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ABSTRACT

Concept-based models like Concept Bottleneck Models (CBMs) have garnered
significant interest for improving model interpretability by first predicting human-
understandable concepts before mapping them to the output classes. Early ap-
proaches required costly concept annotations. To alleviate such, recent methods
utilized large language models to automatically generate class-specific concept de-
scriptions and learned mappings from a pretrained black-box model’s raw features
to these concepts using vision-language models. However, these approaches as-
sume prior knowledge of which concepts the black-box model has learned. In this
work, we discover the concepts encoded by the model through unsupervised con-
cept discovery techniques instead. We further propose an input-dependent concept
selection mechanism that dynamically retains a sparse set of relevant concepts for
each input, enhancing both sparsity and interpretability. Our approach not only
improves downstream performance but also needs significantly fewer concepts
for accurate classification. Lastly, we show how large vision-language models can
guide the editing of our models’ weights to correct errors.

1 INTRODUCTION

Deep neural networks have achieved tremendous success in a variety of tasks on various input
modalities. However, they are black-box models, making it difficult for humans to understand and
comprehend their decisions. Thus, there has been considerable recent interest in developing inter-
pretable models. One popular framework is Concept Bottleneck Models (CBMs) (Koh et al., 2020),
i.e., models that first predict human-understandable concepts and then use these concepts to predict
the classes (Lampert et al., 2009; Kumar et al., 2009). Initial CBMs are trained in an end-to-end fash-
ion through supervision on both the concepts and classes. However, the need for human-annotated
concepts during model training requires the time-consuming and expensive collection of such.

To address this limitation of initial CBMs, recent work (Yuksekgonul et al., 2023; Oikarinen et al.,
2023; Menon & Vondrick, 2023; Marcinkevičs et al., 2024) has proposed converting pretrained
black-box models into CBMs in a post-hoc fashion. To avoid the need for annotations, they lever-
aged large language models (e.g., GPT-3 (Brown et al., 2020)) to generate class-specific language
descriptions and learned a mapping from the black-box model’s uninterpretable features to these
concepts using vision-language models (e.g., CLIP (Radford et al., 2021)). However, this raises a
crucial question:

How can we know a priori which concepts a pretrained black-box model has learned?

Instead of defining the concepts in advance, we propose to discover concepts that accurately decom-
pose the features learned by the black-box model (1st contribution). To do so, we draw from the
rich literature on unsupervised concept discovery (Ghorbani et al., 2019; Zhang et al., 2021; Zou
et al., 2023; Fel et al., 2023b; Vielhaben et al., 2023; Fel et al., 2023a; Huben et al., 2024; Stein
et al., 2024). We chose CRAFT (Fel et al., 2023b) for our experiments because it has been shown
to yield human-understandable concepts (Fel et al., 2023a), but other techniques are also possible.
CRAFT employs non-negative matrix factorization (Lee & Seung, 1999) to decompose each feature
activation into a sparse linear combination of concept vectors. The set of shared concept vectors
forms a dictionary matrix. After learning this dictionary matrix, we compute the alignment between
the raw bottleneck features and the concept vectors to measure a concept’s presence or absence.
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Subsequently, we train an interpretable linear classifier on the concepts’ alignment scores, linking
the alignment scores to the predictions. Previous work (Yuksekgonul et al., 2023; Oikarinen et al.,
2023) has shown that a sparsity penalty on the linear classifier’s weights ensures that each class relies
on only a sparse set of concepts. However, they did not examine the per-sample number of concepts
that affect the classification across all classes. That is, while individual classes rely on sparse sets
of concepts, the overall model depends on substantially more. Empirically, we found that typically
over 90% of the available concepts–up to ca. 4200 concepts (see Table 2)–affect the classification
per input. As a result, it complicates the interpretation of the model’s decision-making process.

To address these challenges, we propose an input-dependent concept selection mechanism that en-
sures that only a sparse set of concepts relevant for the classification of an individual input sample is
dynamically retained (2nd contribution). We simply apply an activation function before the sparse
linear classifier, and enforce sparsity on its output or directly use its sparsity parameter. In our exper-
iments, TopK (Makhzani & Frey, 2014) performed best. This mechanism allows the concepts that
are retained or removed (i.e., zeroed out) to vary between inputs, making it input-dependent. It also
preserves the interpretability of CBMs, as the predictions remain linear w.r.t. the retained concepts.

In summary, our contributions are as follows:

• We propose a new type of CBM called Unsupervised Concept Bottleneck Models
(UCBMs)1; see Figure 1 for an overview. UCBMs convert pretrained, black-box models
into a CBM by discovering and using the concepts that it has learned.

• We propose a novel input-dependent concept selection mechanism that dynamically retains
a sparse set of concepts relevant to classification. For example, as few as ca. 1.4% of the
available concepts are used per input (Table 2).

• We show that UCBMs improve performance while having a substantially higher degree of
sparsity compared to previous work (Tables 1 and 2).

• We show that UCBMs are interpretable qualitatively as well as through a user study (Sec-
tion 3.2), and demonstrate that large-vision-language models can help us to intervene on
UCBMs’ weights to fix errors (Section 3.3).

2 UNSUPERVISED CONCEPT BOTTLENECK MODELS WITH
INPUT-DEPENDENT CONCEPT SELECTION

In this section, we introduce Unsupervised Concept Bottleneck Models (UCBMs), a novel CBM that
uses concepts that are automatically discovered and most accurately decompose features learned by
a black-box model (Section 2.1), dynamically only retains the concepts most relevant to classifica-
tion, and finally classifies the input with a sparse linear model (Section 2.2). Figure 1 provides an
overview of UCBMs, and the above steps are described in detail below.

Notations. Let f : X → Rp be a pretrained, black-box model’s feature extractor that maps from
an input space X ⊆ Rd to the bottleneck feature space of a size of p. Further, let X ∈ RN×d be
the input data matrix where the ith row is the input xi ∈ X and let A = f(X) ∈ RN×p be the
bottleneck feature activations. Lastly, let Y denote the class label space.

2.1 DISCOVERY OF CONCEPTS LEARNED BY THE BLACK-BOX MODEL

Previous post-hoc CBMs have either used human-annotated concepts (Yuksekgonul et al., 2023;
Marcinkevičs et al., 2024) or aligned the black-box model’s features with precomputed text features
from vision-language models, using natural language descriptions, such as those generated by a
large language model (Yuksekgonul et al., 2023; Oikarinen et al., 2023; Menon & Vondrick, 2023;
Marcinkevičs et al., 2024). Importantly, both approaches rely on a predefined set of concepts –either
through concept annotations or language descriptions thereof– implicitly assuming which concepts
the black-box model has learned. However, these concepts are typically unknown in advance.

1Code is available at https://anonymous.4open.science/r/ucbm.
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Figure 1: Overview of Unsupervised Concept Bottleneck Models (UCBMs). Top: We first ex-
tract concepts from raw bottleneck features of a pretrained black-box model using an unsupervised
concept discovery method. Bottom: We compute the alignment between the bottleneck’s features
and previously discovered concepts (middle). Finally, we train an interpretable classifier consisting
of an input-dependent concept selection mechanism and sparse linear classifier (middle to right).

