann et al| (2019)), which
is a popular benchmark for structural anomalies. MVTecAD contains over 5000 images divided into 15
categories, including objects and textures.

We employ image-level AUROC [%)] as an evaluation metric to fairly compare detection performance with
other methods. AUROC is calculated by plotting the false positive rate on the horizontal axis and the true
positive rate on the vertical axis, dynamically adjusting the anomaly threshold 7 to draw the curve. AUROC
reaches its maximum when the true positive rate is 1 and the false positive rate is 0 at a certain threshold
7%, and it becomes 0.5 when using a random predictor.

4.2 Implementation Details

The resolution of the input images is uniformly set to 224 x 224 [px]. The backbone network used in HVQ-
Trans and ViT is the Patch Description Network (PDN) Batzner et al.| (2023]). Average pooling with a kernel
size of 2 is applied to the features obtained from PDN, resulting in a feature map hg € R384x24x24 The
number of layers L in HVQ-Trans is set to 4, the codebook size is 512, and the codebook dimension is 64.
AdamW [Loshchilov & Hutter| (2017)) is used as the optimizer, with a weight decay of le-4. HVQ-Trans was
trained for 1000 epochs. Training took approximately 6 hours using a CPU (Intel Core i9-14900KF), 32 GB
of memory, and a GPU (NVIDIA GeForce RTX 4090 24 GB).

The number of layers L’ in the ViT is set to 4, and a block-wise masking strategy is adopted Bao et al.
(2021)); |[Peng et al.| (2022). AdamW |Loshchilov & Hutter| (2017)) is used as the optimizer, with a weight decay
of 1 x 1075, The ViT was trained for 500 epochs, taking about 2 hours per class.

4.3 Main Experimental Results

In Table[2] we report the image-level AUROC on MVTecLOCO for our proposed method and other anomaly
detection methods in the one-class setting. We show the average and standard deviation of the perfor-
mance of models trained with five different random seeds. Table [2] shows the effectiveness of the proposed
method compared to other anomaly detection approaches, as well as the performance improvements over
existing MIM-based methods. The proposed method demonstrates performance surpassing memorybank-
based methods (PatchCore Roth et al| (2021), ComAD |Liu et al. (2023b))) and conventional MIM-based
methods (SSM [Huang et al.|(2023a)), SMAE [Yao et al.|(2022), MAEDAY |Schwartz et al.| (2024))). While the
proposed method surpasses GCAD [Bergmann et al.| (2022]), there exists a 3.6 % performance gap between
our method and one of the current SoTA methods, EfficientAD Batzner et al.| (2023)), in terms of overall
AUROC. However, the main limitation of EfficientAD is that it relies on the information bottleneck in the
autoencoder to detect logical anomalies. Since the information of anomalous regions decays through the
information bottleneck, logical anomalies can be detected by calculating the reconstruction error. However,
an information bottleneck that is too tight (i.e., the features have smaller dimensionality) leads to significant
errors in normal regions. One must determine the proper dimensionality of features through time-consuming
hyperparameter tuning. Similarly, this also applies to PUAD |Sugawara & Imamural (2024), which is an
extension of EfficientAD.

In Table[3] we also report the detection performance compared with current SoTA logical anomaly detection
approaches Hsieh & Lai (2024); [Kim et al.| (2024); [Sugawara & Imamural (2024); Batzner et al.| (2023);

Table 1: Dataset statistics of MVTecLOCO across different categories. The number of test images is
grouped as normal/logical /structural.

# Images Box Bag Pins Cable Bottle Total
Training 351 360 372 354 335 1772
Validation 62 60 69 59 54 304

Test 102/83/90 122/137/82 138/91/81 119/108/85 94/142/94 575/561/432
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Table 2: Quantitative results on the MVTecLOCO. We report image-level AUROC[%)] in the single-class
setting. The best results among conventional and MIM-based methods are highlighted in bold. Notably,
our approach significantly improves AD accuracy on MIM-based approaches and surpasses conventional AD
methods on average detection accuracy, narrowing the gap between current SoTA methods (EAD, PUAD).