Discovering the concepts that the black-box model has learned. To address this, we propose
using unsupervised concept discovery techniques for UCBMs. These enable us to discover the
concepts that the black-box model has learned, and do not require defining the concepts in advance.

Formally, the goal of unsupervised concept discovery is to extract a small set of interpretable con-
cepts c that most faithfully reconstruct the feature activations A. Assuming linearity of concepts,
as per the superposition hypothesis (Kim et al., 2018; Elhage et al., 2022), unsupervised discovery
methods can be understood as an instance of a dictionary learning problem (Dumitrescu & Irofti,
2018), as shown by Fel et al. (2023a):

(U∗,C∗) = argmin
U,C

||A−UC||2F , (1)

where U ∈ RN×|C| (sparse coefficient matrix) represents the activations A = f(X) ∈ RN×p w.r.t.
a new basis spanned by the set of |C| concept activation vectors C ∈ R|C|×p (dictionary matrix),
and || · ||F denotes the Frobenius norm. Intuitively, we learn a sparse linear decomposition of the
feature activations for each input in Equation 1, where we weigh the shared concepts vectors by
the input-specific sparse coefficients. Fel et al. (2023a) showed that previous methods, such as K-
Means (Ghorbani et al., 2019), PCA (Zhang et al., 2021; Zou et al., 2023), non-negative matrix
factorization (Lee & Seung, 1999; Zhang et al., 2021; Fel et al., 2023b), or sparse autoencoders
(Makhzani & Frey, 2014; Huben et al., 2024), only differ in their constraints on U,C in Equation 1.

In this work, we chose non-negative matrix factorization (i.e., CRAFT (Fel et al., 2023b)) for
UCBMs, as it has been shown to discover human-understandable concepts (Fel et al., 2023a). How-
ever, we emphasize that UCBMs will benefit from future unsupervised concept discovery methods.

2.2 LEARNING THE CLASSIFIER WITH INPUT-DEPENDENT CONCEPT SELECTION

In the previous subsection, we discovered concept vectors cj that most accurately decompose the
uninterpretable features of a black-box model. Next, we compute the alignment scores between each
concept vector and the model’s features, denoted as simC(xi) ∈ [−1, 1]|C|, where simC(xi)j :=

⟨ai,cj⟩
||ai||2·||cj ||2 is the cosine similarity between the feature activations ai = f(xi) of input xi and
concept cj ∈ C. Then, we dynamically select the most relevant concepts and subsequently classify
the input with a sparse linear model (Wong et al., 2021). Both are described in detail below.

3
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Sparse linear classifier. Following Yuksekgonul et al. (2023); Oikarinen et al. (2023), we learn a
sparse linear classifier by enforcing sparsity on its weight matrix (Wong et al., 2021):

min
W,b

N∑
i=1

L(WsimC(xi) + b, yi) + λw Rα(W)︸ ︷︷ ︸
LW

sparsity

, (2)

where W ∈ R|Y|×|C| are the weights, b ∈ R|Y| is the bias, yi ∈ Y is the target class for input xi,
L represents the task-specific loss function (cross-entropy loss throughout this work), λw controls
the regularization strength on W, and Rα(W) := (1 − α) 12 ||W||F + α||W||1,1 denotes the elas-
tic net regularization (Zou & Hastie, 2005). Note that simC(xi) is normalized and frozen during
optimization. Importantly, the sparsity aims to make the linear model’s classifications sparse and
Yuksekgonul et al. (2023) & Oikarinen et al. (2023) have shown that an individual class indeed
relies on only a sparse set of concepts.

The main limitation with the approach discussed above is that it fails to produce globally sparse
classifications. Specifically, most concepts contribute to the classification of any given input, mean-
ing that even if a concept has no impact on one class (e.g., the predicted one), it may still influence
others. We consider a concept to be actively contributing if it has a non-zero impact on the output
(see Equation 7 for details). When we computed the number of such concepts in above approach,
we found that nearly all of them affect the classifications (Table 2). This is because the cosine sim-
ilarities between the black-box model’s activations and concepts are generally non-zero.2 This lack
of (global) sparsity limits interpretability and makes it challenging to comprehend a prediction.

Input-dependent concept selection mechanism. To ensure that only few concepts affect clas-
sification per input without significant performance sacrifices, we propose a simple yet effec-
tive input-dependent concept selection mechanism. Specifically, we introduce a concept selector
π : R|C| → R|C|, which takes the alignment scores simC(xi) as input and outputs a sparse set
of non-zero (i.e., active) concepts and zeroes out the others. We enforce sparsity through a penalty
term on concept selector’s output: Lπ

sparsity = ||π(·)||0. Intuitively, the sparsity penalty Lπ
sparsity drives

the concept selector π to only retain a sparse set of concepts which are important for classifying the
input xi, as signaled by the task-specific loss L.

We considered three candidates for the implementation of the input-dependent concept selection
mechanism (please refer to Appendix B for further technical details):

• ReLU: We define the concept selector using the ReLU activation function as:

π(xi) := max(0, simC(xi)− o) with trainable offset parameter o ∈ R|C|
+ . (3)

We apply elastic net regularization on the selector’s output: Lπ
sparsity = Rα(π(xi)).

• JumpReLU: We use JumpReLU activation function (Erichson et al., 2019) for concept
selection with trainable offset parameter o ∈ R|C|

+ and the Heaviside step function H . We
define the concept selector as:

π(xi) := simC(xi) ·H(simC(xi)− o) =

{
0, simC(xi) ≤ o
simC(xi), simC(xi) > o

. (4)

Following Rajamanoharan et al. (2024), we compute the gradients of the expected loss us-
ing straight-through-estimators (Bengio et al., 2013). We use the following sparsity penalty
Lπ

sparsity =
∑|C|

j H(simC(xi)j − oj). Note that Lπ
sparsity directly optimizes L0.

• TopK: The TopK activation function (Makhzani & Frey, 2014) only keeps the k ≪ |C|
concepts with the largest alignment scores and zeroes out the remaining concepts:

π(xi) := TopK(simC(xi)− o) with trainable offset parameter o ∈ R|C|
+ . (5)

Note that the sparsity can be directly controlled by k and, thus, Lπ
sparsity = 0.

2While the classifier could technically “turn off” a concept cj by setting its associated column vector to the
null vector (W:,j = 0), this would effectively reduce the number of concepts and degrades performance, e.g.,
see Figure 3. Consequently, the sparse linear classifier is unlikely to learn many of such null vectors.

4
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Final interpretable classifier. We obtain the final interpretable classifier by plugging Equa-
tion 3, 4, or 5 into Equation 2 together with the respective implementation of Lπ

sparsity:

min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwLW
sparsity + λπLπ

sparsity , (6)

where λπ (or k for TopK) controls the regularization strength of Lπ
sparsity. Appendix B provides a

detailed overview for all variants. It is important to note that the selection of concepts is learned in an
unsupervised manner, and that the prediction remains linear w.r.t. the active concepts (π(xi) ̸= 0).

Concept dropout. During initial experiments, we found that models became overly reliant on a
single concept. To reduce this reliance, we added a dropout layer (Srivastava et al., 2014) after con-
cept selection. As dropout is applied per concept, it encourages the model to spread its classification
decisions across more concepts. Interestingly, we found that this could also improve performance.

3 EXPERIMENTS

We evaluated UCBM on diverse image classification tasks and compared it to relevant baselines.
We show that UCBMs outperform prior work and narrow the gap to their black-box counterparts,
while relying on substantially fewer concepts globally in their classification (Section 3.1). Then, we
demonstrate the interpretability qualitatively as well as through a user study (Section 3.2). Lastly, we
showcase how large vision-language models can be leveraged to improve our UCBMs by informing
weight editing in order to fix model errors (Section 3.3).

Datasets & backbone black-box models. Following previous work, we evaluated UCBMs on
ImageNet (Deng et al., 2009) with a pretrained ResNet-50 V2 (He et al., 2016), CUB (Wah et al.,
2011) with ResNet-18 pretrained on CUB3, and Places-365 (Zhou et al., 2017) with ResNet-18 pre-
trained on Places-3654. These datasets cover a diverse set of tasks from standard image classification
(ImageNet), fine-grained classification (CUB), to scene recognition (Places-365).

Implementation details. We trained our UCBMs with Adam (Kingma, 2014) and cosine anneal-
ing learning rate scheduling (Loshchilov & Hutter, 2017) for 20 epochs. We used a learning rate
of 0.001 on ImageNet and Places-365, and 0.01 on CUB; except for the JumpReLU for which we
set it to 0.08 on CUB. We set α = 0.99 for the elastic net regularization for all variants. We tuned
the other hyperparameters (λπ or k, λw, and dropout rate) to yield a good trade-off between per-
formance, sparsity, and fair comparability. Refer to Appendix C for the hyperparameters and to
Figure 4 and Appendices D and E for the effect of them.

Experimental setup. Since the number of concepts |C| substantially influence downstream per-
formance, we set |C| proportional to the number of classes with various (expansion) factors
{0.5, 1, 3, 5}. All models were trained on a single NVIDIA RTX 2080 GPU and a full training
run took from few minutes to a maximum of 1–2 days depending on dataset size and number of
concepts |C|. We report top-1 accuracy on the standard holdout sets throughout our experiments.

Baselines. We compared our UCBMs to Post-hoc CBM (Yuksekgonul et al., 2023) and Label-free
CBM (Oikarinen et al., 2023), as they are the most related to our work. Note that Post-hoc CBM
requires concept annotations and is therefore not applicable on ImageNet and Places-365.

Quality of the discovered concepts. Before we evaluated UCBMs, we verified that the discovered
concepts behave faithfully. For this, we analyzed the change in cosine similarities between feature
activations and concepts after the removal of relevant image parts of a certain concept; see Figure 2
and Appendix A. For example, as we remove the saw blade (concept 1985), the cosine similarity of
the aforementioned concept decreases from ca. 0.5 to around 0.25 (Figure 2). We also verified that
concepts are semantically consistent and human-understandable, as seen in the top activating crops
throughout this paper. Please refer to, e.g., Fel et al. (2023a) for an extensive analysis.

3Provided at https://github.com/osmr/imgclsmob.
4Provided at https://github.com/Trustworthy-ML-Lab/Label-free-CBM.
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Figure 2: The discovered concepts exhibit faithful behavior. Removing the saw blade (right) from
the original image (left) shrinks the alignment score of the respective concept 1985 (blue). Concepts
are represented by their most activating crops. Additional results are provided in Appendix A.

Table 1: UCBMs outperform the baselines and reduce the gap to the original, black-box model.
We report mean top-1 accuracy with standard deviation across three training runs (we kept the dis-
covered concepts fixed). UCBMs used |C| = 3000 (ImageNet), 200 (CUB), and 1825 (Places-365)
concepts. Post-hoc CBM used 112 (CUB) concepts and Label-free CBM used 4521 (ImageNet), 212
(CUB), and 2008 (Places-365) concepts after its concept removal step. For fair comparison, we also
varied the number of concepts |C| for UCBMs and Figure 3 shows that UCBMs Pareto-dominate
the baselines. Lastly, UCBM w/o concept selection slightly outperforms the variants with concept
selection, which trade-off performance for increased sparsity (see Table 2 and Appendix D).

Top-1 test accuracy

Approach Sparse? ImageNet CUB Places-365

Original, black-box model ✗ 80.9 76.7 53.69

Post-hoc CBM (Yuksekgonul et al., 2023) (✓) n/a 58.80∗ n/a
Label-free CBM (Oikarinen et al., 2023) (✓) 78.09 74.38 50.67

UCBM w/o concept selection (✓) 79.80 ± 0.027 75.15 ± 0.037 52.41 ± 0.028
UCBM with ReLU concept selector ✓ 79.07 ± 0.029 74.61 ± 0.128 50.86 ± 0.021
UCBM with JumpReLU concept selector ✓ 79.49 ± 0.016 74.57 ± 0.290 51.24 ± 0.019
UCBM with TopK concept selector ✓ 79.32 ± 0.009 74.96 ± 0.083 51.20 ± 0.050

∗: reported by Yuksekgonul et al. (2023).

3.1 PERFORMANCE AND SPARSITY RESULTS

How do UCBMs perform? Table 1 shows that UCBMs outperform the baseline methods across
all datasets. Thereby, they also close the performance gap to the original, black-box model. We also
find that UCBMs without concept selection achieve better performance than UCBMs with concept
selection. Note that this is expected, as the concept selection variants trade-off performance for more
sparsity (Table 2). We further investigate this trade-off in Appendix D.

We found that performance is strongly influenced by the total number of concepts |C| used. In
Figure 3, we varied the number of concepts to assess this and, as expected, observe that increasing
|C| improves performance. Notably, our UCBMs Pareto-dominate the baselines, confirming that
their superiority from Table 1 is not due to the total number of concepts chosen.

How sparse are UCBMs’ decisions? To assess sparsity, we computed the mean number of con-
cepts that actively influence the classification decision per input. We considered concepts with non-
zero contribution as actively influencing the classification. Specifically, concept cj is considered
active for the classification of input xi if

π(xi)j ̸= 0 ∧ ∃ yi ∈ {1, ..., |Y|} such that Wyi,j ̸= 0 . (7)

Table 2 shows that UCBMs with concept selection use significantly fewer concepts globally for
classification than Label-free CBM or UCBM without concept selection. For example, on ImageNet,
UCBM with TopK concept selector uses an average of 42.0 concepts per input (1.4% of the available
concepts), while Label-free CBM and UCBM without concept selection use averages of 4238.0
(93.74%) or 3000.0 (100%), respectively. We find similar differences for CUB and Places-365.
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Figure 3: UCBMs Pareto-dominate the baselines. We varied the number of available concepts |C|.
As expected, we found that the more available concepts, the better the downstream performance.
Importantly, our UCBMs Pareto-dominate the baseline methods.