Conventional MIM SoTA
Category PC ComAD GCAD SSM SMAE MDY Ours EAD PUAD
Logical
Box 74.8 94.7 87.0 32.9 74.3 74.0 86.2 (£0.760) 76.1 92.4
Bottle 93.9 90.9 100.0 59.8 96.8 57.8 99.0 (£0.200) 96.3 99.1
Pins 63.6 89.0 97.5 64.2 73.9 43.7 73.5 (£0.695) 98.8 91.7
Bag 57.8 79.7 56.0 60.2 58.0 47.2 58.1 (£3.783) 58.3 77.8
Cable 84.4 91.9 89.7 50.3 76.6 65.0 88.0 (+0.836) 94.2 92.3
Average 74.0 87.7 86.0 53.5 75.9 57.6 80.9 (£0.692) 84.7 90.7
Structural
Box 80.1 70.0 79.2 32.6 71.7 54.7 81.0 (:I:O 755) 76.1 75.3
Bottle 98.5 80.5 99.9 59.8 89.9 53.4 98.8 (+0.286) 96.3 99.2
Pins 87.9 93.8 95.1 51.5 70.9 85.1 85.9 (£1.521) 98.8 98.5
Bag 92.0 65.0 87.1 56.2 63.0 49.2 86.7 (£0.817) 58.3 92.0
Cable 88.0 63.8 98.3 53.0 64.5 59.2 90.0 (£1.132) 94.2 93.9
Average 89.3 74.6 91.9 50.6 72.0 60.3 88.5 (£0.516) 84.7 91.8
Overall 81.7 81.2 83.4 52.1 74.0 59.0 84.7 (+0.561) 88.3 91.2

Jinjin Zhang| (2025)); [Fucka et al.| (2025). For a single-class setting, SoTA methods exhibit significantly
better performance than our approach. However, they rely on superv1s1on for fine- tumng the segmentatlon
model or on hand-crafted prompt engineering ; e S
information. Therefore, we primarily focus on comparisons with PUAD Sugawara & Imamura (2024) and
EfficientAD [Batzner et al.| (2023). In these comparisons, our proposed framework achieves comparable
performance to PUAD in the multi-class settinﬂ with only a 1.2% difference in image-level AUROC. Since
changing the problem from single-class to multi-class makes the task more difficult and requires the model
to be more expressive, methods that rely on information bottlenecks tend to experience a drop in detection
performance. The performance of EfficientAD and PUAD significantly drops by about 5%.

Because our proposed method does not rely on an information bottleneck, it can be scaled to various model
sizes. This suggests that the MIM-based approach has the potential to serve as a foundational model for
general-purpose anomaly detection. LADMIM and EfficientAD have different feature dimensions. For a fair
comparison, in Fig. [3] we also show how detection performance changes as the feature dimension of the
model increases in a multi-class setting. As the feature dimension increases, our proposed method shows
improved detection performance for logical anomalies, while Efficient AD does not exhibit the same trend.

Table [4] presents the detection performance on the MVTecAD dataset. Our proposed method achieves
the best performance compared to conventional MIM-based approaches. While there is a performance gap
between our proposed LADMIM and current SoTA methods, it is important to note that our objective is to
detect both logical and structural anomalies, rather than focusing solely on structural anomalies.

The proposed method uses HVQ-Trans to detect structural anomalies and ViT to detect logical anoma-
lies. However, it remains unclear which specific types of anomalies each model is best suited to detect.
Additionally, in the proposed method, the prediction target of MIM is set as the probability distribution
of discrete latent variables, but it is also possible to set simpler pixel-level image features as the prediction
target. Furthermore, the types of anomalies that can be detected are greatly influenced by the visual features

1The multi-class setting refers to problem sets where one model learns to handle all categories at once.
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Table 3: Comparison between current SOTA AD methods and our proposed framework on the

MVTecLOCO We report 1mage level AUROC[%]

O

the method uses pre-trained segmentatlon models.

in both smgle— and multl

class settings. Aqmr—denotes

e5-“Seg. Prior” denotes whether

Single-class Multi-class
Category CSAD PSAD SALAD LogSAD Ours PUAD EAD Ours
Logical
Box 94.4 100 99.6 N/A 86.2 (£0.760) 94.2 77.9 86.5 (£0.585)
Bottle 94.9 99.1 99.6 N/A 99.0 (£0.200) 96.6 90.8 98.7 (£0.230)
Pins 99.5 100 99.9 N/A 73.5 (£0.695) 76.6 70.8 72.0 (£2.018)
Bag 99.9 99.3 98.6 N/A 58.1 (£3.783) 70.8 59.0 62.4 (£1.420)
Cable 94.8 91.9 95.8 N/A 88.0 (+0.836) 87.8 83.5 87.3 (£0.979)
Average 96.7 98.1 98.7 89.3 80.9 (+0.692) 85.2 76.4 81.4 (£0.553)
Structural
Box 91.1 849 88.8 N/A 810 (+0.755) 725  77.3  81.5 (£1.313)
Bottle 95.6 98.2 98.9 N/A 98.8 (4+0.286) 95.5 96.7  98.2 (+0.141)
Pins 97.8 89.8 98.3 N/A 85.9 (+1.521) 97.7 88.0 86.9 (+1.102)
Bag 93.2 95.7 94.7 N/A 86.7 (+0.817) 88.8 84.3 88.1 (£0.753)
Cable 92.2 89.3 98.6 N/A 90.0 (+1.132) 82.5 94.0 89.6 (£1.298)
Average 94.0 91.6 95.8 93.1 88.5 (£0.516) 87.4 88.1 88.9 (+0.267)
Overall 95.3 94.9 97.3 91.2 84.7 (+0.561) 86.3 82.2 85.1 (+0.162)
Seg. Prior v v v v X X X X
901 o _——== e-——mmms=Eme————=== Table 4: Performance on MVTecAD. We report
o=l il = average detection AUROC [%] of LADMIM and other
'_88 —+— EfficientAD - Logical AUROC methods on MVTecAD Bergmann et al|(2019).
RN ge -~ EfficientAD - Structural AUROC
g —— LADMIM - Logical AUROC Method | AUROC [%]
% 84 —+-' LADMIM - Structural AUROC Comparison with MIM Methods
<82 SSM [Huang ct al. (2023al) 92.0
80 SCADN |Yan et al| (2021) 81.8
LADMIM (Ours) 93.4
100 200 Dimezg?ons 400 500 Comparison with SoTA Methods
GLASS [Chen et al.| (2024a)) 99.9
Figure 3: Scalability analysis. We plot the change HypAD [Flaborea et al] (2023) 99.2
in image-level AUROC [%] with model dimensions in CoMet [Aqgeel et al]| (2025) 99.7
the multi-class setting. LADMIM (Ours) 93.4

represented by the discrete latent variables. Therefore, in this study, we conducted experiments to answer
the following questions:

e Is it necessary to use both HVQ-Trans and ViT?
e How does the prediction target of MIM affect detection performance?

o What features do the discrete latent variables represent?

10
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Table 6: Detection performance when combin-
Table 5: Design ablation of the anomaly scor- ing HVQ-Trans with MIM-based AD.
ing on MVTecLOCO. We report average image-level

AUROCI%)] across all categories.

Method | SA LA Avg
S S SA LA Ave SMAE 720 75.9 739
v S | & SMAE [w/ HVQ)] 80.0 85.4 82.6
v 91.2  76.7 833 MAEDAY 60.3 57.6 589
v | 687 793 73.6 MAEDAY [w/ HVQ] | 854 719 781

v v | 903 831 86.6
LADMIM | 90.3 831 86.6

4.3.1 Design Ablations

The original HVQ-Trans paper |Lu et al.| (2023)) does not evaluate its performance in detecting logical anoma-
lies using datasets like MVTecLOCO |Bergmann et al.| (2022)). Therefore, the structural and logical AD
performance when using HVQ-Trans and ViT independently is shown in Table [f]

As a result of this evaluation, it was found that HVQ-Trans achieves high detection performance for struc-
tural anomalies, while ViT achieves high detection performance for logical anomalies. Using both models
simultaneously improves overall detection performance.

The structural AD performance of ViT is low, with an AUROC of 0.68, because the discrete latent variables
do not retain the characteristic information of local normal features and instead capture more abstract
characteristics of objects. On the other hand, ViT achieves higher logical AD performance than HVQ-Trans.

Moreover, when HVQ-Trans and ViT are used together, their detection performance exceeds the logical AD
performance of either model used individually. This indicates that HVQ-Trans and ViT complement each
other in detecting different types of logical anomalies.