Table 2: The concept selection mechanism leads to substantially fewer concepts being used in
the classification. We report the mean number of active concepts with standard deviation according
to Equation 7. Parentheses show their percentage relative to the total number of concepts |C|. Label-
free CBM and UCBM without input-dependent concept selection use substantially more concepts
than our UCBM variants with concept selection.

Mean number of active concepts (according to Equation 7)

Approach ImageNet CUB Places-365

Label-free CBM (Oikarinen et al., 2023) 4238.0 ± 0.19 (93.7%) 211.9 ± 0.05 (100%) 1820.0 ± 0.12 (90.6%)
UCBM w/o concept selection 3000.0 ± 0.0 (100%) 200.0 ± 0.0 (100%) 1825.0 ± 0.0 (100%)

UCBM with ReLU concept selector 47.8 ± 0.02 (1.6%) 61.0 ± 0.3 (30.5%) 162.4 ± 0.12 (8.9%)
UCBM with JumpReLU concept selector 42.8 ± 0.07 (1.4%) 62.3 ± 1.13 (31.2%) 166.2 ± 0.94 (9.1%)
UCBM with TopK concept selector 42.0 ± 0.00 (1.4%) 64.2 ± 0.00 (32.1%) 162.0 ± 0.00 (8.9%)
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Figure 4: Sensitivity analysis over λw (a), k (b), and dropout (c) on ImageNet. Larger λw and
smaller k lead to worse performance. Smaller k leads to higher sparsity. For dropout, there is no
clear relation (esp. on the other datasets). Results for the other datasets are provided in Appendix E.

Sensitivity analysis. We varied λw (Figure 4a), k (Figure 4b), and dropout rate (Figure 4c) to an-
alyze their impact on performance and sparsity. We find that only k controls sparsity (Equation 7) in
TopK, whereas for the other concept selectors, all hyperparameters affect sparsity (see Appendix E).
We consider this is as an advantage of TopK, as it disentangles the influence of the hyperparameters.
This is discussed in more detail in Appendix E. For performance, we find that larger λw and smaller
k lead to worse performance. For dropout rate, there typically seems to be a sweet spot.

3.2 INTERPRETABILITY OF UCBM

Explainable sample-wise decisions. Figure 5 shows qualitative examples of the most contributing
concepts with their contribution strength (contribution of concept cj to class yi: |Wyi,jπ(xi)j |). We
find that the most contributing concepts are relevant to both the input and prediction, while also being
diverse. For example, UCBM with TopK concept selector focuses on concepts such as ‘tiger striped
fur’, ‘whiskers’ or ‘big cats’ snouts’ for the tiger in Figure 5a, or the ‘bright yellow plumage’ of the
American goldfinch in Figure 5b.

Figure 6 compares the explanation of our UCBM with TopK concept selector and Label-free CBM
(more examples in Appendix F). We find that UCBM relies on fewer concepts, that are present in
the image and relevant to the predicted class. In contrast, Label-free CBM often relies on concepts
that are correlated with the predicted class but absent in the image. This is especially pronounced
for misclassifications (Figures 17f to 17i in Appendix F).
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(b) ‘American goldfinch’ (CUB), conf: 92.51%.

Figure 5: Decisions of UCBM with TopK concept selector rely on few reasonable and diverse
concepts. Results on ImageNet (a) and CUB (b). Additional examples are provided in Appendix F.
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Figure 6: The decision of UCBM with TopK concept selector (left) is more comprehensible than
that of Label-free CBM (right). Our approach relies on concepts that are present in the image and
relevant to the prediction, whereas Label-free CBM tends to use concepts that are not even present,
which is particularly pronounced for misclassifications. Appendix F provides additional examples.
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Figure 7: Users strongly
prefer UCBM. From clearly
UCBM (blue) to clearly
Label-free CBM (red).

User study on explainable sample-wise decisions. To corrobo-
rate the qualitative results from above, we conducted a user study
to assess the interpretability of UCBM with TopK concept selec-
tor compared to Label-free CBM. Specifically, we evaluated the
comprehensibility of their explanations. Note that the approaches
present their concepts differently: UCBM and Label-free CBM use
visual or textual concept representations, respectively. Thus, for fair
comparison, we labeled concepts or retrieved images using SigLIP
SoViT-400m (Zhai et al., 2023; Alabdulmohsin et al., 2023). Fur-
ther details on the user study design are provided in Appendix G.

Figure 7 shows that users strongly preferred UCBM over Label-free CBM, corroborating the quali-
tative results shown in Figures 5 and 6 and Appendix F. Further analysis is provided in Appendix G.

Explainable class-level decision rules. To derive class-level decision rules, we computed the av-
erage contribution of each concept for a class. Figure 8 shows the top-3 concepts for two classes.
We find that UCBM with TopK concept selector focuses on reasonable, human-understandable con-
cepts relevant to each class. For example, Figure 8a shows that UCBM bases its classification of
pineapples on the typical ‘pineapple’s texture’ or its ‘leaves’.

3.3 CASE STUDY: CORRECTING ERRORS USING A LARGE VISION-LANGUAGE MODEL

In this subsection, we show how a large vision-language model (GPT-4o (Achiam et al., 2023)) can
guide us to correct errors in UCBMs (specifically, a UCBM with TopK concept selector trained on
ImageNet). We prompted the model asking it to adjust the weights of the sparse linear classifier
W in UCBMs (Equation 6) to correct an error without affecting the classification of other inputs.
The prompt included the misclassified input image, the top-5 concepts, and their contributions for
both the misclassified and correct class. For an example of the prompt, see Appendix J. During
initial experiments, we found that the suggested changes, ∆W, were sometimes too strong, leading
to errors of previously correct inputs. To address this, we ran a grid search on the training set of
ImageNet to find optimal weighing factors βi ∈ [0, 1] for each proposed change ∆Wi.
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Figure 8: UCBM with TopK concept selector uses concepts that are relevant to the classes
(represented by the most activating crops). Results for ImageNet (a) and CUB (b). Additional
examples are provided in Appendix H.
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Figure 9: UCBMs are intervenable. We used a large vision-language model to help us to correct
errors by guiding the edits of the weights of UCBM with TopK concept selector.

Figure 9 shows two examples that were correctly classified after applying the weight adjustments
proposed by the large vision-language model. This demonstrates the intervenability of UCBMs
and illustrates the potential use case of large vision-language models to automatically identify and
correct the traceable causes of errors of UCBMs (or other concept-based models).

4 RELATED WORKS

Concept-based models. Concept Bottleneck Models (CBMs) (Koh et al., 2020) are trained to di-
rectly leverage concepts in their classifications (Lampert et al., 2009; Kumar et al., 2009). Many
works highlighted (and partially addressed) the limitations of them (Margeloiu et al., 2021; Mahin-
pei et al., 2021; Havasi et al., 2022; Marconato et al., 2022; Raman et al., 2024). Other work im-
proved the performance-interpretability trade-off (Espinosa Zarlenga et al., 2022; Yang et al., 2023)
or extended them beyond image classification (Ismail et al., 2023; Zarlenga et al., 2023).