4.3.2 The Effect of Combining HVQ-Trans with Prior MIM-Based AD

Our proposed framework heavily relies on HVQ-Trans to detect structural anomalies. However, it remains
unclear whether other MIM-based approaches can improve detection performance when combined with HVQ-
Trans predictions. In Table [f] we show the average detection performance of the MIM-based methods when
combined with HVQ-Trans. The results indicate that combining HVQ-Trans with MIM-based methods can
enhance detection performance for both logical and structural anomalies. Although SMAE [Yao et al.| (2022)
combined with HVQ-Trans achieves better detection performance for logical anomalies than our method,
LADMIM exhibits higher overall detection performance on average.

250 Table 7: The effect of score aggregation. We
MIM report average detection AUROC [%] on the Box for
200 s HVQ different aggregation strategies.
+ 150 -
§ Strategies LA SA  Avg.
© 100 Smim 92.0 63.6 778
'}
. a’ Suvq 79.6 79.5 79.6
. "‘r” _ . v Aggregation
0 5 10 15 20 addition 829 81.1 820
Anomaly Score min-max 859 825 84.2

Z-score 874 82.6 85.0

Figure 4: Score Histogram. We plot his-
tograms of Syyq and Syv before aggregation.
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\T;ble 8: ?,he eﬁ‘?Ct 10 zlrjlg(s)lgn[é]strategles. Table 9: The effect of codebook selection. We
¢ report 1nage-leve ol report image-level AUROC [%] on the Box.
Masking ‘ SA LA Ave Source codebooks ‘ SA LA  Avg.
Checkerboard 88.1 78.2 83.2 [1] 801 784 793
Random-0.2 85.1 75.1 80.1
[2] 80.7 78.2 T79.5
Random-0.4 85.3 76.3 80.8
[3] 79.0 779 785
Random-0.6 87.2 78.9  83.1 (4] 795 781 78.8
BlockRandom-0.2 | 87.5 80.9 84.2 ' ’ ’
[1,2] 82.2 79.3 80.8
BlockRandom-0.4 88.2 78.1 83.2
[1,2,3] 82.3 79.0 80.7
BlockRandom-0.6 88.1 78.6 834 [1.2.3,4] 86.2 81.0 83.6
Adaptive-0.4 91.0 772 84.1 > . . .

Also, in Fig. ] we plot histograms of the predicted anomaly scores produced by HVQ-Trans and ViT. Since
each score has a different scale and distribution, we apply normalization before summing them. In Table [7]
we evaluate detection performance with different aggregation strategies, including simple addition, min-max,
and Z-score normalization. As the histograms in Fig. [d]indicate, each score distribution contains some outlier
points, which are potentially anomalous images. We apply Z-score aggregation, motivated by the presence
of these outliers, as Z-scores are more robust to outliers. Furthermore, for the Box category, Syiv attains
the highest AUROC for logical anomaly detection. This suggests that detection accuracy could be further
improved by dynamically adjusting the aggregation weights.

4.3.3 The Effect of Masking Strategies

In the context of MIM, the choice of masking strategies affects the properties of the learned representations
[Bao et al.|(2021); [He et al.|(2021); Assran et al. (2023). Moreover, in unsupervised AD, previous works have
attempted to identify the best choice of masking strategies [Li et al. (2020); Huang et al.| (2023a); [Yan et al.|

(2021).

In Table [8] we show the image-level AUROC [%] of LADMIM on MVTecLOCO with different masking
strategies. For checkerboard masking, we randomly select one of the checkerboard masks with different grid
sizes 3,6,12. For random masking, we denote Random-r as random masking where r portion of patches
are masked. For block random masking, we denote BlockRandom-r as block-wise random masking where
r portion of patches are masked. We randomly choose the aspect ratio of each block from [0.3,3] and its
position, ensuring that the sum of the gathered masks covers the r portion of the patches. Finally, we also
investigate an adaptive masking strategy, where masked patches are determined by the top-r portion of
patches with the largest prediction errors. We denote Adaptive-r as this masking strategy and set r to 0.4,
which achieved the best performance in our hyperparameter search. For all masking strategies, we train
LAVIT for 200 epochs in the multi-class setting and report the average AUROC across all categories.

We observe that mask coverage is important for random masking: a higher masking ratio leads to better
performance. Conversely, for block random masking, a large masking coverage results in significant uncer-
tainty in the masked regions, causing degradation in detection performance. While checkerboard masking
works well as a random masking strategy, block random masking with 20% masking shows the best detection
performance in this setting. Since adaptive masking focuses the model on small potential anomalous regions,
it outperforms other strategies in detecting structural anomalies. However, detection performance for logical
anomalies is limited due to the overly focused mask region.

4.3.4 Selection of Prediction Targets

In Table [9] we report image-level detection performance on the Box category for different subsets of code-
books from HVQ-Trans as targets. While performance is limited when predicting only one of these code-
books, combining them yields substantial performance improvements. This is because predicting multiple
histograms from different codebooks reduces the variance of the prediction targets and captures different
feature granularities.

12
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Table 10: Impact of loss design. We report Table 11: Impact of changing the MIM predic-
image-level AUROC [%] on the Box. tion target. We report image-level AUROC [%]
Metric ‘ SA LA Avg. Prediction Target ‘ SA LA Avg.
KL divergence 85.1 80.5 828 Pixel 91.1 74.8 82.2
JS divergence 84.1 80.4 823 Feature 88.9 83.4 86.1
Hellinger distance | 79.4 78.2  78.8 Code 90.7 78.0 839
L1 distance 86.2 81.0 83.6 Code Histogram 90.3 83.1 86.6

In Table we also investigate the impact of MIM loss design. Notably, the simple L1 distance achieves the
best detection performance, while KL or JS divergence is one of the most popular options for calculating the
discrepancy between different probabilistic distributions. However, in our setting, target histograms can be
sparse probabilistic vectors due to the low codebook usage. This motivates us to use the L1 distance as a
loss function to improve training stability.

From the perspective of representation learning using MIM, the selection of prediction targets in masked
regions is crucial Bao et al. (2021); Peng et al| (2022); (Chen et al|(2024Db); Assran et al.| (2023). This also
applies to AD, where the choice of prediction targets—such as predicting the image itself or features within
the masked region—significantly affects detection performance. Table [[1]shows the detection performance of
ViT with different prediction targets. In this evaluation, we assessed performance when predicting the image,
features (i.e., outputs of the backbone network), discrete representations, and the probability distribution
of discrete representations in the masked region.

The results showed that the average detection performance was highest when using the probability distribu-
tion of discrete representations. When the image itself was the prediction target, detection performance for
structural anomalies was the highest, but performance for logical anomalies was low. This is because accu-
rate reconstruction of local image features is necessary for detecting structural anomalies, while capturing

Reference Images Discrete Latents
HVQ
: Trans

Code=4

.
HEEEE 5 ..
— /

Code=2

e o R . .
Jm— IR

Figure 5: Qualitative visualization of discrete latent variables prediction by HVQ-Trans. We visualize
quantized discrete latents in the [-th layer where [ € {1,2,3,4} in our experiments.
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Figure 6: Qualitative visualization of original and reconstructed features by HVQ-Trans on Juice

Bottle. We apply UMAP [Mclnnes et al| (2018) to the average pooled feature representations for the
dimensional reduction.

higher-level feature relationships is more important for detecting logical anomalies. Detection performance
for logical anomalies improved when using discrete representations or features. However, the performance
was still inferior to the proposed method due to the positional uncertainty of objects.

4.3.5 Analysis on Internal Representations of HVQ-Trans

Figure [§] shows a visualization of the discrete latent variable predictions made by HVQ-Trans. Here, we use
a normal sample of a Juice Bottle from MVTecLOCO as an example. HVQ-Trans predicts a map of discrete
latent variables for each layer, as shown in the upper part of Fig.

By observing the prediction results, we can see that different discrete latent variables are predicted to some
extent based on the semantics of the object. Additionally, the lower part of Fig. [5| shows image patches
corresponding to specific discrete latent variables. For example, the 4th discrete latent variable in the
codebook corresponds to the contents of the bottle, while the 2nd discrete latent variable corresponds to the
bottle’s label.