The most related methods to our work convert a pretrained black-box model into a CBM post-hoc
(Yuksekgonul et al., 2023; Oikarinen et al., 2023; Menon & Vondrick, 2023; Marcinkevičs et al.,
2024). These approaches alleviate the need for costly concept annotations by leveraging language
models, like GPT-3 (Brown et al., 2020), to automatically generate class-specific descriptions and
vision-language models, like CLIP (Radford et al., 2021), to learn a mapping from a black-box
model’s uninterpretable features to these concepts. In contrast to these, we do not presume which
concepts the black-box model has learned, but find the ones that most accurately decompose the
black-box model’s features in an unsupervised manner. Concurrently, akin to our first contribution,
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Rao et al. (2024) discovered concepts with sparse autoencoders. In contrast to the aforementioned
works, we also introduced a novel input-dependent concept selection mechanism that dynamically
retains only a sparse set of concepts for each input.

Concept discovery. Early work searched for neuron-aligned concepts (Bau et al., 2017; Olah et al.,
2017), while later works, inspired by the superposition hypothesis (Kim et al., 2018; Elhage et al.,
2022), went beyond this to (linear) vector (Kim et al., 2018; Zhou et al., 2018; Ghorbani et al.,
2019; Zhang et al., 2021; Zou et al., 2023; Fel et al., 2023b; Huben et al., 2024; Stein et al., 2024) or
linear subspace (Vielhaben et al., 2023) concept representations. Early work needed costly annotated
datasets to find concepts through supervision. Later work overcame this bottleneck by formulating
concept discovery as a dictionary learning problem (Fel et al., 2023a).

Model editing. Model editing aims to modify a model’s weights to remove a bias or correct errors.
Previous work edited knowledge in large language models (Zhu et al., 2020; Meng et al., 2022), gen-
erative image models (Bau et al., 2020; Gandikota et al., 2023), or modified a classifier’s prediction
rules (Santurkar et al., 2021; Oikarinen et al., 2023). These works relied on, e.g., human intervention
or hypernetworks, whereas we leverage large vision-language models to inform model editing.

5 LIMITATIONS & FUTURE WORK

The main limitation (or advantage) of our approach is that discovered concepts are only represented
visually, not textually. While images may be more informative, texts aid faster and easier inter-
pretability. To obtain textual descriptions of concepts, we could manually label concepts. However,
this does not scale to large amounts of concepts. Thus, we also experimented with automatic concept
labeling through large vision-language models (GPT-4o (Achiam et al., 2023)), see Appendix I for
details. While we found it to yield overall good concept descriptions, we also found many instances
with poor descriptions; especially for non-object-centric or more abstract concepts.

Another limitation of our approach is that we only extract concepts from the bottleneck layer of
black-box models. We conjecture that the use of concepts throughout the feature hierarchy of these
models may be beneficial for concept-based models in terms of performance and/or interpretability,
as such a hierarchy is also learned by these models (Zeiler & Fergus, 2014). For instance, an early
layer could find concepts for ‘windows’, ‘car body’, or ‘wheels’, while a later layer assembles them
to a ‘car’ concept (Olah et al., 2020).

6 CONCLUSION

We presented UCBMs, which convert pretrained black-box models into interpretable concept-based
models by discovering the concepts that the model has learned through unsupervised concept discov-
ery. We further introduced a novel input-dependent concept selection that only retains the concepts
most relevant for classifications. Our experiments show that UCBMs outperform previous methods,
while being substantially more sparse globally. Finally, we qualitatively and quantitatively vali-
dated the interpretability of UCBMs, and showcased how large vision-language models can guide
the editing of UCBMs to correct its errors.
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(a) Removing the head and neck of an ostrich makes concepts 654 (green), 549 (red), and 1843 (purple) disap-
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(b) Removing the ears of an angora rabbit makes concept 1693 (green) disappear from the top-5 cosine simi-
larities.
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(c) Removing the neck of an acoustic guitar makes concept 2975 (red) disappear from the top-5 cosine similar-
ities.

Figure 10: Concepts discovered in an unsupervised manner exhibit faithful behavior. Concepts
are represented by their most activating image crops. From the original image (left), we manually
removed image parts (right) using an image manipulation tool and computed the concept-activation
cosine similarities for an ostrich (a), an angora rabbit (b), and an acoustic guitar (c). We find that
cosine similarity scores reduce, as we remove an image part where that concept or these concepts
were previously present.

A ADDITIONAL RESULTS FOR THE FAITHFULNESS OF DISCOVERED
CONCEPTS

Figure 10 provides additional results for the faithfulness of the discovered concepts. In Figure 10a
removing the head and neck of the ostrich in the input image makes concepts 654 (green), 549
(red), and 1843 (purple) disappear from the top-5 cosine similarities. Since concepts 654, 549
and 1843 represent parts of an ostrich’s head or neck, this demonstrates the faithfulness of the
discovered concepts. Figures 10b and 10c show similar behavior for a rabbit’s ears and guitar’s
neck, respectively

B FURTHER DETAILS ON THE INTERPRETABLE CLASSIFIERS

Table 3 provides the full overview over the interpretable classifiers for all of our UCBM variants
from Section 2.2. Below, we provide further details for the JumpReLU and TopK concept selectors.

JumpReLU concept selector. The JumpReLU activation function (Erichson et al., 2019) is de-
fined as follows:

JumpReLUo(x) = x ·H(x− o) =

{
0, x ≤ o
x, x > o

, (8)

where H is the Heaviside step function. Note that we cannot directly train our offset parameter o.
Thus, following Rajamanoharan et al. (2024), we used straight-through-estimators (Bengio et al.,
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Table 3: Overview of interpretable classifiers. In the equations below, let s̃(xi) := simC(xi)
denote the normalized cosine similarity between activations ai = f(xi) for input xi and the concepts
C, W ∈ R|Y|×|C| and b ∈ R|Y| are the weights and bias of the linear classifier, o ∈ R|C|

+ is a
trainable offset parameter, yi ∈ Y denotes the target class of input xi for a total of |Y| classes, L
denotes the task-specific loss function (in our case cross-entropy loss throughout this work), Rα

is the elastic net regularization penalty (Zou & Hastie, 2005), λw, λπ govern the regularization
strengths, H denotes the Heaviside step function, and TopK denotes the TopK activation function
(Makhzani & Frey, 2014). Note that s̃(xi) is frozen during optimization. Further, note that the TopK
concept selector does not need a sparsity penalty since sparsity can be controlled directly using the
parameter k.

name concept selector π interpretable classifier

ReLU π(xi) := max(0, s̃(xi)− o) min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwRα(W) + λπRα(π(xi))

JumpReLU π(xi) := s̃(xi) ·H(s̃(xi)− o) min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwRα(W) + λπ

|C|∑
j

H(s̃j(xi)− oj)

TopK π(xi) := TopK(s̃(xi)− o) min
W,b,o

N∑
i=1

L(Wπ(xi) + b, yi) + λwRα(W)

Table 4: Hyperparameter settings for all UCBMs variants on ImageNet — CUB — Places-365.

λπ k λw dropout rate

UCBM w/o concept selection n/a n/a

1e-4 — 8e-4 — 4e-4 0.1 — 0.2 — 0.2UCBM with ReLU concept selector 2e-5 — 1e-4 — 2e-5 n/a
UCBM with JumpReLU concept selector 1e-5 — 4e-7 — 4e-7 n/a
UCBM with TopK concept selector n/a 42 — 66 — 162

2013) to make o trainable. Specifically, we adopted the pseudo-derivates from Rajamanoharan et al.
(2024):

∂̃

∂̃o
JumpReLUo(x) := −0

ϵ
K(

x− o

ϵ
) (9)

and

∂̃

∂̃o
H(x− o) := −1

ϵ
K(

x− o

ϵ
) , (10)

where ∂̃ denotes the pseudo-derivative, K is a kernel (following Rajamanoharan et al. (2024) we
used the rectangle function: rect(x) := H(x + 1

2 ) − H(x − 1
2 )), and ϵ can be seen as the KDE

bandwidth.

TopK concept selector. The TopK activation function (Makhzani & Frey, 2014) is defined as
follows:

TopKk(x)i =

{
xi if xi ∈ top-k(x),
0 otherwise,

. (11)

Note that we can directly control the sparsity through the hyperparameter k and the TopK concept
selector becomes equivalent to the identity function as k = |C|.

Why do we add a trainable offset parameter o? We introduce the additional trainable offset
parameter o ∈ R|C|

+ to allow the classifier to adapt to different ranges of alignment scores for each
concept. The reasons for this is that the distribution of alignment scores can vary between concepts.
For example, for one concept, the alignment scores may be more uniformly distributed, indicating a
more ambiguous presence of the concept. For another concept, the alignment scores might follow a
bimodal distribution, indicating two distinct modes that indicate the object is present or absent. The
offset parameter helps the classifier in such cases to account for such different distributions.
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Figure 11: Trade-off curves between sparsity and performance of the three UCBM variants.
We plot the mean number of active concepts per input according to Equation 7 as we decrease k (for
TopK) or increase λπ (for the others). Note that we only plot the Pareto-optimal points.

Table 5: UCBM with TopK concept selector requires less concepts to explain a prediction. We
report the mean and the standard deviation of the number of concepts that are required to explain
95% of the prediction (see Equation 12 for more details).

#concepts to explain 95% of the prediction (Equation 12)

Approach ImageNet CUB Places-365

UCBM w/o concept selection 9.51 ± 0.016 6.95 ± 0.05 46.12 ± 0.075

UCBM with ReLU concept selector 4.93 ± 0.002 5.93 ± 0.051 17.59 ± 0.031
UCBM with JumpReLU concept selector 6.27 ± 0.007 5.75 ± 0.099 28.53 ± 0.044
UCBM with TopK concept selector 6.15 ± 0.011 6.54 ± 0.041 28.22 ± 0.023

C HYPERPARAMETER SETTINGS

Table 4 provides the hyperparameters (λπ , k, λw, dropout rate) for all our UCBMs variants. We
chose those hyperparameters such that they yielded a good trade-off between performance, sparsity,
and fair comparability (see Figure 4 and Appendices D and E). It is important to note that we first
optimized λπ for the ReLU and JumpReLU concept selectors and then set k accordingly, as we
found that its relationship to sparsity (c.f., Equation 7) is straightforward.

D TRADE-OFF BETWEEN PERFORMANCE AND SPARSITY

The hyperparameter k for UCBM with TopK concept selector, or λπ for UCBM with ReLU or
JumpReLU concept selector, governs the model’s sparsity (c.f., Equation 7). It is important to
note that this also affects performance–more sparse models typically have degraded performance.
Figure 11 illustrates this trade-off. We find that each concept selector enables ‘smooth’ control
over this trade-off. This allows practitioners to set these hyperparameters according to their desired
balance between sparsity (and better interpretability) and performance, based on the requirements
of their application.

Beyond the sparsity measurements and discussion for Table 2, we computed how many concepts
the models need to explain their prediction of a class. For this, we computed the mean number of
concepts that are required to explain 95% of a model’s prediction per sample:

1

N

N∑
i=1

C ′
i , where min

C′
i⊆{1,...,|C|}

|C ′
i| s.t.

∑
c∈C′

i

|Wỹi,cπ(xi)c|∑
c∈{1,...,|C|}

|Wỹi,cπ(xi)c|
≥ 95% , (12)

where ỹi denotes the model’s prediction of input xi.

Table 5 shows that UCBMs with concept selector rely on fewer concepts than UCBM without con-
cept selection. Note that relying on fewer concepts makes it easier for users to comprehend a pre-
diction since they do not need to inspect a lot of concepts.
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Figure 12: Sensitivity analysis for UCBM with TopK concept selector over λw (a), k (b), and
the dropout rate (c) for CUB (left) and Places-365 (right).

10−4 10−3

λw

78.0

78.5

79.0

te
st

ac
c

50

60

av
g

ac
tiv

e
co

nc
ep

ts

10−4 10−3

λw

74.6

74.8

te
st

ac
c

60

65

av
g

ac
tiv

e
co

nc
ep

ts

10−4 10−3

λw

50

52

te
st

ac
c

140

160

av
g

ac
tiv

e
co

nc
ep

ts

(a) Performance vs. λw.

10−6

λπ

75.0

77.5

80.0

te
st

ac
c

0

200

av
g

ac
tiv

e
co

nc
ep

ts

10−7 10−5

λπ

74

75

te
st

ac
c

50

100

av
g

ac
tiv

e
co

nc
ep

ts

10−7 10−5

λπ

45

50
te

st
ac

c

0

200

400

av
g

ac
tiv

e
co

nc
ep

ts

(b) Performance vs. λπ .

0.00 0.25

dropout rate

78.8

79.0

te
st

ac
c

50

100

av
g

ac
tiv

e
co

nc
ep

ts

0.0 0.2 0.4

dropout rate

72

74

te
st

ac
c

25

50

75

av
g

ac
tiv

e
co

nc
ep

ts

0.00 0.25

dropout rate

50.0

50.5

te
st

ac
c

150

175

200

av
g

ac
tiv

e
co

nc
ep

ts

(c) Performance vs. dropout.

Figure 13: Sensitivity analysis for UCBM with ReLU concept selector over λw (a), λπ (b), and
the dropout rate (c) for ImageNet (left), CUB (middle), and Places-365 (right).

E ADDITIONAL SENSITIVITY ANALYSIS RESULTS

Figure 12 provides the results for the sensitivity analysis for UCBM with TopK concept selector on
CUB and Places-365. Figures 13 and 14 provide the results for UCBM with ReLU or JumpReLU
concept selector, respectively.

As also discussed in Appendix D, the hyperparameters k (for TopK) or λπ (for ReLU and
JumpReLU) control the trade-off between performance and sparsity. Regarding the other hyper-
parameters, λw and dropout rate, it is important to observe that they have less influence on the
sparsity for the TopK concept selector than for the other concept selectors. We consider this as
an advantage of the TopK concept selector, as it reduces the interaction between hyperparameters.
This makes hyperparameter tuning simpler and simplifies the interpretation: k governs the average
number of active concepts per sample, λw governs the number of concepts used per class, and the
dropout rate influences whether the classifier relies on a broader or narrower set of concepts.