On the other hand, the predictions made by HVQ-Trans are not perfect. As shown in the lower part of
Fig. [5} the fourth discrete latent variable in the codebook represents not only the contents of the bottle but
also the bottle itself and the background. It predicts the same discrete latent variable for labels of different
products, such as cherries and oranges. This issue, where the same discrete latent variable is predicted for
different objects, is referred to as Code Collision Liu et al.| (2023al); Hou et al|(2022)); Huang et al|(2023b).
Additionally, multiple different discrete latent variables can be predicted for the same object, a problem
known as Code Redundancy Huang et al.| (2023c); [Liu et al.| (2023a); [Huang et al. (2023b)). Such tokenizer
prediction issues significantly impact detection performance.

In Fig. [6] we visualize the distributions of the original features and their corresponding reconstructions using
UMAP Meclnnes et alf (2018]). It should be noted that structural anomalies are not distinguished in these

14
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Missing Pins Excess Pins
Input

Image

Masked
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Figure 7: Failure case analysis. We provide examples of logical anomalies that the current SoOTA method
(EfficientAD) correctly detected, but LADMIM failed to detect. In the Pins category, each compartment
in the image must contain exactly one pushpin. Ideally, each mask should cover only a single compartment;
however, with random masking, this condition is often violated.

visualization experiments because average pooled operation diminishes the difference between normal and
anomalous patches. We observe that most logical anomalies are successfully reconstructed into near-normal
features and exhibit large reconstruction errors. However, there are many logical anomalies that cannot be
reconstructed into a normal one. Therefore, we still need to employ an additional MIM module for detecting
such logical anomalies.

4.4 Failure Case Analysis

One limitation of MIM-based approaches is their sensitivity to the masking strategy. Since MIM-based
methods detect anomalous regions by computing prediction errors over masked regions, the mask must
effectively cover the anomalous areas. However, if the mask is too large, it introduces significant uncertainty
within the masked region. Therefore, the masking strategy must strike a better balance between coverage
and uncertainty.

In Fig. [7} we provide examples of logical anomalies on Pushpins where LADMIM failed to detect anomalies
but EfficientAD succeeded. If the mask is too large relative to these anomalous areas, it fails to detect
missing or excessive elements. Additionally, a randomly selected mask may not adequately cover regions
where anomalies are likely to occur, leading to smaller prediction errors even in anomalous areas.

Thus, a carefully designed masking strategy could boost performance in settings like Pushpins. For example,
similar to SSM [Huang et al.| (2023a)), iterative refinement of the mask based on reconstruction error could
be considered as an inference-time masking strategy.

4.5 Computational Cost Analysis
Table 12: Inference speed measured by frame

In Table [I2] we compare inference efficiency with frame per second (FPS) on single RTX-4090.
per second (FPS) on a single RTX-4090. While Patch-
Core and SALAD exhibit lower inference efficiency due Method FPS
to heavy feature-matching or segmentation-model com-

putation, our proposed LADMIM achieves a second-best PatchCore 13
inference speed. SALAD 15

EfficientAD 260
5 Conclusion LADMIM (Ours) 78

In this study, we addressed the problem setting of AD in
which multiple objects are present in an image, and both logical and structural anomalies can occur. To
effectively detect both types of anomalies, we combined a reconstruction-based model (HVQ-Trans) and a
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ViT trained with an MIM objective; these models are responsible for detecting structural and logical anoma-
lies, respectively. Specifically, the ViT trained with MIM addresses the problem of positional uncertainty
in masked regions by predicting distributions of discrete latents. We demonstrated substantial accuracy
improvements compared to conventional MIM-based methods and comparable performance to the current
SoTA methods. Additionally, we clarified the impact of changing the prediction target in the MIM-based
model and highlighted issues related to the tokenizer, suggesting future directions for improving MIM-based
models.

Limitations. While predicting code histograms mitigates the uncertainty problem in masked regions, it
makes it harder to detect logical anomalies that require modeling order-related relationships, although other
types of logical anomalies can still be effectively detected. This limitation can be alleviated by introducing
a stochastic prediction module, such as diffusion-based masked prediction. Additionally, with the current
large-scale random masking strategy, our method fails to localize the logical anomaly location. For the
future direction, replacing random masking with small-scale semantic masking would improve logical anomaly
localization.
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