For λw, we find that increasing it typically leads to worse performance and a smaller average number
of active concepts per sample. Interestingly, for the UCBMs with ReLU concept selector trained on
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Figure 14: Sensitivity analysis for UCBM with JumpReLU concept selector over λw (a), λπ (b),
and the dropout rate (c) for ImageNet (left), CUB (middle), and Places-365 (right).
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Figure 15: Explainable decisions by UCBM with TopK concept selector on ImageNet (a), CUB
(b), and Places-365 (c, d) classes. The model’s prediction are comprehensible and typically rely on
only few concepts.

ImageNet and Places-365, we observe the opposite behavior. For the dropout rate, a higher dropout
rate results in more active concepts per sample, though its relationship with performance is less
straightforward.

F ADDITIONAL EXAMPLES OF EXPLAINABLE DECISIONS

Additional examples for sample-wise explanations. Figure 15 provides more examples of ex-
plainable decision of UCBM with TopK concept selector on ImageNet, CUB, and Places-365. We
typically find that our method relies on a small set of concepts that are present in the images, human-
comprehensible and class-relevant. For instance, for the viaduct in Figure 15a, UCBM uses class-
relevant concepts (e.g., ‘arches’, ‘stones’, or ‘walkway’). For the ‘railroad track’ in Figure 15c, it
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(d) GT: ‘car wheel’, pred.: ‘sports car’.

Figure 16: The most contributing concepts explain the misclassifications on ImageNet of
UCBM with TopK concept selector. a: The image shows a station wagon mirrored in a car wheel.
Most of the top-5 concepts are related to car wheels, which explains that the model only focuses
on the car wheel itself instead of the mirrored station wagon. This clearly explains why the model
predicts ‘car wheel’ instead of ‘station wagon’. b: The image shows an eft next to a bottle cap. The
concepts show that the model used concepts related to bottle caps, which is the object at the center
of the image. c: The image shows two granny smith apples next to a goblet that was predicted by the
model. The concepts reveal that the model focuses on concepts related to the goblet at the center of
the image. d: The image shows a sports car, including one of its front wheels. The most important
concept is related to sports cars. The other concepts also focus more on general car concepts than
on the wheels.

uses concepts such as ‘tracks’ or ‘train’. Interestingly, it also uses the concept ‘large window’ that is
also related to, e.g., buses. This indicates that UCBMs first assess if concepts are present or absent
and then based on that evidence predict the class that is most likely given that.

Understanding misclassifications of UCBMs. Figure 16 shows that we can comprehend why
UCBMs made a misclassification. For example, Figure 16a shows that the UCBM incorrectly pre-
dicted ‘car wheel’ instead of ‘station wagon’. However, the image shows such station wagon mir-
rored in a car wheel. Looking at the most contribution concepts reveals that UCBM focused on
concepts that are related to the car wheel, as it is the most salient in the image.

Additional examples for the comparison of UCBM to Label-free CBM. Figure 17 compares
the explanations of UCBM with TopK concept selector and Label-free CBM (Oikarinen et al., 2023).
We find that our approach provides more comprehensible explanations:5 UCBM relies on intuitive
concepts that are present in the image and relevant to the prediction. In contrast, Label-free CBM
tends to rely on concepts that are correlated to the prediction but may not be present in the im-
age, e.g., the concepts ‘graduation markings’ or ‘diploma’ for the prediction ‘graduation cap’ in
Figure 17d.6 Note that such reliance on prediction-class correlated but absent concepts is particu-
larly pronounced for misclassifications (Figures 17f to 17i). For example, Label-free CBM relies on
the concepts ‘garden’, ‘plants’, or ‘rainforest’ for an image that depicts an restaurant from the street
(without any greenery). We believe relying on such non-visible concepts is not helpful to understand
the decision of a concept-based model.

5These qualitative findings are further corroborated in the user study in Section 3.2 and Appendix G.
6We suspect the reason for this are shortcomings of CLIP’s embeddings. For instance, the concepts ‘gradu-

ated cylinder’ is unrelated to the prediction of ‘graduation cap’ in Figure 17d. However, the word ‘graduated’ is
related to ‘graduation’. Indeed, when we compute the cosine similarity of text features (we considered the fol-
lowing: ‘graduated cylinder’, ‘graduation ceremony’, ‘graduation markings’, ‘graduation’, ‘university’, ‘dog’,
‘house’), we found that concepts related graduation have higher similarities with the graduated cylinder than
the unrelated concepts. We leave further investigations for future work.
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(b) GT: ‘acoustic guitar’, UCBM: ‘acoustic guitar’ (99.93%), Label-free CBM: ‘acoustic guitar’ (42.35%)
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(e) GT: ‘spotted salamander’, UCBM: ‘spotted salamander’ (90.35%), Label-free CBM: ‘spotted salamander’
(92.77%)

Besides that, we find that a significant part of the concept contributions of the decisions of Label-free
CBM is also attributed to other concepts (bar ‘others’ in the plots). In contrast, UCBMs typically
rely on fewer concepts. The benefit of this is that users have to only consider a small set of concepts
in practice, making the interpretability of UCBMs’ explanations easier to comprehend.
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(f) GT: ‘tent’, UCBM: ‘sleeping bag’ (97.70%), Label-free CBM: ‘window screen’ (59.72%)
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Figure 17: Comparison of explainable decisions of UCBM with TopK concept selector (left)
vs Label-Free CBM (right). Subfigures a-e and f-i show correct or incorrect predictions of both
CBMs, respectively. Our UCBM with TopK concept selector provides more comprehensible expla-
nations, while Label-free CBM often relies on concepts that are not even visible in the image (this is
especially pronounced for misclassifications). We suspect one reason for this are the shortcomings
of CLIP’s text features that are used in Label-free CBM.

G FURTHER DETAILS ON THE USER STUDY

In the user study, we studied whether users consider the explanations of the decisions of UCBM to
be comprehensible. To do so, we compared the explanations of UCBM with TopK concept selector
with Label-free CBM (Oikarinen et al., 2023). Both were trained on ImageNet.

Task. We asked users to assess which model provides a more comprehensible explanation from a
scale from ‘Model A clearly more’ to ‘Model B clearly more’. Further, we asked for the reasons
why they think one model is more comprehensible than the other.
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Figure 18: Instruction text.

Figure 19: Instruction example.

User study data. We showed users local explanations based on which concepts contributed the
most to the decision of each model, akin to Figures 6, 8, 15 and 16. Importantly, 20% of samples
showed misclassifications of both models (for the other 80% both model predicted correctly).7 We
include misclassifications to also understand how comprehensible models are under errors. We be-
lieve this is an important aspect to study, as users will also interact with models that make errors in
practice. For sake of this user study, we simplified the explanations by removing the concept con-
tributions and only showed the names and top-activating image crops of the five most contributing
concepts and a corresponding concept description.

Note that UCBM and Label-free CBM represent their concepts differently: UCBMs show visual
representations, whereas Label-free CBM shows concept descriptions. To ensure fair comparison,

7No sample for which one model was correct and the other was incorrect was shown in the user study.
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Figure 20: User study sample.
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Figure 21: Users strongly preferred UCBM with TopK concept selector over Label-free CBM
for correct as well as incorrect predictions.

we labeled the most activating image crops of UCBM’s concepts and retrieved images using SigLIP
SoViT-400m (Zhai et al., 2023; Alabdulmohsin et al., 2023) for Label-free CBM’s concepts.

Setup. We implemented the user study in a lightweight Python GUI so that users could run the
study locally on their machine. Users were provided with the task description (Figure 18) and an
example (Figure 19). After the instruction, users interacted with our user study interface (Figure 20).

We asked ten users to rate a total of 200 samples (20 per user). Users participated voluntarily and
without payment. They have strong background in machine learning and related fields. However,
none of them is working on concept-based models or had seen explanations of UCBM before.

Further analysis. Complementary to the results presented in Section 3.2, we conducted further
analysis on the results of the user study. Figure 21 shows that users strongly preferred our UCBM
with Topk concept selector over Label-free CBM in ca. 65-70% of evaluations (Label-free CBMs
are only preferred in ca. 15%). Users’ preference was similar for correct or incorrect predictions.

Users based their preference decisions mostly on relevance to the prediction (selected in 66.5% of the
evaluations). However, relevance to the image (55%) and informativeness (55%) closely followed
it.
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Figure 22: Visualization of decision rules learned by UCBM with TopK concept selector on
ImageNet (a), CUB (b) and Places-365 (c, d).

H ADDITIONAL EXAMPLES OF EXPLAINABLE DECISION RULES

Figure 22 provides more examples of explainable decision rules of UCBM. The examples show that
UCBM uses reasonable human-interpretable concepts to build the score of a specific class.

I CONCEPT LABELING WITH A LARGE VISION-LANGUAGE MODEL

As an alternative to providing the top-activating image crops and manual concept labelling, we also
experimented with large vision-language models (GPT-4o (Achiam et al., 2023)) to automatically
label concepts. We prompted it with the top-9 image crops and task description:

The nine pictures within the image are matching a specific concept.
Can you describe the concept with very few words (ca. 1–3)?

Figure 23 shows the outputted concept labels for twelve, diverse concepts. Overall, we found that
concept labels are mostly matching to the top image crops, e.g., Figures 23a, 23d, 23e and 23k.
However, there are also instances that may not be correctly labelled. For example, the large vision-
language model outputs “motorcycle racing” for the image crops in Figure 23b. While this matches
well with most of the image crops, it does not for the baseball player (bottom middle) and cyclist
(bottom right). We suspect that the concept is representing a more general concept for “safety
equipment” instead. For another example, in Figure 23h, the large vision-language model labelled
the concept as “ocean textures”. However, the image crops more likely resemble a starry sky rather
than some ocean textures due to the point structure.

J EXAMPLE PROMPT TO THE LARGE VISION-LANGUAGE MODEL

Figure 24 shows an example prompt to the large vision-language model for the misclassification
from the lower, left subfigure in Figure 9. Figure 25 shows the corresponding output from the large
vision-language model.
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(a) metal fencing/
wire mesh

(b) motorcycle racing (c) fence/fencing (d) white poodles

(e) moka pot (f) chains and links (g) exercise equipment (h) ocean textures

(i) restaurant table/
dining experience

(j) lighthouses (k) lifeboat (l) tree bark/
wood textures

Figure 23: Labeling of concepts using large vision-language models. The subfigures’ captions
are the labeling/descriptions that the large vision-language model (GPT-4o (Achiam et al., 2023))
assigned to the provided concept visualizations.
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The image from above leads to the following output if we are putting it into a trained concept
bottleneck model.

Ground truth: tench
Prediction: eel

Top-5 model prediction sorted by the logits:
Class eel: 7.71
Class tench: 7.05
Class silver salmon: 6.76
Class snoek fish: 6.08
Class sturgeon: 5.93

Largest five concept contributions (by absolute value) for ground truth class tench, sorted by
size (and their weight in the final linear layer):
Concept 2088: 5.27 (0.34)
Concept 2987: 1.48 (0.20)
Concept 162: 0.17 (0.01)
Concept 2177: 0.01 (0.00)
Concept 2479: 0.01 (0.00)

Largest five concept contributions (by absolute value) for predicted class eel sorted by size
(and their weight in the final linear layer):
Concept 333: 2.94 (0.34)
Concept 1367: 2.26 (0.20)
Concept 760: 0.72 (0.11)
Concept 2088: 0.68 (0.04)
Concept 2987: 0.51 (0.07)

Furthermore, the layer from the concept similarities to the prediction is a linear layer. Which
weights (concept and class) should be adjusted by how much in order to get a correct classi-
fication for this image, while not changing any other classifications? Please give an answer in
case of ’increase/decrease weight of class i and concept j by x’.

Figure 24: Input prompt to the large vision-language model to edit the linear classifier’s weights
to correct an error.
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To get the model to correctly classify the image as ”tench” instead of ”eel,” we’ll need to ad-
just the weights in the final linear layer between the relevant concepts and the classes. Here’s
the approach to identifying which weights should be adjusted and by how much:

Step-by-step Approach:

1. Identify Misclassification and Concept Contributions:

• The model currently predicts ”eel” with a logit of 7.71, while ”tench” has a logit
of 7.05.

• To change the classification to ”tench,” we need the logit for ”tench” to be
higher than the logit for ”eel.”

2. Calculate Difference Needed:

• Currently, the difference between ”eel” and ”tench” logits is: 7.71− 7.05 = 0.66.

• To correctly classify the image as ”tench,” the logit for ”tench” must exceed
”eel.” Therefore, we need to adjust the weights such that the logit for ”tench”
increases by at least 0.66.

3. Determine Which Concept Weights to Adjust:

• For ”tench,” the largest contributing concept is 2088 with a contribution value of
5.27 and a weight of 0.34.

• For ”eel,” concept 2088 is also present with a smaller contribution (0.68) and a
lower weight (0.04).

• Adjusting concept 2088’s weight for ”tench” might be the most straightforward
way to change the output because it has a significant contribution value.

4. Calculate Weight Adjustments:

• To increase the ”tench” logit by 0.66, we need to find an increase in the weight
of concept 2088 for ”tench”:

Increase in logit = concept contribution× weight increase.

Here, the concept contribution for 2088 is 5.27. So, we need to find the weight
increase (∆w) such that:

5.27×∆w = 0.66.

Solving for ∆w:

∆w =
0.66

5.27
≈ 0.125

5. Adjust the Weight:

• Increase the weight between ”tench” and concept 2088 by approximately 0.125.

Final Answer:
• Increase the weight of class tench and concept 2088 by 0.125.

This targeted adjustment will help correct the classification for this specific image without af-
fecting other classifications significantly, as it focuses on the concept that most strongly con-
tributes to the ”tench” logit.

Figure 25: Output of the large vision-language model to edit the linear classifier’s weights to
correct the error.
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